


The atomic masses, based on the exact number 12.00000 as the assigned atomic.mass tff the^nV** 
cipal isotope of carbon, 12C, are the most recent (1961) values adopted by the International 
Union of Pure and Applied Chemistry. The unit of mass used in this table is called atomic mass

Group—* I II III IV

Period

I

Series'

I
I H
1.00797

2 2
3 Li 
6.939

4 Be 
9.0122

5 B 
10.811

6 C
12.01115

3 3
11 Na 
22.9898

12 Mg 
24.312

13 Al 
26.9815

14 Si . 
28.086

4
4

19 K 
39.102

20 Ca 
40.08

21 Sc 
44.956

22 Ti 
47.90

5
29 Cu 
63.54

30 Zn 
65.37

31 Ga 
69.72

32 Ge 
72.59

5
I**

6
37 Rb 
85.47

38 Sr 
87.62

39 Y 
88.905

40 Zr 
91.22

7
47 Ag 
107.870

48 Cd 
112.40

49 In 
114.82 r

50 Sn 
118.69

6

 ̂ ; . 
m

55 Cs 
132.905

56 Ba 
137.34

57-71
Lanthanide
series*

*72 Hf 
178.49

9
79 Au 
196.967

80 Hg 
200.59

81 Tl 
204.37

82 Pb 
207.19

7 10
87 Fr . 
[223] ,

88 Ra 
[226.05]

89-Actinide
series**

‘ Lanthanide series: 

** Actinide series:

57 La 
138.91 
89 Ac 
[227]

58 Ce 
140.12< 
90 T h 
232.038

59 P r 
140.907 
91 P a  
[2311

60 Nd 
144.24 
92 U 
238.03

Table A—2 Fundam ental Constants
Constant Symbol

61 Pm  
[147] 
93 Np 
[237]

Value

62 Sm 
150.35 
94 Pu  
[242] .

Velocity of light C 2.9979 X 10® m s * 1
Elementary charge € 1.6021 X ΙΟ '19 C
Electron rest mass ■ me 9.1091 X 10“31 kg
Proton rest mass mp 1.6725 X IO"27 kg
Neutron rest mass Wn 1.6748 X ΙΟ"27 kg
Planck constant h 6.6256 X 10·*34 J s

h = h/2?r 1.0545 X IO"34 J s
Charge-to-mass ratio for electron e/me t  1.7588 X IO11 kg” 1
Quantum charge ratio h/e * 4.1356 X IO"15 J s (
Bohr radius ao v 5.2917 X 1 0 -U m
,Compton wavelength:

of electron 2.4262 X ΙΟ"12 m
I of proton Ĉ,P 1.3214 X 10“ 15m
Rydberg constant B 1.0974 X IO7 m - 1



unit (amu): I amii — 1.6604 X 10~27 kg. The atomic mass of carbon is 12.01115 on this scale 
because it is the average of the different isotopes naturally present in carbon. (For artificially 
produced elements, the approximate atomic mass of the most stable isotope is given in brackets.)

y  V i V iI  y i n  o

2 He 
4.0026

’ 7 N 
. 14.0067

8 0
15,9994

9 F
18.9984

10 Ne 
20.183

15 P 
30.9738

16 S 
32.064

17 Cl 
35.453

18 A 
39,948

23 V 
50.942

24 Cr 
51.996

25 Mn 
54.9380

26 Fe 27 Co 28 Ni 
55.847 58.9332 58,71 '

33 As 
74.9216

34 Se 
78.96

35 Br 
79.909

36 Kr 
83.80

: 41 Nb 
* 92.906

42 Mo 
95.94

43 Tc 
[99]

44 Ru 45 Rh 46 Pd 
101.07 102.905 106.4

51 Sb 
121.75

52 Te 
127.60

53 1
126.9044

54 Xe 
131.30

73 Ta 
180.948

74 W 
183.85

75 Re 
186.2

76 Os 77 Ir  78 P t 
190.2 192.2 195.09

83 Bi 
208.980

84 Po 
[210]

85 At 
[210]

86 Rn 
[222]

63 Eu 64 Gd 65 Tb
161.96 157.25 158.924
95 Am 96 Cm 97 Bk
[243] [245] [249]

66 Dy 67 Ho 68 E r
162.50 164.930 167.26
98 Cf 99 Es 100 Fm 
[249] [253] [255]

69 Tm  70 Yb 71 Lu
168.934 173.04 174.97
101 Md 102 BTo 103
[256]

Constant Symbol Value

Bohr magneton MB 9.2732 X IO"24 J T " 1
Avogadro constant N a 6.0225 X IO23 m ol"1
Boltzmann constant k 1.3805 X IO -23J 0K " 1
Gas constant E 8.3143 J 0K " 1 m ol"1
ideal gas normal volume (STP) V0 2.2414 X IO"2 m3 mol” 1
Faraday constant F 9.6487 X IO4 C mol” 1
Coulomb constant Xe 8.9874 X IO9 N m2 C ” 2
Vacuum permittivity Co 8.8544 X IO -12N " 1 m "2 C2
Magnetic constant K m 1.0000 X IO"7 m kg C "2
Vacuum permeability MO 1.3566 X IO"6 m kg C "2
Gravitational constant 7 6.670 X l O " 11 N m 2 kg” 2
Acceleration of gravity at sea level and 

at equator Q 9.7805 m s” 2

Numerical constants: *  »  3.1416; e »  2,7183; λ/2 — 1.4142: \ /3  «* 1.7320
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PREFACE TO THE SECOND EDITION

Physics is a fundam en ta l science th a t has a p ro found  in fluence  on all o th e r sciences. 
Since this is so, no t on ly  physics m ajors and engineering s tu d en ts , bu t anyone w ho plans 
a career in science (including s tu d en ts  m ajoring in b io logy , chem istry  and m athem atics), 
m ust have a th o rough  understanding  o f th e  fundam ental ideas o f physics.

T he prim ary purpose o f a general physics course (and  perhaps th e  on ly  reason it is 
allowed a place in th e  cu rricu lum ) is to  give th e  stu d en t a unified view o f  physics. This 
should be done w ith o u t bringing in to o  m any  details. A unified  view o f physics is a tta ined  
by analyzing th e  basic principles, developing th e ir im plications, and discussing the ir 
lim itations. T he s tu d en t will learn specific app lications o f  th e  basic principles In th e  m ore 
specialized courses th a t follow . C onsequen tly , this tex t presen ts w hat we believe are the 
fundam enta l ideas th a t co n stitu te  th e  core o f to d a y ’s physics. We have given careful 
consideration  to  th e  recom m endations and suggestions o f previous users o f th e  te x t and 
th e  In te rna tiona l A dvisory Board o f  E ditors in  selecting th e  sub jec t m a tte r  and th e  o rder 
and  m ethod  o f  its  p resen ta tion .

In m any courses physics is tau g h t as if it were a conglom eration  o f  several sciences, 
m ore o r less re la ted , bu t w ith o u t any  real unifying view. T he trad itio n a l division o f  
physics in to  ( th e  “ science” o f) m echanics, heat and  k inetic  theo ry , sound , optics, 
e lec tric ity  and m agnetism , and m odern  physics no  longer has any  ju s tifica tion . We have 
departed  from  th is trad itio n a l approach . Instead , we follow  a logical and unified presen
ta tio n , em phasizing th e  conservation  princip les, th e  concepts o f fields and waves, and th e  
a tom ic  view o f m atte r . T he special th eo ry  o f  re la tiv ity  is used extensively th ro u g h o u t the 
tex t as one o f th e  guiding principles th a t  m ust be m et by any  physical theo ry . M any ideas 
o f quan tum  physics are in troduced  ra th e r early.

For convenience, the  te x t appears in th ree  volum es and th e  subject m atte r has been 
divided in to  five parts: ( I )  M echanics, (2 ) In te rac tions and Fields, (3 ) Waves, 
(4) Q uan tum  Physics, (5 ) S tatistical Physics.

In V olum e I we present m echanics in o rder to  establish  th e  fundam enta l principles 
needed to  describe th e  m otions we observe around  us. Included  in th is volum e, in o rder 
to  adap t to  th e  requirem ents o f m any schools, we have inco rp o ra ted  an elem entary  
in tro d u c tio n  to  therm odynam ics and  sta tistica l m echanics.

AU phenom ena in na tu re  are the  resu lt o f in te rac tions, and  in terac tions are analyzed 
in term s o f fields. Part 2, in V olum e II, considers n o t on ly  those  k inds o f in terac tions we 
understand  best (the  g ravitational and  elec trom agnetic in te rac tions, w hich are th e  in te r
actions responsible fo r m ost o f th e  m acroscopic phenom ena we observe), bu t also 
includes a discussion o f th e  nuclear in te rac tio n . F o r the  sake o f  convenience, th e  dis
cussion o f th e  gravitational in te rac tion  has been placed in V olum e I; in V olum e II we 
discuss electrom agnetism  in considerable detail, concluding w ith  th e  fo rm u la tion  of 
M axwell’s equations. Part 3, w hich deals w ith  wave phenom ena as a consequence o f  the 
field concep t, is also included  in V olum e II. It is here  th a t we have included m uch o f the 
m aterial usually covered under th e  headings o f acoustics and  optics. The em phasis, 
how ever, has been placed on  e lec trom agnetic  waves as a na tu ra l ex tension  o f M axwell’s

v



Preface

equations. Part 3 and V olum e II conclude w ith  a discussion o f  M aiterW aves as an in tro 
duction  to  th e  m athem atical fo rm u la tion  o f qu an tu m  m echanics. T hus, V olum es I and 
I I  cover th e  usual m aterial in m ost in tro d u c to ry  general physics courses.

V olum e III includes th e  final tw o  Parts o f th e  tex t. In Part 4 we analyze th e  s truc tu re  
o f m atte r th a t is, a tom s, m olecules, nuclei and fund am en ta l partic les—an analysis 
preceded by  th e  necessary background in q u an tum  m echanics. This part co n stitu tes  an 
elem entary  in tro d u c tio n  to  th e  q u an tu m  theory  o f  m atter. F inally , in Part 5 we talk 
about the p roperties o f m atte r in bulk . T he principles o f  sta tistical m echanics are first 
presen ted  and th e n  applied to  som e sim ple, b u t fundam en ta l, cases. We discuss th e rm o 
dynam ics from  th e  po in t o f  view o f  sta tistical m echanics. Part 5 concludes w ith a study 
o f the therm al p roperties o f m a tte r w hich explains how  th e  principles o f  sta tistical 
m echanics and therm odynam ics m ay be applied . T herefo re , V olum e III covers the 
subject m a tte r included  in m ost in tro d u c to ry  M odern Physics courses, w ith  th e  advantage 
th a t it constitu tes  a logical ex tension  o f  V olum es I and  II.

This te x t differs from  standard  university-level physics tex ts  no t only  in its approach , 
b u t also in its con ten t. We have included a num ber o f fundam en ta l topics no t found  in 
m any books and  we have deleted  o th e r top ics th a t are trad itio n a l. T he level o f  m a th e 
m atics used in  th e  te x t assumes th a t th e  stu d en t has had a m inim al in tro d u c tio n  to  
calculus and is cu rren tly  enrolled in th e  in tro d u c to ry  course o f th a t subject. Also, it is 
highly desirable th a t th e  stu d en t have had a physics course in  high school. M any app li
cations o f  fundam enta l principles, as well as a few  m ore advanced top ics, appear in the 
form  o f w orked-out exam ples; these m ay be discussed at th e  in s tru c to r’s convenience or 
proposed to  indiv idual studen ts on a selective basis. T he m aterial in  the  exam ples thus 
allow s for flex ib ility  in designing the  course in accordance w ith  b o th  th e  wishes o f the 
in s tru c to r and th e  background  o f th e  studen ts . The problem s at th e  end o f each chap te r 
are divided in to  tw o groups: basic problem s and challenging problem s. T he basic 
problem s are designed to  drill the  s tu d en t and assist him  in m astering th e  m atte r . The 
m ajority  o f these problem s should be solved w ithou t to o  m uch effo rt. The challenging 
problem s, on  th e  o th e r hand , should  serve to  s tim ula te  th e  s tu d en t, testing  his 
understanding  and in itiative. A num ber o f  th e  challenging problem s have been tak en  from  
th e  free-response section  o f  th e  A dvanced P lacem ent Physics E xam ination  w ith  the 
perm ission o f the  College E ntrance E xam ination  Board and th e  E ducational Testing 
Service. These are iden tified  a t th e  end o f the p rob lem ; e.g., (AP-B, 1975) identifies a 
problem  from  th e  1975 B (non-calculus) Exam , while (AP-C; 1975) is a p roblem  from  the 
calculus-based exam ination  o f  th e  sam e year.

U niversities have been under great pressure to  inco rpo ra te  in to  the curricula fo r all 
sciences new  subjects th a t are m ore relevant than  th e  trad itio n a l top ics. We expect tha t 
this tex t will relieve som e o f th is pressure by raising th e  s tu d en ts ’ level o f understand ing  
o f physical concepts and  increasing th e ir ab ility  to  m anipu late  th e  corresponding  m athe
m atical relations. This will perm it an upgrading of in term ed ia te  courses p resen tly  o ffered  
in the undergraduate  curriculum , from  w hich th e  trad itio n a l courses in m echanics, 
e lec trom agnetism  and m odern  physics will benefit m ost. T hus th e  physics s tu d en t will 
finish underg raduate  education  a t a higher level o f know ledge th an  form erly  p o ss ib le -an  
im p o rtan t benefit fo r those w ho te rm in a te  their fo rm al tra in ing  at th is po in t. Also, there 
will now be room  fo r new er (and  perhaps m ore exciting) courses at the  g raduate  level. 
It is gratifying to  encoun te r this sam e trend  o f  upgrading in th e  m ore recen t basic 
tex tb o o k s  in o th e r sciences.

The tex t is designed fo r a three-sem ester o r four-quarter general physics course. It m ay 
also be used in those  curricula in w hich th e  general physics course, using V olum e I  and 1 1 ,  
is follow ed by  a one- o r tw o-sem ester course in  m odern  physics, w hich w ould use V olum e
III. In e ither case, th e  sequence w ould offer a unified p resen ta tion  to  th e  s tuden t.
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We hope th a t th is tex t will be o f assistance to  those  progressive physics in structo rs 
w ho are constan tly  struggling to  im prove th e  courses th e y  teach . We also earnestly  hope 
th a t it will stim ula te  th e  m any s tu d en ts  w ho deserve a p resen ta tion  o f  physics th a t is 
m ore m atu re  th a n  th a t o f m ost trad itio n a l courses.

We w ant to  express o u r g ra titude  to  all those whose assistance has m ade th e  com 
pletion  o f  this w ork  and its revision possible. We recognize o u r d istinguished colleagues, 
Professors D. Lazarus and H. S. R obertson , w ho read th e  original m anuscrip t, and 
Dr. R. G. Hughes, w ho solved all th e  p roblem s. We also wish to  express o u r deep 
appreciation  to  th e  m any users th ro u g h o u t th e  world o f  th e  first ed ition  o f th is tex t. 
T heir helpful com m ents , w hich reached us in any one o f  th e  ten  languages in w hich th a t 
ed ition  has been  pub lished , w ere responsible fo r a num ber o f co rrections and  revisions. In 
particu lar, th e  encouragem ent and suggestions o ffered  by th e  In ternational A dvisory 
Board o f E dito rs, w hose m em bership  is listed opposite  th e  title  page, have greatly  assisted 
us in im proving th e  clarity  o f  p resen ta tion . T heir help has been invaluable, H owever, we 
rem ain solely responsible for th e  deficiencies in th e  tex t. We are also grateful fo r the 
ability  and ded ica tion  o f th e  s ta ff o f  th e  In te rn a tio n a l Division o f  Addison-W esley. Last, 
b u t certain ly  n o t least, we sincerely th an k  our wives, w ho have been so pa tien t w ith us.

Washington, D. C. 
March, 1979

M. A. 
E. J. F.





NOTE TO THE STUDENT

This is a book  ab o u t th e  fundam enta ls o f  physics, w ritten  fo r s tuden ts  m ajoring in science 
or engineering. T he concepts and ideas yo u  learn  from  it will, in all p robab ility , becom e 
part o f y o u r professional Life and y o u r w ay o f th inking. T he b e tte r  y o u  understand  them , 
th e  easier the rest o f  y o u r undergraduate  and graduate education  will be.

T he course in physics th a t y o u  are ab o u t to  begin is na tu ra lly  m ore advanced than  
you r high-school physics course. Y ou m ust be prepared  to  tack le  num erous d ifficu lt 
puzzles. To grasp th e  laws and techn iques o f  physics m ay be, a t tim es, a slow and painful 
process. B efore y o u  en te r those  regions o f  physics th a t appeal to  y o u r im agination , you 
m ust m aster o th e r , less appealing, b u t very fundam en ta l ones, w ith o u t w hich y o u  canno t 
use o r understand  physics properly .

Y ou should keep  tw o  m ain objectives before you  while taking this course. F irst: 
becom e tho rough ly  fam iliar w ith  th e  hand fu l o f  basic laws and principles tha t co n stitu te  
th e  core o f physics. Second: develop th e  ability  to  m an ipu la te  these ideas and apply  them  
to concre te  situ a tio n s; in o th e r w ords, to  th in k  and ac t as a physicist. Y ou can achieve 
th e  first objective m ainly by reading and  re-reading those  sections in large p rin t in the 
tex t. To help y o u  a tta in  the  second objective, there  are m any  w orked-out exam ples, in 
small p rin t, th ro u g h o u t th e  te x t, and th ere  are th e  hom ew ork  problem s at the  end o f  each 
chap ter. We strongly  recom m end th a t yo u  first read th e  m ain tex t and , once yo u  are 
acquain ted  w ith it, proceed  w ith  those  exam ples and problem s assigned by  th e  in s truc to r. 
T he exam ples e ither illustrate  an app lica tion  o f  th e  th e o ry  to  a concre te  s itu a tio n , o r ex 
tend  the th eo ry  b y  considering new aspects o f the problem  discussed. Som etim es th ey  
provide som e ju s tifica tio n  fo r the  th eo ry .

The problem s at th e  end o f each chap te r vary in degree o f  d ifficu lty  and  have been 
broken  in to  tw o categories: basic problem s and challenging problem s. T he basic problem s 
are m ostly  o f the  ty p e  th a t should be solvable a fte r reading th e  te x t m ateria l; th ey  are 
m ade available so th a t y o u  m ay apply  w hat y o u  have read  to  a given particu lar situa tion . 
T he challenging problem s, on  th e  o th e r hand , should force you  to  perfo rm  a series o f 
steps before  th e  answ er can be o b ta in ed ; in o th e r w ords, yo u  m ay be required  to  re tu rn  
to  m aterial previously in troduced  in o rd e r to  w ork a problem . Those challenging problem s 
follow ed by , fo r exam ple, (AP-B; 1970) o r (AP-C; 1970) are tak en  from  the  free-response 
section  o f  th e  A dvanced P lacem ent Physics E xam ination ; th e  B-exams are non-calculus 
based and th e  C-exams are calculus-based; the year sta ted  is th e  year th e  question  
appeared on th e  given test. In general, it is a good idea to  try  to  solve a p roblem  in a 
sym bolic o r algebraic form  first, and insert num erical values on ly  a t th e  end. If you  
canno t solve an assigned problem  in a reasonable tim e, lay th e  prob lem  aside and m ake a 
second  a tte m p t la ter. F o r those  few problem s th a t refuse to  yield a so lu tion , yo u  should 
seek help. O ne source o f self-help th a t  will teach  y o u  th e  m e th o d  o f problem -solving is 
th e  book  H ow to  Solve 11 (second ed ition ), by  G. Polya (G arden  C ity, N. Y .: D oubleday, 
1957).

Physics is a q u an tita tiv e  science th a t requires m athem atics fo r th e  expression o f  its 
ideas. All th e  m athem atics used in  th is book  can be found  in a standard  calculus tex t,



N ote to the Student

and  yo u  should  consult such  a tex t w henever you do n o t understand  a m athem atical 
derivation. B ut by  no m eans should  yo u  feel discouraged by  a m athem atica l d ifficu lty ; 
in  case o f  m athem atica l tro u b le , consu lt yo u r in s tru c to r or a m ore advanced s tuden t. 
F o r th e  physical sc ien tist and engineer, m athem atics is a to o l, and is second in im portance  
to  understand ing  th e  physical ideas. F or yo u r convenience, som e o f  th e  m ost useful 
m athem atical re la tions are listed in  an appendix  at th e  end o f  th e  book.

All physical calculations m ust be carried o u t using a consisten t set o f  units. In th is 
book th e  SI system  is used. Y ou m ay find it  unfam iliar at firs t; how ever, it requires very 
little  effo rt to  becom e acquain ted  w ith  it. A lso, it is che system  th a t is used in all m ajor 
governm ent labora to ries th ro u g h o u t th e  world and is becom ing standard  in  all th e  m ajor 
scientific  publications. It is a good idea to  use a m echanical o r e lec tron ic  slide rule from  
th e  s ta r t; th e  accuracy o f  these in s trum en ts and th e ir ab ility  to  hold  in te rm ed ia te  results 
will save y o u  m any  hours o f com p u ta tio n . M echanical slide rules, even th e  sim plest, have 
three-place accuracy and  th is is a lm ost always su ffic ien t fo r problem s in  this tex t. The 
electronic slide ru le /ca lcu la to r has considerably greater accuracy  and appears to  be the 
indispensable to o l fo r the  scientist o f  th e  fu tu re .

T he te x t does n o t stress th e  h is to rica l aspects o f physics. F o r those  s tuden ts  in terested  
in th e  evolu tion  o f ideas in physics in a h isto rical co n tex t, th ere  are a num ber o f  in fo rm a
tive tex ts  available. In particu lar, we w ould recom m end th e  fine book  b y  H olton  and 
R oller, F oundations  o f  Modern Physical Science,  second ed ition , (R eading, Mass.: 
Addison-W esley, 1973),
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Once the general rules governing motion have been grasped, the next step in develop
ing an understanding o f physics is to investigate the interactions responsible for such 
motions. There are several kinds o f interactions.

The gravitational interaction manifests itself in planetary motion and in the motion 
o f matter in bulk. Gravitation, although the weakest o f  all known interactions, was 
the first interaction to be studied carefully because agricultural and other forecasring 
purposes provoked an early interest in astronomy and because many phenomena 
caused by gravitation affect people’s lives directly.

The electromagnetic interaction is the best-understood interaction and perhaps the 
most important for daily life. M ost of the phenomena observed every day, including 
chemical and biological processes, are the result o f electromagnetic interactions 
between atoms and molecules.

The strong, or nuclear. interaction is responsible for holding protons and neutrons 
(known as nucleons) within the atomic nucleus, and for other related phenomena. 
In spite o f intensive research, knowledge o f this interaction is still incomplete.

The weak interaction is responsible for certain processes, such as beta decay, among 
the fundamental particles. Our understanding o f this interaction also is still very 
meager.

The relative strengths o f these above interactions, measured against the strong 
interaction as I. are electromagnetic ~  10“ 2. weak ~ 1 0  5, and gravitational ~ 1 0 “ 38. 
Among the as-yet-unsolved problems o f physics are why there appear to be only four 
interactions and why there is such a wide difference in their strengths. Alternatively 
one might ask w'hy there is not only one interaction that, in various limits, gives the 
appearance o f the four interactions experimentally identified.

It is interesting to see what Isaac Newton said about interactions 200 years a g o : 
Have not the small Particles of Bodies certain Powers, o r Forces, by which they a c t . .. upon one 
another for producing a great P art o f the Phenom ena o f N ature? For it’s well known, that Bodies 
act one upon another by the A ttractions o f Gravity. M agnetism , and Electricity . . . and make it 
not im probable but that there may be m ore attractive Powers than these —  How these a ttrac
tions may be performed. I do not here consider. . . .  The A ttractions of Gravity, Magnetism, 
and Electricity, reach to very sensible distances . . . and Lhcre may be others which reach to so 
small distances as hitherto escape observation . . . .  (Opticks. Book 111. Query 31)

To describe these interactions, the concept of a field is introduced. By field  we 
mean a physical entity that extends over a region o f space and is described by a func
tion of both position and time. Introducing this concept to describe the interaction 
between two particles is appropriate since the interaction between them depends on 
their relative positions and motions. Accordingly, for each interaction a particle is 
assumed to produce around it a corresponding field This field, in turn, acts on a 
second particle to produce the required interaction. The second particle, o f course, 
has its own field, which acts on the first particle and results in a mutual interaction.

The electromagnetic interaction is customarily described in terms o f  two fields; 
the electric field and the magnetic field. However, it should be emphasized that these 
two fields are not independent entities but rather are intimately related to each other.
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and the separation o f the electromagnetic field into these two components is dictated 
by the relative motion o f the electric charges and the observer.

On the other hand, the concept o f a field is not used exclusively to describe inter
actions but also to describe other physical phenomena. For example a meteorologist 
may express both the atmospheric pressure and the temperature as functions of the 
latitude and the longitude on the earth’s surface as well as the height above it.

We have come to recognize that the key features o f  a field, in order that the field 
properly describe an interaction between particles, are that the field, itself, must 
possess energy and momentum and that the field must be able to transport both o f  
these properties from one particle to another.

Gravitational interaction and the gravitational field were discussed in Chapter 13 
of Volume I. In this volume the electromagnetic interaction will be considered in 
depth. The remaining two interactions, the weak and the strong (nuclear)interactions, 
will be discussed descriptively in this volume; a detailed investigation into their 
properties is reserved for Volume III.





CHAPTER ONE

ELECTRIC
INTERACTION



Electric Interaction

1.1 Introduction

Consider a very simple experiment: Run a comb through a person’s hair on a very 
dry day: when the comb is brought close to tiny pieces of paper, the paper scraps 
are swiftly attracted by the comb. Similar phenomena occur if  a glass rod is rubbed 
with a silk cloth or an amber rod is rubbed with a piece o f fur. We describe these 
experiments by saying that as a result of rubbing, materials may acquire a new1 
property, which is called electricity (from the Greek word elektron, meaning amber), 
and that this electrical property gives rise to an interaction much stronger than 
gravitation.

Several fundamental differences exist between electrical and gravitational inlei- 
actions. First there is only one kind o f gravitational interaction, resulting in a universal 
attraction between any two masses. However, experiment shows that there are two 
kinds o f electrical interactions. When an electrified glass rod is placed near a small 
cork ball hanging from a string, the rod attracts the ball (Fig. I-fa). Ifthe experiment 
is repeated with an electrified amber rod. the same attractive effect on the ball is 
observed (Fig. 1-lb). However, if  both rods approach the ball simultaneously as 
showm in Fig. 1-1 (c), instead of a larger attraction, a smaller attraction on the ball 
or no attraction at all is observed. These simple experiments indicate that although 
both the electrified glass rod and the amber rod attract the cork ball, they do it by 
opposite physical processes. When both rods are present, they counteract each other 
to produce a smaller or even null effect. Therefore there are twro kinds o f  electrified 
states; one glasslike and the other amberlike. The first is called positive and the other 
negative.

Suppose now that two cork balls are touched by an electrified glass rod. It may be 
assumed that the two balls also become positively electrified. When the balls are 
brought together, they repel each other (Fig. I-2a). The same result occurs after the 
balls are touched by an electrified amber rod and acquire negative electrification 
(Fig. I-2b). However if one ball is touched by the glass rod and the other by the

Fig. 1-1. Experim ents with electrified glass and am ber rods.
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(a) (It) (c)

Fig. 1-2. Electric interactions between like and unlike charges,

amber rod. the balls attract each other (Fig. I-2c). Thus, although the gravitational 
interaction is always attractive, the electrical interaction may be either attractive or 
repulsive.

Two bodies with the same kind o f  electrification (either positive or 
negative) repel each other, but if  they have different kinds o f  electrification 
tone positive and the other negative), they attract each other.

This statement is indicated schematically in Fig. 1-3. Had the electrical interaction 
been only attractive or only repulsive, the existence of gravitation might never have 
been noticed because the electrical interaction is much stronger. However since 
most bodies seem to be composed o f equal amounts o f  positive and negative elec
tricity. the net electrical interaction between any two macroscopic bodies is very 
small or zero. Thus as a result o f a cumulative mass effect, the dominant macroscopic 
interaction appears to be the much weaker gravitational interaction

1.2 E IectricCharge

In the same way that the strength o f  the gravitational interaction is characterized 
by attaching to each body a gravitational mass, the state o f electrification o f a body 
is characterized by defining an electric mass, more commonly called electric charge 
(or simply charge) and represented by the symbol q. Thus any piece of matter or 
any particle is characterized by two independent but fundamental properties; mass 
and charge.

Since there are two kinds of electrification, there are also two kinds o f electric 
charge: positive and negative. A body exhibiting positive electrification has a positive

j 0 . _ - . 0 t .  J 0 -— Θ £-  O i  FD
Fig. 1-3. Forces between like and unlike charges.
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I i f f e r e i H 1C Reiercnee
Inxly body

Fig. 1-4. C om parison o f electric charges q and q ' . and their electric interactions with a third 
charge Q.

electric charge, and a body with negative electrification has a negative electric 
charge. The net charge of a body is the algebraic sum o f its positive and negative 
charges. A body having equal amounts of positive and negative charges (i.e.. zero 
net charge) is called electrically neutral. On the other hand, a particle having a non
zero net charge is often called an ion. Since it does not exhibit gross electrical forces, 
matter in bulk is assumed to be composed of equal amounts o f positive and negative 
charges.

For an operational definition o f  the charge o f  an electrified body, we adopt the 
following procedure. Choose an arbitrary charged body Q (Fig. 1-4) and. place the 
charge q al a distance cl from Q. Measure the force Fexerted on q. Next, place another 
charge q' at the same distance d  from Q and measure the force P .  Then define the 
values o f the charges q and q' proportional to the forces Fand F'. That is.

Ifa value o f unity is arbitrarily assigned to the charge q‘. the value o f q can be obtained. 
This method o f comparing charges is very similar to the one for comparing the masses 
of two bodies. This definition o f charge implies that, all geometrical factors being 
equal, the force o f electrical interaction is proportional to the charges o f the particles.

It has been found that in a l physical processes thus far observed in nature, the net 
charge o f an isolated system remains constant. In other words

the net or iota! charge does not change for any process occurring within 
an isolated system.

N o exception has been found to this rule, known as the principle o f  conservation o f  
charge. We shall have occasion to discuss this rule later w'hen we deal with processes 
involving fundamental particles.

1.3 Coulomb's Law

Consider the electric interaction between two charged particles at rest in the observer’s 
inertial frame of reference or. at most, in motion with a very small velocity; the 
results of such an interaction constitute electrostatics. The electrostatic interaction 
for two charged particles is given by Coulomb's law. named after the French engineer 
Charles A. de Coulomb (1736 1806), who was the first to stale this law in the following 
manner:



Coulomb's Law

Fig. 1-5. Cavendish torsion balance 
for verifying the law o f electric 
interaction between two charges.

The electrostatic interaction between two charged particles is proportional 
to their charges and to Ihe inverse o f  the square o f  the distance between 
them, and its direction is along the line joining the two charges.

This law may be expressed mathematically by

where r is the distance between the two charges q and q'. F is the force acting on 
either charge, and K e is a constant to be determined by our choice of units. This law' 
is very similar to the law for gravitational interaction. Thus many mathematical 
results proved in Chapter 13 o f Volume I are applicable here simply by replacing 
ymm' by K cXjq'.

We can experimentally verify the inverse-square law (1.2) by measuring the force 
between two given charges placed at several distances. A possible experimental 
arrangement, indicated in Fig. 1-5, is similar to the Cavendish torsion balance used 
to verify the law o f gravitation. The rod AB with a charged sphere B at the end is 
suspended from the fiber OC,  Then another charged body D is brought near, As a 
result of the forces between spheres D and B. the rod AB  experiences a torque and 
twists the fiber OC. The force between the charge at B and the charge at D is found 
by measuring the angle fi through which the fiber O Cis rotated to restore equilibrium.

The constant K'c in Eq. (1.2) is similar to the constant y in the law o f gravitation 
except that in the gravitational case the units o f mass, distance, and force were 
already defined and the value o f y was determined experimentally. In the present 
case although the units o f force and distance have already been defined, the unit o f  
charge is as yet undefined. If a definite statement about the unit o f charge is made, 
then the value o f K 1, may be determined experimentally. Alternatively if the value of 
K c is given. Eq. (1.2) may be used to define the unit o f charge. In SI units the value o f  
K e is assigned the numerical value o f 10“1 c2 =  8.9874 x IO9 where c is the velocity of  
light in vacuum.* For practical purposes, w:e may say that K e is equal to 9 x IO9.

*Thc choice of a particular value for K e will be explained in Section 5.7.
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Then when the distance is measured in meters and the force in newtons, Eq. (1.2) 
becomes

F = 9 x l 0 9 ^ - .  (1.3)

The unit o f charge is called a coulomb and, by application o f Eq. (1.3), is defined in 
terms o f the force experienced: when placed one meter from an equal charge in vacuum, 
the coulomb o f  charge experiences a repulsive force q/'8.9874 x IOy newtons. Formula 
(1.3) holds only for two charged particles at rest relative to the observer and in 
vacuum ; that is. for two charged particles in the absence of any other charge or 
matter (see Section 2.6). According to Eq. (1.2), K e is expressed in N m2 C 2 or
m3 kg s 2 C 2. For practical and computational reasons, it is more convenient to 
express K e in the form

K e= ~  . (1 .4 )
4 n e 0

where the new physical constant e 0 is called the vacuum permittivity. According to 
the value assigned to K e. e 0 has the value

IO7
C0 =  — 8.854 x 10 12 N  l H i-2 C2. (1.5)

4nc

Accordingly. Eq. (1.3) is normally written in the form

0 -6)4ne0r

The signs of the charges q and q' must be included when Eq. (1.6) is used. A negative 
value o f Fcorresponds to attraction and a positive value corresponds to repulsion

Example 1.1. Given the charge arrangem ent of Fig. 1-6. in which q t =  + 1,5 x IO" 3 Γ , q2 — 
—0.5 x IO 3 C. i/3=  +  0.2 x IO 3 C. and ,4C =  Ci =  1.2 m. BC =  C2 =  O 5 m, find the resultant force 
on charge q v

Fig. 1-6. Resultant electric force produced by q, 
and q2 on r/3.
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f  The force F 1 between q, and q3 is repulsive while the force F 2 between q2 and q} is attractive, 
prom Eq. (1.6) their values are

F 1- ^ 3- ,=  1.875 x IOj  N. F 1 - 3.6 x IO3 N.
4πε0τϊ Ane0V2

Therefore the m agnitude of the resultant force is

F  =  v F f +  F j — 4.06 x IO3 N. A

1.4 EIectricF ie Id

Any region in space in w hich an electric charge experiences a force is called an electric 
field. The force is due to the presence o f other charges in that region. For example, a 
charge q placed In a region where there are other charges cy. q2, q3, etc. (Fig. 1-7) 
experiences a force F - F 1-PF2F F 3+  · · ■ , and is in an electric field produced by
the charges q ^ q ^  Q3 (The charge q o f course also exerts forces on q i f q2, q3.........
but we ignore these forces for the present.) Since the force that each change q i .q 2,q 3, . . .  
produces on the charge q is proportional to q. the resultant force F is also propor
tional to q ; that is. the force on a particle placed in an electric field is proportional 
to the charge o f the particle. Therefore to determine whether an electric field is 
present in a certain region, a small test charge must be brought into the region and the 
force experienced by the test charge must be analyzed.

By definition the intensity o f  the electric field. at a point equals the force per 
unit charge experienced by the test charge placed at that point. Thus

F
δ —-  or F = q S  (1.7)

q
The electric field intensity S  is expressed in new tons, coulomb or N C 1 or m kg s 2 
C ' .in  fundamental units.

