I. Study of conductors

1.1. Conductor in electrostatic equilibrium:

A conductor is a medium (materials or substances) in which there are free charges
(positive or negative) that can be set in motion under the action of an electric field..

O A conductor is said to be in electrostatic equilibrium if no electrical charge is moving
inside of this conductor.

= The electrons are not subjected to any macroscopic force

1.2. Properties:

v’ The electric field is zero inside an equilibrium conductor(E = 6)
v A conductor in equilibrium constitutes an equipotential vqume(E 0=V = cts)

v The total charge is zero in any internal region of an equilibrium conductor.
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v' The injected charges are located on the external surface




v" The field on the surface is perpendicular to this surface (Just outside a conductor, the

electric field lines are perpendicular to its surface).

v" The same properties are valid for a hollow conductor.
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v When we connect a charged conductor to another conductor, there will be an
exchange of charges between the two in such a way that at the end of the transport,

the two conductors constitutes the same equipotential volume.
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1.3. Electric field near the surface of a conductor (Just outside):

Coulomb's theorem. RO .

» At a point infinitely close to the surface(S), The fieldE is

normal to (S) T T T T T T

(S)

> To find the fieldE at this point, we apply Gauss's theorem:

v' The chosen Gaussian surface is a flattened cylinder, with one base located
outside the surface and the other base at a depth such that the surface charge is

completely inside the cylinder.

v" Applying Gauss's theorem to this closed surface, we get:
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Théoréme: The electrostatic field just outside (near) a conductor carrying a charge with

a surface charge density o is: E = —Un
0

Remarks:

» At the crossing of the surface of a conductor, by continuity, the Field varies from 0 (inside)

o o

to o (outside) through the value .. On the real surface of the conductor.
0 0

» This last expression of the field will be used for the calculation

of the electrostatic pressure.

1.4. Electrostatic pressure:

Let « dS » a surface element carrying a charge dq with Inside O:
dq = adS
S R . o 2
The field E = — 1 exerts, on the charge, a force: dF = dqE = 0dS—1u =—dSu
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Electrostatic pressure is givenby: P, = — =
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1.5. Power ot the pointed conductors:

O Considering Two Conductive Spheres with radius R; and R, (R{<R, ), connected by a

long conducting wire.

O The two spheres are brought to the same potential: @

k k 0,5 g,S
V=V, = Q1= CI2:11=22
Ry R, Ry R,

(VZ; d2, 0-2) (Vl; q1, 0-1)

01 4-7TR12 P, 47‘[R22 oy Oy
- = - =
R, R, R, R,

= O-lRl = O-2R2

» The sphere with the smallest radius carries the greatest density of charges.

» Atip (R very small) carries a large charge density.



» A very pointed conductor has a large charge
concentration at the point. The electric field is
very strong at the point and can exert a force large

enough to transfer charge on or off the conductor.

» Lightning rods are used to prevent the buildup
of large excess charges on structures and, thus,

are pointed.




1.6. Capacity of a conductor: =~ e o

Consider an insulated conductor in electrostatic equilibrium carrying a charge Q

distributed over its outer surface with Surface charge density o such as:

0= [[ s

If the charge Q increases, the density o increases proportionally: o
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Q
S

The potential created by Q at a point M in space:
adS adS
k| ke | 5
We deduce that the ratio between the charge and the potential to which the conductor is

brought, given by C =% depends only on the geometry of the conductor, it is

called the conductor's own capacity.

[C] = Farad



Example: Find the own capacity of a sphere of radius R carrying a charge Q uniformly

distributed over its surface.

s At a point M on the surface of the sphere, the potential is given by:
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1.7. Potential (Internal) enerqy of an isolated charged conductor:

» To bring a charge Q to a conductor, initially neutral, it is necessary to provide a
work "W"
» The variation of potential energy undergone by an elementary charge dq , brought
back from infinity (chosen as a reference of potential) to the conductor:
dEp =Vdq WithV = %

» The potential energy of the conductor when it reaches its full charge q is:

q q 2
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1.8. Phenomenon of influence between electrical conductors:

> An electrical conductor is said to be neutral if Y. g, =0 Qg +Xq™ =0)
» A neutral conductor placed in an electric field polarizes.

Partial influence:

Ty

O Let be a neutral conductor placed in a field Eext ext

L Negative charges move in the opposite direction of the field.

L On either side of the conductor appear positive and negative

charges in equal quantities.

