
Vector space Chapitre 1. Espaces vectoriels

1.1 Vector space

In which follows k designates the field (R,+,×) or (C,+,×). We shall give the axioms which

defines a vector space.

Definition 1.1 (k-vector space ) Let (k,⊛,×) be a field. We call vector space on a field k
any set E equipped of a internal law + (addition)

⊛ :

{
E × E → E

(x, y) 7→ x⊛ y

and a external law · (multiplication by a scalar)

. :

{
k× E → E

(λ, y) 7→ λ.x

Such that :

1. (E,⊛) is a commutative group. We notice by 0E its neutral element.

2. For all (α, β) ∈ k2, and for all (x, y) ∈ E2, we have

— (α + β).x = α.x⊛ β.x Axiom 1

— (α× β).x = α.(β.x) Axiom 2

— α.(x⊛ y) = α.x⊛ α.y Axiom 3

— 1k.x = x Axiom 4

We say then that (E,⊛,·) is a k-vector space. The elements of k are called scalars, and of

E, vectors. neutral element of (E,⊛), 0E is called null vector.

Example 1.1 The commutative field k, is a vector space on itself , rof the addition and the

product existing on k.

Example 1.2 The set Rn[x] of polynômial functions with coefficients in R of degree ≤ n, i.e :

Rn[x] = {P : R→ R| P (x) = a0 + a1x+ ...+ anx
n, ai ∈ R}

is a vector space on R for the laws :

(a0 + a1x+ ...+ anx
n)⊛ (b0 + b1x+ ...+ bnx

n) : = (a0 + b0) + ...+ (an + bn)x
n

λ.(a0 + a1x+ ...+ anx
n) : = λa0 + λa1x+ ...+ λanx

n.
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Example 1.3 Let A be a non-empty set and a vector space E on the field k. The set EA of

the maps from A to E is equipped with vector structure on k as follows.

Let f and g be two functions from A to E, and λ a scalar of k we dfine the function f + g by

∀x ∈ A, (f + g)(x) = f(x) + g(x),

and the function λ.f by

∀x ∈ A, (λ.f)(x) = λ.f(x),

Then, (EA,+, .) is a vector space on k. Its null vector is the null function from A with values

in E,

0EA : A → E

x 7→ 0E

Example 1.4 Let E1, ..., En be n vector spaces on the commutative field k, we define the

cartesian product E = E1 × E2 × ... × En denoted by E =
∏n

i=1Ei, which its elements are

X = (X1, ..., Xn), with ∀i = 1...n, Xi ∈ Ei·

It is easy to verify that for the addition + fefined by

(X1, ..., Xn) + (Y1, ..., Yn) = (X1 + Y1, ..., Xi + Yi, ..., Xn + Yn)

E is a commutative group, and with the product

λ.X = (λX1, λX2, ..., λXn),

we equip E with a vector structure.

1.2 Calculation rules

Proposition 1.1 Let (E,+,·) be a k-vector space. For all scalars α, β, λ ∈ k and for all vectors

x, y ∈ E, we have

1. 0k·x = 0E

2. (−1)·x = −x

3. (−λ)·x = −(λ·x) = λ·(−x)

4. (α− β).x = α.x− β.x

5. λ.(x− y) = λ.x− λ.y

6. λ·0E = 0E

7. λ·x = 0E ⇐⇒ (λ = 0k ou x = 0E) .
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Proof. 1. We have

0k·x+ 0E = 0k·x since (E,+) is a group

= (0k + 0k) ·x since k is a field

= 0k·x+ 0k·x.

Then 0k·x = 0E by subtracting 0k·x to the leftside of the two members of this equality.

2. We have :

x+ (−1)·x = 1.x+ (−1)·x after the axiom 4

= (1 + (−1)) .x after the axiom 1

= 0k·x since k is a field

= 0E after 1.

so, (−1).x is the inverse of x. We can write then : −x = (−1).x.
3. We have :

(−λ)x = (−1.λ)x since k is a field

= (−1). (λ.x) after the axiom 2

= −λ.x after 2.