Note that in view o f the definition (1.7) if q is positive, the force F acting on the 
charge has the same direction as the field δ ; but if  q is negative, the force F has the 
direction opposite to S  (Fig. 1-8). Therefore if there is an electric field in a region

Electric field

F qE
Positive charge ( ΐ ) "

F'-ο 'ε  \
Negative charge —·-------------- ( — )

Fig. 1-7. The electric Torces acting on a  Hg. 1-8. Direction o f the force produced
positive charge at P. The resultant force by an electric field on a positive and a nega-
on q is the vector sum o f all the forces. tive charge.
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Fig. 1-9. Electric field produced by a positive and a negative charge.

where positive and negative particles or ions are present, the field will tend to move 
the positively and negatively charged bodies in opposite directions, and produce a 
separation o f charge. This effect is sometimes called polarization.

Writing Eq. (1.6) in the form F =q'(q /4n(0r2) gives the force produced by the 
charge q on the charge q' placed a distance r from q. From Eq. (1.7) we may also 
say that the electric field S  at the point where q is placed is such that F =  q S .  There
fore comparing both expressions o f F. we conclude that the electric field at a distance r 
from a point charge q is S  =  q 4ne0r2, or in vector form

Fig. 1-10. Lines o f  force (solid lines) and equipotential surfaces (dotted lines) o f  the electric 
field o f a positive and a negative charge.
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where η, is the unit vector in the radial direction, away from the charge q. Expression 
1 1  8) is valid for both positive and negative charges; the direction of S  relative to 

js given by the sign of q. Thus S  is directed away from a positive charge and toward 
a' negative charge. In the corresponding formula for the gravitational field, the 
negative sign was written explicitly because the gravitational interaction is always 
attractive. Figure I-9(a ) indicates the electric field at points near a positive charge, 
and Fig. I-9(b) shows the electric field at points near a negative charge.

just as in the case o f  a gravitational field, an electric field may be represented by 
lines (called field lines or lines offorce) that at each point are tangent to the direction 
of the electric field at the point. The lines of force in Fig. l-10(a) depict the electric 
field of a positive charge, and those in Fig. I -10(b) show the electric field o f a negative 
charge. In each case the lines of force are radial lines passing through the charge. 
These electric field lines are called lines of force because they define the direction in 
which a positive test charge q would tend to move when placed at that point in the 
field.

When several charges are present as in Fig. 1-7. the resultant electric field at any 
point is the vector sum of the electric fields produced at the point by each charge. 
That is,

* · · =  ̂  . 
i

Figure 1-11 shows the resultant electric field in the case o f a positive and a negative

Fig. l - l l .  Lines o f force and equipotential surfaces o f the electric field o f  two equal but opposite 
charges.
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Fig. 1-12. Lines o f  force and equipotential surfaces ot the electric field o f  two identical charges.

charge o f the same magnitude, such as a proton and an electron in a hydrogen atom. 
Figure 1-12 shows the lines of force for two equal positive charges, such as the two 
protons in a hydrogen molecule. In both figures the lines of force o f  the resultant 
electric field produced by the two charges have also been represented.

A uniform electric field has the same intensity and direction everywhere and is 
represented by parallel lines o f force (Fig. 1-13). The best way o f producing a uniform 
electric field is by charging, with equal and opposite charges, tw'o parallel metal 
plates. Symmetry indicates that the field is uniform, but this assertion is Iaterverified 
in Section 2.3.

Fig. t-13. Uniform electric field.
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Fig. 1-14. Resultant electric 
field produced by r/i and q 2 '1J -  
a t C. ·'

ε.

C
% Cl

Example 1.2. D eterm ine the electric field produced at C (in Fig. 1-6) by charges q t and q2. which 
are defined in Example 1.1.

j  There are two methods of solution. Because the solution to  Example 1.1 gave the force F  on 
charge at C. using Eq. (1.7) gives

<f=— =2.03 x IO7 N C - 1.
Ql

Another procedure is first to use Eq. (1.81 to com pute the electric field produced at C (Fig. 1-14) by 
each of the charges. Equation (1.8) gives

91S 1 =9.37 XlO6 N C - 1,
4 Hf0T1

and

Qi r=  18.0 x IO6 N C 1.
2 4 n e „ rf

Since the electric fields are perpendicular, the m agnitude of the resultant field is

ZT = ^ S 21+ S i  =  2.03 x IO7 N C - 1 . 

The two results are identical. A

Example 1.3 The m otion of an electric charge in a uniform field.

▼ The equation of m otion of an electric charge in an electric field is found from the equation

F ~ m u —q& or a =  ■ S.
m

The acceleration of a body in an electric field depends therefore on the ratio qjm. Since this ratio  
>s generally different for different charged particles o r ions, their accelerations in the same electric 
field are also different. If the field S  is uniform, the acceleration a is constant and the path of the 
electric charge is a parabola just as in the case of projectile m otion in a uniform gravitational 
field.

An interesting case is that of a charged particle passing through an electric field occupying a 
limited region in space (Fig. 1-15). For simplicity assume that the initial velocity u0 of the particle 
u hen it enters the field is perpendicular to  the direction of the electric field. The λ  -axis is placed 
Parallel to the initial velocity of the particle and the V-axis is placed parallel to the field After
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Fig. 1-15. Deflection o f a positive charge by a uniform electric field.

crossing the field, the particle resumes rectilinear m otion but with a different velocity o and in a 
different direction. Therefore, the electric field has produced a deflection, m easured by the angle x  

While the particle is moving through the field with an acceleration af ={q/m)£. the coordinates 
of the particle are given by

X = V0I. y= ^ (q /m )S r .

W ith the lime t eliminated the equation of the path is

verifying that the path is a parabola. The deflection a is found by calculating the slope dy/dx  o f the 
path at x = a .  The result is

tan  x=tdy/dx)I ^„=qSa/mi'l .

ΙΓ a screen S is placed at L. the particle with given q/m and velocity t>0 will reach a point C on the 
screen. N oting that tan a. is approximately equal to d>L because the vertical displacement BD is 
small com pared with d when Lis large, we have

q&a ̂  d
mi>n —L (1.9)

By measuring d. L. a. and S. we may obtain the velocity U0 (or the kinetic energy) given the ratio 
q/m: conversely, the ratio q/m may be found given u0. Therefore when a stream of particles, all 
having the same ratio  q/m, passes through the electric field, they are deflected by an am ount 
inversely proportional to their entering kinetic energies.

A device such as the one illustrated in Fig. 1-15 may be used as an energy analyzer, separating 
identical charged particles moving with different energies. F or example (J-rays are electrons 
emitted by some radioactive m aterials; if a beta em itter is placed at 0 .  all the electrons will con
centrate at the same spot on the screen only if they have the same energy. If they are emitted 
with different energies, the electrons will be spread over a region of the screen. This second situation 
is found experimentally and has great im portance from the point of view of explaining nuclear 
structure.

By using two sets of parallel charged plates, we can produce two mutually perpendicular 
fields, one horizontal along H H 1 and another vertical along VW  as shown in Fig. '-16. By adjusting 
the relative intensity of the fields, we can obtain an arbitrary deflection of the electron beam to any
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Fig. 1-16. Motionofa charge under crossed electric fields. Electrons are emitted from the cathode 
and accelerated by a large electric field. A hole in the accelerating anode allows the electrons to 
pass out of the electron gun and between the two sets oF deflection plates. The metallic coating 
inside the tube keeps the right end free of electric fields by shielding the external sources and by 
conducting away the electrons of the beam,

spot on the screen. If either or both of the two fields are variable, the spot on the screen can be 
made to describe various curves or patterns. Practical applications of this effect occur in ie/enisioii 
tubes and in oscilloscopes, k

1.5 The Quantization of Electric Charge

Many experiments have been devised to resolve the question o f whether the electric 
charge on a body is an integral multiple of a finite quantity or whether the charge 
may be subdivided continuously. The classical experiment to show that electric charge 
appears not just in any amount, but as a multiple of a fundamental unit, or quantum, 
is that o f the American physicist Robert A. Millikan (1869-1953). For several 
years during the early part of this century he repeatedly performed what is now 
know'n as the oil-drop experiment. Millikan set up, between two parallel horizontal 
plates A and B (Fig. 1-17), a vertical electric field i  that could be switched on and off.

Fig. 1-17. Millikan oil-drop experiment. 
The motion of the charged oil drop q 
is observed through the microscope M. i (Pj______________________ _____
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At its center the upper plate had a few small perforations through which oil drops, 
produced by an atomizer, could pass. Most o f the oil drops were charged by friction 
with the nozzle o f the atomizer.

This experiment will be first analyzed from a theoretical standpoint. Call m the 
mass and r the radius o f one oil drop. For this drop the equation o f motion for free 
fall (i.e., with the electric field switched ofT) when its downward velocity is v is

ma =■ mg — βπητν

where the second term on the right is due to the viscous friction of air. [See Eqs. (7.19) 
and (7.20) in Volume I.] The terminal velocity V 1 of the drop, when a — 0. is

W  J g i  , 1 . 10)
οπητ

where p represents the oil density and the relation m =  (fnr3)p has been used. (To be 
precise, the buoyancy of the air must also be taken into account by writing p — pa 
instead o f p where pa is the air density.)

If the drop has a positive charge q, when the electric field is applied, the equation 
of motion of the oil drop in the upward direction when its velocity is v is

ma =  qS —mg — βπητν;

and its terminal velocity in the upward direction v2, when cj =  0, is

q S —mg
βπητ

Or solving for q and using Eq. (1.10) to eliminate mg gives the charge on the drop:

6πητ(ν. T b ,)
9 = —  - ·  (1.11)0

The radius o f the drop may be found by measuring v , and solving Eq. (1.10) for r. 
The charge q is obtained by measuring v2 and applying Eq. (1.11). (If the charge is 
negative, the upwrard motion is produced by applying a downward electric field.)

A different procedure is foliowed in actual practice. The upw'ard and downward 
motion of the drop is observed several times by successively switching the field on 
and off. The velocity u, remains the same; but the velocity V 1  occasionally changes, 
suggesting a change in the charge o f the drop. These changes are due to the occasional 
ionization of the surrounding air by cosmic rays. While moving through the air, the 
drop may pick up some o f these ions. Changes in charge can also be induced by 
placing near the plates a source o f  x- or y-rays that increase the ionization o f the air.

According to Eq. (1.11), the changes Aq and AtJ2 of charge and upward velocity 
are related by

όπ/ρ·
Ύ

A q =  —£ - t o v t . (1.12)

Sometimes Aq is positive and at other times negative, depending on the nature of 
the charge modification. Repeating the oil-drop experiment many times with different
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Table 1-1. M ass and Charge of the Electron, 
Proton and Neutron.

Particle Mass Charge

Electron m„ =  9.1091 x 10“ 31 kg — e
Proton /Mp =  1.6725 x 10' 21 kg F e
N eutron «!„ =  1.6748 x 10 27 kg 0

drops allows us to conclude that the changes Aq are always multiples of a fundamental 
charge e (that is. Aq =  ne)\ the value of e is

<?=1.6021 x 10“ 19 C. (1.13)

The quantity e is called the elementary charge. AU charges observed in nature are 
equivalents or multiples o f  the elementary charge e; so far no exception has been 
found to this rule. It therefore seems to be a fundamental law o f nature that electric 
charge is quantized. Until the present time, no one has found an explanation for this 
fact in terms o f more fundamental concepts.

A second important aspect o f  electric charge is that the elementary charge is 
always associated with some fixed mass, an association that gives rise to what may 
be called a fundamental particle. In a later chapter (Section 4.4), some methods for 
measuring the ratio q/m will be discussed; then if q is known, m can be obtained. In 
this way several funaamental particles have been identified. For the present, we 
assume that the building blocks of all atoms are only three particles: the electron, the 
proton, and the neutron. Their characteristics are outlined in Table 1.1.

Note that the neutron carries no electric charge; however, the neutron does have 
other electrical properties, which will be discussed later. That the proton mass is 
about 1840 times larger than the electron mass has a profound influence in many 
physical phenomena.

At this point it may be noticed that the number of electrons or protons necessary 
to make up a negative or positive charge equal to one coulomb is 1/1.6021 x 10 19 =  
6.2418 x  IO18.

1.6 ElectricPotentiaI

A charged particle placed in an electric field has potential energy because the field 
exerts force on the charge, and therefore work must be done to bring the charge to a 
particular place in the field; that is. work is done by the electric field whenever a 
charge moves from one place to another. The electric potential at a point in an electric 
field is defined as the potential energy per unit charge placed at that point; therefore 
electric potential is a scalar quantity. Designating the electric potential at a particular
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1- 18.

point by V and the potential energy o f a charge q placed at the same point by Ep. 
we may write

V = B> or E = q V .  (1.14)
</

The zero o f electric potential is chosen to coincide with the zero o f potential energy; 
in most cases the zero o f electric potential energy has been chosen at infinity. The 
SI unit for electric potential is joules/coulomb (JC“ 1I. a unit called the volt (V) in 
honor o f the Italian scientist Alessandro Volta (1745-1827). In terms o f the funda
mental units. V = m 2kg s 2 C -1 .

The relationship between the electric potential and the electric field is important 
enough to be considered in some detail. Suppose a charge q moves from point A to 
point B in an electric field (Fig. 1-18). Applying Eq. (1.14) yields the change in 
potential energy o f the charge;

E p . A ~  E p .  B  —  f i   ̂ A ~  n > ·

However according to the definition o f  potential energy, the left-hand side o f this 
equation gives the work done on the charge when it moves from point A to point B. 
This work wre designate by Thus

WA^ K= q (V A- V B). (1.15)

Expression (1.15) permits the electric potential difference between two points to be
defined as the work done by the electric field to move a unit charge from the first
point to the second.

Since the electric force on the charge is F =  qS  where δ  is the electric field, again 
from fundamental definitions we may write

F - J r =  f  qS -dr

where the integral is calculated along a path joining A and B. Combining this equation 
with Eq. (1.15) and cancelling the common factor o f  q give

I δ -dr = V a - Vh. (1.16)
Ja
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which gives the specific relation between the electric field and the potential difference. 
Note that if points A and B coincide so that A = B.  then the path o f integration is a 
closed curve; and

O / . (fr= 0  (1.17)

indicates that the work done by a static electric field w hen a charge traverses a closed 
path is zero. Thus the static electric field corresponds to a conservative force. 

Referring Io Fig. 1-18, F.q. (1.16) can be written in the alternate form

Γ  S s d s = V A - V b
J A

where S s is the component of S  along the path. One may also write
*B

J a
, d s =  - { V B- V A) = ~ dV.

A

> * z = ~ —  ■ (1-19)

Suppose now that points A and B are so close that each integral in the equation 
above practically reduces to a single term. Then

S s ds =  —d V  or S s= - ^ - .  (1.18)

This result shows that the component o f the electric field in a certain direction is 
equal to the negative o f the change o f electric potential per unit length in the same 
direction. For example the rectangular components o f the electric field are given by

dV  ,  c V _ ev  
Sy

When a relation such as Eq. (1.18) exists, we say that there is a field such that the 
strength of the field is the negative of the gradient of the potential. For this case the 
electric field is the negative of the gradient o f the electric potential. A more compact 
form of Eq. (1.19) is

S  =  — grad V. (1.20)

Equation (1.18) or (1.19) is used to find the electric potential when the electric field 
is known, and conversely.

Considerthe sim plecaseofa uniform electric field (Fig. 1-19). The first ofF.q. (1.19) 
gives S d x =  —dV  when the A-axis is parallel to the field. Since S  is constant, and 
assuming F =  O at „y=0, integration yields

f  dV— -  f S d x =  - S  f  dx 
Jo Jo Jo

or
V = - S x . ( 1.2 1 )
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V = O ε, v

Fig. I-I9. Uniform electric field. Fig. 1-20. V ariations o f δ  and V  for a 
uniform electric field.

This very useful relation has been represented graphically in Fig. 1-20. Note that 
because o f the negative sign in Eq. (1.20) or Eq. (1.21), the electric field points in the 
direction in which the electric potential decreases. When the two points X 1 and x 2 
are considered, Eq. (1.21) gives E1 =  - ^ x 1 and E2 =  — S x 1, Subtracting one from 
the other gives V2- V j =  - S ( X 1- X l ): or calling ^ = X 2- X 1, the electric field may 
be written as

S = - V2 - V x V1- V 2
( 1.22 )

d d
Although this relation is valid only for uniform electric fields, it can be used to 
estimate the electric field between two points separated by a distance d  i f the potential 
difference E1 — E2 between them is known. When the potential difference E1 -  E2 is 
positive, the field points in the direction from X 1 to x 2 ; and when the difference is 
negative, the field points in the opposite direction. Equation (1.22) [or in fact Eq. 
(1.18) or Eq. (1.19)] indicates that the electric field can also be expressed in volts/ 
meter, a unit which is equivalent to the SI unit newtons/coulomb given before. This 
equivalence can be seen in the following way:

volt _  joule newton-meter newton
meter coulomb-meter coulomb-meter coulomb

By common usage the term volt/meter (V m - 1 ) is preferred to N C - 1 .

1.7 Electric Potential of a Point Charge

To obtain the electric potential o f a point charge, replace s in Eq. (1.18) by the 
distance r since lheelectric field is radial; that is, S =  -S V J d r . Remembering Eq. (1.8), 
this equation may be written as
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I q c V
Ane0 r2 Pr

or

Integrating and assuming that V=  0 for r =  oo, as in the gravitational case, the potential 
is

F = — . (1.23)
4 n e 0r

The electric potential V is positive or negative depending on the sign of the charge q 
producing it.

If there are several charges q 1, q2, <?3, . . . ,  the electric potential at a point P 
(Fig. 1-7) is the scalar sum o f their individual potentials. That is.

V = - - +■■■ = ~  Y  — . (1.24)
4Ue0T1 Ane0T2 Ane0T3 Ane0 Y r i

Therefore it is in general easier to compute the potential resulting from a distribution 
of charges and from that potential to calculate the resultant electric field by using 
Eq. (1.17), than to calculate in the reverse order.

Surfaces having the same electric potential at all points—that is, K = con st—are 
called equipotential surfaces. At each point of an equipotential surface the direction 
of the electric field is perpendicular to the surface; that is, the lines o f force are 
orthogonal to the equipotential surfaces. This is so because no work is done between 
two points when the two points are at the same potential. For a uniform field it may be 
seen from Eq. (1.21) that F = con st implies .x =  const. and therefore that the equi
potential surfaces are planes as indicated by the dashed lines in Fig. 1-19. For a 
point charge, Eq. (1.23) indicates that the equipotential surfaces are the spheres 
r =const, indicated by dashed lines in Fig. I-10(a) and (b). For several charges the 
equipotential surfaces are given by Σ, IqiilTi) =  const according to Eq. (1.24). For 
two charges the equipotential surfaces have been indicated by dashed lines in Figs.
1-11 and 1-12.

Example 1,4. Electric potential energy of charge q 3 in Example I .I.

▼ Refer back to Fig. I -6 and use Eq. (1.23). The electric potentials produced at C by charges 
Qi and q2 (located at A and B respectively) are
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Thus the total electric potential a t C is

V= V. +  E2- 2.25 x IO6 V.

The potential energy of charge q3 is then

E p= q }V=(0.2 x 10 J 0 (2 .25  x IO6 V )=4 .5  x IO2 J.

When this example is compared with Example 1.2, the difference between handling the electric 
field and the electric potential may be seen. A

Example 1.5. Electric field and electric potential produced by a very long, straight filament 
carrying a charge λ  per unit length.

▼ Divide the filament into small portions, each of length ds (Fig. 1-21) and therefore with a 
charge dq — λ ds. The m agnitude of the electric field that the element ds produces at P  is

and is directed along the line AP. Because of the symmetry of the problem. Tor every element 
ds a t distance s above O, there is another element at the same distance below 0 . Therefore, when 
the electric fields produced by all elements are added, their com ponents parallel to  the filament 
give a total value of zero. Thus the resultant electric field is along OP  and is found by summing 
all the com ponents parallel to OP  given by d& cos a due to each element ds:

From  the figure note that r = R  sec a and s =  R tan a so that ds — R sec2 a da. M aking these sub
stitutions. integrating from a = 0  to  α = π /2, and multiplying by two (since the two halves of the 
filament m ake the same contribution), we may write the electric field as

ds ·.

Fig. 1-21. Electric field o f a very long, 
charged filament.
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T h e re fo re  the electric field of the filament varies as R 1. In vector form

Tofind the electric potential, the relation S =  -  grad V allows us to write S =  - u r{cVldR) because 
ihe electric field is the only radical. Therefore

i[E _  _  λ
ifR 2jie„R

In tegration  yields

V =  — In R +  C.Jtic0

The value of the constant C is fixed by assigning a convenient value to the potential at a certain 
point in space. It is customary in this case to assign the zero of the potential to  the point where 
R =  I t giving C=O .

Therefore the electric potential is

V= -  -—  In R.2ttc0

The student should attem pt to solve this problem in the reverse order by first finding the potential 
and afterward the field. A

1.8 Energy Relations in an Electric Field

The total energy o f a charged particle or ion that has mass m and charge q and moves 
in an electric field is

E = E k+ E p =  \m v2+ q V .  (1.25)

When the ion moves from position P i (where the electric potential is V i ) to position 
P2 (where the potential is V2), Eq. (1.25), combined with the principle of conservation 
of energy, gives

iimv2 +  q V l =^m vl -VqV2- (1.26)

Recalling the definition of kinetic energy, W=Amv 2 — \incj is the work done on
the charged particle when it moves from E 1 to P 2. Rearrangement of Eq. (1.26)
gives

W = j m v j —j mv 2= q ( V  Ji - V2). {1.27)

Equation (1.27) allows a precise definition o f the volt as equal to the electric potential 
difference through which a charge o f one coulomb has to move to gain an amount of 
energy equal to one joule.
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Pressure vessel

 Target, T
Fig. 1-22. Simplified cross section o f  a Van de GraaIT electrostatic accelerator. A high-speed 
m otor runs a belt, m ade o f an insulating material, over two pulleys. Electric charge from a voltage 
source is picked up by the belt at the lower end and conveyed upward. A collector draws the 
charge off onto the metal sphere at the top, and  builds up a high electric potential on the sphere. 
Positiveions are produced at this high voltage end and are accelerated downward by the potential 
difference between the charged sphere and the ground potential at the other end.

Note from Eq. (1.27) that a positively charged particle (q > 0) gains kinetic energy 
when moving from a larger to a smaller potential ( Vi >  V2); a negatively charged 
particle (q< 0 ) must move from a lower to a higher potential (V1 <  V2) to gain kinetic 
energy.

If the zero o f electric potential is chosen at P 2(E2=O) and the experiment is 
arranged so that at P 5 the ions have zero velocity (u5 = 0 ), Eq. (1.27) becomes (without 
the subscripts)

\m v2 = q  V, (1.28)

an expression that gives the kinetic energy acquired by a charged particle when it 
starts from rest and moves through an electric potential difference V. This principle 
is applied in electrostatic accelerators, for example.
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A typical accelerator (Fig. 1-22) consists o f an evacuated lube through which an 
electric potential difference V is applied. At one end there is an ion source S injecting 
charged particles into the tube. The particles arrive at the other end with an energy 
given by Eq. (1.28). These fast ions impinge on a target Γ, made of a material chosen 
according to the nature of the experiment to be performed. The result o f this collision 
is some kind of nuclear reaction. The energy of the impinging ions is transferred to 
the target, which therefore must be constantly cooled since otherwise it would melt 
or vaporize.

There are several types of electrostatic accelerators (Cockroft-Walton, Van de 
Graaff, etc.). Each depends on a different method for producing the potential differ
ence V. In any case, electrostatic accelerators are limited in energy by the maximum 
voltage difference that can be applied without producing an electrical breakdown 
o f the materials used. This potential difference cannot exceed a few million volts.

Because the fundamental particles and nuclei have a charge that is equal to the 
fundamental charge e or is a multiple o f it, Eq (1.27 ) suggests defining a new unit of 
energy, the electron volt, (eV). An electron volt is equal to the energy gained by a 
particle o f charge e w'hen it moves through a potential difference o f one volt. Thus 
using the value o f e from Eq. (1.13) gives

eV =  (1.6021 x 1 0 '19 C) (I V) =  1.6021 x 1 0 ' 19 J.

In moving through a potential difference A K a particle o f charge ve, gains an energy
of v AV  eV. Convenient multiples o f the electron volt are the kiloelectron volt (keV)
and the megaelectron volt (MeV), commonly called the million electron volt.

It is very useful to express the rest mass energy o f the fundamental particles in this 
unit. The results are

=W eC2 =  8.1867 x K T 14 J =  O.5110 MeV.
Ep=OivC1 =  I .5032 x 1 0 10 J =938.26 MeV, (1.29)
En =OinC2 =  1.5053 x 10 10 J =  939.55 MeV.

1.9 EIectricC urrent

The example o f an electrostatic accelerator (Section 1.8) with a stream o f charged 
particles swiftly accelerated along its tube suggests introducing at this time the very 
important concept o f electric current. An electric current consists o f a stream of 
charged particles or ions. This definition applies to ions in an accelerator, in an elec
trolytic solution, in an ionized gas or plasma, or to electrons in a metallic conductor. 
In order for an electric current to be produced, an electric field must be applied to 
move the charged particles in a well-defined direction.

The intensity o f  an electric current is defined as the electric charge passing per 
unit time through a section o f the region where the charge flows, such as a section of
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'~ ~ Θ

(a) Positive charges (b) N e g a tiv e  charges {c) P ositive and 
negative charges

Fig. 1-23. M otion of positive and negative ions resulting in an electric current I produced by an 
electric field S .

an accelerator tube or o f a metallic wire. Therefore if in time t, TV charged particles, 
each carrying a charge q, pass through a section o f the conducting medium, the 
total charge passing is O  =  N q ; and the intensity o f the current is

l =  Nq =  Q
t t

(1.30)

Actually this expression gives the average current in time t ; the instantaneous current
is

' - Tdt
(1.31)

Electric current is expressed in coulombs second or s “ 1 C. a unit called the ampere 
(A) in honor o f the French physicist Andre M. Ampere (1775- 1836). An ampere is 
the intensity of an electric current corresponding to a charge of one coulomb passing 
through a section o f the material every second.

The direction of an electric current is assumed to be the same as that of moving 
positively charged particles. Also, the direction is the same as that of the applied elec
tric field or of the potential drop that produces the motion of the charged particles 
(Fig. I-23a). Therefore if  a current is due to the motion o f negatively charged particles, 
such as electrons, by definition the direction o f the current is opposite to the actual 
motion o f the electrons (Fig. l-23b).

Maintaining an electric current requires the expenditure of energy because the 
moving ions are accelerated by the electric field. Suppose that N  ions, each with 
charge q , move through a potential difference AV  in time t. Each ion gains an energy 
qA K and the total energy gained is NqAV=QAV.  The energy per unit iime, or the 
power required to maintain the current, is then

P = — -  - =  IAV (1.32)

This equation gives, for example, the power required to drive the accelerator discussed
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in the previous section. The equation also gives the rate at which energy is transferred 
to the accelerator’s target, and therefore the rate at which energy must be removed by 
the target’s coolant. Expression (1.32) is thus o f general validity and gives the power 
required to maintain an electric current I  through a potential difference V applied 
to two points o f any conducting media. Note from Eq. (1.32) that

joules coulombs joules
volts x  am peres=- , — - x    =  -=w atts

coulomb second second

so that the units are consistent.

1.10 EIectricD ipoIe

An interesting and important arrangement of charges is an electric dipole. The 
arrangement consists o f two equal and opposite charges + q  and —q. separated a 
very small distance a (Fig. 1-24).

Figure 1-24

The electric dipole moment p* is defined by

p =  qa (1.33)

where a is the displacement from the negative to the positive charge. At a point P 
the electric potential due to the electric dipole is found from Eq. (1.24):

y _  I ( q  q \  ί q f i 'z - J T )

4 π  f o V' I r i  J  4 jieo JT r2

*Nole that by custom I he symbols for m om entum  and for electric dipole moment are the same.
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If the distance a is very small compared with r, the approximations 

r2 — r t = a  cos 0 and T1T2 =  T2 

may be made and result in

qa cos 0
V ~ ------------ --

47re0r

or (1-34)
p cos Θ 
4ne0r2 '

To obtain the electric field intensity of the electric dipole. Eq. (1.18) is used. Since 
Eq. (1.18) gives the electric potential in polar coordinates, the components of S  will 
be given in polar coordinates. To obtain the radial component S r, note that ds=dr.  
Then from Eq. (1.18)

CV I p c o s O
S r = - — = —  1.35)

dr 4ne0r3 '

For the transverse component S g the appropriate polar coordinate element is the 
arc length d s = r  dd, resulting in

d-36)
I CV p sin 0
r CO 4Tre0r

These two components are shown in Fig. 1-25. The lines o f foiee for a small electric 
dipole are indicated in Fig. 1-26. Although in an electric dipole the two charges are 
equal and opposite, and result in a zero net charge, their slight displacement is 
enough to produce a nonvanishing electric field.

In atoms the center o f mass o f the electrons coincides with the nucleus, and there
fore the average electric dipole moment of the atom is zero (big. l-27a). If an ex
ternal field is applied, the electronic motion is distorted and the center of mass of



Electric Dipole

(a) No external field (b) External field

Fig. 1-27. Polarization o f  an atom  under an external electric field.

the electrons is displaced a distance x  relative to the nucleus (Fig. l-27b). The atom 
is thus polarized and becomes an electric dipole of moment p. This moment is pro
portional to the external field S.

Molecules, on the other hand, may have a permanent electric dipole moment. 
Such molecules are called polar. For example in the HCl molecule (Fig. 1-28) the
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CE) < o )  © · ©
Fig. 1-28. Polar diatomic molecules.

electron of the H atom spends more time moving around the Cl atom than around 
the H atom. Therefore the center o f negative charges does not coincide with that o f  
the positive charges, and the molecule has a dipole moment directed from the Cl 
atom to the H atom That is. we may write H + Cl . The electric dipole o f the HCl 
molecule is /7 =  3.43 x IO"30 C m. In the CO molecule, the charge distribution is 
only slightly asymmetric and the electric dipole moment is relatively small, about 
0.4 x 10’ 30 C m. with the carbon atom corresponding to the positive end and the 
oxygen atom to the negative end o f the molecule.

In a molecule such as H2O. in which the two H — O bonds are at an angle slightly 
over 90“ (Fig. 1-291, the electrons try to crowd around the oxygen atom, which there
upon becomes slightly negative relative to the H atoms. Each H O bond thus con
tributes to the electric dipole moment, whose resultant, because of symmetry, lies 
along the axis o f the molecule and has a value equal to 6.2 x  10 30 C m. In the CO2 
molecule all the atoms are in a straight line (Fig. 1-30). and the resultant electric 
dipole moment is zero because of the symmetry. Thus electric dipole moments can 
provide useful information about the structure o f molecules. The values of p  for 
several polar molecules are given in Table 1-2.

When an electric dipole is placed in an electric field, a force is produced on each 
charge o f the dipole (Fig. 1-31). The resultant force is zero unless the electric field is

Fig. 1-29. Electric dipole o f an H 2O molecule.

P  = U

Fig. I-30. The C O 2 molecule has no electric dipole.
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Table 1-2 Electric Dipole Moments 
for Selected Polar Molecules*

Molecule p, Cm

H O 3.43 v U T 30
H Br 2 .6 0 x 1 0  30
H l 1.26 x IO-30
CO 0.40 x 1 0 ‘30
Η ,Ο 6.2 x 10 30
H 2S 5.3 x IO-30
SO 2 5.3 x 10“ 30
N H 3 5.0 x 10 30
C 2H 5O H 3.66 x 10“ 30

* Molecules with zero dipole 
mom ent include C O 2, H 2, C H 4 
(methane), C2H 6 (ethane), and 
CCl4 (carbon tetrachloride).

not uniform. The net force is

= q S t - q S  = q { S . - S _ ) .

Consider the special case in which the electric field is along the ,Y-axis and the 
dipole is oriented parallel to the field. Then if  we consider magnitudes only. S + — 
S =  (dS dx)a, and therefore F = p { d S  dx). This result shows that an electric dipole 
oriented parallel to a nonuniform electric field tends to move in the direction in which 
the field increases. The opposite result is obtained if  the dipole is oriented anti- 
parallel to the field. O f course when the electric field is uniform, the resultant force 
on the electric dipole is zero irrespective o f  its orientation.

The potential energy o f the dipole is

Ep= q V + - q V _  = q ( V + -  V .  )=  - q a  ( -  —— —
\ a

Fig. 1-31. Electric dipole in an external electric field.
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Fig. 1-32. Polarization effects o f an ion in solution.

If Eq. (1.19) is used to describe the uniform electric field and Θ is the angle between the 
dipole and the electric field, the last factor is just the component S a= S  cos Θ o f  the 
field S  parallel to a. Therefore Ep=  —qaSa, or

E p=  — p S  cos Θ= —p · S. (1.37)

The potential energy is a minimum when 0 =  0, which indicates that the electric dipole 
is in equilibrium when it is oriented parallel to the field. If the slight difference between 
S  + and S _ is neglected (or when the field is uniform), the forces q S + and — q S  on 
the charges comprising the dipole form a couple whose torque is

z = a  x(qS)  =  (qa) x S = p  x S .  (K38)

From this expression, as well as from Fig. 1-31, it may be seen that the torque o f  
the electric field tends to align the dipole parallel to the field. The magnitude o f the 
torque is z = p S  sin Θ, and its direction is as indicated in Fig. 1-31.

These properties o f an electric dipole when placed in an electric field have very 
important applications. For example, the electric field o f an ion in solution polarizes 
the molecules o f the solvent that surrounds the ions and they become oriented in the 
form indicated in Fig. 1-32. These oriented molecules become more or less attached 
to the ion, increase its effective mass, and decrease its effective charge, which is
partially screened by the molecules. The net effect is that the mobility o f the ion in an
external field is decreased Also when a gas ora liquid whose molecules are permanent 
dipoles is placed in an electric field, the molecules tend to align with their dipoles 
parallel as a result of the torques due to the electric field. We say then that the sub
stance has been polarized. This matter will be taken up in the next chapter.

Example 1.6 Electric field of an electric dipole expressed in vector form.

▼ From Fig. 1-25 the electric field of a dipole may be written as

S = U rS r-f  u0(£e j (u,2p cos f) + ugp sin Θ).
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From  the same figure it is possible to write the electric dipole as

p = p (u , cos Θ—ue sin 9).

Using this expression to  eliminate the term p sin 6 in the expression for S  yields

S =  . -|(3u,|> cos Θ — p).
4ji (0r3

Also p cos 0 — ur· p. Therefore

s  = 2urjur- p ) - p  
Antar1

which gives the electric dipole field in vector form. A

Example 1.7. Calculation of the interaction energy between two electric dipoles. The result will 
be used to  estimate the interaction energy between two water molecules. Discussion of relative 
orientation effects.

▼ In Example 1.6 the electric field produced by one dipole at distance r was derived in a special 
form that relied on the dipole orientation. W ith its electric dipole mom ent called P1, that result 
may be rewritten as

3η,(ηγ·ρ 1)—P 1
1 4 ^

If the mom ent of the second dipole is designated as p 2, the interaction energy between the two 
dipoles, using Eq. (1.37), is

P  _  -  _  3 l « r - P , Knf - P 1J - P i - P 1
*-p.ii ~ ~ P i  w i — : ;  ■

4jie0i·

Several im portant conclusions can be derived from this result. (I) The interaction energy Ep l2 
is symmetric with respect to the two dipoles because everything rem ains the same if p , and p , are 
interchanged. This is a result to  be expected. (2) The interaction between two dipoles is noncentral 
because it depends on the angles of the position vector r (or of the unit vector u,.) with P 1 and p 2. 
Consequently, m otion under a dipole-dipole interaction does not conserve the orbital angular 
momentum of the dipoles. (31 The force between two dipoles is no t along the line joining them 
(except in certain specific positions). (4) Since the potential energy between electric dipoles varies 
as r -3  with the distance, the force, which is the negative gradient of the po'ential energy, decreases 
as r 4 ; therefore the interaction between two electric dipoles diminishes with the distance much 
faster than the interaction between two charges.

