II. Maxwell Equations *Maxwell equations*

5. Maxwell correction of Ampere law:

Let's consider again the electrodynamics set of equations:

 $V.E =$ $\boldsymbol{\rho}$ ε_0 *I*(Gauss's law $\nabla \wedge E = \boldsymbol{\theta}$ $\overline{\partial t}$ II(Faraday's Law) $\mathbf{V}.\mathbf{B}=\mathbf{0}$ III(Gauss Law for magnetism) $\mathbf{\nabla} \wedge \mathbf{B} = \mu_0 \mathbf{\jmath}$ $IV(Ampere's Law)$

When applying the divergent of equations II and IV, we will find:

$$
\overrightarrow{\mathbf{V}}.\left(\overrightarrow{\mathbf{V}}\wedge\overrightarrow{\mathbf{E}}\right)=\overrightarrow{\mathbf{V}}.\left(-\frac{\partial\overrightarrow{\mathbf{B}}}{\partial t}\right)=-\frac{\partial}{\partial t}\left(\overrightarrow{\mathbf{V}}.\overrightarrow{\mathbf{B}}\right)=\mathbf{0}
$$

Now, when applying the same action on equation IV: $V. (V \wedge B)$ $=$ 0,∀B $= \nabla \cdot (\mu_0 j) = \mu_0 \nabla \cdot j = \mu_0 \nabla \cdot j$? In fact, the quantity $\nabla \cdot \vec{j}$ does not vanish for all \vec{j} , only for special cases corresponding to $\frac{\partial \rho}{\partial t} = 0$, **according to charge continuity equation.** *To prevent this, Maxwell proposed to add a term which could cancel the divergent of the current density:* $J' = J + G$ in such a way that: ∇ . $J' = \nabla$. $J + \nabla$. $G = 0$ *This will give the following result:* $\nabla G = -\nabla \cdot \vec{J} =$ $\boldsymbol{\theta} \boldsymbol{\rho}$ \boldsymbol{dt} **James C. Maxwell 1831- 1897, UK**

5. Maxwell correction of Ampere law:

This new term, will ingeniously ensure the complete relationship (in both senses) between electric and magnetic fields.

According to Gauss's law: $\overrightarrow{\nabla}.\overrightarrow{E} = \frac{\rho}{\varepsilon_{0}}$ ε_0 (Eq. I), the Maxwell condition could be rewritten as:

$$
\vec{\nabla} \cdot \vec{G} = -\vec{\nabla} \cdot \vec{J} = \frac{\partial \rho}{\partial t} = \frac{\partial \vec{D}}{\partial t} = \frac{\partial (\varepsilon_0 \vec{\nabla} \cdot \vec{E})}{\partial t} = \vec{\nabla} \cdot \left(\varepsilon_0 \frac{\partial \vec{E}}{\partial t} \right)
$$

This implies that:

$$
\vec{G}=\varepsilon_0\frac{\partial\vec{E}}{\partial t}
$$

Finally, we get:

$$
\vec{J}' = \vec{J} + \vec{D} = \vec{J} + \varepsilon_0 \frac{\partial \vec{E}}{\partial t}
$$

Consequently, the new version of eq. IV:

$$
\vec{\nabla} \wedge \vec{B} = \mu_0 \vec{j}' = \mu_0 \vec{j} + \mu_0 \varepsilon_0 \frac{\partial E}{\partial t}
$$

$$
\blacktriangledown
$$

And, when applying the divergent :

 $V. (V \wedge B)$ $=$ 0,∀*B* $\mathbf{U} = \nabla \cdot (\mu_0 \mathbf{J}') = \mu_0 \nabla \cdot \mathbf{J}' = \mu_0 \nabla \cdot \mathbf{J} + \mu_0 \varepsilon_0 \nabla \cdot \mathbf{J}$ $\boldsymbol{\theta}$ <u>ot</u> =0 (charge continuity)

The term \vec{G} , known also as "Maxwell correction", is *called the "displacement current". The reduced form of the equation IV, using both* \overrightarrow{H} and \overrightarrow{D} fields : $\nabla \wedge H = J +$ $\boldsymbol{\theta}$ \boldsymbol{dt}

The new set of electrodynamics equations could be now completed and finalized, as Maxwell's Equations.

