
I. Study of conductors

I.1. Conductor in electrostatic equilibrium: 

❑ A conductor is a medium (materials or substances) in which there are free charges

(positive or negative) that can be set in motion under the action of an electric field.. 

❑ A conductor is said to be in electrostatic equilibrium if no electrical charge is moving 

inside of this conductor.

⟹ The electrons are not subjected to any macroscopic force

I.2. Properties:

✓ The electric field is zero inside an equilibrium conductor 𝐸 = 0  

✓ A conductor in equilibrium constitutes an equipotential volume 𝐸 = 0 ⟹ 𝑉 = 𝑐𝑡𝑠

✓ The total charge is zero in any internal region of an equilibrium conductor.

𝐸 = 0 ⟹ 𝜙 = ඾
𝑆

𝐸 𝑀 . 𝑑 Ԧ𝑆 =
σ 𝑞𝑖

𝜀0
= 0 ⟹ ෍ 𝑞𝑖 = 0 𝑬 = 𝟎, 𝑽 = 𝑪𝒕𝒔

෍ 𝒒𝒊 = 𝟎
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✓ The injected charges are located on the external surface
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✓ The same properties are valid for a hollow conductor.

𝑬 = 𝟎, 𝑽 = 𝒄𝒕𝒆

Qi=0

𝑬 = 𝟎, 𝑽 = 𝒄𝒕𝒆
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⟹ The injected charges are located on the external surface.

✓ The field on the surface is perpendicular to this surface (Just outside a conductor, the 

electric field lines are perpendicular to its surface). 

✓ When we connect a charged conductor to another conductor, there will be an

exchange of charges between the two in such a way that at the end of the transport,

the two conductors constitutes the same equipotential volume.
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𝑽 = 𝑽𝟏 𝑽 = 𝑽𝟐
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𝐸 = 0

(S)

I.3. Electric field near the surface of a conductor (Just outside):

Coulomb's theorem.

➢ At a point infinitely close to the surface(𝑆), The field𝐸 is 

normal to (𝑆).

𝐸

➢ To find the field𝐸 at this point, we apply Gauss's theorem:

✓ Applying Gauss's theorem to this closed surface, we get:

✓ The chosen Gaussian surface is a flattened cylinder, with one base located

outside the surface and the other base at a depth such that the surface charge is

completely inside the cylinder.

𝑑 Ԧ𝑆𝑒𝑥𝑡

𝜙 = ඾
𝑆

𝐸 𝑀 . 𝑑 Ԧ𝑆 = ඾ 𝐸 𝑀 . 𝑑 Ԧ𝑆𝑒𝑥𝑡 + ඾ 𝐸 𝑀 . 𝑑 Ԧ𝑆𝑖𝑛𝑡 + ඾ 𝐸 𝑀 . 𝑑 Ԧ𝑆𝐿𝑎𝑡

𝑑 Ԧ𝑆𝑖𝑛𝑡

𝑑 Ԧ𝑆𝐿𝑎𝑡

0 0

= 𝐸 𝑀 . 𝑆𝑒𝑥𝑡 =
σ 𝑞𝑖

𝜀0
=

𝜎𝑆𝑒𝑥𝑡

𝜀0

⟹ 𝑬 𝑴 =
𝝈

𝜺𝟎

𝐸



Théorème:  The electrostatic field just outside (near) a conductor carrying a charge with 

a surface charge density 𝜎 is: 𝑬 =
𝝈

𝜺𝟎
𝒖𝒏 

𝐸

➢ At the crossing of the surface of a conductor, by continuity, the Field varies from 0 (inside) 

to
𝝈

𝜺𝟎
 (outside) through the value

𝝈

𝟐𝜺𝟎
  on the real surface of the conductor.

Remarks:

➢ This last expression of the field will be used for the calculation 

of the electrostatic pressure.

