
Scalar and Vector PotentialsII. Maxwell Equations

1. Scalar electric potential:

Let’s consider the case of the positive point 𝒒
present in uniform electric field: 𝑬 = −𝑬Ԧ𝒋.

The presence of the electric field will exert a force

on the point charge, called Coulomb force given by:𝑭𝒆 = 𝒒𝑬 = −𝒒𝑬Ԧ𝒋
To move the charge 𝒒 in opposite direction with a

constant speed (σ 𝒇𝒊 = 𝟎), one needs to apply an

external force 𝑭𝒆𝒙𝒕 = −𝑭𝒆 = 𝒒𝑬Ԧ𝒋
This is equivalent to do a work (spend an energy)

over the distance element 𝒅Ԧ𝒍:𝒅𝑾 = 𝑭𝒆𝒙𝒕. 𝒅Ԧ𝒍 = −𝒒𝑬. 𝒅Ԧ𝒍 = 𝒒𝑬. 𝒅𝒚

One can change the point charge by another one 𝒒′
and the expression of the executed work take the

same form: 𝒅𝑾′ = 𝒒′𝑬. 𝒅𝒚
And so on: 𝒅𝑾′′ = 𝒒′′𝑬. 𝒅𝒚



II. Maxwell Equations

1. Scalar electric potential:

This means that the spent work by unit of charge:𝒅𝑾𝒒 = 𝒅𝑾′𝒒′ = 𝒅𝑾′′𝒒′′ 𝑱/𝑪 = ⋯ = −𝑬. 𝒅Ԧ𝒍
Will depend only on the scalar expression:𝒅𝑽 = −𝑬. 𝒅Ԧ𝒍 = 𝑬. 𝒅𝒚
Called “differential electric potential” (or differential

voltage)

The minus sign means that this physical quantity

decrease when electric field increase and vice-versa.

The unit of 𝑽 is the 𝑽𝒐𝒍𝒕 𝑽 with 𝟏𝑽 = 𝟏𝑱/𝑪

The potential difference corresponding to moving a

point charge from point 𝑷𝟏to point 𝑷𝟐 is obtained by

integrating the last expression along any path

between them:∆𝑽 = 𝑽𝟐𝟏 = 𝑽𝟐 − 𝑽𝟏 = න𝑷𝟏
𝑷𝟐𝒅𝑽 = − න𝑷𝟏

𝑷𝟐 𝑬. 𝒅Ԧ𝒍
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II. Maxwell Equations

1. Scalar electric potential:

From the following law:∆𝑽 = 𝑽𝟐𝟏 = 𝑽𝟐 − 𝑽𝟏 = න𝑷𝟏
𝑷𝟐𝒅𝑽 = − න𝑷𝟏

𝑷𝟐 𝑬. 𝒅Ԧ𝒍
We should note that:

• We have : 𝑽𝟏 → 𝑷𝟏 and 𝑽𝟐 → 𝑷𝟐
• Kirchhoff law: For 𝑷𝟏 ≡ 𝑷𝟐∆𝑽 = 𝟎 න𝑷𝟏

𝑷𝟏 𝑬. 𝒅Ԧ𝒍 = ර𝑪 𝑬. 𝒅Ԧ𝒍 = 𝟎
• If 𝑷𝟏 → ∞ 𝑽𝟏 = 𝟎 → 𝑽 = − 𝑷∞׬ 𝑬. 𝒅Ԧ𝒍
• The null potential is a referential value (not

absolute) , and it is called “ground”

If we use the Stokes’s theorem to convert a surface

integral into a line integral to, for any vector field 𝑨:න𝑺 𝛁˄𝑨 . 𝒅𝑺 = ර𝑪 𝑨. 𝒅Ԧ𝒍
Where C is a closed contour surrounding S.

Thus, we can obtain the differential form from this

integral expression: 𝛁˄𝑬 = 𝟎
Any vector field verifying that its line integral along

any closed path is zero, is called conservative or

irrotational field.