4. We have :

(α− β).x = (α + (−β)).x since k is a field

= α.x+ (−β) .x after the axiom 1

= α.x− β.x after 3.

5. We have :

λ.(x− y) = λ.(x+ (−y)) since (E,+) is a group

= λ.x+ λ. (−y) after the axiom 3

= λ.x+ λ. (−1y) after 2

= λ.x+ (λ. (−1)) .y after the axiom 2

= λ.x+ (−λ) .y since k is a field

= λ.x− λ.y after 3.

6. We have :

λ·0E = λ· (x− x) since (E,+) is a group

= λ·x+ λ· (−x) after the axiom 1

= λ·x− λ·x after 3.

= 0E since (E,+) is a group.
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7. Suppose that λ·x = 0E, If λ = 0k then after 1, λ·x = 0E. otherwise, if λ ̸= 0k then since k
is a field, λ−1 exists and

x = 1.x =
(
λ.λ−1

)
.x = λ−1. (λ.x) = λ−1.0E = 0E,

and thus x = 0E. The converse is obvious. □

1.3 Subspaces

Definition 1.2 (Subspaces) We call Subspaces of a vector space E on the field k, any part

F of E which is an additive sub-group of E such that ∀λ ∈ k, ∀x ∈ F , λ.x ∈ F.

Remark 1.1 It is easy to show that F is a vector space on k, the conditions of definition 1.1

are verified.

Example 1.5 {0E} and E are sub-spaces of E.

Definition 1.3 (Linear combination) ◦ Let x1, x2, ..., xn be n vectors of E vector space E

on the field k. We call linear combination of these n vectors every vector x ∈ E of the form

x = λ1x1 + ...+ λpxn =
n∑

k=1

λkxk

where (λ1, ..., λn) ∈ kn.

◦ If A is a part of E, we call linear combination of elements of A every linear combination

of a finite number of elements of A.

In principle, to show that F is a vector subspace, one would have to verify the eight axioms

of the Definition 1.1 In fact, it is enough to verify the “stability” of the laws of composition as

asserted by the following proposition :

Proposition 1.2 A part F of a vector space E on k is a sub-space of E if and only if :

1. F ̸= ∅

2. ∀ (α, β) ∈ k2, ∀ (x, y) ∈ F 2, α.x+ β.y ∈ F.

Proof. =⇒) First if F is a subspace of E, as an additive subgroup F is non-empty because

it contains 0, the null element of E, then if x and y are in F and α and β in the field k, α.x et

β.y ∈ F (cf. définition 1.2) which is stable for the addition, therefore α.x+ β.y ∈ F.
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⇐=) if 1. and 2. are verified, with α = 1 and β = −1 and x and y in F we have :

(F ̸= ∅) and
(
∀ (x, y) ∈ F 2, x− y ∈ F

)
,

which already justifies that F is an additive subgroup of E, then 2. with β = 0 gives

∀λ ∈ k,∀x ∈ F, λ.x ∈ F.

We therefore have F subspace of E. □

Remark 1.2 As we saw during the proof, if F is a vector subspace, then F necessarily contains

the null vector 0E.

1.3.1 Fundamental Examples of Subspaces

1. Vector line :

Let v ∈ E, v ̸= 0, then :

F = {y ∈ E| ∃λ ∈ k : y = λv}

is a vector subspace of E called vector line generated (spanned) by v.

In fact, F ̸= ∅, since v ∈ F . In addition, F is stable for the laws of E, since if x, y ∈ F

(i.e: x = λv, y = µv), we have :

x+ y = λv + µv = (λ+ µ)v ∈ F

Likewise, if x ∈ F (i.e x = λv), we have : µx = µ(λv) = (µλ)v ∈ F .

2. Vector plane :

Let x1, x2 ∈ E then :

F = {y ∈ E| ∃λ1, λ2 ∈ k : y = λ1x1 + λ2x2}

F is a subspace of E, called the subspace generated by x1, x2. If x1 and x2 are not null and x2

does not belong to the vector line generated by x1, F is said to be a vector plane generated by

x1 and x2.