The geometry cnnesponding to Eq. (I 39) is illustrated in Fig. 1-33, in which (a) corresponds to 
the general case. In (b) the two dipoles are aligned along the line joining them. Thus P 1-P2 =  

P iP i-uTmPi = Pi - a r|d ui 'P i = Pi so that

c _  2PiPl .-jP. I 2 - 4rce0r

and an attraction results between the dipoles because of the negative sign. In  (c) again * P 2 - P i P i  i
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P i  P i
i i
I I

I* ’— 'I "Ί I' "Ί I'
I I

P l  P  2 I_____  I

H r ,  P l  P l

la) (b) (c) (d)

Fig. 1-33. Interaction between two electric dipoles.

but Hr-p, - 0  and u, -p2 = 0 so that

£.„=■' PlP2ne0r3

Since it is positive, this value indicates a repulsion between the dipoles. Finally in (d) we have 
P1 ■ p2=  - P 1P2, which gives

E  -  -  -M -1 
2 ~  4jtc0r 3 ’

meaning that there will be attraction  between the dipoles.
An understanding of the interaction between two electric dipoles is of great im portance because 

molecular forces are due in large part to this type of interaction. Consider two w ater molecules 
in the relative position οΓ Fig. I -33(b) at lheir norm al separation in the liquid phase, about
3.1 x 10 10 m. Their electric dipole mom ent is 6.1 x l 0 ‘ 30 m C. Therefore their interaction 
potential energy is calculated as

9 x IO9 x 2 x (6.I x K T 30)2
E p i i = - -  -----  TTT̂ ------ - =  -2 .2 2  x IO -20J.

P (3 .1x10  10)3

This result is larger by a factor of ten than the interaction energy m entioned in Section 13.9 of 
Volume I. which was estimated using the value of the heat of vaporization. The student, however, 
must realize tha t the present result corresponds to  the instantaneous interaction energy between 
two walcr molecules in the relative position of Fig. I-33(b). Since water molecules arc in continuous 
motion, their relative orientation is continuously changing. Thus to  obtain Ep 12 Eq. (1.37) must 
be averaged over all possible relative orientations. W hen this averaging is done, there is better 
agreement.

The student should com pare the result above for the electric interaction Ep l2 between two 
water molecules with the corresponding gravitational interaction for the same relative position. A

1.11 H igherElectricM uItipoIes

It is possible to define higher-order or multipole electric moments. For example, 
charge distribution such as that in Fig. 1-34 constitutes an electric quadrupole. Its 
total charge is zero and we may show that its electric dipole moment is also zero. It
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■Λ-q

-Q - q
O

* + ϊ

Fig. 1-34. Electric quadrupole.

is not easy to give a general definition of the electric quadrupole moment in an ele
mentary way. However, it may be shown that the electric quadrupole moment of a 
charge distribution relative to a symmetry axis, such as the Z-axis, is defined by

2  =  2  Σ  ^ ( 3  cos2 0, - 1 )  (1.40)
i

where r, is the distance o f charge i from the center and Θ, is the angle that r, makes 
with the axis (Fig. 1-35). Note that Zi= Y i cos 0;. Then Eq. (1.40) may be written as

2 = 2  Σ  -r ? ) .  (1.41)
i

The electric quadrupole moment is zero for a spherical distribution of charge, 
positive for an elongated or prolate charge distribution, and negative for an oblate 
or flattened charge distribution (Fig. 1-36). Therefore the electric quadrupole 
moment gives an indication o f the degree o f departure from the spherical form of a 
charge distribution. For example, atomic nuclei are usually considered spherical. 
However, careful measurements indicate that certain nuclei have relatively large 
electric quadrupole moments. This has been interpreted as indicating that such

Z Z Z

(a) (b) (c)

Figure 1-35

Fig. 1-36. Electric quadrupole o f ellipsoidal charge distributions.
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nuclei are greatly deformed, and thus the electric field they produce departs from 
that o f  a point charge. This in turn affects the energy o f the electronic motion.

It should be noted that the potential o f a point charge decreases as r ~ 1 and the field 
as v~ 2 while for an electric dipole the potential decreases as r 2 and the field as r 3. 
I na n  analogous way it can be proved that for an electric quadrupole the potential 
varies as r-3  and the field as r 4. Similar results are obtained for higher-order 
multipoles. That is, the higher the multipole order, the smaller the range within 
which its electric field has any noticeable effect.

Example 1.8. Electric potential for the charge arrangement of a Hnear electric quadrupole (Fig.

T The total charge of the system is zero. Also the electric dipole moment is zero since 
p =  + q(+ a) — 2q(0) + q(—a)=0.  However, the electric quadrupole moment, using Eq. (1.41). is

1-37).

Q =  1JlqOa2 - a 2)-2g(0)-t-<j[3( - a ) 2- « 2]] =Iqa2. 

The electric potential produced by the system of charges at point P is

From the figure we see that

r, =(r2 — 2ar cos θ+α2)1'2.

and

(1.43)

Figure 1-37
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Next assume a is very small compared with r. From the binom ial expansion given by Eq. (M.22) 
U + x ) -1 '2- I -  T v+ f x 2 +  --· with X =  — 2a cos 0 jr+ a 2/r2. Then we may rewrite Eq. (1.43) as

1 1  I /  2a cos 0 a2\  3 (  2a cos θ a2\ 2

Expanding the bracket and keeping only terms having r3 or less in the denom inator gives

I I a cos Θ a2
——— I------2 I- T- 3 (3 cos ~θ — I ) + · · · .  (1.44)
T1 r r Zr

Similarly r2=[r2 + 2ar cos 0 + a 2)112, and therefore

1 1  a cos Θ a2 „  , „ ,, . . .
—= ---------- j (3 cos2 Θ — I)+  - - -. (1.45)
r2 r r~ 2r

If we substitute both results 11.44) and (1.45) in Eq. (1.421 and simplify, the potential is given by

v _ q a 2{3 cos2 6 - 1)
4ne0r 3

Therefore with Q = 2qa2,

τ Q{3 cos2 O - 1)

HAneilY  '

which gives the electric potential of a  linearelectric quadrupole. TheelectricfieId 
by applying Eq. (1.20), as previously done in Section 1.10 for the electric dipole.

I/ — Ti
V= —  — A  (1.46)

mav be obtained

Problems

I. I Find the electric force of repulsion between 
the two protons in a hydrogen molecule if their 
separation is 0 ,74x10" 10 m. Com pare your 
answer with their gravitational attraction at 
the same separation.
1.2 Find the electric force of attraction between 
the proton and the electron in a hydrogen atom 
if the electron describes a circular orbit of 
0.53 x 10 10 m radius. C om pare your answer 
with their gravitational attraction  at the same 
separation.
1.3 Com pare the electrostatic repulsion 
between two electrons with their gravitational 
attraction a t the same distance. Repeat for 
two protons. (Recall Problem 1.1.)
1.4 Two identical cork balls of mass m have 
equal charges q (Fig. 1-38). The balls are 
attached to  two strings, each having length / and

hanging from the same point. F ind the angle Θ 
the strings will make with the vertical when 
equilibrium is reached.
1.5 W hat m ust be the charge on a particle of 
mass 2 x 10“ 3 kg for it to  remain stationary in 
the laboratory when the particle is placed in a 
downward-directed uniform electric field of 
intensity 500 N C “ l ?
1.6 The electric field in the region between 
the deflecting plates of a certain cathode-ray 
oscilloscope is 3 x IO4 N C “ '.  (al W hat is the

Figure 1-38
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force on an  electron in  this region? (b) W hat 
is the acceleration of an electron when it is 
acted on by this force? Com pare your answer 
with the acceleration of gravity.
1.7 A charge of +  2.5 x 10 8 C is placed in an 
upward-directed uniform electric field whose 
intensity is 5 x IO4 N C *. W hat is the work 
of the electrical force on the charge when the 
charge moves (a) 4.5 m horizontally? (b) 0.8 m 
downward ? (c) 2.6 m at an angle of 45' upward 
from the horizontal?
1.8 A uniform electric field exists in the region 
between two oppositely charged plane parallel 
plates. An electron is released from rest at the 
surface of the negatively charged plate and 
strikes the surface of the opposite plate, 
2 x 10" 2 m distant from the first, in a time 
interval of 1 .5x10  8 sec. (a) Calculate the 
electric field, (b) Calculate the velocity οΓ the 
electron when it strikes the second plate.

0.02 m 
iΌ. TT 1T"_  o — - - 4 - -----------------

-0.12 m-----

S

0.04 m
Figure 1-39

1.9 In Fig. 1-39 an electron, with an initial 
horizontal velocity of 2 x l 07 m s-1 , is p ro
jected along the axis midway between a pair of 
plates having a uniform electric field with an 
intensity of 2 x IO4 N  C 1 in the upward 
direction. Assume that the field begins and 
ends sharply at the edges of the plates, (a) How 
far below the axis has the electron moved when 
it reaches the end of the plates? (b) At what 
angle with the axis is the electron moving as it 
leaves the plates? (c) How far below the axis 
will the electron strike the fluorescent screen S?
1.10 An electron is projected into a uniform 
electric field of intensity 5 x IO3 N C -1 . The 
direction of the field is vertically upward. The 
initial velocity of the electron is IO7 m s “ \  at 
an angle of 30“ above the horizontal, (a) C al
culate the time required for the electron to 
reach its maximum height, (b) Calculate the

maximum distance the electron rises vertically 
above its initial elevation, (c) After what 
horizontal distance does the electron return  to 
its original elevation? (d) Sketch the trajectory 
of the electron.
1.11 An oil droplet of mass 3 x 10 14 kg and 
of radius 2 x 10“ 6 m carries 10 excess electrons. 
W hat is the terminal velocity of the droplet
(a) when it falls in a region in which there is no 
electric field? (b) when the droplet falls in an 
electric field whose intensity is 3 x IO5 N  C 1 
directed dow nward? The viscosity of air is 
1 .8 0 x 1 0 '*  Pa s. Neglect the buoyant force 
of the air.
1.12 A charged oil d rop  in a M illikan oil-drop 
apparatus is observed to tall through a distance 
of I mm in 27.4 sec, in the absence of any 
external field. The same d rop  can be held 
stationary in a field of 2.37 x IO4 N C 1. How 
many excess electrons has the drop acquired? 
The viscosity of air is 1 .80x10“ * P a s. The 
density of the oil is 800 kg m “ 3, and the 
density o f air is 1.30 kg m 3.
1.13 A chargedoil drop falls 4.0 mm in 16.0 sec 
at constant speed in air in the absence of an 
electric field. The density of the oil is 800 kg 
m “ 3, that of the air is 1.30 kg m 3, and the 
coefficient of viscosity of the air is 1.80 x 10 5 
Pa s. (a) Calculate the radius and the mass of 
the drop, (b) If the drop carries one electronic 
unit of charge and is in an electric field of 
2 x IO5 N C *, what is the ratio  of the force of 
the electric field on the drop to its weight?
1.14 Two point charges, 5 gC  and —10 /tC, 
are spaced I m apart, (al Find the magnitude 
and the direction of the electric field at a point
0.6 m from the first charge and 0.8 from the 
second charge, (bl Where is the electric field 
zero because of these two charges?
1.15 In an apparatus for m easuring the elec
tronic charge e by M illikan’s method, an 
electric field of 6.34 x IO4 N C 1 is required to 
m aintain a  charged oil drop a t rest. If the 
plates are 1.5 x 10 2 m apart, what potential 
difference between them is required?
1.16 Three positive charges of 2 x 1 0 “ 7 C,
I x 10“ 7 C, and 3 x 10 7 C are in a straight
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line with the second charge in the center so 
that the separation between two adjacent 
charges is 0.10 m. Calculate (a) the resultant 
force on each charge caused by the others,
(b) the potential energy of each charge caused 
by the others, and (c) the internal potential 
energy of the system, (d) C om pare (c) with the 
sum of the results obtained in (b), and explain.
I.]7 Solve Problem 1.16 for a case in which the 
second charge is negative.
1.18 The electric potential at a certain distance 
from a point charge is 600 V and the electric 
field is 200 N C  *. (a) W hat is the distance to 
the point charge? (b) W hat is the m agnitude 
of the charge?
1.19 The maximum charge that can be retained 
by one of the spherical terminals of a  large 
Van de GraafF generator is about 10' 3 C. 
Assume that a positive charge of this m agnitude 
is distributed uniformly over the surface of a 
sphere (of radius 2.7 m) in otherwise empty 
space, (a) C om pute the magnitude οΓ the electric 
intensity at a point tha t is outside the sphere 
and is 5 m from its center, (b) If an electron 
were released at this point, what would the 
m agnitude and the direction of the electron’s 
initial acceleration be? (c) W hat would be the 
velocity of the electron when it reached the 
sphere?
1.20 A small sphere of mass 2 x 10“ 4 kg hangs 
by a thread between two parallel vertical plates 
5 x 1 0  2 m apart. The charge on the sphere 
is 6 x 10 9 C. W hat is the electric potential 
difference between the plates if the thread 
assumes an angle of 10’ with the vertical?

1.21 Two positive point charges of 2 x IO -  ' C 
and 3 x IO-7 C are separated by a distance of 
0.10 m. Com pute the resultant electric field 
and electric potential (a) at the m idpoint 
between them, (b) at a point 0.04 m from the 
first and on the line between them, (c) at a 
point 0.04 m from the first and on the fine 
joining the charges but outside them, and 
(d) at a point 0.10 m from each charge.
I 22 Solve Problem 1.21 for a case in which the 
second charge is negative.

1.23 Referring again to Problem 1.21, calculate 
the work required to move a charge of 
4 x  IO-7 C front the point in (c) to the point 
in id I. Is it necessary to specify the path?
1.24 Two positive point charges, each of 
m agnitude q. are fixed on the 7 -axis at the 
points y =  +  a and y =  —a. (a) Draw a diagram 
showing the positions of the charges, (b) W hat 
is the electric potential at the origin? (c) Show 
that the electric potential at any point on the 
Λ'-axis is

— Λ I2 π ε o v u- +  x -

(dl Sketch a graph of the electric potential on 
the Y-axis as a function of x  over the range 
from X= -1-5« to  x =  —5a. (e) At what value of 
x is the electric potential one-half that at the 
o rig in .1 (f) From  (c), obtain the electric field 
on the Y-axis.
1.25 F o r the charges in Problem  1.24, suppose 
that a positively charged particle of charge q' 
and mass m is displaced slightly from the 
origin in the direction of the Y-axis and is 
then released, (a) W hat is the particle’s velocity 
at infinity? (b) Sketch a graph of the velocity 
of the particle as a  function of x. (c) If the 
particle is projected tow ard the left along the 
Y-axis from a point at a large distance to  the 
right of the origin, and the velocity of the 
particle is half that acquired in part (a), at 
what distance from the origin will the particle 
come to rest? (d) Ifa  negatively charged particle 
at rest on the Y'-axis were released at a  very 
large distance from the origin, what would be 
the velocity ot the particle as it passed the 
origin?
1.26 (a) Referring again to the charges described 
in Problem 1.24, make a plot of the electric 
potential along the 7-axis from v =  +  5a to 
V =  —5a. (b) C om pare this plot with the plot in 
Problem  1.24(d). (c) Is the potential a minimum 
at the origin?
1.27 In a rectangular coordinate system a 
charge of 25 x l 0 “ 9 C is placed at the origin 
of coordinates, and a charge of —25 x 10 9 C 
is placed at the point x = 6  m, .H=0. W hat is
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the electric field (a) at x =  3 m, y  = 0? (b) at 
X =  3 m, y = 4  m ?
1.28 Equal electric charges of I fiC each are 
placed at the vertices of an equilateral triangle 
whose sides are 0.1 m in length. Calculate (a) 
the force and the potential energy of each 
charge as a result of the interactions with the 
others, (b) the resultant electric field and 
electric potential at the center of the triangle, 
and (c) the internal potential energy of the 
system.
1.29 (a) Referring to  Problem 1.28, make a plot 
of the lines of force of the electric field produced 
by the three charges, (b) Also on the same 
diagram plot the equipotential surfaces.
1.30 W hat is the final velocity of an electron 
accelerated through a potential difference of 
12,000 V if the electron has an initial velocity 
of 10" m s ' 1?
1.31 A potential difference of 1600 V is estab
lished between two parallel plates 4 x 10 2 m 
apart. An electron is released from the negative 
plate at the same instant that a  p ro ton is re
leased from the positive plate, (a) How far from 
the positive plate will the electron and the pro
ton be when they pass each other? (b) How do 
the velocities of the electron and the proton 
compare when they strike the opposite plates?
(c) How do the energies of the electron and the 
proton com pare when they strike the opposite 
plates?
1.32 A linear accelerator having a voltage 
difference of 800 kV produces a proton beam 
having a current of I mA. Calculate (a) the 
num ber of protons that strike the target per 
second, (b) the power required to accelerate 
the protons, and (Cl the velocity of the protons 
when they hit the target, (d) Given that the 
protons lose 80 per cent of their energy in the 
target, calculate the rate, expressed in cal s" ‘. 
at which energy in the form of heat must be 
removed from the target.
1.33 An electron, after being accelerated by a 
potential difference of 565 V, enters a uniform 
electric field of 3500 N C - 1 at an angle of 60

with the direction of the field. Alter 5 χ  10“ 8 s, 
what are (a) the com ponents of the electron s 
velocity parallel and perpendicular to  the 
field, (b) the magnitude and direction οΓ the 
velocity of the electron, and (c) its coordinates 
relative to  the point of entry? (d) W hat is the 
electron’s total energy?
1.34 Two large plane metal plates are mounted 
vertically 4 x  10“2 m apart and charged Io a 
potential difference of 200 V. (a) W ith what 
velocity m ust an electron be projected hori
zontally from the positive plate so that the 
electron will arrive at the negative plate with a 
velocity οΓ IO7 m s - 1 ? (b) W ith what velocity 
m ust the electron be projected from the positive 
plate in a direction at an angle of 3T  above the 
horizontal so that the horizontal com ponent of 
the velocity of the electron when it arrives at the 
negative plate is 10" m s “ 1 ? (c) W hat is the mag
nitude of the vertical com ponent of the velocity 
when the electron arrives at the negative plate?
(d) W hat is the electron’s time of transit from 
one plate to  the other in each case? (e) With 
what velocity will the electron arrive at the 
negative plate if the electron is projected 
horizontally from the positive plate with a 
SpeedoflO 6 Iiis  1 ?
1.35 (a) Estimate the aveiage electric force of 
attraction beiv'een two water molecules in the 
gaseous phase at STP because of their electric 
dipole mom ents. Consider several possible 
relative orientations of their electric dipoles,
(b) C om pare this attraction with their gravita
tional attraction. The electric dipole moment 
O fH 2O is 6.2 x IG-30 Cm. [Recall Ex. 1.7.]
1.36 (a) Relative to the Z-axis, what are the 
electric dipole and quadrupole mom ents of the 
charge distribution shown in Fig. I -40? (b) Find 
the electric potential and the electric field at 
points along the Z-axts if z is very large com 
pared with a. (ct Repeat the calculation for the 
F-axis.
1.37 Assummg that all charges are positive, 
repeat Problem  1.36.
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CHALLENGING PROBLEMS

1.38 Three charges of equal m agnitude with 
signs as indicated in Fig. 1-41 are located at 
the corners of an equilateral triangle of side 
equal to 1.0 meter. The m agnitude of each 
charge is 1.0 x 10 6 coulomb. Point P  is m id
way between the two positive charges, (a) Deter
mine the m agnitude and direction of the electric 
field S  a t point P. (d) Determine the electric 
potential at point P. (AP-B: 1970)
1.39 A particle of charge - q and mass m is 
released from rest at a distance 3R  from a 
fixed charge +Q  (Fig. 1-42). (a) Determ ine the 
change in potential energy as the separation 
between the charges changes from 3R to IR .  
lb) Determ ine the speed of the particle when the 
separation is ZR. (AP-B; 1970)

-Q
IR  2 R 

Figure 1-42
3 R

1.40 An electric car of mass 800 kilograms can 
climb a hill 1,000 m eters long and 60 meters 
high in 100 seconds a t constant speed (Fig. 
1-43). The car is operated by a 48-volt battery.

Neglecting friction and assuming 100 percent 
use of electrical energy, find the current deliv
ered by the battery. (AP-B; 1970)

-Q (0, +  d) -Q

O
-Q (0, — d) -Q

+ Q 
A D -

(a) (b)

Figure 1-44

1.41 T w oequalnegativepo in tcharges — g a r e  
fixed at coordinates (0, +  d) and (0, —d ) on the 
x, y  coordinate system shown in Fig. I-44a
(a) Derive an expression for the x com ponent 
S 1 of the resultant electric field produced by 
these two charges at any point on the x-axis.
(b) In terms of the quantity d, find the x co
ordinates of the points on the x-axis where the 
magnitude of S x is a maximum, A small 
positively charged bead (dimensions much less
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than d) is placed on a thin thread stretched 
along the x-axis as shown in Fig. I -44b.
(c) Show that the force acting on the bead obeys 
the approxim ate relation F t =  - K x  for small 
displacements x  from its equilibrium position, 
where K  is a constant. Evaluate K  in terms of 
Q and d. (AP-C; 1970)
1.42 Consider a uniform spherical positive 
charge distribution of radius R 0 and total 
charge Q as shown in F ig  1-45. (a) Determ ine 
the electric field S  of this charge distribution 
as a function of the distance r from the center 
of the sphere for r >  R a and for r < R 0. (b) D eter
mine the electric potential F(r) of this charge 
distribution for r > R 0 and for r<  R 0. Choose 
V(r)=0 when r is infinite, (c) A positive point 
charge q is fired from a great distance toward 
the center of the distribution. W hen q is far 
from the distribution its kinetic energy is K 0. 
Depending on the value of K 0 the charge q 
will either pass through the center o r be 
reflected by the distribution. D eterm ine the 
minimum value of K 0 such that the charge q 
will pass through the distribution. (AP-C ; 
1970)
1.43 The diagram in Fig. 1-46 shows some of 
the eguipotentials in a plane perpendicular to 
two parallel charged metal cylinders. The

C
(I s

-
+ < U ''A ™ ° .  i ° i  + o

-I B
Figure 1-47

potential of each line is labeled, (a) The left 
cylinder is charged positively. W hat is the sign 
of the charge on the other cylinder? (b) O n a 
copy of the diagram, sketch lines to describe the 
electric field produced by the charged cylinders,
(c) Determ ine the potential difference. Va — F b, 
between points A  and B. (d) How much work is 
done by the field if a charge of 0.50 coulom b 
is moved along a path from point A to point E  
and then to point D? (AP-B: 1974)
1.44 Two identical electric charges + Q are 
located a t two corners A  and B  of an isosceles 
triangle as shown in Fig. 1-47. (a) How much 
work does the electric held do on a small test 
charge +  q as the charge moves from point C 
to infinity? (b) In terms of the given quantities, 
determine where a thud  charge + 2Q should 
be placed so that the electric field at point C 
is zero. Indicate the location of this charge on 
the diagram. [ΛΡ-Β: Λ75)
1.45 Two stationary point charges +q  are 
located on the y-axis as shown in Fig. 1-48. A 
third charge H-q is brought in from infinity 
along the x-axis. (a) Express the potential 
energy of the movable charge as a function of

r +9

+ 9

+ 9  Figure 1-48
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its position on the x-axis. (b) Determine the 
magnitude and direction of the force acting on 
the movable charge when it is located at the 
position x  = l. (c) Determ ine the work done 
by the electric field as the charge moves from 
infinity Lo the origin. (AP-C: 19751
1.46 A charge + Q  is uniformly distributed 
around a wire ring of radius R as shown in 
Hg. 1-49. Assume that the electric potential is 
zero at x = infinity with the origin O οΓ the 
x-axis at the center οΓ the ring, (a) W hat is the 
electric potential at a point P on the x-axis? 
(b) Where along the x-axis is the electric 
potential the greatest? Justify your answer, 
tcl W hat is the m agnitude and  direction of the 
electric field & aL point P? (d) On a set of axes, 
make a sketch of |ii j as a function of the distance 
along the x-axis showing significant features,
IA P-C; 1977)
1.47 Two small spheres, each of mass m and 
positive charge q, hang from light threads of 
lengths /. Each thread makes an angle O with 
the vertical as shown in Fig. 1-50. (a) O n a 
diagram draw  and label all forces on sphere I.
(b) Develop an expression for the charge q in 
terms of in. /, Θ. g, and the Coulom b’s law 
constant. (AP-B: 1979)
1.48 An unstable nucleus, initially at rest, 
decays into two spherical fragments. Fragm ent

Figure 1-50

A has radius rA. charge qA. and rest m ass m A; 
fragment B has radius />  charge Qsb an d  rest 
mass mB. (a) Suppose that after the decay 
process fragment A has velocity vA th a t is 
small com pared with the velocity o f light. 
Develop an expression for the kinetic energy 
of fragment B in term s of vA. mA, and  mB. At 
one stage in the decay process, the tw o frag
ments may be regarded as touching spheres, 
both at rest as shown in Fig, 1-51. W rite  
expressions for each οΓ the following, (b) T he 
electrostatic force between these tw o fragm ents 
a t the instant they are touching, (c) T he e lec tro 
static potential energy L 'of these two fragm ents 
at the instant they are touching, (d) T he rest 
mass in of the nucleus before it decays. (A P-B : 
1980)
1.49 Assuming that the two strings hang from  
points separated a distance d (Fig. 1-52), repeat 
Problem 1.4. How could this arrangem ent be 
used to verify experimentally the tnverse- 
square law by varying the distance d and  
observing the angle ΘΊ
1.50 In a particular fission of a u ran ium  
nucleus, the Lwo fragments are liiY and  141I. 
having masses practically equal to  95 am u and  
141 amu. respectively. Their radii can  be 
com puted using the expression

R =  1.2 x IO "15 A 1,3 m

Figure 1-52
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where 4 is Lhe mass number Assuming that 
the two fragments are initially at rest and 
tangent to each other, find (al the initial force 
and potential energy, (b) their final relative 
velocity, and (c) the final velocity of each 
fragment relative to their center of mass.
1.51 Four protons are placed at the vertices 
of a square of side 2 x 1 0 ' 9 m. Another proton 
is initially on the perpendicular to the square 
through its center and is a distance 2 x 10 9 m 
from the center. Calculate (a) the minimum 
initial velocity the fifth proton needs to  reach 
the square, and (b) the initial and final accelera
tion. (c) Plot the potential energy of the proton 
as a function of its distance from the center of 
the square, (d) Describe the m otion of the pro
ton if the initial energy is either smaller or 
larger than that found in (aI.
1.52 Consider the charges in Problem  1.24.
(a) Suppose that a positively charged particle 
of charge q' is placed precisely at the origin and 
released from rest. W hat happens? (b) What 
will happen if the charge in part (a) is displaced 
slightly in the direction of the 7-axis ? (c) W hat 
will happen if the charge is displaced slightly 
in the direction of the Y-axis?
1.53 Show that the rectangular com ponents 
of the electric field produced by a charge q at 
the distance r are

' *  4 τγε0 γ '

etc.
1.54 Establish a numerical relation giving the 
velocity (in m s  1I of an electron and a proton 
in terms of the potential difference (in volts) 
through which they have moved. Assume that 
initially they were at rest.
1.55 (a) W hat is the maximum potential differ
ence through which an electron can be 
accelerated if its mass is not to exceed its rest 
mass by more than I percent of the rest mass?
(b) Express the velocity of such an electron as a 
fraction of the speed of  light c. (Cl Make the 
same calculations for a proton.
1.56 A certain high-energy machine acceler
ates electrons through a potential difference 
of 6.5 x IO9 V. (a) W hat is the ratio of the mass

m of an electron to its rest mass m0 when the 
electron emerges from the accelerator?
(b) W hat is the ratio of the electron’s ve'ocity 
to that of light? (c) W hat would the velocity 
be if com puted from the principles of classical 
mechanics?
1.57 An electron in a certain X-ray tube is 
accelerated from rest through a potential 
difference of 180,000 V in going from the 
cathode to the anode. W hen the electron arrives 
at the anode, what is (a) the electron's kinetic 
energy in eV. (b) its mass m. and (c) its velocity ?
1.58 Suppose that the potential difference 
between the spherical terminal of a Van de 
GraaIT generator and the point at which 
charges are sprayed onto  the upward-m oving 
belt is 2 x IO6 V. If the belt delivers negative 
charge to the sphere at the rate of 2 x 1 0 '3 
C s ' 1 and removes positive charge at the same 
rate, what power must be expended to drive 
the belt against electrical forces?
1.59 The average separation of protons within 
an atom ic nucleus is of the order of 10 15 m. 
Estimate in J and in MeV the order of magni
tude of the electric potential energy of two 
protons in a nucleus.

Γ * :

• .  TO  1 0 '2m

i* 2  X  1 0 “ 2 m  -

Figure 1-53

1.60 The potential difference between the two 
parallel plates in Fig. 1-53 is 100 V, their 
separation is I O '2 m, and their length is 
2 x 1 0 '2 m. An electron is projected with an 
initial velocity of IO7 m s ' 1 in a direction 
perpendicular to  the field, (a) Find the trans
verse deviation and the transverse velocity of 
the electron when it emerges from the plate,
(b) If a screen is placed at 0.50 m to the right of 
the end of the plates, at what position on the 
screen will the electron fall?
1.61 A certain vacuum triode consists basically 
of the following elements. A plane surface (the
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Figure 1-54

cathode) emits electrons with negligible initial 
velocities. Parallel to  the cathode and 3 x 
10 3 m away front it is an open grid of fine 
wire at an electric potential of 18 V with respect 
to the cathode. The structure of the grid is 
sufficiently open for electrons to  pass through 
it freely A second plane surface (the anode) is
1.2 x 10“ 2 m beyond the grid and is at an elec
tric potential of 15 V with respect to  the cathode. 
(See Fig. I-54).) We may assume that the electric 
fields between cathode and grid and between 
grid and anode are uniform, (a) Draw a diagram 
of electric potential versus distance, along a line 
from cathode to anode, lb) With what velocity 
do the electrons cross the grid? (c) With what 
velocity do electrons strike the anode? Id) 
Determine the m agnitude and the direction of 
the electric field between the cathode and the 
grid and between the grid and the anode, 
le) Calculate the m agnitude and  the direction 
of the acceleration of the electron in each 
region.
1.62 An electron is between tw o horizontal 
plates separated 2 x IO "2 m and charged with 
a potential difference of 2000 V. (a) Com pare 
the electric force on the electron with the force 
caused by gravity, (b) Repeat for a proton. 
(Cl Does this justify having ignored gravita
tional effects in this chapter?
1.63 Consider a plane carrying a uniform 
charge density a. Show that the electric field 
and potential are

@  Θ  ©  Θ  ©  Θ  ©  Θ  Θ
‘I

Figure 1-55

<7 GZ
S  = —  and V =  .

-Co 2e0

where y is the distance from one plate to the 
point in question.
1.64 Along a straight line there is an infinite 
num ber of alternating positive and negative 
charges ±  q, all adjacent charges being separ
ated the same distance r (Fig. 1-55). Show that 
the electric potential energy of one charge is 
( —q2/2ne0r) In 2.
1.65 A regular plane arrangem ent of alternate 
positive and negative charges of the same 
m agnitude is obtained by placing the charges 
at the center of squares of side a (Fig. 1-56). 
Find the potential energy of a charge such as 
A. [Him:  G roup  the charges surrounding A: 
consider at one time all charges at the same 
distance from A.~\
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Figure 1-56

1.6b Find the electric potential and field along 
the points on the axis of a disk having a radius 
R and a charge σ per unit area. [ H im : Divide 
the disk into rings and add the contributions 
of all rings; see Problem 1.46.]
1.67 Referring to Problem 1.66, obtain the 
electric field and potential of a plane distribu
tion of charge having the same charge density 
as the disk. [Hint:  M ake R very large and 
keep only the dom inant term ]
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S t  = (cos O2 —cos O1)

O j - Figure 1-58

1.68 A wire of length L carries a uniform charge 
density λ  per unit length (Fig, 1-57). (a I Show 
that the electric field at a point a distance from 
the wire is given by 

λ
S l = - —  (SinO2 - S i n O 1)

4 ne0R

where S £ and S , are the com ponents of S  
perpendicular and parallel to the wire and 
0, and O2 are the angles that the lines from 
the point to  the ends of the wire make with 
the perpendicular to  the wire, (b) Find the 
field when the point is equidistant from both 
ends. The signs of angles O1 and O2 are as 
indicated in the figure.
1.69 A wire carrying a uniform charge density 
λ  per unit length is bent in the form of a square 
of side L. Find the electric field and electric 
potential at points on the line perpendicular 
to  the square and passing through the center.
1.70 O btain  an expression for the electric field 
and  electric potential of a plane carrying a 
uniform charge per unit area equal to a if the 
plane is composed of a series of filaments of 
infinite length and width dx.
1.71 A very fast p roton with velocity u0 passes 
at a distance a from an electron initially at 
rest (Fig. 1-58). Assume that the m otion of the 
proton is undisturbed because of its larger 
mass, (a) Plot as a function of x  the com ponent 
of the force perpendicular to  H0 that the proton 
exerts on the electron, (b) Show (hat the 
m om entum  transferred to  the electron is(-Y-)\4 π ε0/ \ ν 0α /  

in a direction perpendicular to v(1. (c) Estimate

the deflection of the proton as a function if its 
velocity. This example provides a  crude basis 
for analyzing the m otion of charged particles 
passing through matter. [H in t: If one assumes 
that the electron practically remains at its 
initial position during the passage of the
proton, the m om entum  transferred to the
electron is given by Δp = $ F dt, and only the
com ponent perpendicular Io r 0 needs to be 
com puted. Instead of integrating from — oo to 
+  oo. in view of the symmetry of the force, 
integrate from 0 to  oc and multiply by 2.]
1.72 Prove that the internal electric potential 
energy of a  system of charges can be written 
in either of these alternate forms:

<a> (b) F1
AU AU
pairs charges

where Vi is the potential produced at q, by 
all other charges, (c) Using the result of (b), 
show that the electrical energy of a continuous 
charge distribution of density p is Ep =  j f  p V dx. 
(d) Use this expression to show that the electric 
potential energy of a spherical conductor 
having a charge Q uniformly distributed over 
its volume is jQ 2 4Tte0R. (c) Extend the last 
result to  the case of a nucleus of atom ic number 
Z.
1.73 Prove that the differential equations of 
lhe lines of force are

dx dy dz
s, = s X  S 2

where dx, dy, and dz correspond Io Iwo very 
close points on the line of force. Apply these 
equations to  obtain the equation of the lines of 
force of an electric dipoie. [H in t: N ote that 
since in this case the lines of force are plane 
curves, the com ponent S .  is not required. 
Express S x and S y for an electric dipole in 
rectangular coordinates.]
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Static Electric Field

2.1 Introduction

In the preceding chapter the concept o f  the electric field was introduced. In this 
chapter the characteristics o f  this field will be discussed under the assumption that the 
field is static or time independent. We shall then examine electric circuits before we 
begin an investigation of the static magnetic field. In subsequent chapters the time- 
dependent electromagnetic field will be considered.