6. Maxwell's equations:

The electromagnetism now are well described by the set of Maxwell's equations:

 $\mathbf{V} \cdot \mathbf{E} =$ $\boldsymbol{\rho}$ ε_0 $I(Maxwell-Gauss law)$ $\nabla \wedge E = \boldsymbol{\theta}$ $\overline{\partial t}$ $II(Maxwell - Faraday Law)$ $V.B = 0$ $III(Gauss Law for magnetism)$ $\nabla \wedge B = \mu_0 \boldsymbol{J} + \mu_0 \boldsymbol{\varepsilon}_0$ $\boldsymbol{\theta}$ $IV(Maxwell - Ampere Law)$

These equations are also known as Maxwell equations for time-varying fields $\vec{E}(t)$ and $\vec{B}(t)$.

6. Maxwell's equations:

The compact form without electromagnetic constants, by introducing density current \overrightarrow{D} and magnetic field \vec{H} :

 $\mathbf{V}.\mathbf{D} = \boldsymbol{\rho}$ $\boldsymbol{I}(\textit{Maxwell}-\textit{Gauss law})$ $V \wedge E = \frac{\partial B}{\partial t}$ $\overline{\partial t}$ II(Maxwell – Faraday Law) $\mathbf{V}, \mathbf{B} = \mathbf{0}$ III(Gauss Law for magnetism) $\nabla \wedge H = J +$ $\boldsymbol{\theta}$ $\overline{\partial t}$ IV (Maxwell – Ampere Law) The integral forms of previous equations of Maxwell are given in compact expressions:

$$
\oint_{S} \vec{D} \cdot d\vec{S} = Q \qquad (1)
$$
\n
$$
\oint_{C} \vec{E} \cdot d\vec{l} = -\int_{S} \frac{\partial \vec{B}}{\partial t} \cdot d\vec{S} \qquad (II)
$$
\n
$$
\oint_{S} \vec{B} \cdot d\vec{S} = 0 \qquad (III)
$$
\n
$$
\oint_{C} \vec{H} \cdot d\vec{l} = \int_{S} \left(\vec{J} + \frac{\partial \vec{D}}{\partial t}\right) \cdot d\vec{S} \qquad (IV)
$$

7. Electromagnetic potential: Let's now examine the implication of Maxwell's equations on both scalar electric potential V and vector magnetic potential \vec{A} .

We know that in static case, Faraday's law reduces to: $\vec{V} \wedge \vec{E} = 0$; which states that electric field \vec{E} is conservative, and it could be expressed as the derivative of a scalar function (potential V):

 $\vec{F}=-\vec{\nabla}V$

Whereas, in the dynamic case, Faraday's law becomes:

$$
\vec{\nabla} \wedge \vec{E} = -\frac{\partial \vec{B}}{\partial t}
$$

Since \vec{B} is derived from a vector potential \vec{A} as: $\vec{B} = \vec{\nabla} \wedge \vec{A}$ Consequently, the former equation of Faraday's law can be expressed as: $V \wedge E = \boldsymbol{\theta}$ ot
.. = − \boldsymbol{d} $\overline{\partial t}$ (V \wedge A Which could be rewritten as: $V \wedge E +$ $\boldsymbol{0}$ $\overline{\partial t}$ $(V \wedge A) = V \wedge (E +$ $\boldsymbol{\theta}$ $\overline{\partial t}$ = 0 This is equivalent to write: $\nabla \wedge E' = 0; E' = E +$ $\boldsymbol{\theta}$ $\frac{\partial}{\partial t}$ We should remember that : $\vec{\nabla} \wedge (\vec{\nabla} V) = 0$, $\forall V$ Which leads also to write: $\overrightarrow{E'} = -\overrightarrow{\nabla}V$