3. Generated subspace :

More generally, if x1, x2, ..., xp ∈ E then :

F = {y ∈ E| ∃λ1, ..., λp ∈ k : y = λ1x1 + ...+ λpxp}

is a vector subspace of E denoted V ect{x1, x2, ..., xp}, said subspace generated by x1, ..., xp,

or also space of linear combinations of x1, x2, ..., xp. We will see subsequently that, basically,

all subspaces are of this type, that is to say obtained by ”linear combinations” of a family of

elements of E.
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Remark 1.3 Let E be the vector space of vectors of origin O. A vector line is a line passing

through O. Similarly, a vector plane is a plane passing through O. More generally, a vector

subspace of Rn can be visualized as a “plane of dimension p” passing through O. We could give

a precise meaning to the notion of “plane of dimension p”, but this is not necessary. Let us

remember for the moment the fact that it must pass through O, because any vector subspace

must contain the zero vector. So, for example, a line not passing through O is not a vector

subspace : the points of the line are the ends of the vectors coming from O and the null vector

is not among them.

Example 1.6 Let

F = {(x, y, z) ∈ R3| 3x+ y + 2z = 0}.

F is a subspace of R3. Indeed, Let v1 = (x1, y1, z1) and v2 = (x2, y2, z2) ∈ F ; we have :

3x1 + y1 + 2z1 = 0 and 3x2 + y2 + 2z2 = 0

so, by summing : 3(x1 + x2) + (y1 + y2) + 2(z1 + z2) = 0, i.e

v1 + v2 = (x1 + x2, y1 + y2, z1 + z2) ∈ F.

Likewise, we see that if λ ∈ k and v ∈ F we have λv ∈ F .

Example 1.7 We have :

G = {(x, y, z) ∈ R3| x+ 4y + z = 1},

is not a subspace of R3 because 0R3 = (0, 0, 0) /∈ G (0 + 4.0 + 0 ̸= 1).

Proposition 1.3 Let F and G be two subspaces of E.

1. F ∩G is a subspace of E.

2. F ∪G is not in general a subspace of E.

3. The complementary E\F of a subspace F is not a subspace of E.

Proof. 1. First, we have F ∩G ̸= ∅, because 0E ∈ F ∩G.
Let x, y ∈ F ∩ G, we have : x, y ∈ F then x + y ∈ F . Likewise, if x, y ∈ G, x + y ∈ G

Consequently x+ y ∈ F ∩G.
If λ ∈ k and x ∈ F ∩ G, we have : x ∈ F , then λx ∈ F , and x ∈ G, thus λx ∈ G, so :

λx ∈ F ∩G.

2. This is due to the fact that in general F ∪ G is not stable by the sum. For example, let

E = R2, F the vector line generated by (1, 0) and G the vector line generated by (0, 1). We

have : (1, 0) ∈ F then (1, 0) ∈ F ∪G. (0, 1) ∈ G then (0, 1) ∈ F ∪G but : w = (1, 0) + (0, 1) =

(1, 1) /∈ F ∪G.

3. E\F does not contain 0E, therefore it is not a subspace of E(Remarque 1.2). □
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1.4 Bases (in finite dimension)

Definition 1.4 (spanning set ) A family of vectors {v1, ..., vp} of a vector space E is called

spanning set, if E = Vect{v1, ..., vp}, we write also, E = Vect{v1, ..., vp}. Which means that

∀x ∈ E, x decomposed on vectors vi, or every x ∈ E is a linear combination of vectors vi,

x = λ1v1 + ...+ λpvp =

p∑
k=1

λkvk.

Example 1.8 In R2, let v1 = (1, 1) and v2 = (1,−1). Let’s show that {v1, v2} is a spanning

set. Let x = (a, b) ∈ R2 wit a, b arbitrary : it is an issue of showing that there exists x1, x2 ∈ R
such that x = x1v1 + x2v2, i.e :

x = (a, b) = (x1, x1) + (x2,−x2) = (x1 + x2, x1 − x2)

This means that ∀(a, b) ∈ R2, ∃ x1, x2 ∈ R satisfies the system :{
x1 + x2 = a

x1 − x2 = b,

Solving, we find :

x1 =
a+ b

2
and x2 =

a− b
2

,

solution defined for arbitrary a,b. So {v1, v2} spans R2.