2.2 Flux of a Vector Field

The f lux o f  a vector field  is a concept of great usefulness in many physical problems 
and will appear many times in this and succeeding chapters. Consider a surface S  
placed in a region in which there is a vector field V (Fig. 2-1). Divide the surface into 
very small (or infinitesimal) surfaces of areas d S lt dS2, dS3. . . . , and draw at each 
of them a unit vector u ,. u2. u3, . . . perpendicular to the surface at that point. The 
unit vectors are oriented in the direction given by the thumb o f the right hand when 
the fingers are curled in the sense in which we decide to orient the rim of the surface. 
Let A1, θ2, O3, . . .  be the angles between the normal vectors H1, H2, H3, . .  . and the 
field vectors V1, V2. V3, . .  . at each point on the surface. Then by definition the
flux Φ o f the vector field V through the surface S  is

Φ =  V1 d S l cos O1 +  V2 dS2 cos O2 +  V3 dS 3 cos O3 +  ■ · ■=  K1-H1 </S, +  K2-H2 d S 2 +  K3-H3 d S 3 +  ■ ■ ·

= Y  Vi-u, dS„
(2 .1 )or

Φ = J  Kcos 0 J S =  J  K-H1V (/S

where the integral extends over all the surface as indicated by the subscript S. For 
that reason an expression like Eq. (2,1) is called a surface integral. Because o f the cos 0 
factor in Eq. (2 .1 ), the flux through the surface element ί/Sm ay be positive or negative, 
depending on whether 0 is smaller or larger than π /2 . If the field Kis tangent or 
parallel to the surface element dS, the angle 0 is π /2  and cos 0 = 0 ,  and the result is 
zero flux through dS. The total flux Φ may also be positive, negative, or zero. When 
it is positive, the flux is “outgoing” ; and when it is negative, the flux is “incoming.” 
If the surface is closed, such as in a sphere or an ellipsoid, a circle is written on top 
o f the integral sign so that Eq. (2 .1 ) becomes

Φ =<j) Kcos 0 dS =(J) K-U v dS. (2.2)

The name flux given to the integral in Eq. (2.1) is due to its application in the 
study o f fluid flow. Suppose that there is a stream o f particles, all moving with
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Fig. 2-1. F lu x o fav ec to rfie ld th ro u g h  Fig. 2-2. Flux o f  particles through an area,
a surface.

velocity « as shown in Fig. 2-2. Those particles passing through a surface dS  in time 
t will be contained in an obhque cylinder whose base is dS. whose generatrix is parallel 
to i). and whose length equals iit. This volume is vt dS  cos Θ. Given that there are n 
particles per unit volume, the total number o f particles passing through dS  in time t 
is nut dS cos 0; and the number passing per unit time, or the flux of  particles, is 
Mt? dS cos Θ =  UD -wN dS. The total flux of particles through a surface S is then

(Jt=J wb*hn dS.

This is an expression similar to Eq. (2.1), with the vector field Kequal to m b . It must 
be realized, however, that the name "flux" as applied to Eq. (2.1) does not in general 
mean the actual motion of something through a surface.

Example 2.1, Expression of an electric current through a  surface as a flux of a current density.

▼ The quantity Mr-uv dS expresses the num ber of particles passing through the surface dS per 
unit time. If each particle carries a charge q, the charge passing through the surface dS  per unit 
time (that is, the current d I -  dQidi) is

qnv-us d S = j 'U s dS

where j  = nqv is called the current density having the units of Am 3. Therefore the total charge 
passing through a surface S per unit tim e (i.e.. the electric current I through the surface) is

/ = J j - u s dS.

In other words the electric current through a surface is equal to  the flux of the electric current 
density through that surface. Ifthe current density is uniform and the surface is plane, the equation
reduces to

/ =_/ · uiVS = jS  cos 0. k
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Fig. 2-3. Electric flux o f a point charge 
through a sphere.

Fig. 2-4. The electric flux through con
centric spheres surrounding the same 
charge is the same.

2.3 Law  for the Electric Field

Consider a point charge q (Fig. 2-3). The flux o f the electric field S  o f the charge 
through a spherical surface concentric with the charge may be computed using 
Eq. (2.2). Given that r is the radius o f  the sphere, the electric field produced by the 
charge at each point o f the spherical surface is

S = -

The unit vector normal to a sphere coincides with the unit vector Hr along the radial 
direction. Therefore the angle Θ between the electric field S  and the normal unit 
vector Hr is zero, and cos 0 = 1 . Because the electric field has the same magnitude at all 
points o f  the spherical surface and the area o f the sphere is 4τγγ2. it is easy to see that 
Eq. (2.2) gives the electric flux Oi  as

Φ* = ’d S = S O  dS =

Fig. 2-5. The electric flux through a closed 
surface surrounding a charge is independent 
o f the shape o f the surface.
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Fig. 2-6. The electric flux through a closed surface due to an external charge is zero.

The electric flux through the sphere, then, is proportional to the charge and in
dependent o f the radius o f the surface. Therefore, for each concentric spherical 
surface S 1, S 2, S 3, . . (Fig. 2-4) around the charge q. the electric flux through each 
is the same and equal to qfe0. The result is due to the Ifr1 dependence o f the field.

Next consider a charge q inside an arbitrary closed surface S  (Fig. 2-5). The total 
flux through S  o f  the electric field produced by q is given by

However, dS  cos Ofr1 is the solid angle cKl subtended by the surface element dS as 
viewed from the charge q. Since the total solid angle around any point is 4π 
steradians.* then

This result is the same as the previous result fora spherical surface concentric with the 
charge, and thus is valid for any closed surface, irrespective o f the position o f  the 
charge within the surface.

If a charge such as q’ is outside a closed surface (Fig. 2-6), the electric flux is zero 
because the incoming flux is equal to the outgoing flux; hence a net flux o f zero 
results. For example the electric flux o f q ‘ through dS' is equal in magnitude, but 
opposite in sign, to the electric flux through dS"; and therefore they add to zero. 
This result is true because even though dS" is larger than dS', S" is less than S ’. As 
may be seen from the figure, the subtended solid angle is exactly the same at both 
surfaces.

cos Θ dS =
4 ’

*See the appendix for a discussion of plane and solid angles.
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If there are several charges q 2, q2, q2, . . . inside a closed surface S  (Fig. 2-7), the 
total electric flux will be the sum of the fluxes produced by each charge. Gauss's law 
may then be stated:

The electric flux through a closed surface surrounding charges q {. q2, 
q 3, . . .  is

Φβ=(|> S - u s d S = — <2·3)
Js  '

where q =  q { + q i  +  q2+  ■■· is the total net charge inside the closed 
surface.

Thelaw is named to honor the German mathematician Karl F. Gauss (1777-1855), 
who originally developed the mathematical theory o f electromagnetism. If no charges 
are present inside the closed surface, or if the net charge is zero, the total electric flux 
through the surface is zero. The charges, such as q , q".. ., outside the closed surface 
do not contribute to the total flux.

Gauss’s law is particularly useful to compute the electric field produced by charge 
distributions having certain geometrical symmetries as shown in the following 
examples.

Example 2.2. Using G auss’s law, discuss the electric field of a charge uniformly distributed over a 
plane.
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T Consider Fig. 2-8: a charge a per uni L area has been placed on the plane. The symmetry of the 
problem indicates that if the plane is infinite in extent, the lines of force are perpendicular to  Ihe 
plane: and if the charge is positive they are oriented as indicated in the figure. For the chosen 
closed surface, the cylinder shown in the figure, the electric flux may be separated into three 
terms: the flux through S 1 is given by -t-iS  where S is the area of the base of the cylinder; the 
flux through S 1 is also given by +<?S since by symmetry the electric field must be the same in 
magnitude and opposite in direction at points at the same distance on both sides of the plane: 
and the flux through the lateral surface of the cylinder is zero because the electric field is parallel 
to the surface. Therefore the total electric flux is <t>£ =  2<fS. The charge inside the closed surface 
is that in the shaded area and is equal to q = a S .  Therefore applying G auss’s law, Eq. (2.3), gives 
2£S= aS ·  e0, or

This result indicates that the electric field is independent of the distance to  the plane and is there
fore uniform. Using the relation S =  - A V j d x  and assuming that the potential of the plane is zero, 
the electric potential is then

Example 2.3. Using G auss’s law. discuss the electric field of two parallel planes with equal but 
opposite uniformly distributed charge densities.

Fig. 2-9. Electric field between a pair o f 
plane parallel surfaces carrying equal 
but opposite charges.



Stetic Electric Field

T Figure 2-9 shows two parallel planes with equal but opposite charges. Observe that in the 
region outside the two oppositely charged planes there are electric fields equal in m agnitude but 
opposite in direction and the resultant field is zero. However in the region between the planes the 
fields are in the same direction, and the resultant field is twice as large as the field of a single plane, 
or S= G te0. Thus the two parallel and oppositely charged planes produce a uniform field contained 
in the region between them. A

Example 2.4. Using G auss’s law, discuss the electric field of a spherical distribution of charge.

▼ This problem has already been discussed in a different m anner in Volume I for the case of the 
gravitational field of a spherical body. Consider a sphere of radius a and charge Q (Fig. 2-10). 
The symmetry of the problem suggests tha t the field at each point must be radial and depends 
only on the distance r from the point to  the center of the sphere. Therefore drawing a spherical 
surface of radius r concentric with the charged sphere shows that the electric flux through it is

-Di = J  SdS=SJ' dS=SiAnr1).

Consider first r >a;  the charge inside the surface S is the total charge Q of the sphere. Thus from 
G auss’s law, Eq. (2.3), S(Anr2)=Qfe0, or

β Q
Ane0T2 '

This result is the same as that for the field of a point charge. Thus the electric field at points outside 
a charged sphere is the same as i f  all the charge were concentrated at its center.

Consider next r < a  ; there are two possibilities. If all the charge is at the surface of the charged 
sphere, the total charge inside the spherical surface S' is zero, and Gauss’s law gives (?(4τπ·2)= 0  
or S = 0 . Thus the electric field at points inside a sphere that is charged only on its surface is zero. 
Tfthe sphere is uniformly charged throughout its volume and Q' is the charge inside the surface S',

e ' “ 5 S V 3  « - W - ?  ■

Therefore G auss’s law now gives S(Anr2)= Q be0-  Qr1 C0Ui . or

QrS =
Ane0a3

this expression shows that the electric field at a point inside a uniformly charged sphere is directly 
proportional to the distance from the point to the center o f  the sphere. Ifyin is replaced by QiAne0. 
these results agree with those for the gravitational case, A

Example 2.5. Using G auss’s law, discuss the electric field o f a cylindrical charge distribution of 
infinite length.

V Consider a length L  of the cylinder C, whose radius is a (Fig. 2-11). If A is the charge per unit 
length, the total charge in that portion of the cylinder is q=AL.  The symmetry of the problem 
indicates that the electric field at a  point depends only on the distance from the point to the axis
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of the cylinder and is directed radially. Take as the closed surface of integration a cylindrical 
surface of radius r, coaxial with the charge distribution. Then the electric flux through that surface 
has three terms. Two terms represent the flux through each base: but they are zero because the 
electric field is tangent to  each base. Thus the flux through the lateral surlace is all that remains 
and gives S(2nrL\. T hat is,

<!>e =2r,rLS.

If r>a,  the total charge within the cylindrical surface S is q = aL. and from G auss’s law, Eq. (2.3), 
we get I n r L S = /.Lte0, or

2 Hf0T'

This result agrees with that οΓ Example 1.5 for the electric field of a  charged filament. Therefore 
I tie electric field at points externa! to a cylindrical charge distribution o f  infinite length is the same 
as i f  all the charge were concentrated along the axis.

F o r r< a  there are again two possibilities as in the previous example. If all the charge is on the 
surface of the cylinder, there is no charge inside the surface S', and G auss’s law gives I n r L S = 0  or 
S =0. Thus the electric field at points inside a cylinder charged only on its surface is zero. If the 
charge is distributed uniformly over the volume of the cylinder C, the charge within the surface 
S' is q' =  /L r 2 'a2; and G auss’s law gives I n r L S =  - q ' t e 0, or



Static Electric Field

Thus the electric field at a point within a uniformly charged cylinder o f  infinite length is proportional 
to the distance o f  the point from the axis, k

As shown in the previous section. Gauss’s law can be applied to a dosed surface of 
any shape. Consider now the dosed surface surrounding an infinitesimal volume 
whose edges are parallel to the ΛΎ Ζ-axis as indicated in Fig. 2-12. The sides of the 
volume element are dx, dy, and dz. The area of the surface ABCD  is dxdz. and the 
electric flux through it is

since S x =  S  cos Θ. The flux through the face A'B'C'D' has a similar expression but 
is negative because the field is pointing into the volum e; that is, — S x dy dz. The total 
flux through these two faces is the sum

However since the distance A'A =  dx between the two surfaces is very small, the 
quantity S x- S x is also very small, and so the difference may be written as a differ
ential

S x - S '  = d S x= - ^  dx 
x x * cx

where d S J d x  is the rate o f change o f the .v-component o f S  in the A'-direction. Thus 
the total flux in the Y-direction is given by

2.4 G auss's Law  in Differential Form

S  dS  cos 0 =  (S cos 0) dy dz =  S x dy dz

S x dv dz +  ( — S x dy dz} =  (Sx - S 1x) dy dz.

Fig. 2-12. Volume element to  evaluate 
X  G auss’s law in differential form.
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The quantity d V= dx dy dz is the volume of the box. Since similar results are obtained 
for the flux through the remaining four faces o f the volume element, the total f lux  
through the volume element is

^Sx , ZSz , (S S x d S v d S . \
ΦC =  d v d V + - z - ’ dV  =  { ^  dV.

ex cy cz  \c jc  cy cz  J

Udq  is the electric charge within the volume element. Gauss’s law gives

dSx dSy Zt?z dq
h-r·- + · + -  d V — -  . ox cy  cz  e0

Setting dq =  p dV  in the above expression where p is the density o f electric charge 
(or charge per unit volume), and canceling the common factor dV , we obtain

c1S  SSv PS. p
 b ' T—3”""=  — * (2.4)ex  cy Cz e0

This equation is Gauss’s law expressed in differential form. The expression on the 
left-hand side o f  Eq. (2.4) is called the divergence o f  S.  abbreviated div S.  so that 
Gauss’s law can be written in the compact form

div S = — . (2.5)
€o

The physical meaning of Gauss's law in its differential form is that it relates the 
electric field S  at a point in space to the charge distribution, expressed by p. at the 
same point in space; that is, the law expresses a local relation between these two
physical quantities. Thus it is correct to say that electric charges are the sources of
the electric field, and that their distribution and magnitude determine the electric 
field at each point o f space.

Example 2.6. G auss's law expressed in terms οΓ the electric potential.

▼ If we remember that the com ponents of the electric field S  are expressed in terms of the electric 
potential V b y  S x= - i  VVtbcand similar expressions for <f,,and if, (see Eq. 1.15), the rate of change 
of S x with respect to  x  may be written as

d £ x_ d  ( _ d _ V \ _  C2V
cx  ax  Is dx J Bx2

with similar results for S y and S z. W ith the substitution in Eq. (2.4), an alternate expression for 
G auss’s law is

d2V d2V B2V p
+ + “ ί  + T 2  = ------   (2-6)cx 2 dy2 VZ2 e0

an expression that is called Poisson's equation. Eq. (2.6) may be used to obtain the electric potential 
when the charge distribution is known and conversely, so long as the charge distribution is time
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independent. In free space where there are no charges, p = 0, and Eq. (2.5) becomes div <i=0, 
and Eq. (2.6) gives

C1V  PflV P1V 
c x  cy Cz

This equation is called Laplace’s equation. It is one of the most im portant equations in m athe
matical physics, and appears in many problems, such as fluid m otion and elasticity, outside the 
theory of the electromagnetic field.

The expression appearing on the left in Eqs. (2.6) and (2.7) is called the lapiacian o f V . k

= „2 4" 3,,2 E - ,  i  — 0. (2.7)

Example 2.7. Verification that the potential of a point charge satisfies Laplace’s equation, Eq. 
(2.7), at all points except at the origin where the charge is located.

T The potential of a point charge is V=q/4ne0r according to Eq. (1.20). Now r2 = X 2 + y 2 + z 1 
so that taking the partial derivative of r relative to x  yields

f d r \  .
- —  -

V xJ
2 r [ j f - )  = 2x  or = - .

cx r

Therefore with the value of dx/dr known, the partial derivative of (I /r) with respect to x is

Similarly,

Then

l \ _  I cr _  x
r'j r2 Px r1 '

P2 f \ \  P f  x \  I 3x Pr I 3x2
Px2 \ r J  d x \  r3/  r 3 rA Px r 3 +  r3

P2 f \ \  P2 P2 f \ \  I i Hx 2 + 
Jx2 \ r } + dy1 \ r )  + dz2 \ r ) ~  r 3 +  f

^ 2U
cx

M ultiplying this result by q/4jte0 yields Eq. (2.7). This mathem atical method is not valid for r =  0 
because the function 1/r goes to infinity at that point, and taking derivatives there is not allowed: 
therefore the origin must be excluded from the calculation. A

Example 2.8. Using Laplace’s equation, obtain the electric potential and the electric field in the 
empty region between two infinite parallel planes charged to potentials K1 and V2.

T The symmetry of the problem suggests that the field must depend only on the x-coordinate 
(Fig. 2-13). Therefore since there are no charges in the space between the planes, we may apply 
Laplace’s equation. Eq. (2.7), giving (I2VhIx2=O N ote that the partial derivative notation is 
not used because there is only one independent variable, x. Integrating Laplace’s equation once 
gives riK/dx =  const; but the electric field is S =  -d V /d x .  Therefore the electric field between the 
planes is constant. Again integrating and using the expression S  =  — dV/dx  (keeping in mind that 
S  is constant), we get
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Figure 2-13 A'

r v = - r
J k1 -U

S  dx = - * f dx,

an equation that gives F - F 1 =  - I f ( X - X 1)Or F = F 1- I f ( X - X 1).
This result shows that the electric potential varies linearly with the distance x. Setting x = x 2. 

we have V= V1. Therefore

if = V z-V 1 V2- V 1

These results arc in agreem ent with our previous discussion (Section 1.6) leading to Eq. (1.19) 
since 4 = X 2- X 1 is the separation of the planes. Com paring the results of this example with those 
of Example 2.3 shows tha t two uniformly charged planes produced the uniform electric field 
seen here, t

Example 2.9. Assuming that there is a uniform charge distribution between the planes, solve the 
same problem as in Example 2.8. The planes are still at electric potentials F1 and V2, respectively. 
(This may be, for example, the situation between the plates of a vacuum tube.l

T For this case Poisso n’s equation, Eq. (2.6), must be used. Because of the symmetry of the 
problem, the potential depends only on the coordinate x; d2V jdx2 =  — p/ea, with p = co n s t. 
Integration gives

I*1 Al TU d 2 V , I f * .  P r ,I —= j d x =  p d x =  I ax,
Jx1 e x  e0 J 11 e0 J 11

which results in

dV ( d V \

or
dx  ViixA=Xl i 0 ,X X,)

1 ~ - ^ 70{χ~ Χι) (18)
where If1 =  — {dV/dx)x=Xi is the electric field at x = x p Since S' = —dVjdx,  the field between the 
planes is

S  = S  J + — I x - X 1),
i O
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showing that the electric field varies linearly with x  as illustrated in Fig. 2-14. After integration 
of Eq. (2.8) to obtain the electric potential as a function of x.

r dv= -  r / , i f * - ' fV x 1I i* ,
Jv i J ti Jjfi

we gel

F =  F1 — if I (x — X1) — ~  (X -X 1)2. (2.9)
- f O

The electric potential varies quadratically with x as shown also in Fig 2-14, i>

2.5 The Polarization of Matter

Dielectrics

In this section the effect of an electric field on a piece o f matter will be considered. 
Recall that atoms do not have permanent electric dipole moments because of their 
spherical symmetry; however when they are placed in an electric field, they become 
polarized, acquiring induced electric dipole moments in the direction o f the field. 
This polarization results from the perturbation o f the motion of the electrons pro
duced by the applied electric field.

On the other hand, many molecules do have permanent electric dipole moments. 
A molecule with a permanent electric dipole moment tends to be oriented parallel 
to the applied electric field because o f the torque it experiences [given by Eq. (1.36)]. 
As a consequence o f either o f these two effects, a piece o f matter placed in an electric 
field becomes electrically polarized. That is, the molecules (or atomsl become electric 
dipoles oriented in the direction o f the local electric held (Fig. 2-15) because o f either 
the distortion o f the electronic motion or the orientation o f their permanent dipoles.
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Fig. 2-15. Polarization of m atter by an electric field.

A medium that can be polarized by an electric field is called a dielectric. The polariza
tion gives rise to a net positive charge on one side o f the piece o f  matter and a net 
negative charge on the opposite side. The piece o f matter then becomes a large 
electric dipole that tends to move in the direction in which the field increases as 
discussed in Section 1.10. This tendency explains the phenomenon (described in 
Section I. I) in which an electrified glass rod or a cornb attracts small pieces o f paper 
or a cork ball.

The polarization P  o f a material is defined as the electric dipole moment o f  the 
medium per unit volume. Therefore if  p is the dipole moment induced in each atom  
or molecule and n is the number o f atoms or molecules per unit volume, the polariza
tion is P = n p .  For most dielectrics P  is proportional to the applied electric field S. 
Since P  is measured in (C m)m-3  =  C m "2, or charge per unit area, and since e0S  
is also measured in C m" 2 [cf. Eq. (1.8)], it is customary to write

? = X ee0S .  (2 .1 0 )

The quantity χρ is called the electric susceptibility o f the material. The electric suscepti
bility is a pure number and is a positive quantity for most substances. The electric 
susceptibility describes the response o f the material to an external electric field.
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Fig. 2-16. A slab o f polarized metal. Fig. 2-17. The electric field within a conduc
to r is zero.

Consider now a slab of material of thickness I and surface area S placed perpendicu
lar to a uniform field S  (Fig. 2-16). The polarization J0, being parallel to is also 
perpendicular to S. The volume o f the slab is IS, and therefore its total electric dipole 
moment by definition is SP(ZS) =  (^ S )/; but I is just the separation between the positive 
and negative charges that appear on the two surfaces. Since again by definition the 
electric dipole moment is equal to charge times distance, the total electric charge 
that appears on each o f the surfaces is sPS. and therefore the charge per unit area on 
the faces o f  the polarized slab is Si*. Although obtained for a particular geometrical 
arrangement, this result has general validity; and

the charge per unit area on the surface o f  polarized matter, is equal 
to the component o f  the polarization & in the direction of the normal to 
the surface o f  the body.

Therefore in Fig. 2-15. the charge per unit area on the surface at A is^ ,v cos Θ =  a 9 .

Conductors

Some materials, such as most metals, contain charged particles that can move more 
or less freely through the medium. These materials are called conductors. In the 
presence o f an electric field they are also polarized but in a way that is essentially 
different from the polarization o f dielectrics. Unless properly removed, the mobile 
charges in a conductor accumulate on the surface until the field they produce com
pletely cancels the external applied field within the conductor and thereby produces 
equilibrium (Fig. 2-17). That is, inside a conductor that is in electrical equilibrium, 
the electric field is zero. For the same reason the electric field at the surface must be 
normal to the surface since if there is a parallel component, the charges will move 
along the surface of the conductor. Furthermore because the field inside the con
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d u c to r  is z e ro , all p o in ts  o f  a conduc tor  th a t  is in equ il ibr ium  m u s t  be a t  the  sa m e  
electrical p o ten t ia l .  B ecau se  th e  e le c tr ic  fie ld  in s id e  th e  c o n d u c to r  is z e ro  it a lso  
fo llow s th a t  d iv  S = 0 \  a n d  th e re fo re  G a u s s ’s law  in  d iffe ren tia l fo rm , E q . 12.51 
e jves p -  0 ;  a n d  th u s  th e  ch a rg e  d e n s ity  w ith in  th e  v o lu m e  o f  th e  c o n d u c to r  is  z e ro . 
T h a t  s ta te m e n t m e a n s  th a t  the  en tire  e lec tr ic  charge o f  a condu c to r  in equ il ibr ium  
resides on the sur face  o f  the conductor .  “ S u rfa c e "  a s  u sed  h e re  re fe rs  n o t to  a n  in fin i- 
tes im allv  th in  su rfa c e  in  th e  g e o m e tr ic  sen se , b u t r a th e r  to  a  su r fa c e  re g io n  sev e ra l 
a to m ic  lay e rs  th ic k ;  i.e ., a  re a l fin ite  su rfa c e .

Example 2.10. Relation between the electric field at the surface of a conductor and the surface 
electric charge.

V Consider a conductor of arbitrary shape as in Fig. 2-18, To find the electric field a t a point 
immediately outside the surface of the conductor, we construct a flat cylindrical surface similar 
to a pillbox, with one base immediately outside the surface of the conductor and the other base 
at a depth such that all the surface charge is within the cylinder and the electric field is already 
zero at the inner surface. The electric flux through that surface is composed of three term s: the 
flux through the inner base is zero because the field is zero; the flux through the side is zero because 
the field is tangent to  this surface: the flux through its outer base is all that remains. Given that the 
area of the base is S. the electric flux is <Pe = S S .  On the other hand it <r is the surface charge density 
of the conductor, the charge within the cylinder is q =  aS. Therefore from G auss’s law S S = o S /e 0, o r

<? =  er/f0. (2.11)

This equation gives the electric field at a point immediately outside the surface of a charged con
ductor while the field inside is zero. Therefore as the surface of a charged conductor is crossed, 
the electric field varies in some continuous m anner such as illustrated in Fig. 2-19. A

Vacuum

Conductor

Fig. 2-18. The electric field at the surface 
of a conductor is norm al to  the surface.

Fig. 2-19. Variation o f the electric field when 
crossing the surface o f a conductor.
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Example 2.11. D eterm ination of the force per unit area on the charges on the surface of a  con
ductor.

T Each charge on the surface of a conductor is subject to  a  repulsive force because of the other 
charges present on the surface. The force per unit area, o r electric stress, can be computed by 
multiplying the average electric field by the charge per un it area. From Fig. 2-19. the average 
field is S awz= a  Ie0. Therefore the electric stress is

In the preceding section it was shown that a polarized dielectric has certain charges on 
its surface (and also throughout its volume unless the polarization is uniform). These 
polarization charges, however, are ‘frozen” in that they are bound to specific atoms 
or molecules and are not free to move through the dielectric. In other materials, 
such as a metal or an ionized gas, there may be electric charges capable o f  moving 
through the material, and therefore called free  charges. In many instances a clear 
distinction between free charges and polarization charges must be made. The dis
cussion in this section is a case in point.

Again consider a slab of a dielectric material placed between two conducting 
parallel plates (Fig. 2-20), carrying equal and opposite free charges. The surface 
charge density on the left-hand plate is T n rree and on the right-hand plate is — n free. 
These charges produce an electric field that polarizes the slab so that polarization 
charges appear on each surface of the slab. These polarization charges have a sign

2.6 Electric Displacem ent

■

+
+
+
+
+
+
+

Fig. 2-20. Dielectric placed between oppositely charged 
plates. The charges on the plates are free charges and the 
charges on the dielectric surfaces are bound polarization 
charges.
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opposite to that of the adjacent plate. Therefore the polarization charges on the 
faces o f Lhe dielectric slab partially balance the free charges on the conducting plates. 
Given that EA is the magnitude of the polarization in the slab, the surface charge 
density is — EA on the left face o f the slab and + S p on the right face. The effective, 
or net, surface charge density on the left is σ =  Ufree —EA, with an equal and opposite  
result on the right. These net surface charges give rise to a uniform electric field that 
according to Eq. (2.11), is given by S = a , e 0. Thus using the effective value o f  σ. 
we have

an expression that gives the free charges on the surface o f  a conductor surrounded 
by a dielectric in terms o f the electric field in the dielectric and the polarization o f the 
dielectric. The result above suggests the introduction o f a new vector field, which is 
called the electric displacement, defined by

Obviously B  is expressed in C m -2 since this is the unit o f the two terms that appear 
on the right-hand side o f Eq. (2.12). In the special case considered here, Ufree = 2 :  
that is, the free charges per unit area on the surface o f the conductor are equal to 
the electric displacement in the dielectric. This result has general validity and may be 
extended to conductors of any shape. Thus the component o f  Q  along the normal 
to the surface of a conductor embedded in a dielectric gives the surface charge density  
on the conductor. That is.

while the normal component o f  e0S  gives the effective or net charge, which takes into  
account the compensation due to the charges on the surface of the dielectric [recall 
Eq. (2.11), S =  OiC0]. That is, a = e 0S -u N. The total free charge on a conductor is then

A more detailed analysis, omitted here, indicates that the flux of B  over any closed 
surface is equal to the total 'free’’ charge inside the surface, excluding all charges caused 
by the polarization of the medium. Therefore Eq. (2.13) has general validity for any 
closed surface.

For cases in which Eq. (2.10) holds so that the polarization is directly proportional 
to the electric field,

((Tftee -EA) or Ufree =  C0S  +  EA,

B  =  C0S  + -B . (2 . 12)

Ufr* =  S - H n

B  =  C0S HC0At S = [  I + yfi \e0S  =  e S (2.14)

where the coefficient
Θ

c =  ^  =  (I-I-Z r)eO (2 .1 5 )
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is called the permittivity o f the medium and is expressed in the same units as e0 ; 
that is. m ' 3 kg“ 1 s2 C2. The relative permittivity is defined as

er =  Te0 =  I + I t,. (2.16)

and is a pure number, independent of any system o f units. The relative permittivity 
is also called the dielectric constant. For most substances it is larger than one.

When the relation © =  etf holds for a medium, Eq. (2.13) may be written as 
t/frec—ί  cS-uy  dS and, if the medium is homogeneous so that e is constant,

(Di = J t f .  U y d S = ^ 1 .

Comparing Eq. (2.17) with Eq. (2.3) shows that the effect o f the dielectric on the 
electric field tf is to replace e0 by e if  only the free charges are taken into account. 
Therefore the electric field and the electric potential produced by a point charge 
embedded in a dielectric are

q " and ( '= —— . (2.18)
Aner ~ r 4 π « ·

The magnitude o f the force o f interaction between two point charges embedded 
in a dielectric is then

F = - P H -  (2.1.9)Aner

Since e is  in general larger than e0, the presence o f the dielectric effectively reduces 
the interaction because o f the screening caused by the polarization o f the molecules 
of the dielectric.

2.7 Calculation of Electric Susceptibility

The concept of electric susceptibility χν was introduced to describe the response o f a 
substance to the action o f an external field. The electric susceptibility o f a substance 
must be related to the properties o f the atoms and the molecules o f the substance. 
This section will be a brief investigation o f how this property, o f macroscopic charac
ter. is related to the atomic properties o f the substance.

As seen before, an atom placed in an electric field becomes polarized because o f a 
relative displacement o f the positive and the negative charges. If p is the electric 
dipole moment induced in the atom by an external field tf, and if p is assumed pro
portional to tf. a result confirmed by experience, the proportionality may be written

P=Cte0S  (2.20)

where a is a constant characteristic of each atom, is called polarizability, and is ex
pressed in m 3. The constant e0 is written into the equation explicitly for con
venience. If there are n atoms or molecules per unit volume, the polarization o f the
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medium is ^ = I i p  =  Hae0S.  Comparison with Eq. (2.10) for the electric susceptibility 
of the material* gives y c = n a .

Thus the calculation o f the electric susceptibility reduces to the calculation o f the 
polarizability o f  the atoms (or molecules) of the substance. This calculation amounts 
to determining the effect o f an external field on the motion o f atomic electrons; but 
that determination in turn requires that some detailed information about the 
electronic motion in an atom must be available. The calculation o f the perturbative 
effect of the external field must be carried out using the techniques of quantum me
chanics and is thus beyond the scope of this book. Therefore only the main results, 
separating the effect for nonpolar substances from that for polar substances, will be 
presented.

Distortion effect

When the atoms or the molecules of a substance do not have a permanent electric 
dipole moment, polarization arises entirely from the distortion effect produced by 
the electric field on the electronic orbits. This effect may be described as a displace
ment of the center o f the electronic charge distribution relative to the nucleus. The 
result is an induced electric dipole that in atoms and most molecules is parallel to the 
applied electric field.

Each atom (or molecule) has a characteristic set of frequencies ω ί2 ω2, ω3, . . .  
corresponding to the frequencies o f the electromagnetic radiation that the substance 
can emit or absorb. These frequencies constitute the e lec trom agnetic  spec trum  of the 
substance. The atomic polarizability when the electric field is constant is called the 
sta tic  p o la r iza b i l i ty  and is given by the expression

e 2 f-
κ = 7 ^ γ Σ 4  (2 .21)e0mz i Mi

where ω; refers to any of the resonant frequencies of the electromagnetic spectrum of 
the substance, and the summation extends over all these frequencies. The quantities 
designated by j \  are called the osci l la tor  s t reng th s  o f the substance, They are all 
positive and smaller than one, and represent the relative proportion in which each 
οΓ the resonant frequencies of the spectrum contributes to the polarizability of the 
atom. These oscillator strengths satisfy the relation Σ,· J] =  I. The other quantities in 
Eq. (2.21) have their standard meanings.

The presence o f  a frequency associated with an effect produced by a static field 
may puzzle a student, but can be justified by using a very simple phenomenological 
model as will be indicated in Example 2.12.

iftStriclIy speaking, when Eq. (2.20) is written for an atom  or molecule that is embedded in a 
material medium and is not isolated, the electric field appearing on the right-hand side of the 
equation m ust be the resultant electric field in the medium minus the electric field produced by 
lhe atom itself. W hen this correction is included, the relation between / r and a becomes /, .=  
<ia/( I — na/3). However for most materials (mainly gases) the relation ye = na is a good approxim a
tion.



Static Electric Field

From the relation Ze=HK, the static electric susceptibility is

y = - — T  ^ = 3 .1 9  x  IO3H Y  A  , (2 22)
CYh T  ω? T  c-;2

This expression relates a macroscopic property, ye, to the atomic properties η, ω ;,
and o f the substance. These results will now be compared with experiment. If the 
radiation of the atom falls in the visible region, the frequencies ω; are of the order of 
5 x IO15 Hz so that the summation that appears in Eq, (2.22) is of the order 
of 4 x 10 32. Also n is o f the order o f IO28 atoms per cubic meter for most solids and 
liquids and about IO25 atom s/m 3 for gases at STP. Therefore Eq. (2.22) shows that 
the sialic electric susceptibility ye of nonpolar materials that radiate in the visible 
region is ofthe order of 10° (or one) for solids and 10“ 3 for gases. Sincethese estimates 
are very crude, a precise reproduction o f experimental results should not be expected. 
However, comparison with experimental values o f  the electric susceptibility for a 
few materials as given in Table 2-1 shows agreement insofar as the order of magnitude 
is concerned.

The foregoing discussion is valid only for static fields. I fa  field is time dependent, 
the dynamicpolarizabiiity should be different from the static value because the distor
tion of the electronic motion under a time-dependent electric field will obviously be 
different from that for a static electric field. Assume that the electric field oscillates 
with a definite Frequency co. This oscillating field will superpose an oscillatory per
turbation on the natural motion o f the electrons; this perturbation is analogous to 
the forced oscillations discussed in Section 12.13 o f Volume I *  When damping is 
not considered, the result o f the calculation, using the techniques o f quantum mech
anics, gives the dynamic susceptibility as

ne2 f.
'U = -------1  /  3 (2.23)

C Y h  / ο ή - ω 2

where all quantities have the meanings previously stated. A simple phenomenological 
justification o f this result is given in Example 2.12. Note that the dynamic result 
(2.23) reduces to the static case, Eq. (2.22), if ω =  0.

The dielectric constant or relative permittivity of the medium, from F.q. (2.23), 
is in the dynamic case

ξ· =  1+Ζί· =  1+  ' Σ — —2- (2-24)e0me Y  (>η —co

If the permitivity er is plotted against to. it is seen that er is infinite for co equal to each 
characteristic frequency ω ;, in contradiction to observation. This unphysical result is 
due to the exclusion o f a damping term when the dynamic susceptibility was calcu
lated. The damping that occurs is not due to the electron moving in a viscous fluid;

*See Volume I. C hapter 12, for a discussion of free and Ioiced oscillators.
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Table 2-1. Electiic Susceptibilities at Room Temperature

Substance L- Substance L

Solids Genes*
Mica 5 Hydrogen 5 .0 x 1 0  4
Porcelain 6 Helium 0.6 x IO '4
G lass 8 N itrogen 5 .5 x 1 0  4
Bakelite 4.7 Oxygen 5 .0 x 1 0 "*

Argon 5 .2 x 1 0  4
Liquids C arbon dioxide 9.2 x I O '4

Oil i.t W ater vapor 7.0 x 1 0 '3
Turpentine 1.2 Air 5.4 x IO '4
Benzene 1.84 Air (10 M Pal 5 .5 x 1 0  2
Alcohol (ethyl) 24
W ater 78

* At STP (100k Pa and 298 Kl.

rather the damping corresponds to the energy lost by the electron as radiation as a 
result o f the forced oscillations. (This point will be discussed later).

