1st Year LMD ST/SM, 1st Year Engineer

Exercise Series N° 3

Exercise 1:

Calculate the difference between the heat of reaction at constant volume and the heat of reaction at constant pressure in the following two cases:

1) at a temperature of 0° C:

 $C_2H_5OH (l) + 3O_2(g) \rightarrow 2CO_2(g) + 3H_2O(s)$

2) at a temperature of 25° C :

 $C_2H_5OH(g) + 3O_2(g) \rightarrow 2CO_2(g) + 3H_2O(l)$

Exercise 2:

Consider the combustion reaction of ethane at 25°C and 1 atm:

 $C_2H_6(g) + 7/2 O_2(g) \rightarrow 2CO_2(g) + 3H_2O(l)$

1. Calculate the enthalpy change of this reaction ΔH_R° at 25°C. What does the sign of the value found mean?

2. Calculate the internal energy change ΔU_R° accompanying this reaction at 25°C.

<u>Data at 25°C:</u> ΔH_{f}° (H₂O (l)) = - 285,8 Kj/mol, ΔH_{f}° (CO₂ (g)) = - 394,0 Kj/mol,

 $\Delta H_{f}^{\circ} (C_{2}H_{6} (g)) = -238, 2 \text{ Kj/mol.}$

Exercise 3:

I. The combustion of one mole of liquid methanol, CH₃OH(l), releases 724 kJ at T=298K and P=1atm.

a. Write the combustion reaction of methanol at 298 K.

b. Calculate the standard enthalpy of formation of liquid methanol (ΔH_f°) at 298K, deduce the enthalpy of formation of gaseous methanol.

II. Calculate the bond energy (O-H) in gaseous methanol?

<u>Data: at 298K:</u> $\Delta H^{\circ}_{f}(CO_{2 (g)}) = -393 \text{ KJ/mol}, \qquad \Delta H^{\circ}_{f}(H_{2}O_{(l)}) = -285 \text{ KJ/mol},$

	ΔH [°] _{Vap} (CH ₃ OH)	= +39 KJ/mol,	$\Delta H^{\circ}_{sub}(C) = +/1$	4 KJ/mol
Bond	H-H	C-H	C-0	0=0
ΔH°_{diss} (KJ/mol) 436	415	350	464

Exercise 4:

Consider the following reaction at 298K:

 $CH_4(g) + Cl_2(g) \rightarrow CH_3Cl(g) + HCl(g)$

1. Calculate the standard enthalpy of reaction ΔH_R° at 298K.

2. Calculate the bond energy of the C-H bond at 298K.

3. Calculate the standard molar enthalpy of sublimation of carbon at 298K.

Data:

 $\Delta H_{f^{\circ},298}^{\circ}(CH_{4},g) = -17,9 \text{ kcal/mol}, \ \Delta H_{f^{\circ},298}^{\circ}(CH_{3}Cl,g) = -20 \text{ kcal/mol}, \ \Delta H_{f^{\circ},298}^{\circ}(HCl,g) = -22 \text{ kcal/mol}, \\ \Delta H^{\circ}_{298}(Cl-Cl) = -58 \text{ kcal/mol}, \qquad \Delta H^{\circ}_{298}(C-Cl) = -78 \text{ kcal/mol} \\ \Delta H^{\circ}_{298}(H-Cl) = -103 \text{ kcal/mol}, \qquad \Delta H^{\circ}_{298}(H-H) = -104 \text{ kcal/mol}$

Exercise 5:

Consider the following reaction:

 $Fe_{(s)} + \frac{1}{2} O_{2(g)} \longrightarrow FeO_{(s)}$

1. Calculate the standard enthalpy of reaction ΔH°_{R} at T₀=298 K.

2. Calculate ΔH°_{R} of the reaction at T₁=1700 K and T₂=1900 K, knowing that $\Delta H^{\circ}_{fusion}(Fe)=14.9 \text{ kJ/mol}$ at T_f=1807 K.

<u>Data: at 298K :</u> ΔH°_{f} (FeO (s)) = - 272,04 KJ/mol, C_{p} (Fe (s)) = 24,9 J/K.mol, C_{p} (Fe (l)) = 46 J/K.mol,

 $C_p(O_{2(g)}) = 29,4 \text{ J/K.mol}, C_p(\text{FeO}_{(s)}) = 49,70 \text{ J/K.mol}$