Definition 1.5 A vector space is said to be of finite dimension, if there exists a finite spanning

(generating) family, otherwise, it is said to be of infinite dimension.

Definition 1.6 (Linearly independent family) Let {v1, ..., vp}, a finite family of elements

of E. It is said to be linearly independent if :

λ1v1 + ...+ λpvp = 0 =⇒ λ1 = λ2 = ... = λp = 0.

A family which is not linearly independent is said linearly dependent.

Example 1.9 In R3, the vectors v1 = (1, 1,−1), v2 = (0, 2, 1) and v3 = (0, 0, 5) are linearly

independent. Indeed, suppose that there exist reals λ1, λ2, λ3 so that λ1v1 + λ2v2 + λ3v3 = 0R3 ,

i.e :

λ1(1, 1,−1) + λ2(0, 2, 1) + λ3(0, 0, 5) = 0R3

We obtain :

(λ1, λ2,−λ1 + λ2 + 5λ3) = 0R3 ,
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so 
λ1 = 0

λ2 = 0

−λ1 + λ2 + 5λ3 = 0

which immediately gives λ1 = λ2 = λ3 = 0.

Example 1.10 In F(R,R) family {sin, cos, exp} is linearly independent. Let α, β, γ ∈ R so

that α sin+β cos+γ exp = 0. Then for x ∈ R, α sin(x) + β cos(x) + γ exp(x) = 0, which is also

written

α
sin(x)

exp(x)
+ β

cos(x)

exp(x)
+ γ = 0.

It is easily shown that

lim+∞
sin(x)

exp(x)
= lim+∞

cos(x)

exp(x)
= 0.

we deduce that γ = 0. We have then ∀x ∈ R, α sin(x) + β cos(x) + γ exp(x) = 0. If we make

x = 0 we obtain β = 0 and if we make x = π/2, we get α = 0.We then clearly showed that

α = β = γ = 0.

Proposition 1.4 A family {v1, ..., vp} is linearly dependent if and only if at least one of the

vectors vi is written as a linear combination of the other vectors of the family.

Proof. =⇒) : If {v1, ..., vp} is linearly dependent, there exists λ1,..., λp not all zero such that

λ1v1 + ...+ λpvp = 0. If, for example λ1 ̸= 0, we can write :

v1 = −
λ2
λ1
v2 + ...+

−λp
λ1

vp

⇐=) : Suppose for example that v1is a linear combination of vectors λ2v2, ..., λpvp, then there

exists µ2, ..., µp ∈ k such that v1 = λ2v2 + ...+ λpvp, i.e. :

v1 − λ2v2 − ...− λpvp = 0.

There therefore exists a linear combination of vectors {v1, ..., vp} which is zero, without the

coefficients being all zero. So the family is linearly dependent. □

Proposition 1.5 Let {v1, ..., vp} be a family linearly independent and x any vector in the space

generated by the vectors vi (i.e. x is linear combination of vi). Then the decomposition of x on

vi is unique.

Proof. Let

x = λ1v1 + ...+ λpvp,

x = β1v1 + ...+ βpvp,
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two decompositions of x. By making the difference we find :

(λ1 − β1) v1 + ...+ (λp − βp) vp = 0,

Since the family is linearly independent, we have (λ1 − β1) = ... = (λp − βp) = 0, i.e. : λ1 =

β1, ..., λp = βp. □

Definition 1.7 (Base) A family that is both generative and linearly independent is called a

basis.

Proposition 1.6 A family {v1, ..., vp} is a base of E if and only if all x ∈ E decomposes in a

unique way on the vi. i.e. :

∀x ∈ E there is a unique (λ1, ..., λn) ∈ kn so that :

x = λ1v1 + ...+ λnvn.