I.4. Electrostatic pressure:

Let « 𝑑𝑆 » a surface element carrying a charge 𝑑𝑞 with 

𝑑𝑞 = 𝜎𝑑𝑆 

The field 𝐸 =
𝜎

2𝜀0
𝑢 exerts, on the charge, a force: 𝑑 Ԧ𝐹 = 𝑑𝑞 𝐸 = 𝜎𝑑𝑆

𝜎

2𝜀0
𝑢 =

𝜎2

2𝜀0
𝑑𝑆𝑢

Electrostatic pressure is given by: 𝑷𝒆 =
𝒅𝑭

𝒅𝑺
=

𝝈𝟐

𝟐𝜺𝟎

Layer 

Superficial

𝜎

𝜀0 𝜎

2𝜀0

0
Inside Outside



I.5. Power ot the pointed conductors:

❑ Considering Two Conductive Spheres with radius 𝑅1 and 𝑅2 (𝑅1<𝑅2 ), connected by a 

long conducting wire.

❑ The two spheres are brought to the same potential:
𝑅1

𝑅2

𝑉1, 𝑞1, 𝜎1𝑉2, 𝑞2, 𝜎2𝑉1 = 𝑉2 ⟹
𝑘𝑞1

𝑅1
=

𝑘𝑞2

𝑅2

⟹
𝜎1𝑆1

𝑅1
=

𝜎2𝑆2

𝑅2

⟹
𝜎14𝜋𝑅1

2

𝑅1
=

𝜎24𝜋𝑅2
2

𝑅2
⟹

𝜎1

𝑅2
=

𝜎2

𝑅1

➢ The sphere with the smallest radius carries the greatest density of charges.

➢ A tip (R very small) carries a large charge density.

⟹ 𝜎1𝑅1 = 𝜎2𝑅2



➢ A very pointed conductor has a large charge

concentration at the point. The electric field is

very strong at the point and can exert a force large

enough to transfer charge on or off the conductor.

➢ Lightning rods are used to prevent the buildup

of large excess charges on structures and, thus,

are pointed.



Consider an insulated conductor in electrostatic equilibrium carrying a charge Q 

distributed over its outer surface with Surface charge density 𝜎 such as:

I.6. Capacity of a conductor:

𝑄 = ඵ 𝜎𝑑𝑆

If the charge Q increases, the density σ increases proportionally: 𝝈 = 𝒂𝑸

The potential created by Q at a point M in space: 

𝑉 = 𝑘 ඵ
𝜎𝑑𝑆

𝑟
= 𝑘𝑄 ඵ

𝑎𝑑𝑆

𝑟

We deduce that the ratio between the charge and the potential to which the conductor is

brought, given by 𝑪 =
𝑸

𝑽
  depends only on the geometry of the conductor, it is

called the conductor's own capacity.

𝐶 = 𝐹𝑎𝑟𝑎𝑑



Example: Find the own capacity of a sphere of radius R carrying a charge Q uniformly 

distributed over its surface.

❖ At a point M on the surface of the sphere, the potential is given by:

𝑉 =
𝑘𝑄

𝑅
=

𝑄

4𝜋𝜀0𝑅
 ; 𝐶 =

𝑄

𝑉
=

𝑄

𝑄
4𝜋𝜀0𝑅

= 4𝜋𝜀0𝑅

I.7. Potential (Internal) energy of an isolated charged conductor:

➢ To bring a charge Q to a conductor, initially neutral, it is necessary to provide a 

work "W" 

➢ The variation of potential energy undergone by an elementary charge dq , brought 

back from infinity (chosen as a reference of potential) to the conductor:

𝑑𝐸𝑃 = 𝑉𝑑𝑞

➢ The potential energy of the conductor when it reaches its full charge q is:

𝐸𝑃 = න
0

𝑞

𝑉𝑑𝑞 = න
0

𝑞 𝑞

𝐶
𝑑𝑞 ⟹ 𝑬𝑷 =

𝟏

𝟐

𝒒𝟐

𝑪
=

𝟏

𝟐
𝒒𝑽 =

𝟏

𝟐
𝑪𝑽𝟐

With 𝑽 =
𝒒

𝑪



I.8. Phenomenon of influence between electrical conductors:

➢ An electrical conductor is said to be neutral if  σ 𝑞𝑖𝑛𝑡 = 0 σ 𝑞+ + σ 𝑞− = 0

➢ A neutral conductor placed in an electric field polarizes.