The observed variation o f er in terms o f ω is illustrated in Fig. 2-21. The pattern 
repeats itself for the characteristic frequencies Co1, ω 2, ω 3, . . .  o f each substance. 
This variation has a profound influence on the optical and electrical behavior o f the 
substance.

Fig. 2-21. V ariation o f  relative perm ittivity as a function o f the frequency o f the electric field. 
Fhe dashed line is the value predicted by Eq. (2.24); the solid line shows the typical observed 
behavior o f a medium.
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(a) No field (b) Electric field (c) Electric field
w ithout molecular with molecular
interactions interactions

Fig. 2-22. O rientation o f electric dipoles in an electric field.

Molecules with permanent dipole moment

The susceptibilities obtained in Eqs. (2.22) and (2.23) are "induced” because they 
result from a distortion of the electronic motion by an external field. However when 
molecules have a permanent electric dipole moment, another effect enters into play. 
Consider a polar gas whose molecules have a permanent dipole moment p0. In the 
absence o f  any external electric field, these dipole moments are oriented at random, 
and no macroscopic or collective dipole moment is observed (Fig. 2-22). However 
when a static electric field is applied, the electric dipoles tend to orient in the direction 
of the field. The alignment would be perfect in the absence of molecular inter
actions (Fig. 2-22b); but molecular collisions tend to disarrange the electric dipoles. 
The disarrangement is not complete because the applied electric field favors orienta
tion along the field over orientation against it (Fig. 2-22c). As a result, the average 
value of the component o f the electric dipole moment o f a molecule parallel to the 
electric field is given by

(2-25)
3 k T

where k is the Boltzmann constant and T  is the absolute temperature o f the gas. 
Note that pavc decreases when the temperature increases. This temperature depen
dence occurs because molecular agitation increases with an increase in temperature; 
the more rapidly the molecules move about, the more effective they become in offset
ting the aligning effect of the applied electric field. A decreased average dipole moment 
along the field direction results.

From a comparison o f Eq. (2.25) with Eq. (2.20) the average or effective, polariz- 
abilily o f a molecule is given by <x=pl/3e0kT ;  and if there are « molecules per unit 
volume, the effective susceptibility xe—ntx is*

y = - ^ -  (2 26)
Xe 3e0k T  ’ [ ’

*The relations given in Eqs. (2.25) and (2.26) are good approxim ations only when p0£/kT<i  I.
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a result known as Langevin's formula. The molecular electric dipole moments are 
of the order o f magnitude o f the electronic charge (1.6 x 10 ' 19 C) multiplied by the 
molecular dimensions (10 10 m), or about 1 0 '30 C m (remember Table 1-2). If the 
values of the other constants are introduced into Eq. (2.26), at room temperature 
j j-= 298 K) the electric susceptibility o f a substance composed o f polar molecules is 
aaain of the order of 10° (or one) for solids and IO '3 for gases, a result in agreement 
with the values for most polar gases.

Note that the electric susceptibility caused by the orientation o f molecules with 
p e rm an en t dipole moments is inversely proportional to the absolute temperature 
while the induced electric susceptibility due to the distortion of electronic motion in 
atoms or molecules, Eq. (2.22), is essentially temperature independent except that n 
varies with temperature because o f thermal expansion. This difference in temperature 
dependence offers a means o f  separating the two effects experimentally. A temper
ature dependence o f  the form

, BXe= A  + -

should be expected in measuring ye at different temperatures. When the electric field 
is time dependent, a more complex result is obtained.

A special class of substances called ferroelectrics exhibit a permanent polarization 
in the absence of an external electric field; this characteristic suggests a natural 
tendency for the permanent dipoles of their molecules to align. The alignment prob
ably results from the mutual interactions of the molecules producing strong local 
fields that favor alignment. Among the better-known ferroelectric substances are 
BaTiO3, K N bO 3, LiTaO3. and Rochelle salt; NaKlC4H 4O 6M H 2O.

Example 2.12. Polarization of an atom  because of an external electric field.

▼ From an oversimplified and phenomenological model an attem pt will be m ade to determine 
the effect an external electric field produces on the electronic m otion in atoms.

Suppose that when the center of the electronic m otion is displaced a distance x  relative to the 
nucleus, an average force — kx  acts on the electron. This force tends to restore the electron to 
the normal configuration. Equilibrium requires that this force balance the force —e S  caused by 
the applied electric field. Therefore - k x - e S - 0  or x =  - e S j k .  The negative sign indicates that 
the electron’s orbit is displaced in the direction opposite to that of the electric field. The electric 
dipole moment induced in the atom bv the perturbation of the electronic m otion is p = —ex =  
Iel ik)S, and thus is in the same direction as the electric field. This relation may be expressed in a 
slightly different m anner by associating a frequency ru0 with the constant k, corresponding to 
harmonic oscillations; that is, k = m ea>g. Then in vector form

When this result is compared with the definition given in Eq. (2.20), the atom ic polarizability for
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this simple model is

£0'" ?ω ο

From the relation χ,, =  ηα, the static electric susceptibility is
2

Ze= '% = ( 3 . 1 9 x 103) - V  (2.2-7)
B0ITItWo ω 0

If the model is to have physical meaning, the frequency co0 must be identified with some atom ic 
property. When the field S  is removed, the restoring force — kx  superposes on the natural m otion 
of the electron an oscillation of frequency ru0. Later on. in C hapter 11 it will be shown that an 
oscillating charge radiates energy. Thus cu0 may be identified with the frequency of the radiation 
emitted by the atom . Hence if the spectrum of the substance contains only one frequency co0, 
the model basically coincides with Eq. (2.21).

Now consider the time-dependent case in which the applied electric field varies with time 
according to S  = S 0 cos cut. It is then reasonable to assume that an oscillatory perturbation is 
superposed on the natural m otion of the electron and results in an equation of m otion given by

,/-Y
IiIr , =  — k x —e S 0 cos cut (2.28)at~

where the last term is the force produced by the oscillating field. If Jc=wetuj, the equation above 
may be written in the form

+ cu ib c=  — 6̂ -C O S  cut. (2.29)
(it Ulc

This equation describes forced oscillations of a harm onic oscillator.* (The main difference from 
the analysis of a forced oscillation in Volume I is that here there is no damping term.) Assume a
solution of the form x = A  cos cot: when substituted into Eq. (2.29), this solution gives
A =  —e S 0/(cuo—co2). Therefore

a fj
. S n cos cot =   —s-----=7 S

Hle( C t ) J -  CO2) 0 JI1c(f d J —  CO2) '

since S = S 0 cos on. The induced electric dipole is

e2
P = - e x = — —j------T S ,

n y co j—o r)

from which the dynamic polarizability of the atom  is

T
CuIlieICuJ — CO

T o obtain the dynamic susceptibility, again use the relation X11=HK and find that

_ ,wl
A Jl IdyllBTnia Cu IIJ e(C t ) J  —  CU2 )  '  (2.31)

which is essentially identical to Eq. (2.23) if there is only one resonant frequency cu0 in the electro

*See Volume I. Section 12-13.
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magnetic spectrum of the substance. Once m ore note that the crude phenomenological model 
cannot give precise results. O ne of the reasons is the assumption of a single natural frequency oj0 
as in the static case. Another reason is that the electron s m otion follows the laws of quantum  
mechanics rather than newtonian mechanics, a fact that has been ignored here. A

2.8 Electric Capacitance; Capacitors

It has been proved (Section 1.6) that the electric potential at the surface of a spherical 
conductor of radius R and charge Q is V=QjAnE0R. If the sphere is surrounded by a 
dielectric. E0 is replaced by e :

The relation Q iV  for the sphere is then AneR, a constant quantity, independent of 
the charge Q. This constancy is understandable because if the potential is propor
tional to the charge producing it, the ratio o f the two must be a constant. This last 
statement is valid for all charged conductors of any geometrical shape. Accordingly, 
the electric capacitance o f  an isolated conductor is defined as the ratio of its charge 
to its potential:

C =  | . (2.32)

This equation indicates how much charge is stored on a conductor for a given electric 
potential

The capacitance o f an isolated spherical conductor may be written as

Cphcc- AneR.

If the sphere is surrounded by vacuum instead of a dielectric, its capacitance is 
CphcTc=  4πί0/?. Therefore surrounding a sphere and in general any conductor by a 
dielectric increases its electric capacitance by the factor e/e0 because οΓ the screening 
effect o f the opposite charges that have been induced on the surface o f the dielectric 
adjacent to the conductor. These charges reduce the effective charge of the conductor 
and decrease the potential of the conductor by the same factor.

The capacitance o f a conductor is expressed in C V - 1 , a unit called the farad  
'T jin  honor of the Englishman Michael Faraday (1791 1867). The farad is defined 
as the capacitance o f an isolated conductor whose electric potential is one volt after 
the conductor receives a charge o f one coulomb. In terms of the fundamental units, 
F = C  V 1=  itT 2 kg-1 s2 C2.

The concept o f electric capacitance can be extended to a system o f conductors. 
Consider the case o f two conductors having charges Q and —Q (Fig. 2-23). If F 1
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Fig. 2-23. System o f two conductors 
with equal but opposite charges.

and V1 are their respective potentials so that Δ V =  V1 — V2 ia their potential difference., 
the capacitance o f the system is defined as

C =
V1- V 1 AV

(2.33)

This arrangement constitutes what is defined as a capacitor. Capacitors have wide 
application in electric circuits. A typical capacitor is formed by two parallel plane 
conductors separated a distance d, with the space between them filled by a dielectric 
(Fig. 2-24). The electric field in the space between the conductors is uniform and is

Fig. 2-24. Parallel plate capacitor.
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given by S  =  IV1 -  according to Eq. (1.19). When σ is the surface charge density 
on the plates according to Example 2.2, the intensity o f the electric field in the space 
between the plates is S =  σ. e where e0 has been replaced by 6 because o f the presence 
of a dielectric. Therefore

V 1 - V 2 =  S d = ^ .

On the other hand if S  is the area o f the metal plates, it then follows that Q = a S .  
Therefore with the substitutions made in Eq. (2.33), the capacitance o f the system is

eS 
~d '

aS
C = - 6- = -  -

A V  (adje)
(2.34)

This equation suggests a practical means for measuring the permittivity or the dielec
tric constant o f a material. First measure the capacitance o f a capacitor with no 
material between the plates:

_ £ 0 S  
L 0 -  d  .

Next fill the space between the plates with the material being investigated, and 
measure the new capacitance, given by Eq. (2.34). Then

C e 

0 o “ fo “ er'
Therefore the ratio o f the two capacitances gives the relative permittivity or dielectric 
constant of the material placed between the plates.

Example 2.13. Combinations of capacitors.

Ir Capacitors can be combined in two kinds of arrangements; series and parallel. In the series 
combination (see Fig. 2-25a) the negative plate of one capacitor is connected to the positive of the

Ci
J  L 
>11

c,

+ Q " -Q  +Q'
Al, AF

Q +<?"- 
AF,

 AF

Cn
I I

+G 11-Q
AF

( a )

+Gi 
A V  c Im 

- G 1

+Q2
— C2 Z

-G 2

+Q3
— C3 Z

-Q s

+Qn
Z  C112: 

-G,,
I  (b)

Fig. 2-25. Series and parallel arrangements of capacitors.
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next, and so on. As a result, all capacitors carry the same charge, positive or negative, on then
plates. Call A I1, Al·,, AKn the potential differences across each capacitor, ff C1, C2,  Cn
are their respective capacitances, then ΔV1=QjCl, Δ K2=QIC2. . . . .  AVn=Q Cn. Thus the overall 
potential difference is

ΔΚ =δκ1+ δκ2 + ··· + δκ , = Ι —K c +C+- - T ) 0
The system can be equated to a single capacitor whose capacitance C satisfies the relation 
Δ K= QjC. Therefore

h=r+k*'"+h  (235}
which gives the resultant capacitance for a series arrangement οΓcapacitors.

In the parallel combination (Fig. 2-25b) all positive plates are connected to a common point 
and the negative plates are also connected to another common point so that the potential differ
ence AI is the same for all the capacitors. Thus if their charges are Qi, Q2, ■ ■ ■, Q11, we must have 
QI = C 1AK Q5 =  C2AK Qn=C nAK The total charge on the system is

Q = QiTQ2+ " '  +Qn=(Ci+Cj+-·· +CrlIAK
The system can be equated to a single capacitor whose capacitance C satisfies the relation Q = CA K 
Therefore

C =  C1+C 2 + - - - +C„ (2.361

gives the resultant capacitance for a parallel arrangement of capacitors. It is possible to make 
combinations of capacitors in series and parallel. The resultant capacitance of the combination 
may usually be worked through, subnetwork by subnetwork, by using the rules developed in 
this example. A

2.9 Energy of the Electric Field

Charging a conductor requires expending energy because to bring more charge to 
a conductor, work must be done to overcome the repulsion o f the charge already 
present. This work results in an increase in the energy o f the conductor. For example 
consider a conductor o f capacitance C  having a charge q. The electric potential o f 
the capacitor is V = q jC .  If a charge dq is added to the conductor by bringing it from 
infinity to the plates, the work done is dW =  Vdq according to Eq. (1.24). This work 
is equal to the increase in energy dEt  o f the conductor. Therefore with the value of 
V, the change in energy is

When the charge is increased from zero to the value Q, the total increase in energy 
of the conductor equals the work done during the process and
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I
E '  =  C

' Q  0 2

(2.37)
0

por the case of a spherical conductor, C -A n eR .  and the energy is

I (  Q 2 \
Ε· =  2 \ ^ r ) ·

The energy o f a charged sphere can be related to the electric field o f the charged 
sphere in a very interesting way. The magnitude of the electric field of a spherical 
charged conductor at a distance r, larger than its radius, is

<■ —  Q -  
4ner2

The integral o f S 2 over all the volume exterior to the sphere will now be calculated. 
To obtain the volume element for the integration, divide the outer space into lhin 
spherical shells o f  radius r and thickness dr (Fig. 2-26). The surface area o f each 
shell is 4πΓ2. and its volume is dv =area x thickness= 4 n r 2 dr. Therefore

T V lic, Π . e,f 4„>dr) ? r f f -S L .
Jr Jr \ 4 ner2 1 4Tie2 J fi r2 4n t2R

Comparison of this result with Eq. (2.38) shows that the energy of a charged spherical 
conductor may be written as

Ee =Jl C f  S 2 dv.
J r

A more general mathematical calculation indicates that this result has general 
validity, and the energy required to assemble a system of charges can thus be ex
pressed as

Ee =  ye j Au space S 2 dv. (2.39)

Figure
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This expression may be given an important physical interpretation. We may say that 
the energy spent in assembling the charges has been stored in the surrounding space 
so that each infinitesimal volume dv has a corresponding energy \ c S 2 dv. Hence the 
energy per unit volume, or energy density Ee “stored” in the electric field, is

E e =  ^ 2 . ( 2 . 4 0 )

This interpretation o f the energy o f a system of charged particles distributed through
out all the space where the electric field is present is very useful in the discussion οΓ 
many processes.

Example 2.14, The energy required to assemble a spherical charge distributed uniformly through
out the volume of ihe sphere (Fig. 2-27).

T Call R the radius of the sphere and Q the charge that is distributed uniformly throughout its 
volume (Fig. 2-27). Divide the volume of the sphere into a series of thin spherical shells of increasing 
radius from zero up to the radius R of the sphere. Imagine that the spherical distribution of charge 
has been built in an onionlike fashion by adding successive spherical shells until the final radius 
is attained. To com pute the total energy of the spherical charge distribution, we sum the energy 
spent in adding each of the shells.

The charge density throughout the sphere is

O
P = 4teR M '

When the radius of the sphere is r, the charge q contained in it is

q = p ( in r f  =  ̂  (2.41)

and the electric potential at this surface is

q Qr7
V-.

4jre0r Are0R '

To increase the radius by the am ount dr by adding a new shell requires adding a charge dq. The 
quantity dq is obtained by differentiating Eq. (2.41) to  yield

i ^Qr2 dd = - R i dr.

The energy required to add this charge to the sphere is

30 2r4

The total energy required to build up the charge to its final value is then
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Figure

The integration yields

(2.42)

a result that differs from Eq. (2.38). The reason is that when Eq, (2.38) was derived, the charge was 
added to a sphere of constant radius, while for Eq. (2.42) a sphere charged uniformly throughout 
its volume was produced by adding successive layers until the final size was attained. We leave 
it to the student to  verify that in this case relation (2.39) still holds, but the energy associated with 
the electric field inside the sphere must be included in the com putation.

An interesting application of Eq. (2.42) is to estimate the electric (or coulomb) energy of a 
nucleus. If the nuclear charge is Q = Ze,

However in the case of a nucleus composed of protons and neutrons, there is not a uniform 
distribution of the charge throughout the volume of the sphere. The charge is only on the protons, 
and a m ore careful analysis yields a slightly different result, in which Z 2 is replaced bv Z iZ  — I). A

Example 2.15. The “radius” of the electron.

▼ There is very little known about the geometrical shape of an electron. AU that can be said for 
certain is that an electron is a negatively charged particle of charge — e. We are interested in 
estimating the size of the region where that charge is concentrated. To simplify the calculation, 
assume that the electron is a sphere of radius R. We may com pute its electrical energy by using 
the methods above after m aking some assum ptions about how the charge is distributed over the 
volume of the electron. For example if the electron resemhles a solid sphere of radius R  and has a 
uniform charge density with charge —e, the energy will be

This energy may be compared to the rest mass energy n^c2 of the electron. If the two energies are

1 c 5 4ne0R
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equated, then

, 3 η ιχ  -  . R = ] { 4 1- ) -  2 12 44) J \47ieB/  msc

This expression gives the radius of the electron according to the model chosen. Ifinstead  of being 
a uniformly charged sphere, the electron is assumed to be charged only on its surface, Eq. (2.37) 
must be used for the energy. The expression obtained for the radius is similar to Eq. (2.44), but 
with the factor y replaced by the factor Since the electron probably does not correspond to 
either of these models, it is custom ary to  adopt as the definition of the radius of the electron the 
quantity

!*„= ------ ] -------=  2.8178 x IO "1 ■ m. (2.45)
' Ane0

We repeat this radius cannot be considered in a strictly geometrical sense, but mainly as an 
estimate of the size of the region where the electron may be "concentrated.” A

Problems

2.) The cubical closed surface of side a shown 
in Fig. 2-28 is placed in a region in which there 
is an electric field parallel to the X-axis. F ind 
the electric flux across the surface and the total 
charge inside the surface if the electric field
(a) is uniform, and  (b) varies according to 
S =  Cx.
2.2 Find the electric flux, the total charge, and 
the charge density inside the cube of side a 
(Fig. 2-28) if the cube is in a region in which the 
electric field is (a) S = U sCxi , (b) S=. clu^y +
H jJC ).

2.3 In an ionized medium (such as a gas or an 
electrolyte), there are both positive and neg

ative ions. Show that if each ion carries a 
charge +  ve, the current density is j  =  vein + v t — 
H _ i '_ ) where the n + and n are the num ber of 
ions of each class pet unit volume.
2.4 A conducting sphere of radius R t has a 
central cavity of radius R 2. At the center of the 
cavity there is a charge q. (a) F ind the charge 
on the inner and the outer surfaces of the 
conductor, (b) Com pute the electric field and 
the electric potential outside the sphere, inside 
the sphere, and in the cavity, (c) Plot the electric 
field and the electric potential as functions of 
the distance from the center. [Hint: Remember 
that the field inside a conductor is zero.]
2.5 Two conducting spheres of radii R 1 and 
R 1 are placed a large distance from each other 
but are connected by a wire so they are always 
at the same electric potential. There is an 
excess charge O placed on the system, (a) Show 
that charge is distributed on the electrically 
joined spheres such lhai (T1ZiTi =  R 2ZR1 where 
i t  is the surface density of electric charge,
(b) Show therefore that the surface value of the 
electric field at each sphere is such that 
S  !.suHW suiiho:= ^ i / R i  In solving this prob
lem, ignore the effect of the wire,
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I 6 Two conducting spheres of radii I x 10" 3 m 
and 1.5 x 1 0 " 3 m have charges of +  I x lO “ 7 C 
and + 2  x IO "7 C, respectively. The spheres 
are placed in contact and separated. Calculate 
!he charge on each sphere after they are
separated.
2.7 As a result of Eqs. (2.10) and (2.11), it can 
be proved that at the surface of separation of 
two dielectrics, the tangential com ponent of 
the electric field and the normal com ponent 
of the electric displacement are continuous; 
i.e., they have the same value on both sides of 
the surface. (The second statement holds only 
if the surface is uncharged.) Show then that the 
angles the lines of force make with the norm al 
to the surface satisfy the relation

tan  O1 €j 
tan O1 e2

2.8 The permittivity of diam ond is 1.46 x 
3kg" 1S2C 3. (a) W hal is the dielectricKr m

constant of diam ond? (b) W hat is the suscepti
bility of diam ond?
2.9 An air capacitor consisting of two closely 
spaced parallel plates has a capacitance of 
1000 pF. The charge on each plate is I p C
(a) What is the potential difference between 
the plates? (bi If the charge is kept constant, 
what will be the potential difference between 
the plates if the separation is doub led .’
2.10 A capacitor can be made by sandwiching 
a sheet of paper 4 v 10 5 m thick between 
sheets of tinfoil. The paper has a relative 
dielectric constant of 2.8 and will conduct 
electricity if it is in an electric field of strength 
5 x IO7 V m ” 1 (or greater). That is, the dielectric

strength of the paper is 50 MV m " ‘. (a) D eter
mine the plate area needed for a  0.3 pF  paper- 
and-foil capacitor, (b) W hat is the maximum 
charge that may be applied if the electric field 
in the paper is not to  exceed one-half the 
dielectric strength?
2.11 A parallel-plate capacitor is to be con
structed using rubber as a dielectric. This 
rubber has a dielectric constant of 3 and a 
dielectric strength of20M V  m~ ‘.T he capacitor 
is to have a capacitance of 0.15 r F  and must be 
able to  w ithstand a maximum potential differ
ence of 6000 V. W hat is the minimum area the 
plates of the capacitor may have?
2.12 (a) Show tha t the capacity of a capacitor 
composed of spherical shells with radii a and  b 
is 4nerah/(a—h) where er is the relative perm it
tivity of the medium between the spheres,
(b) Show that the capacity ot a capacitor com
posed of two cylindrical shells with radii a and 
h is 4ner/2 In (b/a).
2.13 A certain capacitor is made of 25 thin 
metal sheets, each having an area of 6 x 10“ 2 
m 2. and separated from each other by paraffin 
paper 6 x l 0 ' 4 m thick (relative permittivity 
equals 2.6). Find the capacitance of the system.
2.14 Three capacitors of 1.5 pF, 2 /iF. and 
3 μ F are connected in (I) series ar>d (2) parallel: 
a potential difference of 20 V is applied. 
Determ ine in each case (a) the capacity of the 
system, (b) the charge and potential difference 
on each capacitor, and (c) the energy of the 
system.
2.15 (a) D etennine the capacity of the arrange
ment of capacitors illustrated in Fig. 2-29. If 
the applied voltage is 120 V, find (b) the charge 
and (c) the potential difference on each capaci
tor.
2.16 In the capacitor arrangem ent of Fig. 2-30, 
the capacitors are C 1 = 3  pF, C 1 = I  pF, and

C1

H H

c,
I I
I I

6

Il
Figure 2-29 Figure 2- 30 C
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Dial at 0°

Figure 2-32

C3= 4  fiF. T he voltage applied between points 
a and b is 300 V. Find the charge and the 
potential di!Terence on each capacitor.
2.17 Given the capacitor arrangem ent shown 
in Fig. 2-31, show that the relation between 
C 1 and C 1 m ust be C 2 =  0.6I8Cj in order that 
the capacity of the system be equal to C 2.
2.18 (a) Show that the electric energy of an 
isolated charged conductor is J C V2. (b) Also 
show that the same result holds for a parallel- 
plate capacitor and, in general, for any capaci
tor.
2.19 The capacitance of a variable capacitor 
can be changed from 50 pF  to  950 pF  by 
turning a dial from O1 to 180’ as shown in 
Fig. 2-32. With the dial set at 180', the capacitor 
is connected to  a 400-V battery. After it has 
been charged, the capacitor is disconnected 
from the battery and the dial is turned to O'.
(a) W hat is the charge on the capacitor?
(b) W hat is the potential difference across the 
capacitor when the dial reads 0’ ? (c) W hat is 
the energy of the capacitor in this position?

(d) Neglecting friction, determine the amount 
of work required to tu rn  the dial.
2.20 A 20-μΡ capacitor is charged to a potential 
difference of 1000 V. The terminals of the 
charged capacitor are then connected to those 
of an uncharged 5-//F capacitor. Com pute
(a) the original charge of the system, (b) the 
final potential difference across each capacitor,
(c) the final energy of the system, and (d) the 
decrease in energy when the capacitors are 
connected.
2.21 A metal sphere of radius I m has net 
electric charge of 10 9 C. This sphere is con
nected by a conducting wire to an initially 
uncharged sphere (far away from the larger 
sphere) of radius 0.30 m so that both have the 
same electric potential, (a) W hat will be the 
equilibrium chaigc on each sphere after the 
connection is m ade? (bt W hat is the energy of 
the charged sphere before connections are 
m ade? (c) W hat is the energy of the system after 
the spheres are joined? (d) If there is any loss, 
explain where the energy has gone.

CHALLENGING PROBLEMS

2.22 A charge Q  is uniformly distributed along 
a semicircular arc of radius R  as shown in 
Fig. 2-33. F ind the magnitude and direction of 
the electric field at the center C of the arc.

Figure 2-33

Charge Q
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2.23 A battery having a potential difference of 
180 volts is connected across a capacitor as 
shown in Fig. 2-34. The electric field in the 
evacuated region between the capacitor plates 
is uniform. The distance between the plates is 
0.6 centimeter and point P  is 0.4 centimeter 
from the lower plate (a) Find the magnitude 
and direction of the electric field at point P. 
Ibl F ind the electric potential difference 
between point P  and the lower plate, (c) An 
electron is released from rest on the lower 
plate. Find the instantaneous speed of the 
electron as it passes point P. (AP-B; 1971)
2.24 C onsideran i nfini t e plane sheet of po si five 
charge with uniform surface charge density σ 
as shown in Fig. 2-35. (a) Use G auss’s law to 
determine the electric field due to  this sheet of 
charge at a  point a distance d above its surface. 
Suppose there is a tiny hole in the sheet at 
point P and tha t an  electron !charge — e, 
mass m) is released from rest a distance d 
above the hole. The electron will pass through 
the hole and undergo periodic motion. (Neglect 
the distortion of the electric field due to the 
presence of the hole, and neglect the radiation 
of the accelerated charge,) (b) In  terms of the 
given quantities, determine the speed of the 
electron when it passes through the hole. H In

Area — A
— L_____

(a)

terms of the given quantities, determine the 
period o f the m otion. (AP-C: 1972)
2.25 The plates of an isolated parallel plate 
capacitor are pulled apart very slowly by a 
force F as shown in Fig. 2-36. Each plate has 
charge q and area A. Assume that edge effects 
are negligible; i.e., the spacing x  is much 
smaller than the plate dimensions, (a) D eter
mine the change in capacitance as x  is in
creased by dx. (b) D eterm ine the change of 
stored energy in the capacitor as x  is increased 
by dx. (c) How is the force F related to  the 
change in stored energy? D eterm ine F  in 
terms of x , q, and A. (AP-C: 1973)
2.26 Two concentric conducting spherical 
shells of radii a and  b have charges of equal 
m agnitude and opposite sign as shown in 
Fig. 2-37. (a) Determ ine the electric field at a 
distance r from the center. Give separate 
expressions for r< a . a < r < b .  and r>  b.
(b) Determ ine the electric potential at r = b 
and at r = a, taking the potential equal to zero 
at infinity. (AP-C; 1974)
2.27 A parallel-plate capacitor with spacing 
h and area A is connected to a battery of 
voltage V  as shown in Fig. 2-38a. Initially the 
space between the plates is empty. M ake the 
following determ inations in terms of the given 
symbols, (a) Determ ine the electric field

+
Copper

Area -  A

Figure 2-38
(b)
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Figure 2-39

between the plates, (b) Determine the charge 
stored on each capacitor plate. A copper slab 
of thickness a is now inserted midway between 
the plates as shown in Fig. 2-38b. (c) Determ ine 
the electric field in the spaces above and below 
the slab, (d) Determ ine the ratio of capacitances

C. with chfjji 

G  ortgiitnk

when the slab is inserted. (AP-C; 1974)
2.28 A solid metal sphere of radius R has 
charge + 2 Q. A hollow spherical shell of radius 
3R placed concentric with the first sphere has 
net charge — Q (Fig. 2-39a). (a) O n a diagram 
like Fig. 2-39b, m ake a sketch of the electric 
field lines inside and outside the spheres,
(b) Use G auss’s law to find an expression for 
the magnitude of the electric field between the 
spheres at a distance r from the center of the 
inner sphere (R < r< 3 R ). (c) Calculate the 
potential difference between the two spheres,
(d) W hat would be the final distribution of the 
charge if the spheres were joined by a  con
ducting wire? (AP-C: 1976)
2.29 A capacitor is composed of two con
centric spherical shells of radii a and b. respec
tively, that have equal and opposite charges as 
shown in Fig. 2-40. Just outside the surface of 
the inner shell, the electric field is directed

Figure 2-40

radially outw ard and has magnitude S 0. 
(a) With the use of G auss’s law, express the 
charge + Q on the inner shell as a function of 
S a and a. (b) W ritean expression for the electric 
field strength E between the shells as a function 
of S 0, tu and r. (c) W hat is the potential differ
ence V between the shells as a function of S 01 
a, and b'! (d) Express the energy U stored in 
this capacitor as a function of S 01 a, and b.
(e) Determine the value of a that should be 
chosen in order to maximize Li, if S 0 and b 
are fixed. (AP-C: 1978)
2.30 A solid conducting sphere οΓ radius a is 
surrounded by a  hollow conducting shell of 
inner radius b and outer radius c as shown in 
Fig. 2-41. The sphere and the shell each have a 
charge +Q. Express your answers to  parts 
(a), (b), and (e) in terms of Q1 a, b. c, and the 
C oulom b’s law constant, (a) Using G auss’s 
law. derive an expression for the electric field 
m agnitude at a < r < b  wheie r is the distance 
from the center of the solid sphere, (b) Write 
expressions for the electric field magnitude at 
i> c ,  b < r < c. and r<a.  Full credit will be 
given for statem ents of the correct expressions. 
It is not necessary to show your work on this 
part. (AP-C: ItJTQi
2.31 A thin plastic rod has uniform linear 
positive-charge density A. The rod is bent into a 
semicircle of radius R as shown in Fig. 2-42a. 
(a) Determ ine the electric potential F 0 at

Figure 2-42
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Figure 2-43

point 0.  the center of the semicircle, (b) Indicate 
on a copy of the diagram the direction of the 
electric field at point 0.  Explain your reasoning. 
[Cl Calculate the m agnitude S 0 of the electric 
held at point 0 . (d) W rite an approxim ate 
expression, in terms of q, F0, and S 0. for the 
work required to bring a positive point charge 
q from infinity to point P, located a small 
distance s from point O as shown in Fig. 2-42b. 
(AP-C; 1980)
2.32 A parallel-plale capacitor consists of two 
conducting plates separated by a distance D as 
shown in Fig. 2-43a. The plates may be con
sidered very large so that the effects of the 
edges may be ignored. The two plates have an 
equal but opposite surface charge per unit 
area. σ. The charge on either plate resides 
entirely on the inner surface facing the opposite 
plate, (a) O n a diagram, draw the electric-field 
lines in the region between the plates (bi By 
applying Gauss's law to the rectangular box 
whose upper surface lies entirely within lhe top 
conducting plate as shown in the Fig. 2-43b, 
determine the m agnitude of the electric field E 
in the region between the plates, (c) A dielectric 
is inserted and fills the region between the 
plates. Is the electric field greater than, less than, 
or equal to the electric field when there is no 
dielectric'2 Describe the mechanism respon
sible for this effect. Recognize that the plates 
are not connected to  a battery (AP-C: 1980)
2.33 The electron in a hydrogen atom may be 
assumed to be "‘spread " over all space with a 
density p = C e ' 2r,a° where ao =  0.53 x 10 " 10 m.
• a) Find the constant C such that the total 
charge is —e. (b) D elennine the total charge 
wiihin a sphere of radius u0. which corresponds

to the o rb it radius of the electron. Ic) O btain the 
electric field as a  function of r. (d) At what 
distance does the electric field differ from 
—e/Ane^r2 by I percent? [Hint:  F or part (a), 
divide the space in to  spherical shells, each of 
volume Anr2 dr.]
2.34 A sphere of radius R 1 has a central 
cavity of radius R 2- A charge q is uniformly 
distributed over the volume of the sphere, 
(a) Find the electric field and the electric 
potential outside the sphere, inside the sphere, 
and in the central cavity, (b) Plot the electric 
field and electric potential as functions of the 
distance from the center.
2.35 A charge q is placed a distance a from 
an infinite plane conductor held at zero electric 
potential. It can be shown that the resultant 
electric field in front of the plane is the same as 
if a negative charge — q, a t a distance —a, 
were to replace the plane (see Fig. 2-441, This 
second charge is called the image of the first,
(a) Show that the electric field is norm al to  the 
plane, (b) Show that the charge density on the 
plane is qa,r '  where r is the radial distance 
from point O on the plane, (c) Verify that the 
total charge on the plane is equal to —q.
2.36 A conducting sphere of radius a is placed 
in a uniform electric field <?0 as shown in Fig. 
2-45. Since the sphere must be at a constant 
electric potential, we shall assign to it the value 
zero. The electric field acts on the free charges 
on the sphere that are moved to the surface until 
the electric field inside the sphere is zero. The 
sphere becomes polarized, distorting the elec
tric field around  it although at large distances
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Figure 2-45

the field remains essentially uniform, It can be 
shown that to satisfy the conditions of this 
problem, the electric potential solution of 
Laplace's equation is

i = —S ni· cos (I
/ I  - i r ' \

b H ·

0.618C,. [Him:  N ote that, if the system is cut 
along the dashed line, the section co the right 
is still equal to  the original system oecause it is 
composed of an infinite num ber of capacitors.]
2.38 A dielectric slab is partially introduced 
between the two plates of a parallel-pjate 
capacitor as shown in Fig. 2-47. Calculate as a 
function of x  (a) the capacity of the system,
(b) the energy of the system, and (c) the force 
on the slab. Assume that the potential applied 
to the capacitor is constant. [H im : N ote that 
the system may be considered as two capaci
tors in parallel.]