Hence, the electrostatic field 𝑬 is conservative.
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II. Maxwell Equations

1. Scalar electric potential:

We should recall that for any scalar 𝐟 we have:𝜵˄ 𝜵𝒇 = 𝟎
If we take the former differential equation of

electric field: 𝛁˄𝑬 = 𝟎
By identification, we can conclude that electric field

should be derived from a scalar function, which is

the scalar electric potential 𝒇 ≡ 𝑽𝑬 = −𝛁𝑽
This can also derived from the equation:𝒅𝑽 = −𝑬. 𝒅Ԧ𝒍

Indeed, if we use the decomposition of any

differentiation of a given function 𝑽(𝒙, 𝒚, 𝒛) on the

coordinates basis according to partial derivation,

and considering an electric field:𝑬 = 𝑬𝒙Ԧ𝒊 + 𝑬𝒚 Ԧ𝒋 + 𝑬𝒛𝒌
Over a distance element: 𝒅Ԧ𝒍 = 𝒅𝒙Ԧ𝒊 + 𝒅𝒚Ԧ𝒋 + 𝒅𝒛𝒌

𝒅𝑽 = 𝝏𝑽𝝏𝒙 𝒅𝒙 + 𝝏𝑽𝝏𝒚 𝒅𝒚 + 𝝏𝑽𝝏𝒛 𝒅𝒛 = −𝑬𝒙. 𝒅𝒙 − 𝑬𝒚. 𝒅𝒚 − 𝑬𝒛. 𝒅𝒛
After identification:𝝏𝑽𝝏𝒙 = −𝑬𝒙; 𝝏𝑽𝝏𝒚 = −𝑬𝒚; 𝝏𝑽𝝏𝒛 = −𝑬𝒛
Which equivalent to: 𝑬 = −𝛁𝑽
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II. Maxwell Equations

2. Electric potential of point charges

Knowing that an electric field created in free space

by a point charge 𝒒 could be given by the

expression:

𝑬 = 𝟏𝟒𝝅𝜺𝟎 𝒒𝒓𝟐 𝒖𝒓
Through a radial line 𝒅Ԧ𝒍 ≡ 𝒅𝒓 = 𝒅𝒓𝒖𝒓
We can calculate the electric potential between two

points:

𝑽 = − න∞
𝒓𝑬 . 𝒅𝒓 = − 𝒒𝟒𝝅𝜺𝟎 න∞

𝒓 𝒅𝒓𝒓𝟐 = 𝒒𝟒𝝅𝜺𝟎 𝟏𝒓 ∞
𝒓 = 𝒌 𝒒𝒓

By using the former result of the electric potential

resulting from one point charge, we can generalize

it for N discrete point charges present at different

locations 𝒓𝟏; 𝒓𝟐; 𝒓𝟑 … 𝒓𝑵, the electric potential in free

space resulting from these charge at the

measurement point 𝑴 located by 𝒓 is:𝑽𝒕𝒐𝒕 = 𝟏𝟒𝝅𝜺𝟎 ෍𝒊=𝟏
𝑵 𝒒𝒊𝒓 − 𝒓𝒊

+

+

+

+

𝑴
𝑶𝒙 𝒚

𝒛
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II. Maxwell Equations

3. Electric potential of continuous distributions of charge

To obtain expressions for the electric potential 𝐕 due to continuous charge distributions over a

volume 𝒗, over a surface 𝑺, or along a line 𝒍, we replace in the former equation, the point charges𝒒𝒊 by 𝒅𝒒 ≡ 𝝆𝒅𝒗 ≡ 𝝈𝒅𝑺 ≡ λ𝒅𝒍 and convert the summation by the integral:

• Volume distribution: 𝑽 = 𝟏𝟒𝝅𝜺𝟎 න𝒗′ 𝝆𝒅𝒗𝒓
• Surface distribution: 𝑽 = 𝟏𝟒𝝅𝜺𝟎 න𝑺′ 𝝈𝒅𝑺𝒓
• Linear distribution: 𝑽 = 𝟏𝟒𝝅𝜺𝟎 න𝒍′ λ𝒅𝒍𝒓
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II. Maxwell Equations