Partial influence:

❑ Let be a neutral conductor placed in a field 𝐸𝑒𝑥𝑡
𝐸𝑒𝑥𝑡

−

−
−

+
+

+

❑ Negative charges move in the opposite direction of the field.

❑ On either side of the conductor appear positive and negative 

charges in equal quantities.

❑ A new field 𝐸𝑖, due to this distribution of charges, is created and comes to superimpose 

the field 𝐸𝑒𝑥𝑡.  

𝐸𝑖

❑ Inside the conductor, the charges do not stop moving until the field 𝐸𝑖 = −𝐸𝑒𝑥𝑡

⟹ The conductor is again in equilibrium in a polarized state

❑ The charge is not varied, there has been a modification in the distribution of the charge.



+ 𝐸 = 0, 
𝑉 = 𝐶𝑡𝑠

𝑟~∞

𝐴

+

𝐴
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−
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𝐴
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−
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No Influence



If the conductor is kept at a constant potential (e.g. zero):

+
−

−
−

❑ The ground and conductor (A) form a single conductor.

(A) 

V=0 

❑ The potential of the conductor (A) becomes zero.

❑ The positive charges are pushed back into the ground and the negative charges remain 

trapped by the field created by the body (B).

❑ There is no field line leaving the conductor (A).
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Influence in return (Feedback):
𝐵 𝐴

➢ The influencing charge is distributed on the conductor (B).

➢ There is a feedback influence of (A) on (B)

⟹ We say that there is mutual influence

+

+



Total Influence:

❑ We speak of total influence when all field lines

starting from (B) end up at (A).

𝑩

𝐴

❑ Let (B) a conductor carries a charge 𝑞𝐵 > 0 and (A) A hollow conductor in equilibrum
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❑ Let's choose the surface Σ  passing inside (A) and 

we apply Gauss's theorem:

Σ

𝑬 = 𝟎

𝜙 = ඵ 𝐸. 𝑑 Ԧ𝑆 =
σ 𝑞𝑖

𝜀0
= 0 (𝑐𝑎𝑟 𝐸 = 0) ⟹ 𝑞𝑖 = 𝑞𝐵 + 𝑞𝐴𝑖𝑛𝑡

= 0

⟹ 𝑞𝐵 = −𝑞𝐴𝑖𝑛𝑡

❑ After the influence, a charge 𝑞𝐴𝑖𝑛𝑡
 negative

appears on the internal surface of (A) and a

positive charge 𝑞𝐴𝑒𝑥𝑡
 on the external surface

❑ If (A) and isolated and neutral initially, there will be: 𝑞𝐴𝑒𝑥𝑡
= −𝑞𝐴𝑖𝑛𝑡

= 𝑞𝐵

❑ If (A) and isolated and initially carries a charge 𝑞0, There will be: 𝑞𝐵 = −𝑞𝐴𝑖𝑛𝑡
= 𝑞𝐴𝑒𝑥𝑡

+ 𝑞0



❑ Let a conductor (A) be held at zero potential 

(V=0)

I.8. Capacitors:

𝑉𝐵 > 0

𝑉𝐴 = 0

❑ Let a conductor (B) be held at a potential 𝑉𝐵 > 0 carries a charge : 𝒒𝑩 = 𝑪𝑽𝑩 

+

+

+

+
+

++

❑ The influence of (B) leads to the appearance of negative charges on (A).