(a) Verify that the potential of the sphere is 
zero, lb) Show that at very large distances the 
potential corresponds to that of a uniform 
field, (c) N ote that the potential V is the sum 
of a potential for a uniform field and a potential 
for an electric dipole. O btain the electric dipole 
mom ent of the sphere, (d) O btain the radial 
and transverse com ponents of the electric field,
(e) Verify that the electric field at the surface of 
the conductor is perpendicular to it. (fl Plot the 
lines of force of the resultant electric field, 
Igl Find the surface charge density. Discuss its 
variation over the surface of the sphere. 
Ihl Verify that the total charge on the sphere is 
zero, (i) Show that at the center of the sphere 
the electric field produced by the surface 
charge is - S 0. The same situation occurs for 
any point inside the sphere. Was this outcome 
to be expected'7
2,37 Using the result of problem 2.17. show 
that the capacity of the system in f  ig. 2-46 is

Figure 2-47

2.39 The plates of a parallel-plate capacitor in 
a vacuum have charges +Q  and — Q, and the 
distance between the plates is x, The plates are 
disconnected from the charging voltage and 
pulled apart a short distance dx. la) W hat is 
the change dC  in the capacity of the capacitor? 
I b) W hat is the change d E s in the energy of the 
capacitor? (c) Equate the work F dx  to the 
increase in energy dE it and find the force of 
attraction F between the plates, (d) Explain 
why F  is not equal to Q S  where S  is the electric 
field strength between the plates.
2.40 Rework Problem 2.39 for a case in which 
the electric potential I is kepi constant

Figure 2-46

2.41 A η dec  from eter, diagramm ed in Fi g . 2-48, 
is used to determine electric potential differ
ences It consists of a balance whose left pan is a 
disk of area S placed at a distance a from a
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horizontal plane to  form a capacitor. When a 
potential difference is applied between the disk 
a n d  the plane, a downward force is produced 
o n  the disk. To restore the balance to equilib
rium. a mass m is placed in the other pan. Show 
[hat I' 2mg/e0S. [Note:  In the actual in
strum ent. the disk is surrounded by a ring 
kept al the same potential to assure that the 
field is uniform over all the disk ]
2.42 Four capacitors are arranged as shown 
in Fig. 2-49. A potential difference A F  is 
applied between the terminals A  and B  and  a 
meter M is connected between C and D to 
determine their potential difference. Show that

the m eter reads zero if C J C 2 = C ii C4. This is a 
bridge arrangem ent that may be used to 
determine the capacitance of a capacitor in 
terms of a standard capacitor and the ratio  of 
two capacitances.
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Electric Circuits

3.1 In tro d u ctio n

A mosl important electric phenomena from the point of view o f its many practical 
applications is the motion of electric charge through a substance and the resulting 
generation of an electric current. The magnitude of an electric current was defined 
in Section 1.9 as the amount of charge passing through a cross section of the material 
per unit time and per unit area. The SI unit for electric current is the ampere. In (his 
chapter we investigate the case in which the substance is a solid metal and the current 
has a constant magnitude: at the end of the chapter we briefly consider the passage 
of an electric current through other substances. The set of conductors and the 
sources o f the electric field required to keep the charges moving through them 
constitute an electric circuit. Three important concepts of electric circuits will be 
discussed in this chapter: the electric resistance of a conductor, the electromotive 
force applied to a circuit, and Ohm’s Law.

3.2 Electrical Conductivity; Ohm 's Law

In Chapter 2 certain aspects of the behavior of a substance under an applied electric 
field were considered. This behavior has been represented by the electric susceptibility 
of the material. Electrical conductivity, another important property related to an 
external electric field, will now be discussed in connection with electrical conduction 
in a metal.

When an electric field is applied to a dielectric, a polarization of the dielectric 
results. However if Ihe field is applied in a region where free charges exist, the charges 
are set in motion and an electric current, instead of a polarization of the medium, 
results. The charges are accelerated by the field and therefore gain energy.

When free charges are present within a body as electrons are in a metal, their 
motion is hindered by their interaction with the positive ions that form the crystal 
lattice o f  the metal. Consider, for example, a metal with the positive ions regularly 
arranged in three dimensions as in Fig. 3-1. The free electrons move in an electric

Eig. 3-1. Electron m otion through the 
crystal lattice o f a metal, In the figure, 
cr  is the thermal velocity of the 
electrons.
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field that exhibits the same periodicity as the lattice. During their motion the free 
electrons are very frequently scattered by the field. A correct description o f this type 
of electronic motion must use the methods of quantum mechanics. Here a simple 
classical description will have to suffice. When no external electric field is present, 
the electrons move in ail directions, and no net charge transport or electric current 
results. However if an external electric field is applied, a drift motion is superposed 
on the natural random motion of the electrons; and an electric current results. It 
seems natural to assume that the strength of the current must be related to the 
intensity of the electric field, and that the relation must be a direct consequence o f the 
internal structure o f the metal.

For the clue to this relation let us first turn to the experimental results. One o f the 
laws o f physics that is perhaps most familiar to the student is Ohm's law, which states 
that for a metallic conductor at constant temperature the ratio o f  the potential difference 
ΔΚ between two points o f  the conductor to the electric current I through the conductor 
is constant. This constant is called the electrical resistance R of the conductor between 
the two points. Thus Ohm’s law may be expressed as

This law. formulated by the German physicist G eorgO hm  (1787-1854), is obeyed 
with surprising accuracy by many conductors over a wide range of values of AK Λ 
and temperatures of the conductor. However, many substances, especially the semi
conductors, do not obey Ohm’s law. A graph of the relation between A F and /  given 
by Ohm’s law yields the straight line shown in Fig. 3-2.

From Eq. (3.1) it is seen that R is expressed in SI units as volts,ampere or 
m~ kg s ' 1 C" 2, a unit called an ohm (Ω). Thus one ohm is the resistance o f a con
ductor through which there is a current o f  one ampere when a potential difference 
of one volt is maintained across the ends of the conductor.

Consider now a cylindrical conductor of length I and cross section S (Fig. 3-3). 
The current may be expressed as I = j S  where j  is the current density. The electric 
held along the conductor is S =  A V j i  (Remember Eq. 1.18.) Therefore Eq. (3,1)

Fig. 3-2. G raphical statem ent of O hm ’s law Figure 3-3
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may be written in the form Si =  RjS  or

i-{rs)s~,,i >3·21
where a =  l/RS  is a new constant called the electrical conductivity of the material, and 
is expressed in Ω -1 m _1 or m “ 3 k g -1 s C2. The relation between σ and R is more 
frequently written in the form

Table 3-1 gives the electrical conductivity o f  several materials. The reciprocal of 
the conductivity is called the resistivity, p ; that is

I
P = ~  ■ σ

Resistivity is expressed in Ω m.
Equation (3.2) expresses a relation between the magnitudes of the vectors jan d  S. 

If they have the same direction, a situation found in most substances, Eq. (3.2) may 
be replaced by the vector equation

j  =  oS ,  (3.4)

which is merely another way o f writing Ohm’s law.

3.3 Origin of Electric Resistance

If we use Eq. (3.4) and recall the definition of current density from Example 2.1, 
that j =  — e m c where n is the number of electrons per unit volume and Bi  is the elec
trons’ drift velocity caused by the applied electric field S , the drift velocity may be 
written

ve= ~ - S .  (3.5)
en

This equation shows that the conduction electrons in the metal attain a constant 
drift velocity as a result o f the external applied electric field. This conclusion is quite 
different from that reached in the discussion o f the motion o f an ion along the 
evacuated tube of an accelerator (Section 1.7). There it was found that the accelera
tion is a =  — (e/m)S, resulting in a velocity v =  — (e jm )St , which increases continu
ously with time.

However this is not the first time a situation like this has been encountered. For 
example, a freely falling body in vacuum has a velocity v = g t  that increases con
tinuously with tim e; but if the body falls through a viscous fluid, the motion becomes 
uniform with a constant limiting velocity (as discussed in Section 7.9 o f Volume I).
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Table 3-1. Electrical Conductivities at Room Temperature

Substance (7, Ω 1 ηΓ 1 Substance <τ, Ω 1 m 1

Metals
Copper
Silver
Aluminum
Iron
T ungsten

5.81 x IO7 
6.14 x IO7 
3 54 x IO7 
1.53 x IO7
1.82 x IO7

Semiconductors
Carbon
Germ anium
Silicon

2.8 x  IO4 
2 .2 x 1 0  2 
1 ,6x10  5

insulators
Glass
Lucite
Mica
Q uartz
Teflon
Paraffin

10“ 10 to  10“ 14 
< .10“ 13 

10 11 to 10 ”  
1 .33x10  18 

< 1 0  13 
3 .3 7 x 1 0 " 17

Alloys
Manganin
C onstantan
Nichrom e

2.27 x IO6 
2.04 x IO6 
1.0 XlO6

It may be said by analogy that the effect o f the crystal lattice may be represented by a 
“viscous” force, acting on the conduction electrons when their natural m otion is 
disturbed by the applied electric field. The exact nature of this viscous force 
depends on the dynamics o f the electronic motion through the crystal lattice; this 
concept will be elaborated in Example 3.1; here a general qualitative analysis is given.

For a perfect crystal lattice with all positive ions at rest in fixed, regularly spaced 
positions, it can be proved with the methods o f quantum mechanics that a conduction 
electron moves freely through the lattice under the action o f an external field. How
ever, no metal is composed of a perfect crystal lattice. In some instances the imperfec
tion is due to impurities that replace some o f the metal ions (Fig. 3-4); in other cases

OOOOOOOOOO O0O o o o o o o o o
o o o o o o o o o o  OOOOOOOOOO
OOOOOOOOOO o o o o o o o o o o  
o o o o o o o o o o  o o o o o o o o o o  
o o o o o o o o o o  00 0 0 0 0 - 0 0 0 0  
o o o o o o o o o o  o o o o o o o o o o  
o o o o o o o o o o  o o o o o o o o o o  
o o o o o o o o o o  o o o o o o o o o o  
o o o o o o o o o o  o o o o o o o o o o

(a) fb)

Fig- 3-4. Crystal im perfections due to  impurities, (a) Substitutional im purity, (b) Interstitial 
'mpurily.
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Fig. 3-5. C rystalla tticeim perfectionsdueto  missing atom s, (a) Vacancy site, (b) Edge dislocation.

some ions may be missing (Fig. 3-5). In addition the ions are always vibrating as a 
result o f their thermal energy. Since the ions do not vibrate in phase, the distances 
between the ions fluctuate; this fluctuation is equivalent to imperfections in the 
crystal lattice. The result of these conditions is that electron motion is hindered; the 
electron suffers numerous scatterings and sometimes even moves backwards. There
fore rather than picking up energy continuously from the electric field, the electron 
transfers some energy to the lattice. After a short period o f time a steady state is 
reached in which the average velocity of the electron becomes constant and has a 
value equal to the drift velocity given by Eq. (3.5).

It seems reasonable to assume that the effect on the resistivity because o f the 
imperfections resulting from impurities or lattice irregularities is temperature 
independent. Likewise, it is reasonable to assume that thermal oscillations o f the 
ions must increase the resistivity with temperature since the amplitude o f the oscilla
tions also increases with the temperature. These assumptions have been verified 
experimentally, and in most substances the resistance increases as the temperature 
increases.

Example 3.1. M otion of the conduction electrons in a metal.

T The effect of the interaction of the crystal lattice and the conduction electrons in a metal may 
be represented phenomenologically by a “viscous” force. If this force is of the same form as that 
considered in the case of m otion in a fluid (Section 7.9 in Volume I), that is, — kv, the equation 
of m otion of an electron in a metal is written as

dv
m. — =  — eS  —k v. (3.6)

dt

Thus the limiting drift velocity, obtained by making dv/dt— 0, is Ut = —e S /k , if we com pare this 
result with Eq. (3.5), the electrical conductivity is a = ne2/k.
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This result may be expressed in a different way by introducing a  quantity called relaxation 
i ime- Suppose that the electric field S  is suddenly cut off after the limiting drift velocity has been 
ittained. The equation o f m otion for the electron is then

dv
m . — = —kv.

' dt

whose solution is C =  CcC -1*""1. The student may check this result either by direct substitution or 
by direct integration. Then the time required for the drift velocity and therefore the current to 
drop by the factor e is τ —m/k. This is the relaxation time of the electron’s motion, similar to  that 
(introduced in Example 7.9 of Volume I) for the m otion of a body through a viscous fluid. Thus 
for the conductivity the relation becomes

σ = — . (3.7)
UJc

If σ is known, τ can be computed, and conversely since n, e, and mc are known quantities. If each 
atom contributes one valence electron to  the current, the value of n is about IO28 electrons m “ 3 
in most metals. F rom  the values of e and mc with σ of the order of IO7 Ω -1 m _1, the relaxation 
time τ is of the order of 10“ 14 s.

It must be understood at this point that the only thing that has been done is to  devise a phenom 
enological m odel by which the result required by O hm ’s law is obtained; but this has led to 
introducing a new quantity τ. To “explain” O hm ’s law and electrical conduction in metals, we 
must relate τ to  the dynamics of the m otion of electrons. However as indicated before, since this 
motion takes place according to the laws of quantum  mechanics, further discussion of Eq. (3,7) 
must be postponed.

However, the correctness of our model may be estimated by checking the orders of m agnitude 
of the quantities involved. It is reasonable to assume that the relaxation time is of the sam e order 
of magnitude as the time between two successive collisions of an electron with the ions of the 
crystal lattice. If I is the average separation of the ions and v is the average velocity of the electrons, 
the collision time can be estim ated by the ratio  Uv. For most solids / is of the order of 5 x 10 9 m. 
To obtain u, assume that the same relation devised for gas molecules may be used; that is, 
i’= v 3 k T  mc. Thus at room  tem perature v is o f the order of IO5 m s" ‘. Then Tts about 5 x IO-14 s. 
This result agrees with the estimates m ade previously using Eq. (3.7) and the experimental values 
of a. k

3.4 T h eJo u Ie  Effect

Maintaining a current in a conductor requires the expenditure o f energy. Energy 
must also be expended to accelerate an ion in an accelerator or an electron tube, 
hut there is a difference. In the accelerator all the supplied energy is spent in speeding 
up the ions, Ina conductor, because o f the interaction o f  the electrons and the positive 
ions of the crystal lattice, the energy supplied to the electrons is transferred to the 
lattice, and thus increases the vibrational energy o f the lattice. The resulting increase
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Fig. 3-6. Symbolic representation o f a  resistor.

in the temperature of the material is the well-known heating effect o f a current and is 
called the Joule effect.

The rate at which energy is transferred to the crystal lattice may be easily estimated. 
The work done per unit time on an electron is F ■ ve =  - e S - v e, and the work done per 
unit time and unit volume (or power per unit volume) is Psoi =  n ( - e S - v e). Equations 
(3.2) and (3.5) serve to eliminate ue ;

Pyai= u S 2= j S .  (38 )

Again consider Fig. 3-3, in which the cylindrical conductor has a volume o f  Si. 
The power required to maintain the current in the conductor is

P =  (Si)Pyol =(SDijS)=(JS)(Sl).

However j S = I  and SI =  AV. Therefore the power required to maintain the current 
in the conductor is

P =  IAV. (3.91

This equation is identical to Eq. (1.29), which was obtained in a more general way, 
and is independent of the nature of the conduction process. For conductors that 
follow Ohm’s law. A V =R I.  and Eq. (3.9) may be written in the alternate form

P =  RI2. (3.10)

Many materials, however, do not follow Ohm’s law; and for them Eq. (3.10) is not
correct although Eq. (3.9) remains valid. A conductor with resistance, also called a
resistor, is represented diagrammatically in Fig. 3-6.

Example 3.2. Com bination of resistors.

T Resistors can be combined in two kinds of arrangements, similar to those discussed in Example
2.12 for capacitors: series and parallel. In the series com bination (Fig. 3-7a), the resistors are 
connected in such a way that the same current /  is present in each of them According to O hm ’s 
law, the potential drop across each resistor is AF1= R 1/, AF2 =  R A . .  . .A Vn- R aI Thus the 
overall potential difference is

A F = A F ,+ A F : + - - -  +A Fn= IR 1 + R 2 +■■ ■ -rR„)/.

The system can be reduced effectively to a single resistor R satisfying A F = R /. Therefore

R - R 1 + R 2 +  ■ ■ +  R„ 

gives the resultant resistance for a  series arrangem ent of resistors.

(3.11)
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Fig. 3-7. (a) Series and (b) parallel arrangem ents o f resistors.

[n the parallel com bination (Fig. 3-7b), the resistors are connected in such a way tha t the 
potential difference A Facross each resistor is the same for all of them. According to O hm ’s law, 
(he current through each resistor is Z1 =A W R 1, I 1=AV11R 1, I ll=AVZRn. The total current I 
supplied to  the system is

I - I 1+ , , + + j L +  . . .  + I f y .

The system can be reduced effectively to a single resistor R satisfying I= A V jR .  Therefore

1 1 1  I
—  = . 1 L  « - ■ J _____

R R 1 R 2 R1,

gives the resultant resistance for a  parallel arrangem ent of resistors, A

(3.12)

3.5 Conductors, Insulators, and Sem iconductors

Not all substances are conductors o f electricity; and among the conducting sub
stances, not all follow Ohm’s law. Only a few substances, mainly metals, are good 
conductors of electricity and obey Ohm’s law. This situation stems from the fact that 
metals are composed of atoms that have an electronic structure consisting o f filled 
shells plus one, two, or perhaps three valence electrons in a level beyond the outer
most, completely filled shell. In the solid state the valence electrons o f metals are 
easily excited, become detached from the atoms, and constitute a sort of free-electrun 
gas pervading the space between the lattice ions. Even a small electric field applied 
to the metal sets these electrons in motion and produces an electric current.

In many substances, however, the valence electrons are “frozen” in fixed positions 
between the positive lattice ions because the valence electrons are responsible for
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the bonds among the ions in the solid much as electrons bind atoms in a molecule 
together. The lack of free electrons in these substances makes it very difficult to 
produce a current within them; these substances are designated dielectrics or, in the 
limit of absolutely no free carriers, insulators. Under the action of an external field 
a dielectric becomes polarized as explained in Chapter 2, but no electric current is 
produced. However when the electric field is very strong, some valence electrons may 
be pulled from their positions; and a current is produced that often results in perman
ent damage to the dielectric. This process is called dielectric breakdown.

There is another class o f substances, called semiconductors, in which it is relatively 
easy to excite some o f the bound electrons because the excitation energy is about 
one-fifth to one-tenth that of the excitation energy in an insulator. (Among the most 
widely used semiconductors are silicon, germanium, and tellurium.) An increase in 
temperature may result in freeing some electrons from their bonds as a result o f  
interactions between neighboring ions. In such a case an electric current is produced 
when an electric field is applied. Semiconductors do not obey Ohm’s law, and their 
resistivity decreases as the temperature increases because more electrons become 
available with increasing temperature. For example in silicon a temperature increase 
from 250 K to 450 K increases the number o f excited electrons by a factor o f IO6, 
and results in an increase in the conductivity and a consequent decrease o f the electric 
resistance.

it is interesting to note that when an electron in a semiconductor is removed from 
the bond the electron occupied, it leaves behind a “hole” that behaves like a positive 
electron (Fig. 3-8 ). A valence electron from a neighboring bond can then jump into 
the hole; the jumping electron in turn leaves a hole in the bond it previously occupied. 
Since this process can be repeated many times, especially in the presence of an electric 
field, the process amounts to the movement o f the positive hole through the substance. 
Thus a current in a semiconductor is due both to free electrons and to holes. This 
phenomenon is called intrinsic conductivity.

Another way for enhancing the conductivity o f a semiconductor is by adding 
certain impurities. Two different situations arise in this case- and the impurities 
are called either donors or acceptors, depending upon the effect on the semiconductor. 
A donor impurity is composed o f atoms having more valence electrons than the

C

O

O  ’ u  O
Fig. 3-8. The m otion of an electron ( · )  
leaves a hole (O ) behind in a sem iconductor
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Fig. 3-9. Sem iconductor with a donor Fig. 3-10. Semiconductor with an accep-
impurity. tor im purity.

host lattice has; these extra electrons require very little energy to be set free and 
become conduction electrons. For example if in a silicon or germanium crystal a few 
atoms o f Si or Ge (with four valence electrons) are replaced by phosphorus or arsenic 
atoms (with five valence electrons), the extra electrons that cannot be accommodated 
in the valence bonds associated with the crystal structure can be easily set free to 
move through the lattice (Fig. 3-9). Conversely an acceptor impurity is composed of 
atoms having fewer  valence electrons than the atoms of the substance have; this 
situation produces bonds with one electron missing (i.e., with an electron hole). 
This is the case if a few atoms o f boron or aluminum (wtih three vaience electrons) 
are added to silicon oi germanium. Under an external tieid an electron from a nearby 
bond can move to fill the hole and thereby leave a hole behind. Thus the hole can be 
said to move through the lattice (Fig. 3-10) just as a positive electron would.

Semiconductors with donor impurities are called n-type, and semiconductors 
with acceptor impurities are called p-type. Semiconductors have wide industrial 
application as rectifiers, modulators, detectors, photocells, transistors, etc. In fact 
the electronics industry today manufactures virtually all its devices with semi
conductor elements.

Example 3.3. Discussion of the p -n  junction.

▼ One im portant application of sem iconductors to modern electric circuitry is the p -n  junction. 
Suppose that there are two samples of the same sem iconductor— say germanium— one of p-i>pe 
and the other of n-type (Fig 3-1 la). If the two samples are placed in contact (Fig. 3-1 lb), there is a 
diffusion, or flow, of holes from the left to the right and οΓ electrons Trom the right to the left. 
This double flow produces a double layer of positive and negative charges on both sides of the 
junction, and sets up a potential difference across the junction (as shown on the right in Fig. 3-11 
b): when equilibrium is reached, the potential difference opposes further flow of holes and elec
tions across the junction. The following discussion will concentrate on the holes; the situation 
for the electrons is just the reverse.

Because of the recom bination οΓ holes and electrons, the num ber of holes in the n-type semi
conductor tends to  decrease. This decrease allows a small, continuous hole current / ;  from the 
p-side to the n-side. At the same time, because of thermal excitation, hole-electron pairs are
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Fig. 3-11. The p-n junction.

produced in the n-type semiconductor, and these excess holes can flow very readily across the 
junction into the p-side with a current I, .  At equilibrium both  hole currents arc identical; that 
is. I t = I 2 (similar logic can be applied to the electrons). If a potential difference AT is applied 
as shown in Fig. 3-11 (c) with the p-side joined to  the positive terminal and the n-side to the negative 
terminal of the source of the potential difference AV1 the height of the potential difference across 
the junction decreases. This decrease allows a larger current Ii to the right w ithout actually
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i - h - h

Fig. 3-12. C urrent as a function o f voltage 
across a p -n  junction. I he voltage V is 
considered positive when applied in the 
direction p->n and negative when applied 
in the opposite direction.

changing the thermally generated current I 2 to  the left. Thus a net hole current Z1- Z 2 results 
across the junction to the right, and this current increases very rapidly with A V  because o f the 
large supply of holes from the p-side. O n the other hand if the potential difference A V  is reversed 
as in Fig. 3-11(d), the potential difference across the junction increases. This increase reduces the 
value of I 1 again w ithout substantially affecting I 2 since the supply of holes from the n-side is 
temperature limited. Thus a  net current to the left will exist across the junction. This current will 
approach the constant value Z2 with increasing A F 

Figure 3-12 shows the graph of the net current across the junction as a function of AV. with 
AFconsidered positive when applied as in  Fig. 3-11(c) and negative otherwise. The net current is 
expressed fairly accurately by the expression

Z=Z1- Z 2= Z 2(Ca i w - I ) .

It is thus seen that a p- n junction acts as a rectifier or a  detector device favoring the passage of a 
current in the direction p-»n. This function is the same as that performed by diode and triode 
electron tubes, bu t the p -n  junction performs the function with considerably less expenditure 
of energy A

3.6 Electrom otive Force

Suppose that a particle moves from A to B along a path L under the action o f a 
force F The work done by the force is W = Sl F - iJI where the subscript L  means 
that the integration is performed along the path and dl is a line element o f the path 
When the force is conservative (i.e., the force is related to the potential energy by
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F =  -  grad Ep), the work is independent o f the path and results in SF ■ dl =  Ep Λ - E p J  
An important consequence o f this fact is that when the path is closed, the work o f a 
conservative force is zero since point B is the same as point A and thus Ep j i= E p B.

These results can be extended to any vector field, such as the electric or magnetic 
fields. Designate the vector field by V. The line integral o f the vector field V from 
point A to point B along a path L is defined as

L ineintegralof V-<11. (3 13)

In general the line integral depends on the path. If the path along which the line 
integral is calculated is a closed path, the line integral is called the circulation ol' 
the vector field and is indicated by a circle on top o f the integral s ign :

C irculationof K=(j) V-di  (3.14)
J

An important case is that in which the field V can be expressed as the gradient 
of a function. This situation is the same as that found in the case o f conservative 
forces; and therefore

when a vector field can be expressed as the gradient o f  a function, the 
line integral o f  the field between two points is independent o f  the path 
joining the points: and the circulation around an arbitrary closed path 
is zero.

The student will discover that the concepts o f line integral and circulation o f a 
vector field are very useful in formulating the laws of electromagnetism. These two 
new definitions will now be applied to the electric field.

Since the electric field is equal to the force per unit charge, the line integral o f  
the electric field. Sl S-dl.  is equal to the work done when moving one unit o f charge 
along the path L. If the path is closed (Fig. 3-13), the line integral becomes the 
circulation of the electric field and is called the electromotive force (emf) applied to 
the closed path. With the em f designated by V

em f=  V= d> S -ιI l  (3.15)
J L

Therefore the electromotive Jorce applied to a closed path is equal to the work done by 
the electric field when moving one unit o f  charge around the path. (The word "force" 
is misleading since we are referring to “energy.” but the term has been accepted by 
common usage.) Naturally emf is expressed in volts.

Consider the special case of a static electric field. Recall that the static electric 
held is related to the electric potential by S =  — grad V: then the line integral of the 
electric field is

S - d l =  f —grad V-<11= I dV  =  Va — Vh =  AVab (3.16)
J l J a J h
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Figure 3-13

where A and B are the two points joined by the path L. Thus the line integral o f a 
static electric field between two points is equal to the potential difference between 
the points. If the path is closed, points A and B coincide, and Eq. (3.16) gives

This may be expressed in words as

the emf\ or circulation, o f  a static electric field around an arbitrary 
closed path is zero.

This statement means that the work done by a static electric field in moving a charge 
around a closed path is zero, and by definition a static electric field is a conservative

If the electric field is applied to a conductor. Eq. (3.16) may be combined with 
Ohm’s law ; and Eq. (3.1) becomes

where L is a path along the conductor and R is the electric resistance between the 
points of the conductor joined by the path L.

As previously mentioned, maintaining a current between two points in a conductor 
implies that energy must be supplied to the system by the source o f the potential 
difference. The question now arises as to whether or not a current can be maintained 
in a closed conductor or electric circuit. Ohm’s law, which essentially describes

(3.17)

Iield.

(3.18)
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Fig. 3-14. An electric current is m aintained 
in a closed circuit by electric generators.
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Fig. 3-15. Symbolic representation o f a 
circuit with an electromotive force.

energy conservation in the conductor, when applied to a closed conductor is

The left-hand side o f this equation is the emf applied to the circuit and R is the total 
resistance o f the closed circuit.

If the conductor is placed in a static electric field, which is a time-independent and 
conservative field, then accurding to Eq. (3.17). we have that the emf is zero (K=O) 
and Eq. (3.191 gives I =  0. In other words

a static electric field cannot maintain a current in a closed circuit.

The reason is that since a static electric field is conservative, the total net energy 
supplied to a charge describing a closed path is zero. However, a charge moving 
inside a conductor is transferring the energy received from the electric field to the 
crystal lattice, and this process is irreversible; that is, the lattice does not give the 
energy back to the electrons. Therefore, unless a net amount o f energy is supplied to 
the electrons, they cannot move steadily around a closed circuit.

Accordingly, to maintain a current in a closed circuit it is necessary to feed energy 
into the circuit at certain places A . A '.  A",  . . . (Fig 3-14). The suppliers of energy 
are called electric generators and may be considered as the sources of the emf. There
fore the electric field S  appearing in Eq. (3.19) is not a static field, and at points 
A . A '.  A "  . . . .  corresponds to local fields produced by the generators.

There are many ways of generating an electromotive force. A common method 
is by a chemical reaction, such as in a dry cell or a storage battery, in which the internal 
energy released in the chemical reaction is transferred to the electrons. Another 
important method is by the phenomenon o f electromagnetic induction, to be dis
cussed in a future chapter.

A source o f em f is represented diagrammaticalIy in Fig. 3-15. in which the sense 
of the current that is produced in the circuit external to the source o f  em f  is from 
the long bar, or positive pole, to the short bar or negative pole.

When Ohm’s law is applied to a simple circuit such as that o f Fig. 3-15. it must 
be recognized that the total resistance R is the sum o f the internal resistance R 1 o f

(3.19)
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the source o f em f and the external resistance Re o f the conductor connected to the 
generator (or battery). Thus R =  R i A-Re, and Ohm’s law becomes

V = ( R eA-Ri)I (3.20)

where V is the emf applied to the circuit. This equation may also be written in the 
form V - R iI =  Rl I. Each side of the equation gives the potential difference between 
the poles of the generator (or battery). N ote that this potential difference between 
the terminals of the battery is smaller than the emf.

Example 3.4. Calculation of the currents in an electric netw ork : K irchholTs laws.

T An electric network is a combination o f conductors and em f s. such as the one illustrated in 
Fig. 3-16. We shall now consider only the case in which the emPs are constant, and steady con
ditions have been reached in the netw ork so that the currents are also constant. Usually the 
problem consists in finding the currents in terms of the em fs and the resistances. The rules to 
solve this kind of problem, rules known as K ir3Iihotfs laws, merely express the conservation of 
electric charge and of energy. K irchhotfs laws may be stated as follows:

(1) The sum o f all currents at a junction in a network is zero.
(2) The sum o f all potential drops along any closed path in a network is zero.

In writing the first law those currents directed away from the junction  are considered positive and 
those directed tow ard the junction are considered negative. T he first law expresses the conserva
tion of charge: since charges are not accum ulated at a junction, the num ber of charges that arrive 
at a junction in a certain time interval m ust leave it in the same tim e interval so that charges do 
not build up at the junctions.

In applying the second law, the following rules must be taken into account. (I) A potential 
drop across a resistance is considered positive or negative depending on whether the closed path 
is traced in the same sense as the current or in the opposite sense. (2) WTten passing through an 
emf, the potential d rop  is taken as negative o r positive depending on  whether we pass through in 
the direction the emf acts (increase in potential' or in the opposite direction (drop in potential). 
The second law expresses the conservation of energy since the net change in the energy of a charge 
after the charge completes a closed path must be zero. This requirem ent has already been met in 
Eq. (3.20), which reads R l — F=O for a single circuit where R =  R ,+ R e.
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The practical use of KirchhofTs laws can be illustrated by applying them to the network of 
Fig. 3-16. The first law applied to junctions A. B. and C gives

Junction A: -  Z1 +  / , + / 3= 0 ;
JunctionB : — J 1-f-Z4 + Z5 =  O;
Junction C : — J2- Z4 -S-Z6 =0,

The second law applied Io the paths m arked I, 2, and 3 gives

Path I: - R 2Z2H-R3Z3-  R 4Z4 - F 2=  0;
Path 2: R 5Z5- R 6Z6- R 4Z4 = 0:
Path  3: R 1Z1-HR2Z2H-R6Z6- F 1-PF2=O.

These six equations are enough to  determine the six currents in the network.
A practical rule to follow in finding the currents in a netw ork having n junctions is to  apply the 

first law to only π - I junctions because once the law is satisfied for n — I junctions, it is autom atic
ally satisfied for the remaining junction. (The student should verify this statem ent for the network 
in Fig. 3 -16.) The second law must be applied to as many closed paths as required in order for 
each conductor to be part of a path at least once. A

3.7 Nonohmic Conductors

Conducting materials that obey Ghm s law. A f =  RZ or j  =  aS. are designated as 
ohmic or linear conductors because o f the direct proportionality between the voltage 
and the current. Most solid conductors (mainly metals) and many liquids follow 
Ohnrs law to a very good approximation. On the other hand, gaseous conduction 
departs markedly from Ohm’s law. primarily because conduction in gases is due not 
to the presence of free electrons but to the production o f ionized atoms or molecules. 
These ions are produced by passing high-frequency electromagnetic radiation, such 
as x-rays or '/-rays, through the gas or by increasing the temperature of the gas to 
several thousand kelvin. When an electric potential difference is maintained across 
the gas. there will then be an electric current. Also metals depart from Ohm’s law at 
very low' temperatures because when the temperature is very low. the energy o f the 
conduction electrons and o f the lattice ions is extremely small. The motion o f the 
electrons is less hindered by lattice vibrations, and conductivity increases appre
ciably. In some substances the conductivity effectively becomes infinite near absolute 
zero: such substances are called superconductors.

There are some conducting solids that do not obey O hm s law even at room 
temperature. These solids are called nonohmic conductors. They are predominately 
ceramic compounds, semiconductors, p n junctions, and boundary layers between 
metals and their oxides. Figure 3-17 shows the relation between the voltage and the 
current for some metallic filaments that are used in incandescent lamps. It should be 
noted that the current through the iron alloy filament in Fig. 3-17 is practically in-
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Fig. 3-17. Typical lamp-lilament characteristics. Fig. 3-18. Voltage-current relation
(a I Iron alloy filament in hydrogen atm osphere: in Cu-CuO  system
tb] carbon filam ent; (c) tungsten filament.

sensitive to voltage variations in the range o f 30 to 60 V; this property has a number 
of interesting practical applications.

Furthermore some conducting systems are asymmetric in that the current depends 
not only on the magnitude of the applied voltage, but also on the direction in which 
the voltage is applied. One example οΓ an asymmetric system is the p n junction, for 
which the relation between A l and I has been illustrated in Fig. 3-13. A second 
example is a piece of metallic copper covered with a layer o f copper oxide. The 
relation between A V  and I is shown in Fig. 3-18. These asymmetric conducting 
elements find many applications, especially as rectifiers o f alternating currents.

Problems

3.1 It has been estimated that there are about 
IO29 free electrons per cubic meter in copper. 
I sing the value of copper’s conductivity given 
in T able 3-1, estim ate the relaxation time for an 
electron in copper.
3.2 How is the resistance of a wire changed if 
la) the length is doubled, (b) the cross-sectional 
area is doubled, and (c) the radius is doubled?
3.3 (a) Determine the total resistance in the 
circuit shown in Fig. 3-19. Also determine (b)

the current in and (C) the potential difference 
across each resistor.

SOA

3 SI
-AAA-I

12 Ω
- A V -

61!
Y v V -

4 a
l V V A J

Figure 3-19
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3.5 la] Determine the total resistance in the 
circuit shown in Fig. 3-21. Also determine (b) 
the current in and (cl the potential difference 
across each resistor.
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Figure 3-22

3.0 (a) Determine the total resistance in the 
circuit shown in Fig. 3-22. Also determine (b) 
the current in and (c) the potential difference 
across each resistor.

18 Si 
r V W - i

- I v W - U
9 Si 

Figure 3-23

3.7 (a) Detenuine the total resistance of the 
circuit shown in Fig. 3-23. Also determine I.b)

20 A 10 a
-Av

ion

3.4 fa) Determine the total resistance in the 
circuit shown in Fig. 3-20. Also determine (b) 
the current in and (c) the potential difference 
across each resistor.

V W v-

— t - v W — A V + V M -  -  
ton ion 

! Z W  ■' 
tost

Figure 3-24

the currenL in and (C) the potential difference 
across each resistor.
3.8 (a) D eterm ine the total resistance of she 
circuit shown in Fig. 3-24. Also determine (b) 
the current in and (c) the potential difference 
across each resistor.

8Ω

3.9 (a) Calculate the equivalent resistance 
between x  and y of the circuit in Fig. 3-25. 
(b) W hat is the potential difference between 
x  and a if the current in the 8-ohtn resistor is 
0.5 am p?

3.10 (at The long resistor between a and b in 
Fig. 3-26 has a resistance of 300 ohms and is 
tapped at the one-third points W hat is lhe 
equivalent resistance between x  and y? (b) The 
potential difference between x and y  is 320 volts. 
W hat is the potential difference between b 
and e?
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Figure 3-27

3 11 Each of the three resistors in Fig. 3-27 has 
a resistance of 2 ohms and can dissipate a 
maximum of 18 w atts w ithout becoming ex
cessively heated. W hat is the maximum power 
the circuit can dissipate?
3 12 Three equal resistors are connected in 
series. W hen a certain potential difference is 
app lied  across the com bination, the total 
power consumed is 10 watts. W hat power 
w ould be consumed if the three resistors were 
co n n ec ted  in parallel across the same potential 
difference?