4. Gauss’s law and Poisson’s equation:

The Gauss law states that for any enclosed charge inside a surface𝑺′, one can find the electric field resulting from this charge by

calculating its flux:඾𝑺 𝑬 . 𝒅𝑺 = 𝑸𝜺𝟎 ඾𝑺′ 𝑫 . 𝒅𝑺 = 𝑸
Where: 𝑫 = 𝜺𝟎𝑬 is electric flux density 𝑪. 𝒎−𝟐

A good choice of the Gaussian surface will conduct to a simple

calculation of the electric field generated by the point charge 𝒒:඾𝑺 𝑬 . 𝒅𝑺 = 𝒒𝜺𝟎 ඾𝑺′ 𝑬𝒓 𝒓𝟐𝒔𝒊𝒏𝜽𝒅𝜽𝒅𝝋 = 𝑬𝒓𝒓𝟐 න𝟎
𝝅 𝒔𝒊𝒏𝜽𝒅𝜽 න𝟎

𝟐𝝅𝒅𝝋 = 𝒒𝜺𝟎𝑬𝒓𝒓𝟐𝟒𝝅 = 𝒒𝜺𝟎 → 𝑬𝒓 = 𝟏𝟒𝝅𝜺𝟎 𝒒𝒓𝟐
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II. Maxwell Equations

4. Gauss’s law and Poisson’s equation:

The Gauss law for a number of discrete charges

could also obtained as a generalization of the former

law, when the surface 𝑺 is enclosing 𝑵 charges 𝑸𝒊:඾𝑺 𝑬 . 𝒅𝑺 = 𝟏𝜺𝟎 ෍𝒊=𝟏
𝑵 𝑸𝒊

And, for a continuous distributions of charge, we get:඾𝑺 𝑬 . 𝒅𝑺 = 𝟏𝜺𝟎 න 𝒅𝒒
• Linear distribution: 𝑺װ 𝑬 . 𝒅𝑺 = 𝟏𝜺𝟎 ′𝒍׬ λ𝒅𝒍
• surface distribution: 𝑺װ 𝑬 . 𝒅𝑺 = 𝟏𝜺𝟎 ′𝑺׬ 𝝈𝒅𝑺
• volume distribution: 𝑺װ 𝑬 . 𝒅𝑺 = 𝟏𝜺𝟎 ′𝒗׬ 𝝆𝒅𝒗

It is interesting to see that for any vector field 𝑨, the

divergence theorem allows us to convert a surface

integral into a volume integral:඾𝑺 𝑨. 𝒅𝑺 = න𝑽 𝜵. 𝑨 . 𝒅𝒗
Thus, it is possible to rewrite the left-hand term of

the Gauss law with the volume distribution case:඾𝑺 𝑬 . 𝒅𝑺 = න𝒗′ 𝜵. 𝑬 . 𝒅𝒗 = 𝟏𝜺𝟎 න𝒗′ 𝝆𝒅𝒗
By identification, we get the differential form of

Gauss law (divergent of 𝑬):𝜵. 𝑬 = 𝝆𝜺𝟎
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II. Maxwell Equations

4. Gauss’s law and Poisson’s equation:

Now, using both equations:𝑬 = −𝛁𝑽 … … … . 𝟏𝜵. 𝑬 = 𝝆𝜺𝟎 … … … . (𝟐)
And, by replacing (1) into (2), we obtain:

𝜵. 𝑬 = −𝜵. 𝜵𝑽 = −𝛁𝟐𝑽 = −∆𝑽 = 𝝆𝜺𝟎
Which could be rewritten as:∆𝑽 = − 𝝆𝜺𝟎 ∆𝑽 + 𝝆𝜺𝟎 = 𝟎
This a second degree differential equation with

source term is known as “Poisson’s equation”.

The special case of absence of electric charges in the

free space, the Poisson’s equation will be reduced to

homogeneous differential equation:∆𝑽 = 𝛁𝟐𝑽 = 𝟎
Known as “Laplace’s equation”.