❑ These negative charges of (A) in turn influence (B) on which new charges appear from the 

generator in order to keep 𝑉𝐵 constant.

−

−
−

−
−

❑ There is condensation of charges on (B) and its capacity is given by: 𝐶 =
𝑄

𝑉

❑ Conductors (A) and (B) form a capacitor represented by:
𝐵 𝐴

❑ We call 𝑞𝐴 = 𝑞𝐵 = 𝑞 : Capacitor charge

❑ "𝐶" depends only on the shape of the conductor and the nature of the air between them

❑ If the two conductors are brought closer together, the capacity becomes greater.

+
+

+



Method of calculating the capacitance of a capacitor:

1- Calculate the electric field at any point inside the capacitor.

2- Deduct the potential difference ∆𝑉 between the two conductors.

3- effect the report : 
𝑄

∆𝑉
= 𝐶

Examples:

1- Plane capacitor:

++++++++++++ +

−−−−−−−−−−−− −

𝐴

𝐵

𝑉𝐴

𝑉𝐵

0

𝑒

Formed by two infinite parallel conductive planes, 

separated by a distance "e".

✓ Field created by (A) : 𝐸𝐴 = Τ𝜎 2𝜀0

✓ Field created by (B) : 𝐸𝐵 = Τ𝜎 2𝜀0

⟹ Field created between (A) and (B): 𝐸 = 𝐸𝐴 + 𝐸𝐵 = Τ𝜎 𝜀0

✓ 𝑉𝐴׬

𝑉𝐵 𝑑𝑉 = − 0׬

𝑒
𝐸𝑑𝑟 ⟹ 𝑉𝐵 − 𝑉𝐴 = −

𝜎

𝜀0
𝑒 ⟹ 𝑉𝐴 − 𝑉𝐵 =

𝜎

𝜀0
𝑒

✓  𝐶 =
𝑄

𝑉𝐴 − 𝑉𝐵
=

𝜎𝑆𝜀0

𝜎𝑒
⟹ 𝐶 =

𝑆𝜀0

𝑒



2- Cylindrical capacitor:

➢ The field created between the two cylinders:

Gauss's theorem: 𝜙 = ඵ 𝐸. 𝑑 Ԧ𝑆 =
σ 𝑞𝑖

𝜀0

ඵ 𝐸. 𝑑 Ԧ𝑆 = ඵ 𝐸. 𝑑𝑆1 + ඵ 𝐸. 𝑑𝑆2

𝑑𝑆1

𝑑𝑆2

𝐸

0

= ඵ 𝐸. 𝑑𝑆1 = 𝐸. 2𝜋𝑟𝐿 𝑟

++
+

++++++++
+

+++ + + + − −
−

−
−−−−−−−

−
−

− − − − −

𝑅1

𝑅2

𝐿

⟹ 𝐸. 2𝜋𝑟𝐿 =
𝑄

𝜀0

⟹ 𝐸 =
𝑄

2𝜋𝜀0𝑟𝐿

➢ The difference in potential between the two cylinders:

න
𝑉1

𝑉2

𝑑𝑉 = − න
𝑅1

𝑅2

𝐸𝑑𝑟 ⟹ 𝑉2 − 𝑉1 = −
𝑄

2𝜋𝜀0𝐿
𝑙𝑛

𝑅2

𝑅1

⟹ 𝑉1 − 𝑉2 =
𝑄

2𝜋𝜀0𝐿
𝑙𝑛

𝑅2

𝑅1

➢ Capacitance: 𝐶 =
𝑄

𝑉1 − 𝑉2

=
2𝜋𝜀0𝐿

𝑙𝑛 Τ𝑅2 𝑅1



3- Spherical capacitor:

−

−

−
− − −

−

−

−

−

−
−−−

−

𝑅1 𝑅2
+
+

+
+ + +

+
+
+

+
+

+++
+

➢ The field created between the two spheres:

Using Gauss's theorem, we find:

