

Nuclear Physics



# Set of Exercises - 01 Chapter 01: The atomic nucleus

**Useful data:**  $1uc^2 = 931.5[MeV]$ ;  $m_p = 1.0073u$ ;  $m_n = 1.0087u$ ;  $R_0 = 1.2 \times 10^{-15} fm$ ;  $a_V = 14.64MeV$ ,  $a_S = 14.08MeV$ ,  $a_C = 0.64MeV$ ,  $a_A = 21.07MeV$ ,  $a_P = 11.54MeV$  (Benzaid, NST 2020)

# Exercise 01:

By considering the nucleus as a spherical volume with a radius is given as a function of mass number:  $R = R_0 A^{1/3}$ 

Find the density of the  ${}^{12}_{6}C$  nucleus.

# Exercise 02:

Find the repulsive electric force on a proton whose center is 2.4 fm from the center of another proton. Assume the protons are uniformly charged spheres of positive charge.

# Exercise 03:

(a) Find the energy difference between the spin-up and spin-down states of a proton in a magnetic field of B = 1.000 T (which is quite strong).

(b) What is the Larmor frequency of a proton in this field?

## Exercise 04:

(a) To penetrate the Coulomb barrier of a light nucleus, what should be the energy order of magnitude for the incoming proton.

Take the H nucleus as target and the characteristic distance r = 1 f m.

(b) What will be this energy in the case of  $_{2}He \text{ or }_{3}Li$  as a target?

#### Exercise 05:

The binding energy of the neon isotope  ${}^{20}_{10}Ne$  is 160.647 *MeV*. Find its atomic mass

#### Exercise 06:

(a) Find the energy needed to remove a neutron from the nucleus of the calcium isotope  $\frac{42}{20}Ca$ .

(b) Find the energy needed to remove a proton from this nucleus.

(c) Why are these energies different?

M(20, 42) = 41.958622, M(20, 41) = 40.962278,M(19, 41) = 40.961825

# Exercise 07:

Find the energy needed to remove a neutron, proton, or an  $\alpha$  particle from the following isotopes:  $^{238}_{92}U$ ,  $^{232}_{90}Th$ 

M(92,238) = 238.050786, M(91,237) = 237.051023M(92,237) = 237.048728, M(90,234) = 234.043599M(90,232) = 232.038053, M(89,231) = 231.038393M(90,231) = 231.036302, M(88,228) = 228.031068

# **Exercise 08:**

(a) The atomic mass of the zinc isotope  ${}^{64}_{30}Zn$  is 63.929 *u*. Compare its binding energy with the Theoretical prediction:

| $ESEMF(7, 4) = a 4 a 4^{\frac{2}{3}} a$                                                                                                                                                                            | Z(Z-1)                          | $(A-2Z)^{2}$ | δ                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------|--------------------------|
| $\boldsymbol{E}_{\boldsymbol{B}}  (\boldsymbol{Z},\boldsymbol{A}) = \boldsymbol{u}_{\boldsymbol{V}}\boldsymbol{A} - \boldsymbol{u}_{\boldsymbol{S}}\boldsymbol{A}\boldsymbol{3} - \boldsymbol{u}_{\boldsymbol{C}}$ | $\frac{1}{A^{\frac{1}{3}}} - c$ | $a_A - A +$  | $u_P \overline{A^{3/4}}$ |
| (b) Do the same for the i                                                                                                                                                                                          | isotones g                      | viven in Ex. | 06.                      |

# **Exercise 09:**

Isobars are nuclides that have the same mass number A. Derive a formula for the atomic number of the most stable isobar of a given A and use it to find the most stable isobars for:

A = 12, 16, 25, 56, 107, 197, 238Compare with available data.

# **Exercise 10:**

What is the Coulomb repulsion energy of two protons in  ${}_{2}^{3}He$  if it is assumed that they separated by a nuclear radius?

#### Exercise 11:

What is the difference between the binding energy of  ${}_{2}^{3}He$  and  ${}_{1}^{3}H$ ? Comment the result.

#### Exercise 12:

Compare the separation energy of a neutron from the following isotopes:  ${}^{41}_{20}Ca$ ,  ${}^{42}_{20}Ca$  and  ${}^{43}_{20}Ca$ M(20, 43) = 42.958770

#### Exercise 13:

(a) "Mirror" nuclei have the same odd value of A, but the values of N and Z are interchanged. Determine the mass difference between two mirror nuclei which have N - Z = 1.

(b) the masses of  ${}^{23}_{11}Na$  and  ${}^{23}_{12}Mg$  are 22.989771u and 22.994125u, respectively. From these data determine the Coulomb coefficient  $a_c$  in the semiempirical formula.