In rectangular coordinates:𝝏𝟐𝑽𝝏𝒙𝟐 + 𝝏𝟐𝑽𝝏𝒚𝟐 + 𝝏𝟐𝑽𝝏𝒛𝟐 = 𝟎
In cylindrical coordinates:𝟏𝝆 𝝏𝝏𝝆 𝝆 𝝏𝑽𝝏𝝆 + 𝟏𝝆𝟐 𝝏𝟐𝑽𝝏𝝋𝟐 + 𝝏𝟐𝑽𝝏𝒛𝟐 = 𝟎
In spherical coordinates:𝟏𝒓𝟐 𝝏𝝏𝒓 𝒓𝟐 𝝏𝑽𝝏𝒓 + 𝟏𝒓𝟐. 𝒔𝒊𝒏𝜽 𝝏𝝏𝜽 𝒔𝒊𝒏𝜽 𝝏𝑽𝝏𝜽 + 𝟏𝒓𝟐. 𝒔𝒊𝒏𝟐𝜽 𝝏𝟐𝑽𝝏𝝋𝟐 = 𝟎
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II. Maxwell Equations

5. Gauss law for magnetism:

By considering the flux of magnetic field lines

through a given surface enclosing totally or

partially these lines, it comes intuitively, due

to the nature of the magnetic dipole

(permanent or induced) that the same amount

of field lines will enter and then exit from that

surface. This will imply:඾𝑺 𝑩 . 𝒅𝑺 = 𝟎
This is the equivalent Gauss law for magnetic

field in its integral form.

The differential form will be deduced in similar way by

using the conversion of surface integral to a volume one:න𝒗′ 𝛁. 𝑩 . 𝒅𝒗 = 𝟎 → 𝛁. 𝑩 = 𝟎
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II. Maxwell Equations

6. Vector magnetic potential:

Now let’s exploit the fact that for any vector field 𝑨 
we have always: 𝛁. 𝛁 ∧ 𝑨 = 𝟎
By identification with the former law giving the

divergent of magnetic field : 𝛁. 𝑩 = 𝟎
It comes directly that magnetic field could be

derived as a curl of a vector field, called “Vector

Magnetic Potential”: 𝑩 = 𝛁 ∧ 𝑨
Since the magnetic field unit in S.I is Tesla :𝟏 𝑻 = 𝟏 𝑾𝒆𝒃𝒆𝒓. 𝒎−𝟐 = 𝟏 𝑾𝒃. 𝒎−𝟐
Consequently the S.I unit for the vector magnetic potential

will be : 𝑾𝒃. 𝒎−𝟏 ≡ 𝑾𝒃𝒎

If now we rewrite the Ampere law of magnetic field

induced by a set of currents:ර𝑪 𝑩. 𝒅Ԧ𝒍 = 𝝁𝟎 ෍𝒌 𝑰𝒌
Passing from summation to integral and using

surface density of current:ර𝑪 𝑩. 𝒅Ԧ𝒍 = 𝝁𝟎 ඵ𝑺′ Ԧ𝒋. 𝒅𝑺
If we use the Stokes’s theorem to convert a line

integral into a surface integral:න𝑺 𝜵˄𝑩 . 𝒅𝑺 = ර𝑪 𝑩. 𝒅Ԧ𝒍
We get by identification:𝜵˄𝑩 = 𝝁𝟎 Ԧ𝒋
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II. Maxwell Equations

7. Vector Poisson’s equation:

In the same way as we achieve it for electric field,

let’s exploit both equations:𝑩 = 𝛁 ∧ 𝑨 … … … (𝟑)𝜵˄𝑩 = 𝝁𝟎 Ԧ𝒋 … … … (𝟒)
And replace (3) into (4):𝜵˄𝑩 = 𝜵˄ 𝛁 ∧ 𝑨 = 𝝁𝟎 Ԧ𝒋

An appropriate and simplest choice about the term𝜵. 𝑨 is to take (Coulomb gauge):𝜵. 𝑨 = 𝟎
To avoid any conflicting with the requirement of

equation (3).