7. Electromagnetic potential:

Substituting $\overrightarrow{E'}=\overrightarrow{E}+\frac{\sigma A}{\partial t}$ in $\overrightarrow{E'}=-\overrightarrow{\nabla}V$, will give the following equation allowing to derive the electric

field from a generalized potential (Electromagnetic potential) in the dynamic case:

$$
\vec{E}=-\vec{\nabla}V-\frac{\partial\vec{A}}{\partial t}
$$

This means, that if the scalar potential V and the vector potential \vec{A} are known, it is possible to obtain the

electric field from the given equation above, while the magnetic field is obtained from the equation:

$$
\vec{B} = \vec{\nabla} \wedge \vec{A}
$$

8. Lorenz gauge:

If we replace the general expression of electric field derived from electromagnetic potential, in the 1st equation from Maxwell's set, we obtain:

$$
\vec{\nabla} \cdot \vec{E} = \vec{\nabla} \cdot \left(-\vec{\nabla} V - \frac{\partial \vec{A}}{\partial t} \right) = \frac{\rho}{\varepsilon_0}
$$

$$
\nabla^2 V + \frac{\partial}{\partial t} (\vec{\nabla} \cdot \vec{A}) = -\frac{\rho}{\varepsilon_0} \qquad (8)
$$

An other equation could be obtained from:

 $\vec{\nabla} \wedge (\vec{\nabla} \wedge \vec{A}) = \vec{\nabla} (\vec{\nabla} \cdot \vec{A}) - \Delta \vec{A}$

Knowing that $\vec{B} = \vec{\nabla} \wedge \vec{A}$, we get:

 $\overrightarrow{\nabla} \wedge \overrightarrow{B} = \overrightarrow{\nabla} (\overrightarrow{\nabla} \cdot \overrightarrow{A}) - \Delta \overrightarrow{A}$

Besides that, according to the last Maxwell's equation: $\nabla \wedge B = \mu_0 \boldsymbol{J} + \mu_0 \boldsymbol{\varepsilon}_0$ $\frac{\partial E}{\partial t}$, which gives: μ_0 J + $\mu_0 \varepsilon_0$ $\boldsymbol{\theta}$ \boldsymbol{dt} $= \nabla(\nabla. A) - \Delta A$ And again, replacing \vec{E} by $-\vec{\nabla}V - \frac{\partial A}{\partial t}$: $\mu_0 \varepsilon_0$ \boldsymbol{d} $\overline{\partial t}$ $\left(\begin{matrix} -\nabla V - \nabla \end{matrix} \right)$ $\boldsymbol{\theta}$ A $\overline{\partial t}$ + ΔA = $\nabla(\nabla. A) - \mu_0 J$ $\Delta A - \mu_0 \varepsilon_0$ $\partial^2 A$ $\overline{\partial t^2}$ – V $\mu_0 \varepsilon_0$ $\frac{\partial V}{\partial x}$ $\overline{\partial t} + \nabla A \Big| = -\mu_0 \overline{J}$ (9)

8. Lorenz gauge:

Now, both equations are second degree coupled differential equations (V and \vec{A}): $\nabla^2 V +$ \boldsymbol{d} $\overline{\partial t}$ (V.A) = - $\boldsymbol{\rho}$ ε_0 (8) $\Delta A - \mu_0 \varepsilon_0$ $\partial^2 A$ $\overline{\partial t^2}$ – V $\mu_0 \varepsilon_0$ $\boldsymbol{\theta}$ $\overline{\partial t} + \nabla A$ = $-\mu_0 \vec{J}$ (9)

To decouple these equations, Lorenz sets the following gauge (condition) in dynamics :

$$
\mu_0 \varepsilon_0 \frac{\partial V}{\partial t} + \vec{\nabla} . \vec{A} = 0 \qquad (10)
$$

Equivalent to:

$$
\vec{\nabla}.\vec{A}=-\mu_0 \varepsilon_0 \frac{\partial V}{\partial t}
$$

This will lead to a decoupled differential equations:

$$
\nabla^2 V - \mu_0 \varepsilon_0 \frac{\partial^2 V}{\partial t^2} = -\frac{\rho}{\varepsilon_0}
$$
\n(11)\n
$$
\Delta \vec{A} - \mu_0 \varepsilon_0 \frac{\partial^2 \vec{A}}{\partial t^2} = -\mu_0 \vec{J}
$$
\n(12)

Which could be rewritten in terms of d'Alembertian operator as:

$$
\begin{cases}\n\Box V = -\frac{\rho}{\varepsilon_0} & (11) \\
\Box \vec{A} = -\mu_0 \vec{J} & (12)\n\end{cases}
$$

In absence of charge and current, these equations are reduced to:

 $\Box V = 0; \Box \overline{A} = 0$