Proof. The existence of decomposition for all x ∈ E is equivalent to the fact that the family

is generative ; uniqueness to the fact that the family is linearly independent. □

Example 1.11 (Canonical basis of Rn) Let the vectors :

e1 = (1, 0, ..., 0), ..., ei = (0, ..., 1︸︷︷︸
rank i

, ..., 0), ..., en = (0, 0, ..., 1).

We already know that they form a generative family. Let’s show that it is linearly independent.

We have :

λ1e1 + ...+ λiei + ...+ envn = 0Rn ,

i.e. :

λ1(1, 0, ..., 0) + ...+ λi(0, ..., 1︸︷︷︸
ierang

, ..., 0) + ...+ λn(0, 0, ..., 1) = 0Rn ,

then :

(λ1, λ2, ..., λn) = 0Rn .

Therefore {e1, ..., en} is a basis of Rn, called the canonical basis.

Example 1.12 (Canonical basis of Rn[x]) The family B = {1, x, ..., xn} is a basis of Rn[x],

In fact, every P (x) = a0 + a1x+ ...+ anx
n, ai ∈ R ; B is therefore generative. Moreover :

λ01 + λ1x+ ...+ λnx
n = 0 =⇒ λ0 = λ1 = ... = λn = 0.
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Example 1.13 Let F = {(x, y, z) ∈ R3| 2x+ y + 2z = 0}. Find a basis of F . We have seen F

is a subspace of R3, We have : (x, y, z) ∈ F ⇔ y = −2x− 2z then :

u ∈ F ⇔ u = (x,−2x− 2z, z)⇔ u = x(1,−2, 0) + z(0,−2, 1).

Therefore the vectors v1 = (1, 2, 0), v2 = (0,−3, 1) form a family generating F . On the other

hand :

λ1v1 + λ2v2 = 0⇔ λ1(1,−2, 0) + λ2(0,−2, 1) = (0, 0, 0),

which is equivalent to λ1 = λ2 = 0. Then {v1, v2} is linearly independent and therefore it is a

basis of F .

Proposition 1.7 We have :

1. {x} is a linearly independent family ⇐⇒ x ̸= 0E.

2. Any family containing a generating family is generating.

3. Any subfamily of a linearly independent family is linearly independent.

4. Any family containing a linearly dependent family is linearly dependent.

5. Any family {v1, ..., vp} of which one of the vectors vi is null is linearly dependent.

Proof.

1. ⇐=) D’après Proposition 1.1 (7), λ·x = 0E ⇐⇒ (λ = 0k ou x = 0E). Donc, si x ̸= 0,

λx = 0 implique λ = 0, ce qui signifie que {x} est une famille libre.

=⇒) Supposons que {x} libre. Alors, d’après la définition de famille libre, si λx = 0 on

a nécessairement λ = 0 , ce qui signifie, toujours d’après la proposition 1.1 (7), que x ̸= 0.

2. Soit {v1, ..., vp} une famille génératrice et x = λ1v1 + ... + λpvp un élément arbitraire de

E. On peut aussi écrire :

x = λ1v1 + ...+ λpvp + 0w1 + ...+ 0wq, w1, ..., wq ∈ E.

Donc tout x ∈ E est combinaison linéaire de v1, ..., vp, w1, ..., wq.

3. Soit T = {v1, ..., vp} une famille libre et T ′ une sous-famille de T . Quitte à changer la

numérotation, on peut supposer que T ′ = {v1, ..., vk} (avec k < p). Si T ′ était liée, l’un
des vecteurs v1, ..., vk serait combinaison linéaire des autres. Il existerait donc un élément

de T qui s’écrirait comme combinaison linéaire de certains éléments de T . Or, cela est

impossible car T est libre (voir Proposition 1.4).

4. Soit F = {v1, ..., vp} une famille liée et G = {v1, ..., vp, w1, ..., wq}. D’après proposition

1.4, l’un des vi est combinaison linéaire des autres. Or, les vecteurs vi appartiennent à G ;
donc l’un des éléments de G est combinaison linéaire des autres, et par conséquent G est

liée.

5. Évident d’après 4., car il s’agit d’une famille contenant {0}, et {0} est liée, d’après 1.