Using this choice leads to the “Vector Poisson’s

equation”: 𝜵𝟐𝑨 = −𝝁𝟎 Ԧ𝒋
Which is very similar to the Poisson’s equation for

the scalar electric potential:∆𝑽 = − 𝝆𝜺𝟎
We know (chapter 01) that for any vector 𝑨, the

Laplacian of 𝑨 obeys the vector identity given by:𝜵𝟐𝑨 = 𝜵 𝜵. 𝑨 − 𝜵 ⋏ 𝜵 ⋏ 𝑨
This implies: 𝜵 𝜵. 𝑨 − 𝜵𝟐𝑨 = 𝝁𝟎 Ԧ𝒋
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II. Maxwell Equations

7. Vector Poisson’s equation:

Using the definition for 𝜵𝟐𝑨, the vector Poisson’s

equation can be decomposed into three scalar Pois

son’s equations 𝝏𝟐𝑨𝒙𝝏𝒙𝟐 = −𝝁𝟎𝑱𝑺𝒙𝝏𝟐𝑨𝒙𝝏𝒚𝟐 = −𝝁𝟎𝑱𝑺𝒚𝝏𝟐𝑨𝒙𝝏𝒛𝟐 = −𝝁𝟎𝑱𝑺𝒛
As for Poisson’s equation for scalar potential, it is

possible to get back into vector potential

components: 𝑨𝒙 = 𝝁𝟎𝟒𝝅 න𝑺′ 𝑱𝑺𝒙𝒓 𝒅𝑺

Similar solutions could be found for the remain

components y and z:

Volume density: 𝑨 = 𝝁𝟎𝟒𝝅 න𝒗′ Ԧ𝑱𝑽𝒓 𝒅𝒗
Surface density: 𝑨 = 𝝁𝟎𝟒𝝅 න𝑺′ Ԧ𝑱𝑺𝒓 𝒅𝑺
Linear density: 𝑨 = 𝝁𝟎𝟒𝝅 න𝒍′ 𝑰𝒓 𝒅Ԧ𝒍
The vector magnetic potential provides a 3rd

approach for computing the magnetic field due to

current-carrying conductors in addition to the

methods suggested by Biot-Savart and Ampère law.
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II. Maxwell Equations

1. Electro-magnetostatics laws:

According to previous sections we could gather all

the differential and integral equations of both

electric and magnetic fields:

𝛁. 𝑬 = 𝝆𝜺𝟎 𝛁 ∧ 𝑬 = 𝟎 𝛁. 𝑩 = 𝟎 𝛁 ∧ 𝑩 = 𝝁𝟎𝑰
𝛁. 𝑫 = 𝝆 𝛁 ∧ 𝑫 = 𝟎 𝛁. 𝑯 = 𝟎 𝛁 ∧ 𝑯 = 𝑰 

ර 𝑫 . 𝒅𝑺 = 𝑸 
ර𝐶 𝑫 . 𝒅Ԧ𝒍 = 𝟎 
ර 𝑯 . 𝒅𝑺 = 𝑸
ර𝐶 𝑯 . 𝒅Ԧ𝒍 = 𝑰

Where: 𝑫 = 𝜺𝑬; 𝑩 = 𝝁𝑯
in the case of free space: 𝜺 = 𝜺𝟎, 𝝁 = 𝝁𝟎

Both fields are derived from potentials:

• Scalar electric potential:𝑽 = − න𝑬. 𝒅Ԧ𝒍 𝑬 = −𝛁𝑽
• Vector magnetic potential:𝑩 = 𝛁 ∧ 𝑨
Volume density: 𝑨 = 𝝁𝟎𝟒𝝅 න𝒗′ Ԧ𝑱𝑽𝒓 𝒅𝒗
Surface density: 𝑨 = 𝝁𝟎𝟒𝝅 න𝑺′ Ԧ𝑱𝑺𝒓 𝒅𝑺
Linear density: 𝑨 = 𝝁𝟎𝟒𝝅 න𝒍′ 𝑰𝒓 𝒅Ԧ𝒍

Maxwell equations
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