*Exercise 1:

Let Q_T be a positive electric charge whose partition is uniformly distributed along a straight filament of length ℓ (see Fig. 1).

- 1. What is the value of the linear charge density λ .
- 2. Calculate the electric potential produced at a point $M(z_0 \leq 0)$ belonging to the axis (Oz').
- 3. Calculate by two different methods the electric field vector produced at the point M.
- 4. Deduce the electric force exerted on a point charge Q placed at the point M.
- 5. Make a sketch of the electric field and force vector at the point M.
- 6. **Particular case**: How do the expressions of the potential, the field and the force at the origin, i.e., at the point $M(z_0 = 0)$. **Assume that:** $Q_T = 4\mu C$, $Q = 3\mu C$, $\ell = 20cm$ et $z_0 = -20cm$.

Figure 1:

*Exercice 2:

Considérons un arc d'un fil circulaire de rayon R, de densité de charge positive λ et sous-tendant un angle 2α Fig. 2.

- 1. Calculer le potentiel électrique créé en un point M situé au centre du cercle.
- 2. Calculer le champ électrique créé au point M.

On donne : R = 20mm, $\lambda = 2 \times 10^{-5} Cm^{-1}$ et $\alpha = 40^{\circ}$.

Figure 2:

Exercise 3:

A positive electric charge Q is uniformly distributed around a wire ring of radius R as shown in Fig. 3. Assume that the electric potential is zero at y = infinity with the origin O of the x - axis at the centre of the ring.

- 1. What is the electric potential at a point M placed at a distance y on the y axis?
- 2. Calculate by two different method the electric field at the point M.
- 3. Deduce the electric potential and the electric field if the point M is situated at the centre of the ring. Same question when M is situated at a point where $y \gg R$.
- 4. Make a sketch of the potential V as well as the magnitude of the field E as a function of the distance y along the y-axis showing significant features.

Data : R = 20mm, $\lambda = 2 \times 10^{-5} Cm^{-1}$ et y = 50mm.

Figure 3:

*Exercice 4:

Fig. Fig. 4 represents a uniformly charged disc of radius R, and surface charge density σ and a total charge Q.

- 1. Calculate the surface charge density σ .
- 2. Calculate the electric potential produced by the disc at a point M situated somewhere on the y axis perpendicular to the disc and passing through its centre.
- 3. Compute by two methods the electric field created at the point M.
- 4. Deduce the potential and the field at the point M when situted at the centre of the charged disc. Same question when M is situated at a point where $y \gg R$.
- 5. Make a sketch of the potential V(y) as well as the magnitude of the field E(y) as a function of the distance y along the y axis showing significant features.

Data : R = 20mm, Q = 6nC et y = 50mm.

*Exercise 5:

Using Gauss's law, compute the electric field created by a point charge Q > at a point M situated at a distance r from the charge. Deduce the electric potential at the point M

Exercise 6:

- 1. Using Gauss's law, compute the electric potential produced at a point M situated at a distance r of a long straight filament carrying a charge $\lambda > 0$ per unit length.
- 2. Deduce the electric potential at the same point M.

Exercise 7:

Given a cylindrical form filament of infinite length and a radius R on which a positive charge $\sigma > 0$ per unit surface is distributed on its surface.

- 1. Using Gauss's method, compute the electric field at any point in space.
- 2. Determine the electric potential produced by the cylinder. Assume that $V(R) = V_0$.
- 3. Make a representation of the potential and the field as a function of of r.
- 4. What value of r makes the potential zero?

*Exercise 8:

A positive charge of constant surface density $\sigma > 0$ is distributed uniformly on a spherical surface of a radius R.

- 1. Uising Gauss's method, calculate the electric potential created at any point on space. Assume that $V(r \to \infty) = 0$
- 2. Make a sketch of (E) and (V).

Figure 5: Sphère chargée en surface

Exercise 9:

Using Gauss's method, compute the electric potential and the electric field created by two charged asolated spheres of radius R_1 and R_2 ($R_2 > R_1$ and of charge surface density $\pm \sigma_1$ and $\pm \sigma_2$. Data: $V(R_1) = V_0$ et $V(R_2) = 0$.

Exercice 10:

Let ze be the total charge of protons uniformly distributed into the volume of atomic nuclei assumed of spherical shape of radius R and of a volume $\tau = \frac{4}{3}\pi R^3$ and of a charge density, assumed constant and positive, given by $\rho = \frac{ze}{\frac{4}{3}\pi R^3}$. Assume that $V(r) = V_0$ et $V(r \to \infty) = 0$:

- 1. Using Gauss's method, calculate the electric field and the electric potential at any point in space.
- 2. Determine the electric potntial at any point in space.
- 3. Calculate the coulombian potential energy of the nucleus.