O A new field Ei, due to this distribution of charges, is created and comes to superimpose
the field E .

O Inside the conductor, the charges do not stop moving until the field Ei = —Eext

= The conductor is again in equilibrium in a polarized state

O The charge is not varied, there has been a modification in the distribution of the charge.






If the conductor is kept at a constant potential (e.q. zero):

1 The ground and conductor (A) form a single conductor.

O The potential of the conductor (A) becomes zero.

L The positive charges are pushed back into the ground and the negative charges remain

trapped by the field created by the body (B).

O There is no field line leaving the conductor (A).



Infl in return (Feedback):
nfluence in return (Feedback) T(B)/‘ (4) /Y
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» The influencing charge is distributed on the conductor (B).

» There is a feedback influence of (A) on (B)

— We say that there is mutual influence



Total Influence:

O Let (B) a conductor carries a charge qg > 0 and (A) A hollow conductor in equilibrum

O We speak of total influence when all field lines

starting from (B) end up at (A).

L After the influence, a charge q4, , negative
appears on the internal surface of (A) and a

positive charge q4, . on the external surface

[ Let's choose the surface(X) passing inside (A) and

we apply Gauss's theorem:

¢=ﬂE.d§=zgqi=0(carE=0)=>qi=qB+innt=O )
0

— (4 = —qa;,,
Q If (A) and isolated and neutral initially, there will be: QApy: = 94 = 9B

O If (A) and isolated and initially carries a charge q,, There will be:

9B = — Qa1 = Qaeye T 90




1.8. Capacitors: . L —

[ Let a conductor (B) be held at a potential V5 > 0 carries a charge : qg = CVp

O Let a conductor (A) be held at zero potential
(V=0)

O The influence of (B) leads to the appearance of negative charges on (A).
O These negative charges of (A) in turn influence (B) on which new charges appear from the

generator in order to keep Vg constant.

Q

O There is condensation of charges on (B) and its capacity is given by: ¢ =

[ Conductors (A) and (B) form a capacitor represented by: —E—I I—A—

O We call |g4] = |gg| = q : Capacitor charge

O "C" depends only on the shape of the conductor and the nature of the air between them

Q If the two conductors are brought closer together, the capacity becomes greater.



Method of calculating the capacitance of a capacitor:

1- Calculate the electric field at any point inside the capacitor.

2- Deduct the potential difference AV between the two conductors.

3- effect the report : i =C

Examples:

1- Plane capacitor:

Formed by two infinite parallel conductive planes,
separated by a distance "e". \
v’ Field created by (A) : E4 = 0/2¢&, €

v’ Field created by (B) : Eg = d/2¢,

(4)
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= Field created between (A) and (B): E = E4 + Eg = 0/&,
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2- Cylindrical capacitor:

> The field created between the two cylinders:

Gauss's theorem: ¢ = H ds = Z i
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» The difference in potential between the two cylinders: !
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» Capacitance: C =m " InR,/R,




3- Spherical capacitor:

> The field created between the two spheres:

Using Gauss's theorem, we find:

Q

E =
ATrEyT?

> The potential between the two spheres:

R, — R
We find: Vl - Vz = 47?80 < 2R1R2 1)

V.-V, |  R,—R;

> Capacitance: C =
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Potential energy of a capacitor (stored in a capacitor):

O Let be a capacitor with a capacitance "C" formed by two armatures A and B

A B

1 1
v Ep =Ep, + Ep, ZEQAVA+§QBVB +

1
v Q4=-0p=20 =>EP=§Q(VA—VB)

Q

Knowing that: ¢ =
Aa— Vg

1 1
— Ep = EQ(VA —Vp) = EC(VA —Vg)i=-—

U In general, for a set of capacitors carrying charges Q; under different potentials V;:

1
Ep =5 QiV;



Capacitor Association

1- Parallel association:  All capacitors are subject to the same difference in potential

Qi1 |

Q:F T

Va Q3+ N
L 4

== Ceq(VA - VB) = Cl(VA - VB) + CZ(VA - VB) + o Cn(VA - VB)

n
:Ceq=C1+Cz+'“Cn :Ceqzzci
=1




1- Series Association :

Cegq
T Va T Vp
el bl byl e =
All capacitors carry the same charge Q:
Va—Veg=Wa=Vi) +Vy —=Vy) + -+ (Vp — Vp)
1 1 1 1
Ceq C1 Gy Ch Cegq Cl C, C,
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