□
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1.5 Dimension of a vector space

Definition 1.8 (Dimension of a vector space) If E = {0}, we say that E is of dimension

0 and we write dimE = 0. Otherwise, if E is a vector space on k of finite dimension not reduced

to {0}, we call dimension of E the cardinal of a base of E and we write dimkE.

Example 1.14 dimRn = n, dimRn[x] = n+ 1.

Remark 1.4 Une famille f d’au moins n + 1 vecteurs dans un espace E de dimension n est

toujours liée. En effet, si elle était libre alors on aurait une famille libre f de cardinal plus

grand que celui de n’importe quelle base B de E. Or B est une famille génératrice de E et le

cardinal d’une famille libre est toujours plus petit que celui d’une famille génératrice.

1.6 Dimension of subspace

Proposition 1.8 Let E be a vector space of finite dimension n and F a subspace of E. We

have :

1. F is of finite dimension and dimF ≤ dimE.

2. (dimF = dimE)⇔ F = E

Remark 1.5 To check that two vector subspaces F and G are equal

- We show that F ⊂ G.

- We show that dimF = dimG.

Example 1.15 Let E = R4 and

F = V ect((1, 1, α, 3), (0, 1, 1, 2)),

G = {(x, y, z, t) ∈ R4| x− y + z = 0, x+ 2y − t = 0}.

Let’s look at what condition on α ∈ R so that F = G ?

Let us first assume that F = G. Then (1, 1, α, 3) ∈ G and must satisfy in particular the

equation x− y + z = 0. We then find that α = 0.

Let us show that if α = 0 then F = G. We know that F = V ect((1, 1, 0, 3), (0, 1, 1, 2)).

The vectors (1, 1, 0, 3), (0, 1, 1, 2) generate F and they are non-collinear so they form a linearly

independent family. Consequently, it is a base of F and dimF = 2. Moreover

G = {(x, y, z, t) ∈ E| x− y + z = 0, x+ 2y − t = 0}
= {(x, y, y − x, x+ 2y)| x, y ∈ R}
= V ect((1, 0,−1, 1), (0, 1, 1, 2)),
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we then show in the same way as before that dimG = 2. In addition (1, 1, 0, 3) and (0, 1, 1, 2)

satisfy the system {
x− y + z = 0

x+ 2y − t = 0

then (1, 1, 0, 3), (0, 1, 1, 2) ∈ G and since G is a subspace,

F = V ect((1, 1, α, 3), (0, 1, 1, 2) ⊂ G.

Finally, as dimF = dimG we obtain F = G.

1.7 Sum of subspaces

Definition 1.9 (Sum of two subspaces) Let F and G be two subspaces of a vector space E

on k. We call the sum of F and G and we write F +G the subspace of E given by

F +G = {x+ y | (x, y) ∈ F ×G} .

Remark 1.6 The subset F+G is indeed a subspace of E. Indeed, F+G ⊂ E because E is stable

for addition. Furthermore, F+G is non-empty because F and G are. Finally if u = x+y ∈ F+G

and u′ = x′ + y′ ∈ F +G with x, x′ ∈ F and y, y′ ∈ G then, for α, β ∈ k.

αu+ βu′ = αx+ βx′︸ ︷︷ ︸
∈F

+ αy + βy′︸ ︷︷ ︸
∈G

∈ F +G

because F and G are vector subspaces of E.

Proposition 1.9 Let F and G be two subspaces of a vector space E on k. Then F +G is the

smallest subspace of E containing F ∪G.

Proof. We proved in the previous remark that F +G is a subspace of E. It contains F and G

because 0E is an element of F andG and therefore F = F+0E ⊂ F+G andG = 0E+G ⊂ F+G.

Moreover, if we consider a subspaceH of E which contains F∪G then let’s show that F+G ⊂ H.