R1

Figure 3-28

3.13 Given the resistor arrangem ent shown in 
fig. 3-28, prove that the relanon between R 1 
and R 1 must be R 2 =  1.618R, in order that the 
resistance of the system be equal to  R 2. [Hint: 
Recall Problem 2.17.]
3.14 The maximum permissible current in the 
coil of an electrical instrum ent is 2.5 A. Its 
resistance is 20 Ω. W hat must be done to the 
instrument so that it may be inserted in an 
electric circuit carrying a current of 15 A and 
not destroy the coil? An ammeter is a  galva
nometer modified so that it may be placed in a 
circuit and used to m easure electric current. 
315 How may the instrum ent given in 
Problem 3 14 (resistance of 20 Ω and maximum 
Permissible current of 2.5 A) be modified so 
that it may be placed between two points 
having a  potential difference of 110 V and not 
have the coil destroyed? A voltmeter is a 
galvanometer modified so that it may be placed 
across two points o f an electric circuit and used 
to measure electric potential difference.

Table 3-2

I, am p A V , volts

0.5 4.75
1.0 5.81
2.0 7.05
4.0 8.56

3.16 The measurem ents in Table 3-2 are for 
the current in and the potential differences 
between the ends of a wire of certain m aterial,
(a) M ake a graph of A V  versus I. Does the 
material follow O hm ’s law? (b) From  your 
graph estim ate the resistance of the material 
when the current is 1.5 A. This resistance is 
defined as the ratio  AF A l when the changes are 
small, and is obtained by drawing a  tangent to 
the curve at the given point, (c) C om pare your 
result with the average resistance between
1.0 A and 2.0 A.

Figure 3-29

3.17 The graph in Fig. 3-29 illustrates potential 
difference versus current (on a logarithm ic 
plot) for different tem peratures of a semi
conductor. (al Estimate Lhe resistance of the 
sem iconductor at the tem peratures marked,
(b) Plot the log of the resistance against the 
temperature, (c) Assuming that the change in
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-St

resistance is all due to  a change in the num ber 
of charge carriers per unit volume, estimate the 
ratio of their num ber at 570 I t  to that at 370 It.
3.18 The circuit of Fig. 3-30 is called a Wheat
stone bridge It is used for measuring resistance. 
Show that when the current through the 
galvanom eter G is zero (so that points D and 
C are at the same potential), then

R 2 R4

Thus if we know R 2 and the ratio  R jf R4, we 
can obtain the resistance R 1
3.19 Figure 3-31 shows a potentiometer set up 
to  m easure the em f V x of cell jc ; B  is a battery 
and St is a standard cell of emf F St. When the 
switch is set a t either i or 2, the tap b is moved 
until the galvanom eter G reads zero. Show that 
if Ii and I2 are the corresponding distances 
from b to a. then V x= Vst(IJ l2).
3.20 Referring to  the potentiom eter of Fig,
3-31. The emf of B  is approximately 3 V and its 
internal resistance is unknow n; St is a standard 
cell of emf 1,0183 V. The switch is set at point 
2 ; thus the standard cell is placed in the 
galvanom eter circuit. W hen the tap h is 0.36 
of the distance from a to  c, the galvanom eter 
G reads zero, (a) W hat is the potential difference 
across the entire length of resistor a c l  (b) The 
switch is set at point I. and a new zero reading

3V, TJ !> each ceh

— m m -
12 Ω

rV W S
6 Ω

4 Ω 
l VVV0

8 Ω

22 Ώ

5 Si

L v a - T a a G J
U a a / lJ

Figure 3-32 20 it

of the galvanom eter is obtained when b ; 
0.47 of the distance from a to c. W hat is the emf 
of cell x?
3.21 The potential difference across the 
term inals of a battery is 8.5 V when there is a 
current of 3 A in the battery from the negative 
to the positive terminal. When the current is 
2 A in the reverse direction, the potential 
difference becomes 11V. (a) W hat is the internal 
resistance of the battery? (b) W hat is its emf?
3.22 In the circuit of Fig. 3-32, determine (a) 
the current in the battery, (b) the potential 
difference at its terminals, and (c) the current 
in each conductor.
3.23 D eterm ine the current in each conductor 
in the netw ork shown in Fig. 3-33.
3.24 D eterm ine the current in each conductor 
in the netw ork shown in Fig. 3-34.
3.25 Determ ine the current in each conductor 
in the network shown in Fig. 3-35.
3.26 (a) Determine the potential difference 
between points a and b in Fig. 3-36. (b) Given 
that a and b are connected, calculate the 
current in the 12-V cell.
3.27 (a) In Fig. 3-37a what is the potential 
difference A Vab when switch S is open? (b) W hat 
is the current through switch S when it is

IOV
‘3 Ω

I lS V  
•I Ω

2 Cl
lVVV1I 25 V 

4Ω —
SV  

10 Ω

12 Ω 

,25 V 6 Ω

Figure 3-33

^ A / V ^ h V A

Figure 3-34

—A V l H —A V —
_ i o v  - I 3 il

 A V -
6 U 

Figure 3-35
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12 V, I Ω

Figure 3-36

closed? (c) In  Fig. 3-37b what is the potential 
difference Δ Vltb when switch S is open? (d) W hat 
is the current through switch S when it is

F  = 36 V

Figure 3-37

dosed? W hat is the equivalent resistance of 
the d rcu it in Fig. 3-37b, (e) when switch S is 
open and (F) when it is dosed?

CHALLENGING PROBLEMS

3,38 Determ ine the charge on the plates of 
the capacitor in the d rcu it shown in Fig. 3-38. 
(Λ P-B: 19711

30 V
Ι 0 Ω .

5.0 Ώ
— W V -

I
~ [2 0X  IO *6 

— ■ farad

Figure 3-38

3.29 In the d rcu it shown in Fig. 3-39, all 
currents and voltages are at their steady-state 
values, (a) Calculate the current in the 10-ohm 
resistor, (bl Calculate the charge on either plate 
of the capacitor, (c) Calculate the power 
dissipation in  the 2.0-ohm resistor. IA P-H: 
1972)

10 Ω

6.0 VV l Y w
2.0 8 -

20x  to - 8 
Farad

Figure 3-39

3.30 In the d rcu it shown in Fig. 3-40, the 
current delivered by the 9-volt battery of

internal resistance I ohm is 3 amperes. The 
power dissipated in R 2 is 12 watts, (a) Deter
mine the reading of voltm eter V in the diagram, 
(b) D eterm ine the resistance of R 1- (c) D eter
mine the resistance of R 1. lAP-B: 19761

7 =  3 A

Figure 3-40

3.31 Suppose that you are provided with the 
apparatus shown in Fig. 3-41. (a) Draw a 
diagram, using the symbols in the figure, 
Io show how you should connect these com
ponents to heat the w ater as rapidly as possible. 
The meters should be connected so that from 
the two m eter readings alone you could 
determine at what rate the water is being 
heated, (bl Suppose the emT V of the battery 
is 50 volts and the current through the battery 
is 5 amperes. Assume the spediic heat of the 
water is 4 joules per gram per Celsius degree, 
and the heat of vaporization is 2,200 joules
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In su la te d  h ea t c o n ta in e r  o f  neglig ib le hea t 
ca p ac ity  c o n ta in in g  I(X) g o f w a te r

Ri

Wr-

- ® -

B a t t c r v  D f  e m f  I' a n d  n e g l i g i b l e  in-

Lernal resistance
T o r r  heating elements of u n 
k now n resistance, im m e rs ib k  

In water

Figure 3-41

Ammeter o f negligible resistance

Volitm eter o f  large resistance 

W ires o f  negligible
r e s i s t a n c e

per gram. Calculate the num ber of seconds 
required for all the water to boil away. (AP-B; 
1977)
3.32 A resistor is m ade in the form of a cylinder 
of cross-sectional area A. O ne portion, of 
length I1, is made of material whose resistivity 
is p: the other, of length / 2, is made of material 
whose resistivity is 3p. There is a current I 
uniformly distributed over the area A. Express 
all answers in terms of fundamental constants 
and the symbols shown in Fig. 3-42. (a) D eter
mine expressions for the electric field strengths 
S 1 and S 2 In the two portions of the resistor.
(b) Determ ine the potential difference V 
between the opposite ends of the resistor.
(c) By applying Gauss's law to a surface which 
encloses the boundary between the two 
materials, determine the sign and m agnitude 
of the electric charge which is present on this 
boundary. (ΛP-C; 1977)
3.33 The needle of a galvanometer suffers a 
full-scale (50 divisions) deviation when the 
current is 0.1 mA. The resistance of the galva
nometer is 5 Ω. W hat must be done to change it 
into (a) an am m eter with each division corre
sponding to  0.2 A, and (b) a voltmeter with 
each division corresponding to 0.5 V?
3 34 When resistance is measured using a volt
meter and an am m eter as shown in Fig. 3-43, 
errors are m ade if the resistances R 1 and R a of 
the instrum ents are ignored. Discuss these 
errors. Which method has the smaller error 
when R is la) large, and (b) small? N ote that in 
general R v is very large and Ra is very small.

Figure 3-43

3 35 Using the result of Problem 3.13, show 
that the resistance of the system shown in 
Fig. 3-44 is equal to 1.61 SR,. [Hint: Note that 
if the system is cut through the dashed line, 
the section to the right is still equal to the 
original system because it is composed of an 
infinite num ber of resistors ]
3.36 A hollow cylindrical conductor οΓ length 
L has radii r, and r2 A potential difference is 
applied between the two ends of the conductor 
so that there is a current I parallel to  the axis. 
Show that if σ  is the conductivity of the 
material, the resistance is

R -  L
W x rE

3.37 A hollow cylindrical conductor of length 
L  has radii r. and r2- A potential difference 
is applied between the inner and outer surfaces 
so that there is a current / in the outward radial 
direction. Show that if σ is the conductivity of 
the material, the resistance is

In [Iffr1)

Figure 3-44
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Magnetic Interaction

4.1 Introduction

Centuries before Christ, it was observed that certain iron ores, such as the lodestone. 
have the property o f attracting small pieces o f iron. This property is also exhibited 
by iron, cobalt, and manganese, as well as by many compounds o f these metals. 
This attribute is unrelated to gravitation since not only does the property fail tc be 
exhibited naturally by all bodies, but it appears to be concentrated at certain spots 
in the mineral ore This attribute is also apparently unrelated to the electrical inter
action because neither cork balls nor pieces o f paper are attracted at all by these 
minerals. Therefore a new name, magnetism* was given to this physical property. 
The regions o f a body where the magnetism appears to be concentrated are called 
magnetic poles. A magnetized body is called a magnet.

The earth itself is a huge magnet. For example if  a magnetized rod is suspended 
at any point on the earth's surface and allowed to rotate freely about the vertical, 
the rod orients itself so that the same end always points toward the north geographic 
pole. This result shows that the earth exerts a force on the magnetized rod.

Experiment suggests also that there are two kinds o f magnetic poles, which may 
be designated by the signs F and —, or by the letters N  and S, corresponding to the 
north-seeking and south-seeking poles, respectively. If two magnetized bars are 
placed as shown in Fig. 4-1, the bars will either repel or attract each other, depending 
on whether like or unlike poles face each other. Thus from experiment

the interaction between like magnetic poles is repulsive and the inter
action between unlike magnetic poles is attractive.

Before physicists clearly understood the nature o f magnetism, they attempted to 
measure the strength of a magnetic pole by defining a magnetic mass or charge and then 
investigated the dependence o f the magnetic interaction on the distance between the 
poles, much as gravitational interaction was first studied. However, a fundamental 
difficulty appeared when these measurements were attempted: although positive and 
negative electric charges have been isolated and a definite amount o f electric charge 
is associated with the fundamental particles constituting all atoms, it has not yet 
been possible to isolate a magnetic pole or identify a fundamental particle having 
only one kind of magnetism, either N  or S. Magnetized bodies always seem to exhibit 
poles in equal and opposite pairs. On the other hand the notions of magnetic pole 
and magnetic mass have been found unnecessary for the description of magnetism. 
Electric and magnetic interactions are intimately related, and in fact are only two 
different aspects of one property of matter: its electric charge. As will be seen. 
magnetism is a manifestation o f electric charge in motion. Thus electric and magnetic

*The name magnetism is derived from the ancient city in Asia M inor called Magnesia, where 
according to tradition, the phenomenon was first recognized.



Magnetic Force on a Moving Charge

(a) (b)

pig. 4-1. Interaction between two magnetized bars, (a) Unlike poles a ttract each other, (b) Like 
poles repel each other.

interactions are often considered together under the more general name o f e lec tro 
m agnetic in teraction .

4.2 Magnetic Force on a Moving Charge

Interactions between magnetized bodies may be described by saying, in analogy 
with the gravitational and electrical cases, that a magnetized body produces a 
m agnetic  f i e ld  in the space around it. When an electric charge a t rest is placed in a 
magnetic field, no special force or interaction is observed on the charge. However 
when an electric charge m o ves  in a region in which there is a magnetic field, a new 
force on the charge is observed in addition to those forces resulting from gravita
tional and electric interactions.

By measuring the force experienced by different charges moving in different ways 
at the same point in a magnetic field, a relation between the force, the charge, and its 
velocity may be deduced. The result is that

th e  fo rce  e x e r te d  b y  a m a gnetic  f ie ld  on a m oving charge  is pro p o rtio n a l 
to  the e lec tr ic  charge  a n d  to  its  v e lo c ity , a n d  the d irec tion  o f  the  fo r c e  is 
p erpend icu la r to  th e  ve lo c ity  o f  the  charge.

If the properties of the vector product are recalled, the analysis may be taken one step 
further by writing the force F on a charge q moving with velocity u in a magnetic field 
P  as

F =  q v x 3 S .  (4.1)

which satisfies the experimental requirements mentioned above. Here 39 is a vector 
whose magnitude and direction are found at each point by comparing the observed 
value o f F at the point with the values o f  q and u. It is found experimentally that the 
vector 3# may vary from point to point in a magnetic field, but at any given point 

has the same value for all charges and velocities. Therefore P  describes a property 
lhat is characteristic of the magnetic field, and is called the m a g n e tic  f ie ld  s treng th .
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in analogy with the electric field tf. (Another name, imposed by usage, is magnetic 
induction.)

When the particle moves in a region in which there are both electric and magnetic 
fields, the total force on the particle is the sum of the electric force qS  and the magnetic 
force qv x 09. That is.

F = q ( S + v x  09). (4.2)

This expression is called the Lorentz force.
Because of the property of the vector product, Eq. (4.1) gives a force perpendicular 

to the velocity v as indicated before, but also perpendicular to the magnetic field 09. 
Equation (4.1) implies also that when r is parallel to 39. the force F is zero. In fact 
it is observed that at each point in a magnetic field there is a certain direction of 
motion such that the charge experiences no force. This direction is defined as the 
direction of the magnetic field at the point. Figure 4-2 illustrates the relation between 
the three vectors u, Pt, and F for both a positive and a negative charge. The figure 
shows the method, called the right hand rule, for determining the direction of the force

If a is the angle between r and 09, the magnitude o f  F is

F = q v 3 S  sin a. (4.3)

The force is maximum when α = π /2  or v is perpendicular to 39, resulting in

^max =qv09. (4.4)

The force is zero when x =  0 or when u is parallel to 09 as indicated previously.
From Eq. (4.1). the unit o f magnetic field may be defined as N /(C  m s 1) 

or kg s_1 C 1. This unit is called a tesia (T) in honor o f  the Yugoslavian-born 
American engineer Nicholas Tesla (1856-1943). That is, T = k g  s " 1 C “ 1. One tesla 
corresponds to the magnetic field that produces a force o f one newton on a charge 
of one coulomb moving perpendicular to the field at one meter per second.
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B ecause  th e  m a g n e tic  fo rce  F = q v x  ^ i s  p e rp e n d ic u la r  to  th e  ve lo c ity , th e  w o rk  
asso c ia te d  w ith  th e  m a g n e tic  fo rce  is z e ro ; th e re fo re  th e  m a g n e tic  force d o e s  n o t 
p ro d u c e  a n y  c h a n g e  in  th e  k in e tic  en e rg y  o f  th e  p a r tic le . A lth o u g h  th e  m a g n e tic  
force is n o t c o n se rv a tiv e  in  th a t  it is n o t  re la te d  to  a m a g n e tic  p o te n t ia l  en e rg y , 
w hen a p a rtic le  m o v e s  in  c o m b in e d  e le c tr ic  a n d  m a g n e tic  fie lds, its  to ta l en e rg y  
rem a in s  c o n s ta n t.  (T o ta l en e rg y  m e a n s  its  k in e tic  en e rg y  p lu s  th e  p o te n t ia l  e n e rg y  
from  its  d iffe ren t in te ra c tio n s .)

E xam ple 4,1, A cosmic-ray proton with a velocity equal to IO7 m s 1 enters the magnetic field 
of the earth in a direction perpendicular to it. Estimate the magnetic force exerted on the proton.

f The intensity of the magnetic field near the earth 's surface at the equator is about 
^ = I T x I O -7 T. The electric charge on the proton is q = + e  =  1.6x IO' 19 C. Therefore from 
Eq. (4.4) the force on the proton is

F = q r^ f= 2 .0 8  x 10“ 19 N.

Sincein=IJip =  1.67 x 10 27 kg, the acceleration  caused by this force is O=Ffmf  = I 24 x 1 0 s m s - 2 . 
Thus the acceleration  o f the  proton due  to  the m agnetic  field is a b o u t ten m illion  tim es the  accelera
tion of gravity  L

Example 4.2. The Hall effect. In 1879 the American physicist E. C. Hall (1855-1929) discovered 
that when a metal plate, along which a  current I is passing, is placed in a magnetic field per
pendicular to the plate, a potential difference appears between opposite points on the edges of the 
plate.

T The Hall effect is a typical application of Eq. (4.1). Suppose first that the carriers of the electric 
current in the metal plate are electrons, having a negative charge q =  — e. Consider Fig. 4-3(a), 
in which the Z -axis has been drawn parallel to the current I: the actual m otion of the electron is

(a) Negative carriers (q — —e) (b) Positive carriers (q -  + e)

Fig. 4-3. The Hall effect.
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in the — Z-direction with the velocity r _. When the magnetic field 28 is applied perpendicular to 
the plate, along the Λ'-axis, the electrons are subject to  the force F = ( —e)r_ x SS. The vector 
product a x SS is along the — V-axis: but when the product is multiplied by —e. the result is a 
vector F along the +  V-axis. Therefore the electrons drift to the right-hand side of the plate, which 
thus becomes negatively charged. The left-hand side, being deficient in the usual num ber of 
electrons, becomes positively charged. As a  consequence an electric field δ  parallel to  the +  V-axis 
is produced. When the force ( —e) S  on the electrons, which is produced by this electric field and 
directed to the left, balances the force to the right, which is produced by the magnetic field SS. 
equilibrium results and there is no further separation of charges. The transverse electric field 
leads to  a transverse potential difference between opposite sides of the conductor, the left-hand 
side being at the higher potential; the value of the potential difference is proportional to the 
magnetic field. This outcom e is the norm al, or “negative,” Hall effect, exhibited by most metals, 
such as gold, silver, platinum, copper, etc. However with some metals, such as cobalt, zinc, and 
iron, and with other materials, such as the semiconductors, an opposite, or “positive,” Hall efiect 
is produced as shown in Figure 4-3(b).

To explain the positive Hall effect, suppose that the carriers of the current are positively charged 
particles with £/= + e . Then they must move in the same sense as the current so that their velocity 
t>+ is along the + Z -axis as in Fig. 4-3(b). The magnetic force on the moving charges is 
F = (+elt-% x SS, and it is directed tow ard the +  V-axis. However since (he charges are positive, 
the right-hand side of the plate becomes positively charged, the left-hand side becomes negatively 
charged, and a transverse electric field is produced in the — V-direction. Therefore, the potential 
difference is the reverse of tha t in the case of negative carriers, and the result is a positive Hall effect-

W hen the two types of Hall effect were discovered, physicists were very puzzled because at 
that time the general belief was that the only carriers of electric current in a solid conductor were 
the negatively charged electrons, However, it has been found that in certain circumstances it is 
advantageous to  say that the carriers οΓ electric current in a solid are positively charged particles 
In these materials there are places in which normally an electron should be present, but from some 
defect in the solid structure the electron is missing; in o ther words, there exists what may be 
described as an electron hole. W hen a nearby electron for some reason moves to fill an existing 
hole, the electron obviously produces a hole at its original position. Thus electron holes move in a 
direction exactly opposite to that in which the negatively charged electrons move under an 
applied electrical field. Electron holes behave entirely similarly to  positive particles. Thus the 
Hall effect provides a very useful method of determining the sign of the charge carriers in a con
ductor. A

4.3 Motion of a Charge in a Magnetic Field

Consider the motion o f a charged particle in a uniform magnetic field; i.e., a magnetic 
field having the same intensity and direction at all points in space. For simplicity 
the case o f a particle moving in a direction perpendicular to the magnetic field will 
be studied (Fig. 4-4). Since the force is perpendicular to the velocity, the effect o f the 
force is to change the direction of the velocity without changing its magnitude; the 
result is a uniform circular motion. The acceleration is then centripetal; and from
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the equation for circular motion. F =  Hiv2Ir with F given by Eq. (4.4).

m v
 = q  v P

r

or

r=-
mv
q P

(4.5)

which gives the radius o f  the circle described by the particle. For example from 
the data o f Example 4.1. the proton would describe a circle o f radius 8 x IO5 m if  
the field were uniform. By writing v =  ω)· where ω is the angular velocity of the charged 
particle. Eq. (4.5) may be written as

ω = — P  
m

(4.6)

Therefore the angular velocity is independent o f the velocity v and depends only 
on the ratio q/m and the field P. The expression (4.6) gives the magnitude of ω but 
not its direction; however, the acceleration in a uniform circular motion may be 
written in vector form as α =  ω χ ι \  Therefore the equation of motion F =  m a  becomes

m < o x v = q v x  P

or, reversing the vector product on the right-hand side and dividing by m. w t get

indicating that

ω x P= — {q/m) P x  i\ 

ω = —(q/m) P ,
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q positive; ffi upward, ω downward q negative; <B and ω upward

(a) (b)

Fig. 4-5. Circular path o f  positive and negative charges in a uniform magnetic field.

which gives ω both in magnitude and direction.* The minus sign indicates that ω 
has the opposite direction to ES for a positive charge and the same direction for a 
negative charge. The angular velocity ω o f a charged particle in a uniform magnetic 
field is called the cyclotron frequency for reasons to be explained in Example 4.8 when 
the cyclotron is discussed.

It is customary to represent a field perpendicular to the paper by a dot I·) if the 
field is directed toward the reader and by a cross I x ) if the field is directed into the 
page. Figure 4-5 represents the paths o f a positive (a) and a negative (b) charge 
moving perpendicularly to a uniform magnetic field directed out o f the page. In ja), 
ω is directed into the page and in (b) toward the reader.

The bending o f the path o f an ion in a magnetic field therefore provides a means 
for determining whether the ion's charge is positive or negative if the direction of its 
motion is known. Figure 4-6 shows the paths o f several charged particles made visible 
in a cloud chamber] placed in a magnetic field. The applied magnetic field is many 
times stronger than the earth’s magnetic field so that the radius o f the path is o f  the 
order of the dimensions of the cloud chamber. Note that the paths are bent in either 
of two opposite senses, indicating that some particles are positive and others are 
negative. It may be observed that some o f the particles describe a spiral o f decreasing 
radius. This configuration indicates that the particle is being slowed down by collision 
with the gas molecules. According to Eq. (4.5). the decrease in the velocity of the 
particle results in a decrease in the radius o f the orbit.

*M athematicalIy speaking, we should have written ω =  —(q,m)JS y/.v  where A is an arbitrary 
conslam : but Eq. (4.6) indicates that we must make A=O.
tA  cloud cham ber is a device containing a gas-and-vapor m ixture in which the path of a charged 
particle is made visible by condensing the vapor on ions of the gas. The ions are produced by the 
interaction of the charged particle and the gas molecules The condition for condensation is 
obtained by cooling the mixture by a  rapid (adiabatic) expansion. The mixture may be air and 
water vapor.



Motion of a Charge in a Magnetic F ield

Fig. 4-6. C loud-cham ber photograph οΓ paths of charged particles in a uniform magnetic field. 
The magnetic field is directed into the page. The particles at the top are positively charged

Fig. 4-7. Helical path o f  a positive ion moving 
obliquely to a uniform magnetic field.

When a charged particle moves initially in a direction that is not perpendicular to 
the magnetic field, the velocity may be separated into its parallel and perpendicular 
components relative to the magnetic field. The parallel component remains un
affected, and the perpendicular component changes continuously in direction but 
not in magnitude. The motion is then the resultant o f a uniform motion parallel 
to the field and a circular motion around the field, with angular velocity still given by 
Eq (4.6), The path is a helix as shown in Fig. 4-7 for a positive ion.

Another fact that results from Eq. (4.5) is that the larger the magnetic field, the 
smaller the radius of the path of the charged particle. Therefore ίΓ the magnetic 
field is not uniform, the path is not circular. Figure 4-8 shows a magnetic field directed 
from left to right with its strength increasing in that direction. Thus a charged particle 
injected at the left-hand side o f  the field describes a helix whose radius decreases
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c o n tin u o u s ly . A m o re  d e ta ile d  a n a ly s is , o m itte d  he re , w o u ld  sh o w  th a t , to  co n se rv e  
energy , th e  c o m p o n e n t οΓ th e  v e lo c ity  p a ra lle l to  th e  field  d o e s  n o t  re m a in  c o n s ta n t 
b u t d ec rea se s  (an d  th e re fo re  th e  p itc h  o f  th e  helix  a lso  d ec rea se s) a s  th e  p a r tic le  m oves 
in th e  d ire c tio n  o f  in c re a s in g  fie ld  s tre n g th . E v en tu a lly  th e  p a ra lle l v e lo c ity  re d u c e s  to  
ze ro  if th e  p a tfi is lo n g  e n o u g h  in  th e  m a g n e tic  field , a n d  th e  p a rtic le  is fo rced  to  m o v e  
b a c k  o r  a n tip a ra l le l  to  th e  m a g n e tic  field . T h u s  a s  a  m a g n e tic  field  in c rea se s  in  
s tre n g th , th e  field  b eg in s  to  a c t a s  a  re f le c to r o f  c h a rg e d  p a rtic le s , 01. a s  it is p o p u la r ly  
ca lled , a  m a g n e tic  m irror. T h is  effect is u sed  fo r c o n ta in in g  io n ized  g ases  o r  p la sm as.

A n o th e r  s i tu a t io n  is d e p ic te d  in F ig . 4-9. m  w h ich  a  m a g n e tic  field  p e rp e n d ic u la r  
to  th e  p ag e  in c rea se s  in  in te n s ity  fro m  rig h t to  left. T he  p a th  o f  a p o s itiv e  ion  in 
je c te d  p e rp e n d ic u la r  to  th e  m a g n e tic  fie ld  h a s  a lso  b een  in d ic a te d : th a t  p a th  is m o re  
c u rv e d  a t  th e  left, w h ere  th e  field is s tro n g e r , th a n  a t th e  righ t, w h e re  th e  field  is 
w eak er. I h e  p a th  is n o t c lo sed , a n d  th e  p a rtic le  d r if ts  a c ro s s  th e  field p e rp e n d ic u la r  
Io Ihe d ire c tio n  in  w 'hich th e  m a g n e tic  field increases.

Example 4.3, Discovery of the positron,

▼ The relation between the velocity of a charged particle and the radius of its orbit in a magnetic 
field led to the 1932 discovery of the positron in cosmic rays. The positron is a fundam ental particle 
having the same mass nic as the electron but a positive charge -t-e. The discovery of the positron 
wras the w ork of the American physicist Carl D, Anderson (1905- )* Anderson obtained the 
cloud-chamber photograph in Fig, 4-10. The horizontal band seen in the figure is a lead slab 
0.6 cm thick that had been inserted inside the cloud chamber, and through which the particle 
has passed. T hat the low erpart of the path of the particle is less curved than the upper part indicates 
that the particle had less velocity (and energy) above the slab than below1 it. Therefore the particie 
is moving upward since it must lose energy and slow down in passing through the slab. The 
curvature of the track of the particie and the sense of the m otion relative to the magnetic field 
indicate that the particle is a positive one. The path  looks very much like that of an electron— 
but a  positive electron. Equation (4.2) may be rewritten as p = m v= q Pr. Therefore, if r is  measured 
from the photograph and it is assumed that q= e, the m om entum  may be calculated. The order of 
m agnitude of p corresponds to a particle with approximately the same mass as an electron. A 
more detailed analysis enables the particle's velocity to be evaluated and its mass to be com puted; 
its mass is in fact the electron mass. A

Example 4.4. The motion of ions in a magnetic field for the case of charged particles falling on the 
earth front outer space and constituting part of what are called cosmic rays.

▼ Figure 4 -11 shows the magnetic field of the ea rth .t Particles falling along the magnetic axis 
of the earth do no t suffer any deviation and reach the earth  even if they have very small energy.

*Tlie existence of this particle, however, had been predicted by the British physicist Paul A. M. 
D irac (1902 ) a few years before its discovery.
+Actually the m agnetic field around the earth shows several local anomalies and an overall 
distortion in the direction away from the sun. The schematic representation of Fig. 4-11 ignores 
these variations.
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Fig, 4-8. Path o f a  positive ion in a 
nonuniform magnetic field.

D rift of particles

Fig. 4-10. A nderson’s cloud-cham ber photo
graph o f  the path o f  a positron (positive 
electron) in a magnetic field directed into the 
page. This photograph presented the first 
(1932) experimental evidence o f the existence 
o f positrons, previously predicted by Dirac.

® strong

Fig. 4-9. Plane motion o f an ion 
drifting across a nonuniform  mag
netic field.
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Low energy, 
approxim ately polar

Fig. 4-11. M otion of charged cosmic-ray particles in the earth ’s magnetic field.

Particles falling at an angle with the magnetic field of the earth describe a helical path, and those 
moving very slowly may be bent so much that they do not reach the earth 's surface. Those arriving 
on the magnetic equator suffer the largest deflection because they are moving in a plane per
pendicular to the magnetic field. Therefore only the most energetic particles at the magnetic 
equator can reach the earth’s surface. In o ther words the minimum energy that a charged cosmic 
particle must have to reach the earth’s surface increases from the earth’s magnetic axis to the 
earth’s magnetic equator.

A nother effect caused by the earth 's magnetic field is the east-west asymmetry of cosmic radiation. 
W hether the charged cosmic particles are preponderantly positive or negative is not definitely 
known. However, particles of opposite signs are bent in opposite directions by the earth 's magnetic 
field. If the num ber of positive particles in the cosmic rays reaching the earth is different from 
the num ber of negative particles, the cosmic rays arriving at a given place on the earth’s surface 
in a direction east from the zenith should have a different intensity from those arriving in a direction 
west from the zenith. The experimental results are highly in favor of a  majority of positively 
charged particles. A
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E xam ple 4.5. The Van Alien radiation belts formed from cosmic charged particles interacting 
with the earth’s magnetic field.

f Above the earth’s surface the regions commonly called the Van Allen belts [after the American 
physicist James Van Allen (1914- )] are composed of rapidly moving charged particles, mainly 
electrons and protons, trapped in the earth’s magnetic field. The inner belt extends from aDout 
800 km to about 4000 km above the earth’s surface; the outer belt extends up to about 60,000 km 
from the earth  * They were discovered in 1968 by apparatus carried in an American Explorer 
satellite and investigated by the lunar probe Pioneer III. To understand better the trapping of 
charged particles in the Van Allen belts, consider, for example, a free electron produced by a 
collision between an atom and a cosmic ray many kilometers above the earth’s surface. The 
velocity com ponent perpendicular to the earth's magnetic field causes the electron to travel in a 
curved path. However, the strength of the field is greater nearer the surface of the earth. The result 
is a m otion similar to  that shown in Fig. 4-9, with the electron drifting eastward because of its 
negative charge (for positive charges the drift is westward). A further effect arises from the com 
ponent of the electron’s velocity parallel to  the earth’s magnetic field: this com ponent produces a  
spiraling (like that shown in Fig. 4-7) tow ard one of the poles along the magnetic lines. Because 
of the increase in the magnetic field strength toward the north  or south, the gyration becomes 
tighter and tighter while at the same time the parallel com ponent of the velocity decreases as 
explained in connection with the magnetic m irror effect of Fig. 4-8. Each electron reaches a 
specific north  or south latitude at which the parallel velocity becomes zero: which latitude it is 
depends on the initial velocity of injection. The electron then retreats toward the opposite pole. 
The resultant m otion is thus an eastward change in longitude and a north-south oscillation in 
latitude. The m otion is repeated continuously, perhaps for several weeks, until the electron is 
ejected from the Van Allen belt by a collision that ends its trapped condition. A similar situation 
occurs with the trapped protons, k

4.4 Exam ples of Motion of Charged Particles in a Magnetic Field

In this section several concrete situations in which an ion moves in a magnetic field 
will be illustrated.

Example 4.6. The mass spectrometer.

▼ Consider the arrangem ent illustrated in Fig. 4-12. Here I is an ion source (for electrons it may 
be just a heated filament); and S l and S2 are two narrow  slits through which the ions pass, being

*There is good evidence to show that the inner belt is composed of protons and electrors arising 
from the decay of neutrons that have been produced in the earth’s atm osphere by cosmic-ray 
interactions. The outer belt consists primarily of charged particles that have been ejected by the 
sun. An increase in the num ber of these particles is associated with solar activity, and their removal 
from the radiation belt is the cause for auroral activity and radio-transm ission blackouts.
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Fig. 4-12. D em pster’s mass spectro
meter. I  is an ion source. Slits S t and 
S 2 serve as collim ators o f the ion beam . 
V  is the accelerating potential differ
ence applied between S 1 and S 2- P  is a 
photographic plate that registers the 
arrival o f the ions.

accelerated by the potential difference V  applied between them. The exit velocity of the ions is 
calculated from Eq. (E25), which gives

v2= 2 [  I )  V. (4 8)
VnJ

In the region beyond the slits is a  uniform magnetic field directed norm al to  the velocity ol the 
ion (upward from the page in the figure) An ion will then describe a circular orbit, ben I in one 
direction or the other depending on the sign of its charge q. After describing a  semicircle the ions 
fall on a photographic plate P  and leave a mark. The radius r of the orbit is given by Eq. (4.5), 
from which the velocity v is

V = ^SSr. (4.9)
m

Com bining Eqs. (4.8) and (4.9) to eliminate a yields

a 2V
- = + , 2-2 - H lO tm SSi T2

which gives the ratio q/m  in terms of three quantities (K SS. and r). each of which can easily be 
measured. This technique may be applied to electrons, protons, and any other charged particle, 
atom or molecule. If the charge q is measured independently, the mass of the particle may be 
obtained. These are the methods that were referred to  previously in Section 1.5.

The arrangem ent of Fig. 4-12 constitutes a mass spectrometer because it separates ions having
the same charge q but different mass m since the radius of the path of each ion depends on the
ion’s q/m value. The particular spectrom eter shown in Fig. 4 -12 is called Dempster's mass spectrom
eter. Several o ther types of mass spectrometers, all based on the same principle, have been 
developed. Scientists using this technique discovered in the 1920’s that atom s of the same chemical 
element do not necessarily have the same mass. The different varieties of atom s of one chemical 
element, which differ in mass, are called isotopes.

The experimental arrangement of Fig. 4-12 may be used also to  obtain the ratio q/m for a 
particle moving with different velocities. It has been found that q/m  depends on v as if q remains 
constant, and m varies with the velocity by the relation m = m 0/ J l  - V 2Ic2 Therefore

Photographic
plate

the electric charge is an invariant, being the same for all observers in uniform relative 
motion, k
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Example 4.7. Discovery of the electron.

¥ During the latter part of the nineteenth century there was a great am ount of experimental 
work on electrical discharges. These experiments consisted of producing an electrical discharge 
through a gas at low pressure by placing two electrodes within the gas and applying a large 
potential difference to them. Depending on the pressure of the gas in the tube, several luminous 
effects were observed. When the gas in the tube was kept at a pressure less than 100 Pa. no more 
visible effects were observed within the tube, but a luminous spot was observed on the tube wall 
at O directly opposite the cathode C (Fig. 4-13). Therefore the hypothesis was made that the 
cathode emitted some radiation that moved in a straight line tow ard 0 . Accordingly this radiation 
was called cathode rays.