𝐸 =
𝑄

4𝜋𝜀0𝑟2

➢ The potential between the two spheres:

𝑉1 − 𝑉2 =
𝑄

4𝜋𝜀0

𝑅2 − 𝑅1

𝑅1𝑅2
We find:

➢ Capacitance: 𝐶 =
𝑄

𝑉1 − 𝑉2

=
4𝜋𝜀0𝑅1𝑅2

𝑅2 − 𝑅1



Potential energy of a capacitor (stored in a capacitor):

𝐵
 −

𝐴
  +

❑ Let be a capacitor with a capacitance "C" formed by two armatures A and B

𝐸𝑃 = 𝐸𝑃𝐴
+ 𝐸𝑃𝐵

=
1

2
𝑄𝐴𝑉𝐴 +

1

2
𝑄𝐵𝑉𝐵

𝑄𝐴 = −𝑄𝐵 = 𝑄

Knowing that: 𝑪 =
𝑸

𝑽𝑨 − 𝑽𝑩

❑ In general, for a set of capacitors carrying charges 𝑄𝑖  under different potentials 𝑉𝑖: 

⟹ 𝑬𝑷 =
𝟏

𝟐
𝑸 𝑽𝑨 − 𝑽𝑩 =

𝟏

𝟐
𝑪 𝑽𝑨 − 𝑽𝑩

𝟐 =
𝟏

𝟐

𝑸𝟐

𝑪

✓  

✓  

𝑬𝑷 =
𝟏

𝟐
𝑸𝒊𝑽𝒊

⟹ 𝑬𝑷 =
𝟏

𝟐
𝑸 𝑽𝑨 − 𝑽𝑩



Capacitor Association

𝑄𝑒𝑞 = 𝑄1 + 𝑄2 + ⋯ + 𝑄𝑛

⟹ 𝐶𝑒𝑞 𝑉𝐴 − 𝑉𝐵 = 𝐶1 𝑉𝐴 − 𝑉𝐵 + 𝐶2 𝑉𝐴 − 𝑉𝐵 + ⋯ 𝐶𝑛 𝑉𝐴 − 𝑉𝐵

⟹ 𝐶𝑒𝑞 = 𝐶1 + 𝐶2 + ⋯ 𝐶𝑛 ⟹ 𝐶𝑒𝑞 = ෍

𝑖=1

𝑛

𝐶𝑖

1- Parallel association: All capacitors are subject to the same difference in potential

𝐴 𝐵

𝑉𝐴 𝑉𝐵

+ −𝑄1

+ −
𝑄𝑛

+ −𝑄3

+ −
𝑄𝑖

+ −𝑄2

𝐶1

𝐶2

𝐶3

𝐶𝑖

𝐶𝑛

+ −
𝑄𝑒𝑞

𝐴 𝐵

𝑉𝐴 𝑉𝐵



1- Series Association :

All capacitors carry the same charge Q:

𝑉𝐴 − 𝑉𝐵 = 𝑉𝐴 − 𝑉𝑀 + 𝑉𝑀 − 𝑉𝑁 + ⋯ + 𝑉𝑃 − 𝑉𝐵

⟹
𝑄

𝐶𝑒𝑞
=

𝑄

𝐶1
+

𝑄

𝐶2
+ ⋯ +

𝑄

𝐶𝑛

𝐶1 𝐶2 𝐶3
+ −

𝐴 𝐵

𝑉𝐴
+ − + − + −

𝑀 𝑁 𝑂 𝑃

𝐶﷮𝑛
𝑉𝐵

+ −
𝐶𝑒𝑞

𝐴 𝐵

𝑉𝐴 𝑉𝐵

⟹
1

𝐶𝑒𝑞
=

1

𝐶1
+

1

𝐶2
+ ⋯ +

1

𝐶𝑛

⟹
𝟏

𝑪𝒆𝒒
= ෍

𝒊=𝟏

𝒏
𝟏

𝑪𝒊
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