Let x+ y ∈ F +G with x ∈ F et y ∈ G. Since F ∪G ⊂ H, we have also x, y ∈ H and since H

is a subspace, it follows that x + y ∈ H. Then F + G ⊂ H and F + G is the smallest vector

subspace of E containing F and G. □

Example 1.16 In F(R,R) let F = V ect(sin) and G = V ect(exp) then :

F +G = V ect (sin, exp) = {x 7→ α sin(x) + β exp(x) | | | |α, β ∈ R}

14
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Proposition 1.10 Let A and B be two parts of a vector space E on k then

V ect(A) + V ect(B) = V ect(A ∪B).

Example 1.17 Dans l’espace R3, on considère les parties F = {(x, 0, 0) | x ∈ R} et G =

{(x, x, 0) | x ∈ R}. Montrons que ce sont des sous-espaces vectoriels de R3 et déterminons le

sous-espace F + G. On a F = V ect(1, 0, 0) et G = V ect(1, 1, 0) donc F et G sont des sous-

espaces vectoriels de R3. De plus F +G = V ect((1, 0, 0), (1, 1, 0)) et on reconnait que F +G est

le plan vectoriel de R3 engendré par (1, 0, 0) et (1, 1, 0).

1.7.1 Direct sum, supplementary subspaces

Definition 1.10 (Direct sum) We say that two vector subspaces F and G of E are in direct

sum if F ∩G = {0E}. We denote then by F ⊕G their sum.

In other words :

ζ = F ⊕G⇔


ζ = F +G

et

F ∩G = {0E}

Example 1.18 In C, the subspaces F = R and G = iR are in direct sum :

Let x ∈ F ∩G, so, x ∈ F thus x is real, and x ∈ G then x is pure imaginary. x is a complex

both real and pure imaginary therefore x = 0E.

Example 1.19 In E = F(R,R), We consider

F = {f ∈ E | f(0) = 0}} et G = V ect(x 7→ 1).

It is clear that F and G are subspaces of E. G is the set of constant maps of R in R.
Let f ∈ F ∩G. f ∈ F then f(0) = 0. Likewise f ∈ G so there exists a ∈ R so that f(x) = a.

But a = f(0) = 0 then f = 0E. Thus F and G are in direct sum.

Proposition 1.11 Let F and G be two subspaces of the vector space E. F and G are in direct

sum if and only if ∀x ∈ F +G,∃!(x1, x2) ∈ F ×G : x = x1 + x2 (that is, the decomposition of

x is unique).

Proof. =⇒) Suppose that F and G are in direct sum and let x ∈ F +G. By definition, there

exists x1 ∈ F and x2 ∈ G so that x = x1 + x2. Suppose there exists x′1 ∈ F and x′2 ∈ G such

that we still have x = x′1 + x′2. Since x = x1 + x2 = x′1 + x′2 , we have the equality : x1 − x′1 =

x2 − x′2. Let us denote this vector by y. Since F and G are subspaces of E, y = x1 − x′1 ∈ F
and y = x2− x′2 ∈ G. Therefore, y ∈ F ∩G. But F and G being in direct sum, we have : F ∩G
= {0E} then y = 0. Therefore, x1 = x′1 and x2 = x′2 and then uniqueness.
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⇐=) Let x ∈ F ∩ G. There are then two pairs of F × G allowing us to decompose x into a

vector of F and a vector of G : (x, 0) and (0, x). By hypothesis, they are equal : (x, 0) = (0, x).

Consequently x = 0 and the subspaces F and G are in direct sum. □

Definition 1.11 (Supplementary subspaces) Let E be a vector space and F , G be two

subspaces of E. We say that F and G are supplementary, if E = F ⊕G.

Proposition 1.12 Let E be a vector space and F , G be two subspaces of E. Then E = F ⊕G
(F et G are supplementary) if and only if for any basis B1 of F and for any basis B2 of G,

{B1,B2} is a basis of E.

Proof. ⇐=) Let B1 = {vα}α∈A and B2 = {wβ}β∈B basis of F and G respectively and suppose

that {vα, wβ}(α,β)∈A×B is a basis of E. Then tout x ∈ E is written by unique way :

x = λ1vα1 + ...+ λpvαp + µ1wβ1 + ...+ µqwβq ,

i.e. any x ∈ E is written by unique way x = x1 + x2 with x1 ∈ F and x2 ∈ G, then E = F ⊕G.
=⇒) If E = F ⊕G , any x ∈ E is decomposed by unique way in F +G and, therefore, in the

family B = {B1,B2}. We deduce that B is a basis of E. □

Corollaire 1.1 Let E be a vector space. For any subspace F of E, there exists always a sup-

plementary. The supplementary of F is not unique, but if E is of finite dimension, all the

supplementaries of F have the same dimension.

Let E be a vector spaceof finite dimension and F , G be two subspaces of E. Then

dim (F +G)⇔ dimF + dimG− dimF ∩G.

Proof. Supposons que dimF = p, dimG = q et dimF ∩G = r. Notons que, puisque F ∩G
est un sous-espace vectoriel de F et de G, on a r < p et r < q. Considérons une base {a1, ..., ar}
de F ∩ G. Puisque la famille {a1, ..., ar} est libre, on peut la compléter en une base de F et

aussi en une base de G. On peut donc construire : une base de F du type {a1, ..., ar, er+1, ..., ep}
et une base de G du type {a1, ..., ar, fr+1, ..., fq}.
On sait que tout vecteur de F +G s’écrit comme somme d’un vecteur de F , et d’un vecteur

de G et donc il est de la forme :

x = λ1a1 + ...+ λrar + λr+1er+1 + ...+ λpep +

µ1a1, ...+ µrar + µr+1fr+1, ...+ µqfq,
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c’est-à-dire, en posant τi = λi + µi, pour i = 1, ..., r :

x = τ1a1 + ...+ τrar + λr+1er+1 + ...+ λpep + µr+1fr+1, ...+ µqfq. (1.1)

Par conséquent, la famille {a1, ..., ar, er+1, ..., ep, fr+1, ..., fq} engendre F +G. Montrons qu’elle

est libre. Soit une combinaison linéaire nulle :

τ1a1 + ...+ τrar︸ ︷︷ ︸
α∈F∩G

+ λr+1er+1 + ...+ λpep︸ ︷︷ ︸
β∈F

+ µr+1fr+1, ...+ µqfq︸ ︷︷ ︸
γ∈G

= 0.

On a α + β + γ = 0, donc γ = −(α + β). Alors γ ∈ g et α + β ∈ F , donc γ ∈ F ∩G.
Par conséquent, γ peut s’écrire comme combinaison linéaire des ai :

µr+1fr+1, ...+ µqfq = δ1a1 + ...+ δrar.

Mais {a1, ..., ar, µr+1fr+1, ...+µqfq} est une base de G donc tous les coefficients de cette combi-

naison linéaire doivent être nuls. En particulier, µr+1 = 0, ..., µq = 0. De même λr+1 = 0, ..., λq =

0. D’après (1.1) on déduit alors que :

τ1a1 + ...+ τrar = 0

Or la famille {a1, ..., ar} est libre, donc τ1 = 0, ..., τr = 0. Ainsi la famille

{a1, ..., ar, er+1, ..., ep, fr+1, ..., fq}

est libre et donc elle est une base de F +G. On en déduit :

dim (F +G) = r + (p− r) + (q − r) = p+ q − r
= dimE + dimG+ dimF ∩G.

□

Corollaire 1.2 Let E be a vector space of finite dimensionand F , G two subspaces of E. Then

E = F ⊕G⇔

{
F ∩G = {0E}
dimE = dimF + dimG

Example 1.20 In E = C, F = V ect({1}) et G = V ect({i}). We know that F and G are

subspaces of E. If x ∈ F∩G then x is both real and pure imaginary, so, x = 0 and F∩G = {0E}.
Morever

F +G = V ect(1) + V ect(i) = V ect(1, i) = C

thus, E = F +G. We have proved that F and G are supplementary.

Example 1.21 In R3, let π a vector plan and v a vecteur not contained in this plan. We have

R3 = π ⊕ V ect(v)

because if {e1, e2} is a basis of π, then {e1, e2, v} is a basis of R3.
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