When two parallel plates P  and P' were added inside the tube and a potential difference was 
applied, an electric field S  directed Trom P to  P' was produced. The result of applying this electric 
field was that the lum inous spot moved from 0  to O': that is, in the direction corresponding to a 
negative electric charge. This movement suggested that cathode rays were simply a stream of 
negatively charged particles. If q is the charge οΓ each particle and v its velocity, the deviation 
d = 0 0  can be com puted by applying Eq. (1.9), qSaim v2 = d!L  The electric force on the particle 
is qS  and is directed upward, [f a  magnetic field perpendicular to the elecLric field and directed 
into the paper is applied in the same region occupied by the plates, particles accelerating through 
the field will experience a magnetic force. According to Eq. (4.4), the magnetic force is qvP  and is 
directed downward because q is a negative charge. Bv properly adjusting P .  we can make the 
magnetic force equal to the electric force. This adjustm ent results in a zero net force, and the 
luminous spot returns from O' to 0  : that is. there is no deflection of the cathode rays. Then qS  = 
qvM or v = S jP .  This equation provides a m easurem ent of the velocity of the charged particle. 
Substituting this value of μ in Eq. (1.19) gives the ratio qjm of the particle constituting the cathode 
rays:

q Sd
m P 1La

Experiments of this type provided one of the first reliable experiments for measuring qjm . and in
directly gave a proof that cathode rays consist of negatively charged particles, since then called 
electrons.

Pig. 4-13. T hom son’s experiment for measuring qjm. C athode rays (electrons) emitted by C  and 
collimated by A  and A ' arrive at the screen S  after passing through a region in which electric 
and magnetic fields are applied.
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These experiments were published in 1897 by the British physicist Sir J. J Thomson (1886- 
1940). who expended great effort and time trying to discover the nature of cathode rays. Today 
it is understood that free electrons present in the metal cathode C  are pulled out or evaporated 
as a result of the strong electric field applied between C and A. and are accelerated along the 
tube by the same field, k

Example 4.8. The cyclotron.

▼ That the path of a charged particle in a magnetic field is circular has perm itted the design ot 
particle accelerators that operate cyclically. One difficulty with electrostatic accelerators (described 
in Section 1.7) is that the acceleration depends on the total potential difference V. Since the electric 
field within the accelerator is S =  V d, if Kis very large, the length d of the accelerator tube must 
also be very great to  prevent the developm ent of strong electric fields that would produce eiectric 
breakdown in the materials of the accelerating tube. Also, a very long accelerating tube poses 
several engineering difficulties. However in a cyclic accelerator an electric charge may receive a 
series of accelerations by passing many times through a relatively small potential difference. The 
first instrum ent working on this principle was the cyclotron, designed by the American physicist 
E. O. Lawrence (1901- 1958). The first practical cyclotron started operating in 1932.

Essentially, a cyclotron (Fig. 4-14) consists of a cylindrical cavity that is divided into tw o halves 
O1 and D2 (each called a “dee” because of its shape), and  that is placed in a uniform magnetic 
field parallel to its axis. The two cavities are electrically insulated from each other. An ion source S 
is placed in the center of the space between the dees. An alternating potential difference of the 
order of IO4 V is applied between the dees. When the ions are positive, they will be accelerated 
tow ard the negative dee, Once inside a dee, the ion experiences no electrical force since the electric 
field is zero in the interior of a conductor. However because of the magnetic field, ions describe 
a circular orbit with a radius given by Eq. (4.5), r=mvjqSS, and an angular velocity, equal to  the 
cyclotron frequency of the particles and given by Eq. (4,6), a>=q2S/m. The potential difference 
between the dees is m ade to oscillate with a frequency equal to co. In this way the potential differ
ence between the dees is in resonance with the circular m otion of the ions.

After the particle has described half a revolution, the polarity of the dees is reversed; and when 
the ion crosses the gap between them, the ion receives another small acceleration. The next half-
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circle described then has a larger radius but the same angular velocity. The process repeats itself 
several times until the radius attains a maximum value R. which is practically equal to  the radius 
of the dees. The magnetic field at the edge of the dees is decreased sharply; and the particle moves 
tangentially, escaping through a convenient opening. The maximum velocity Dlnax is related to  the 
radius R by Eq. (4.5), namely,

and is determined by the characteristics of the particle, the strength of the magnetic field, and the 
radius of the cyclotron, but is independent of the accelerating potential. When the potential 
difference is small, the particle has to m ake many turns before it picks up the final energy; but 
when the potential difference is large, only a few1 turns are required.

The strength of the magnetic field is limited by technological factors, such as availability of 
materials with the required properties; but, with magnets of a sufficiently large radius, the particle 
can in principle be accelerated to any desired energy. However, the larger the magnet, the greater 
the weight and cost. There is also a physical limiting factor to the energy in a cyclotron. As the 
energy increases, the velocity of the ion also increases and results in a change of mass according 
to the relativistic relation ni =  m0/ v I — V2Ic1 * When the energy is very large, the change in mass 
is appreciable enough to make the cyclotron frequency οΓ the ion change noticeably. Therefore 
unless the frequency of the electric potential is changed, the orbit of the particle will no longer 
be in phase with the oscillating potential, and no further acceleration is produced. Thus in a 
cyclotron the energy is limited by the relativistic mass effect. A

Example 4.9. The University of Michigan has a cyclotron that has pole faces with a diam eter of
2.1 m and an extraction radius of 36 in. o r 0.92 m. The maximum magnetic field is JS= 1.50 T 
and the maximum attainable oscillating frequency of the accelerating field is 15 x IO6 Hz. Calculate
(a) the energy of the protons and alpha particles (doubly charged helium nuclei) when accelerated 
by this device, and (b) their cyclotron frequency, fc) W hat is the percentage difference between 
the cyclotron frequency at the center and that at the edge if the relativistic mass variation* is 
taken into account?

▼ (a) From Eq. (4.11) with the corresponding values for the charge and  mass of the protons and 
alpha particles, the kinetic energies of both may be expressed as

E* =  1.46 x 10' 11 J =91 MeV.

(b) The cyclotron frequency for the alpha particle is ω „= 7.2  x IO7 s_ l . or a frequency Vx= M jlir=
11.5 x 10s Hz. which is within the range of the maximum design frequency. For the protons the

t Sce the appendix for a discussion of relativistic mechanics.

The kinetic energy of the particles emerging from A is then

(4.11)
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frequency is twice that, o r 23 x IO6 Hz. This is the frequency with which the potential applied to 
the dees must change. However, the maximum design frequency of the cyclotron is 15 x IO6 Uz, 
and therefore this m achine cannot accelerate protons to the theoretical value of 91 MeV. Tf trie 
maximum oscillatory frequency is the maximum cyclotron frequency Tor protons (ωρ =9.42 x IO7 
s 11, the corresponding magnetic field for cyclotron resonance is 0.984 T. Thus the frcquencv- 
limited kinetic energy of protons is

Ek = \m v2 =Amai1R 1 =0.63 x 10 11 J = 39  MeV.

(c) At an energy E =  Hi0C2 Et, the mass of the particle is

m — Elc2 =Hi0 +  EtZt2 ;

and so EklC2 gives the change in mass. From  Eq. (4.6) we see tha t the cyclotron frequency is 
inversely proportional to  the mass, Therefore if ω  and ω 0 are the frequencies corresponding to 
the masses h i  and Hi0 of the same particle, it follows that ω / ω 0 =  h i 0 / h i  or

OJ — CO0 IH -H l0 EtZC2 Ek
Oi0 m mg + E fc 1 m0c2+ E k '

The left-hand side gives the percentage change in the cyclotron frequency; and the right-hand side, 
the percentage change in mass. F o r relatively low energies the kinetic energy term Et in the 
denom inator may be neglected in comparison with m0c2, so that with Δ ω = ω - ω 0. the above 
relation becomes

Δ ω =  Ek
Ol IH0C2

Thus so long as the kinetic energy is small compared with the rest energy of the particles, the 
change in frequency is very small. In our case for alpha particles, A o j I w  = —0.024= 2.4°/; and 
for protons, Δ ω /ω =  —0.042 =4.2° D.

The results obtained in this example indicate also that since electrons have a rest mass about 
I '1840 that οΓ the proton (Section 1.5), the kinetic energy to  which electrons can be accelerated 
(without appreciably deviating from their cyclotron frequency) is only about I 1840 that for 
protons. I o r  this reason, cyclotrons are not used for accelerating electrons.

Experimentally, the relativistic mass effect can be com pensated for, either by shaping the mag
netic held so that at each radius the value of ω remains constant in spite of the change in mass, or 
by changing the frequency applied to the dees and keeping the magnetic field constant while the 
particle is spiraling so tha t at each instant there is resonance between the particle m otion and the 
applied potential. The first design is called a synchrotron and the second is called a synchro
cyclotron. A synchrotron may operate continuously, but a synchrocyclotron operates in bursts 
because of the need for adjusting the frequency. A

Example 4.10. M otion οΓ a charged particle in crossed electric and magnetic fields.

▼ Consider the case in which a uniform electric field is parallel to the T-axis of a coordinate system 
and a uniform magnetic field is parallel to the Z-axis as shown in Fig. 4-15. The equation of 
motion of a charged particle produced by these fields is that given by the Lorentz force; that is,

ilv
F =m -r =q(Jf +  vx 381 

at
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ε χ ®

/ X
X '

Figure 4-15

By a Galilean transform ation from frame X Y Z  to another Trame I T Z ' ,  moving relative to the 
XTZ-axes with the relative velocity

the velocity o' of the particle relative to the Χ Ύ 'Ζ '-axes may be written as F =  a — u0 or d =  »' +  al( 
so that dv/dt =  dv'/dt. Thus the equation of m otion may be rewritten as

Because r 0 x 38=(uxS I P )x  U1P =  — uyS  =  —S .  the first and last terms in the preceeding equation

Note then that the m otion relative to I T Z 1 is as it would be if no electric field were present. 
Ifthe particle moves initially in the XT-plane (that is, if v has no Z-com ponenti, the m otion οΓ the 
particle in the X ' T 'Z '-fram e will be a circle of radius r= m vjqM , described with angular velocity 
ω =  —qSSjm. Relative to  X Y Z, this circle advances along the X-axis with the velocity t>0; and 
one of the paths shown in Fig. 4-16 results. The pattern repeats itself in a distance ν0Ρ = 2 π ν0/ω. 
If 2κνϋ/ω = 2 π τ  or if r=  v0/io, the path is the norm al cycloid, m arked (I): but if 2nv0/a j$ 2 n r  or if 
r $  L'o/ω. the paths (2) and (3) result, corresponding to curtate and prolate cycloids. If the charged

S x  HS S

m —  = q (S  +  «' x  P -\-v0 x 38).

XJ XJ
2«tq

Fig. 4-16, Cycloidal paths o f  a particle relative to observer O 
(I) r  =  u0/a), (2) r>  υ0/ω , (3 ) r < v 0jio.
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particle has an initial velocity com ponent parallel to the Z-axis, the paths illustrated in Fig. 4-11 
will move away from the A'7-plane at a constant rate.

An interesting aspect revealed by this example is that while the observer who uses frame A 7 Z 
observes both  an  electric and a magnetic field, the observer who uses frame A '7 'Z ',  in m otion 
relative to A 7 Z . observes a m otion of the charged particle corresponding only to  a magnetic 
field. This point suggests that the value of electric and m agnetic fields measured by two observers 
depends on their relative motion. This is a  very im portant m atter, which will be considered in 
greater detail in Section 4.6. A

4.5 Magnetic Field of a Moving Charge (NonreIativistic)

Up to this point the magnetic field has been discussed without any reference to how 
magnetic fields are produced; there have been allusions to certain substances, called 
magnets, that produce magnetic fields in their natural state. A major breakthrough 
in understanding the origin o f magnetism occurred in 1819 when the Danish physicist 
Hans Christian Oersted (1777-1851) accidently discovered that when placed beneath 
a long, current-carrying wire, a magnetic compass lined up perpendicular to the 
direction of the wire. Since an electric current consists of a stream of electric charges 
in motion, it seems reasonable to assume that magnetic fields not only are felt by 
charges in motion but also are produced by charges in motion. This assumption has 
been amply verified by analyzing the motion o f charged particles.

Accordingly while an electric charge at rest relative to an observer produces only 
an electric field, a charged particle in motion relative to an observer produces both an 
electric field and a magnetic field. Thus electric and magnetic fields are simply two 
aspects of one fundamental property of matter, and the term electromagnetic field 
more appropriately describes the physical situation involving moving charges.

Consider a charge q (Fig. 4-17) moving with a velocity u relative to an observer. 
(Assume that the velocity is small compared with the velocity of light so that rela
tivistic effects do not have to be taken into account in the calculations.) The electric 
field o f the charge is radial and is given by the same expression found in Chapter I 
when the particle is at rest; that is,

a = - ^ ! —2 ur (4.12)
4ne0r2

The electric lines o f force are radial and therefore straight lines passing through the 
charge. Experiment shows that the magnetic field o f the moving charge can be 
represented by magnetic lines o f force that are circles with their centers on the line of 
motion o f the charge. When the charge is positive, the magnetic lines o f  force are 
oriented in the direction o f the fingers o f the right hand when the thumb points in the 
direction o f motion o f the charge (see Fig. 4-17). N ote in particular that 08 has no 
component in the direction o f motion of the charge.
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Fig. 4-17. Electric and magnetic fields 
produced by a moving positive charge.

Thereforeat a given point in space, such as A. there is an electric field ^ in  the radial 
direction and a magnetic field S i n  a direction perpendicular to both r and u. Measure
ment o f the magnetic field at several points shows that the magnetic field is given by 
the expression

(4.13,
Γ

The constant Km in SI units is equal to 10“ m kg C 2 as will be explained in Section
5 7 It is customary to write Tq. (4.13) in the form

.. R oi(D X M j )

i n  - —  <4 J 4 >

where

Ro =  4TtKm=  1.3566 x 10“6 m kg Γ ~2 (4.15)

is a new constant called the magnetic permeability o f  vacuum. The magnitude o f the
magnetic field is

R 0 qv sin 0 
4 π  r2E t = Y f 1— —  (4 . 16)

where 0 is the angle between r and v. N ote that the magnitude o f the magnetic field 
is zero along the line of motion of the charge and has maximum value in the plane
that is perpendicular to the line of motion and passes through the charge.

Comparing Eqs. (4.12) and (4.16). note that the electric and magnetic fields of a 
moving charge at a given point in space are related in the form

S = p 0e 0( v x  £ )  =  - . (d x  S i. (4 ,17)
c~

In this expression the relation

c = ^ =  (4 .18)

has been used; this constant, as will be shown later, is the velocity of light (or o f  any
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electromagnetic signal) in vacuum. After substitution o f values for μ 0 and t0, c is 
2.9979 x IO8 m s _1. (Usually c is taken as 3.0 x IO8 m s _1 for most computations.)

In Example 4.12 it will be shown that when the velocity of the charge is comparable 
to that o f light. Eqs. (4.13) and (4.16) for the electric and magnetic fields must be 
modified. Elowever. the relation (4.17) remains valid at all velocities.

4.6 Electrom agnetism  and the Principle of Relativity

According to the principle of relativity (see Volume I. Chapter 111.* all laws of nature 
must be identical to all inertial observers. We must therefore proceed now to obtain 
the relation between the electric and magnetic fields as measured by two observers 
in uniform relative motion so that the principle o f relativity remains valid.

Suppose that two observers O and O' (Fig. 4-18) are in uniform relative motion 
with velocity », and that there are two charges q and Q at rest relative to O'. The two 
charges are then in motion with velocity » relative to 0 .  The values o f the two charges 
are the same for both observers O and O' as previously stated in Example 4.6. For 
observer O' there is only an electric interaction between Q and q. and the force 
measured one/ i s F ' = q S ‘ where S' is the electric field produced by Q at q as measured 
by O'.

On the other hand since O sees charge Q in motion, he observes that Q produces 
both an electric field S  and a magnetic field 08: and since q is also observed to be in 
motion with the velocity r. the force exerted by Q on q and measured by O is F =  
q ( £ + v x  PJi). With a common axis X  and X' chosen parallel to the relative velocity 
of the observers. v =  uxv and v x  38= —uvv J8. +  u. v08v: and therefore the components 
of F relative to frame X Y Z  are

Fx= q * x, F .= q (S y-  v £ t ), F, =  q (£I +  v08y). (4,19)

The components o f F' relative to frame X'Y'Z'  are

Fx =  ̂ f i  F'y =  q£'y, Fz =  qS's. (4.20)

Since q is at rest relative to 0 \  the relations between the components o f  F and F' 
according to the Lorentz transformations o f force (see the appendix) are

F Fp  _  r  p  _  y p ______-
x x ' y ν Ί = Ρ 7 ? ’ v  * - v2F 2

Substituting the values o f the components as given by Eqs. (4.19) and (4.20). and 
canceling the common factor q yield

„ S,.—viM, ,  S . - F v J i v
*'X =  «X, g y = - r h = 7 h <  ^ = - / π τ % ·  <4 ·2 1 >3 y j l  - V 2I c 2 f f l  - V 2I c 2

’See the appendix for a  review of the special theory of relativity
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Fig. 4-18. C om parison o f electromagnetic 
measurements by two observers in relative 
motion.

These expressions relate the electric field measured by observer O' to the electric 
and magnetic fields measured by observer O in accordance with the special theory o f  
relativity. The inverse transformations o f Eq. (4.21) are obtained by exchanging the 
fields and reversing the sign of v since frame X Y Z  moves with the velocity — v relative 
lo X Y Z '  Thus if observer O' measures an electric field S' and a magnetic field P'.  
the electric field measured by O is given by

S v +  vp's s ^ S ' , - v P ’y
- r . ™   , , .  ,·  (4.22)
j l — tr f c  J l - V 2Ic -

Suppose the charge 0 ,  instead o f being at rest in O', is moving relative to 0 ’ as 
well as to 0 :  then 0'  notes a magnetic field P '  in addition lo the electric field S '.  A 
similar but more laborious calculation* then gives

- v S J c 1 P .  — vS J c 1
a ; = -

1 - V 1Ic 1
+ = -

/I - V 1Ic2
(4.23)

V a u i K V

Again as in Eq. (4.21). the inverse transformations of Eq. (4.23) are found by ex
changing the fields and replacing v by —a, and result in

Vy - V S 1-Je1 J S l  + vS’J c 1
P y= - I —  ■ - -T-V (4.24)S 1 - V 1Ic- v l - V 2Ic1

Equations (4.21) and (4.23). or their inverse Eqs. (4.22) and (4.24), constitute the 
Lorentz transformation for the electromagnetic field. These equations prove once 
more that the electric and magnetic fields are not separate entities but form a single 
physical entity called the electromagnetic field. The separation of an electromagnetic 
field into its electric and magnetic components is not an absolute procedure; rather 
the separation depends on the motion of the charges relative to the observer.

’ For example if students wish to obtain the second and third equations in Eq. (4.23), we suggest 
that they use Eq. (4.21) to eliminate S', and S I  from the inverse transform ation of Eq. (4.22). and 
then solve for Wy and  P L
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Example 4.11. Reconsider Ihe situation discussed in Example 4.10; use the Lorentz transform a
tion for the electromagnetic field to  relate the fields measured by both observers.

T Recall that in Example 4.10 there was an electric field along the 1-axis and a  magnetic field 
along the Z-axis. By a kinematical transform ation to  a set of axes X ’Y ' Z '  moving in the In
direction with velocity r =  6  M. the motion was reduced to  that of a particle under a magnetic 
field alone. G o one step further in this analysis, and see the im plications of this example within 
the framework of the theory of relativity. In the frame X Y Z ,  S 1 =O. S y = S.  and # .= 0  for the 
electric field and B 1 = My=Q. Mz = M  for the magnetic field. Thus, from Eqs. (4.211 and (4.231 
the fields observed in the X '  Y 'Z'  frame are

S  - v  Ms'x=o. <?;=-—V-. s:=o.
V i - i ’V

M 1x=O. M'y= 0 . ML =  ^ ^ .
J \ - v  l Ic2

Setting V = S 1 M  yields S y =O  and thus t?' =  0; furthermore

M ' = M'. = J  I - V 2Ici  M.

Therefore the theory of relativity predicts that observer O' moving with velocity v = S ,  M  relative 
to  O will m easure no electric field and will measure a magnetic field smaller than the magnetic 
field measured by 0 .  but in the same direction. A

4.7 The Electrom agnetic Field of a Moving Charge (ReIativistic)

In Chapter I a charge at rest was seen to have an electric field S = ( q 4 n e 0r2)ur ; and 
in Section 4.5 it was shown that a charge in motion produces in addition a magnetic 
field whose expression was given by E8=(fi0/4n)qv x u,./r2. However according to 
the preceding section, the fields δ  and S  must be related by Eqs. (4.21) and (4,23) 
Therefore from the very beginning, a relativistic calculation must be used in order to 
obtain the correct expressions for S  and S  for a moving charge.

Consider a charge q at rest relative to the frame X 'Y ’Z', which is moving, relative 
to X Y Z .  with velocity v parallel to the common .Y-axis. Observer O ’ measures no 
magnetic field but only an electric field as indicated before (therefore S x =  S y=  S z =O- 
or S ’ =  0. Then (he electric field transformations of Eq. (4.22) yield

S 1 S '
S x =  S x. S y=  — = T - ,  S =  ; -  (4.25)> , ^ / 2  - /I 1 1 1  \ * f

y j  I - V i ICi  y j  I - V 1I c i

Equations (4.25) indicate than when observer 0 .  who sees the the charge moving, and 
O', who sees the charge at rest, compare their measurements o f the electric field o f  
the charge, the observers obtain the same field component parallel to the direction of
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motion, but O obtains a larger component perpendicular to the direction o f motion. 
Similarly if Eqs. (4.25) are used to write the components of the electric field with 
respect to 0 .  the magnetic field transformation o f Eqs. (4.24) yield

. = 0 .
vS.

S =  -  - r
VtJy

(4.26)

which are equivalent to S =  v x  S / c2. This is identical to Eq. (4.17), which as indicated 
before is the relation between the electric and magnetic fields of a charge moving 
with a constant velocity ti. a relation which is valid at all speeds.

In Fig- 4-19 the observations of O and O' are compared. If the charge is at O'. 
observer O' measures an electric field at P' (in the Y'T'-plane) given by

~  — I 11, · =  , ,47te0r 47te0r'-

Observer O sees the same point in the X Y plane; but because of the Lorentz contrac
tion. the Y-coordinate of the point appears shortened by the factor v I - V 1Jc2 while 
the !-coordinate remains the same. That is. x =  x \  I —v2jc2; y = y ' .  Thus the angle O 
that OP makes with OX  is different from the angle 0' that O P' makes with O X' 
(Fig. 4-19). From Eqs. (4.25) the field δ  that O measures at P has an x-component 
that is the same as that measured by O'; but the y-component appears larger by the 
faclor I v I — v2/c2. The result is that & makes the same angle O with respect to the 
Y-axis as r makes. Thus relative to observer 0 .  the electric field is also along the 
radial direction. However, the field is no longer spherically symmetric relative Io 0 . 
Λ direct calculation (see Example 4.12) shows that

I —v2 'c2
S  =

4π£0Γ2 [I — (v2,c2) sin2 0]3/2 ' (4.27)

-X

Fig. 4-19. Relativistic transform ation o f the com ponents o f the electric field produced by a  charge 
9 at rest relative to O' and located a t O ’.
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(a) Charge at rest 
or at very low 

velocity

(b) Charge in motion 
a t high veloeity

vc) Accelerated charge

Fig. 4-20. Electric lines o f force o f  a charge a t rest and charges in m otion.

The factor containing sin 0 makes the electric field depend on the direction o f the 
position vector r. Thus for equal distances from the charge the electric field is stronger 
in the equatorial plane (0 =  π/2), perpendicular to the direction of motion, than along 
the direction of motion (0=0). This field contrasts with the electric field produced 
by a charge at rest; the latter field is spherically symmetric. This situation has been 
illustrated in Fig. 4-20(a)and (b). in which the spacing of the lines indicates the relative 
strength o f the field.

If we apply the relation 38= v x  S 1C 2 .  which has been proven of general validity, 
and if we use Eq. (4.27) for S. the magnetic field of a moving charge is

I - V 2Ic2
M = I '  X M r . 14 E J i

Anr1 [I — (v2/c2) sin2 0]3 2

This expression reduces to the nonrelativistic equation for the magnetic field when v 
is very small compared with c. Remember that Eqs. (4.27) and (4.28) are valid only 
for a charge with uniform motion. If the charge is accelerated, the electric field assumes 
a shape similar to that in Fig. 4-20(c), and the mathematical expressions become 
more complex.

Example 4.12. The electric field of a uniformly moving charge.

▼ Note from Fig. 4-19(a) that S' makes an angle 0' with O T  and that cos 0' = x’jr’. sin 0' =y'/r'. 
Then the com ponents of S' are

S' =S' cos θ' = - ~ -  -s. SI = S' sin 0' .Ane0 r 3 Ane0 r - (4.29)

Using Eq. (4.25) and the fact that x = x 'J l  -  v2/c2 and y =  .V according to the Lorentz transform a
tion permits writing the com ponents of the field S  observed by 0  as
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'  V l - B 2 C2 4jif0 v l - , ,V c V 3

In vector notation

J L
Ajie0J l  —  μ 2 1C 2 r'

showing that the field S  is along the radial direction in the X  Y Z  frame. Now

6 = T T - ;  Ϊ Τ ^ Τ 3 ' <4 ·30 '' 1 —  Ir //■'- r  s

X 2 2 T 2 - ( V 2I C 2) V 2
\ - v * / ? + y  ” , I - V 2Ic2

r '2= V 2 + / 2= V 2 , - r y 2 =

and r 2 = r 2 sin2 0. Therefore

, r [ l - ( r 2/c2) sin2 011'2

V I -V 2 C-5

lfth is relation is used to eliminate r in Eq. (4JO), the electric field is

q (I —v2lc2)r q I - V 2Ic2
S  =

4π ί0Γ3 [I —(v2/c 2) sin2 ff]311 A m 0r2 [I — (v2/c 2) sin2 0 ]3 2 

which is ju s t the result given previously. A

4.8 Electrom agnetic Interaction between Tw o Moving Charges

The discussion o f magnetic interactions has departed from the procedure followed 
for gravitational and electrical interactions. In those cases the analyses began by 
discussing the interaction between two particles and afterwards introduced the 
concept of field. However in this chapter the concept οΓ magnetic field was first 
introduced in an operational form concerned with the force [Eq. (4.1)] exerted on a 
moving charge. Then the magnetic fields produced by moving charges were com puted. 
So far, there has been no expression for the electromagnetic interaction between two 
moving charges. One reason for this difference in procedure is the following: at 
velocities small relative to the velocity of light, the gravitational and electrical inter
actions depend exclusively on the distance between the two interacting particles; 
lhat is. the interactions are static forces. These interactions can exert forces on 
particles at rest, and therefore the physical situation can be discussed under steady 
or time-independent conditions. On the other hand the magnetic interaction depends 
on the motion οΓ the interacting particles, regardless of their relative velocity; that 
is. the magnetic interaction is a velocity-dependent force. At a given point the magnetic 
field of a charge moving relative to the observer depends on the velocity of the charge 
as well as on the distance between the charge and the observer: but the distance is 
changing since the charge is moving, and therefore the magnetic field (as well as the
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Figure 4-22

electric field) at a particular poinl is changing with tim e; i.e.. relative to the observer, 
the magnetic field o f the moving charge is time dependent.

Λ new element therefore enters into the physical picture: the velocity of propagation 
of an interaction. One possible approach is to assume that the particles interact at a 
distance. That is, if Ihe charge q (Fig. 4-21) is moving with velocity i>. the electro
magnetic field caused by q at A at some time I is the result of the physical situation 
in lhe surrounding space when lhe charge is at position P at time /. simultaneously 
with the observation at A. In other words, we may assume that the electromagnetic 
interaction propagates instantaneous!), or with infinite velocity.

Another reasonable (and perhaps more acceptable) assumption is that the electro
magnetic interaction is the result of certain "signals" exchanged between the inter 
acting particles, and that the signal propagates with a finite velocity c that requires 
a certain time to reach a particular point in space. If the charge is at rest, the finite 
velocity of propagation of the signal is irrelevant because the physical circum
stances are not changing with time. However for a moving charge the situation is 
different, and the field observed at point A at time t does not correspond to the 
simultaneous position of the charge at P. but to an earlier or retttvded position P 
al time f such that t — l' is the time required Tor the signal to travel from P' io A with 
velocity c. Obviously P'P =  v{t -r').

Flectromagnetic interactions do propagate with the finite velocity c. given by 
I \  €otlo as will be shown in Chapter 8. This experimental fact rules out action al a 
distance, and therefore the analysis o f the electromagnetic field produced by a 
moving charge requires the second approach given above. Because c has such a large 
value, the retardation effect is negligible unless the particles move very fast. For that 
reason retardation was not considered when the motion o f charges was discussed 
in Chapter I. Those charges were assumed to move very slowly, and thus PP' is very 
small compared with PA. It can be verified that the relativistic expressions (4.21) 
and (4.23) for the electric and magnetic fields o f a moving charge already incorporate 
the effect o f retardation. Similar retardation effects should exist for the gravitational
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interaction between twO masses in relative motion. However, the velocity o f pro
pagation o f gravitational signals has not yet been observed.

Consider two charges q 1 and q2 moving with velocities D 1 and D 2  relative to an 
inertial observer 0 .  The force charge q, produces on q2 as measured by O is 
F1^ q i l S 1 + d 2 x  ES1) where and ES1 are the electric and magnetic fields measured 
by O and produced by q t at the position occupied by q2. On the other hand the force 
that charge q 2 produces on i/( as measured by O is F 1 = q 1\ S 2 +  v1 x  ES2). In general 
these two have different directions and magnitudes. Therefore it follows that

the forces between two moving charges are neither equal in magnitude 
nor opposite in direction.

In other words it appears that the law o f action and reaction does not hold in 
the presence o f magnetic interactions. This statement in turn implies that the princi
ples of conservation o f momentum, o f angular momentum, and of energy would not 
hold for a system o f two charged particles in motion. This apparent failure o f such 
important law's is due to the following fact. When the law of conservation of momen
tum for two interacting particles is written as p t +  p 2 =  const, we are considering that 
P 1 and p2 are measured simultaneously by 0 : i.e., at the same time relative to 0.  
However in the presence of an interaction propagating with a finite velocity, the 
retardation effect requires that the rate of change of momentum of one particle at a 
given lime is related to the change o f momentum o f  the other particle not at the same 
lime but rather at an earlier time, and conversely. Therefore it is not reasonable to 
expect μ, +  /J2 to be constant ίΓ they are evaluated at the same lime

The student may recall that the result of an interaction may be described as an 
exchange of momentum between the two particles. To restore the law of conservation 
of momentum, the momentum that is being exchanged between the two particles 
and that at a given time is traveling between them with a finite velocity must be 
taken into account. That is. the momentum “in flight” must be taken into account. 
For the electromagnetic interaction the electromagnetic field carries this momentum, 
labeled pflcld (Fig, 4-22). Thus the law o f conservation o f momentum requires that

Pi + Ρ ι + Ρ 11Μ =con st. (4.31)

Similarly a certain angular momentum and energy must be attributed to the elec
tromagnetic field in order to restore these two conservation principles. We shall 
delay until Chapter 8 a discussion o f how the momentum, angular momentum, and 
energy associated with the electromagnetic field are obtained.

Example 4.13. Com parison of the magnetic interaction between two charges with the electric 
interaction between them.

▼ Since only orders of m agnitude are desired, we shall simplify the writing of the formulas. 
Thus given charges q and q‘. the electric force produced by q' on q is qS. The magnetic i.eld pro
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duced by q on q from Eq. 14.17) is of lhe order of m agnitude of v'S /c2. The magnetic force on 
charge q from Eq. (4 I) is of the order of magnitude of qv(v’S /c 2)= (vv /c2)qS- Therefore

M agnetic force rr '
Electric force c2

If the velocities of the charges are small compared with the velocity of light c, the magnetic force 
is negligible com pared with the electric force, and in many cases can be ignored. Thus, in a sense 
magnetism is a consequence of the finite velocity of propagation of electromagnetic interactions. 
For example if the charges have a velocity of the order οΓ IO6 nt s“ *, corresponding to the orbital 
speed of electrons in atoms.

M agnetic force ^  4
Electric force

In spite of its small value relative to  the electric force, the magnetic force is the one used in electric 
motors and many other engineering devices for the following reason. M atter is normally electric
ally neutral, and the net electric force between two bodies is zero. For example when two wires 
are placed side by side, the net electric force between them is zero. If the wires are moved as a 
whole, the positive and negative charges move in the same direction so that the net current in 
each is zero, and thus the net magnetic field is also zero. This movement results in no force between 
the wires; bu t a potential difference applied to  the wires results in a m otion of the negative 
charges relative to  the positive and produces a net current in each wire and a  net magnetic field 
Since the num ber of free electrons in a conductor is very large, their cumulative effect produces a
large magnetic field even if their velocities are small; and the result is an appreciable magnetic
force between the wires.

Although weak compared with electric force, magnetic force is still very strong com pared with 
gravitational interaction. Recall the discussion of relative strengths of the four forces: the electric 
interaction is about IO36 stronger than the gravitational interaction. Therefore we may say that

M agneticinteraction -  κ+β vv'
G ravitational interaction "  c2

For velocities com parable to those of orbiting electrons, this ratio is of the order of IO31. A

Problems

4.1 Electrons with a  velocity of IO6 m s “ 1 
enter a  region in which a magnetic field exists,
(a) Find the intensity of the magnetic field if 
the electron describes a path having a radius 
of 0.10 m, (b) F ind the angular velocity of the 
electron.
4.2 From rest, protons are accelerated through 
a potential difference of IUb V. These are then 
shot into a region of uniform magnetic field 
of 2 T ; the trajectory is perpendicular to the 
field. What are (a) the trajectory radius and

(b) the angular velocity of the protons?
4.3 In a magnetic field a proton is in motion 
at an angle of 30 with respect to the field. 
The velocity is IO7 m s " 1 and the field strength 
is 1.5 T. C om pute (a) the radius of the helix of 
motion, (b) the distance of advance per revolu
tion. or pitch of the helix, and (Cl the frequency 
of rotation in the field.
4.4 A deuteron (an isotope of hydrogen whose 
mass is very nearly 2 amu) travels in a circular 
path of radius 0.4 m in a magnetic field of
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1.5 T. (a) C om pute the speed of the deuteron. 
|b) Determine the time required for it to  make 
one-half a revolution, (c) Through w hat poten
tial difference would the deuteron have to be 
accelerated to  acquire the velocity of part (a)?
4.5 A proton having a kinetic energy of 
30 MeV moves transverse to a magnetic field 
of 1.5 T. Determine (a) the radius of the path 
and lb) the period of revolution. NoLe that the 
proton can be treated classically.
4.6 (al W hat is the magnetic field required to 
force a 30-GeV proton to describe a path 
100 m in radius? (b) Find the angular velocity. 
Note that the calculation must be relativistic.
4.7 A singly charged 7Li ion has a mass of 
1.16 x 10“ 26 kg. The ion is accelerated through 
a potential difference of 500 V and then enters 
a magnetic field of 0.4 T ; the ion moves 
perpendicular to the field. W hat is the radius 
of the ion’s path in the magnetic field?
4.8 An electron at point A in Fig, 4-23 has a 
velocity l,0 of IO7 m s “ ‘ . Calculate (a) the 
magnitude and the direction of the magnetic 
field that will cause the electron to follow the 
semicircular path from A  to B. and (b) the 
lime required for the electron to move from 
4 to  B.

4 9 O ne of Lhe processes for separating the 
isotopes 235U and 238U is based on the 
difference of radii οΓ their paths in a magnetic 
field. Assume that singly ionized atom s of U 
start from a comm on source and move per
pendicular to a uniform field. Find the m axi
mum spatial separation of the beams when the 
Mdius o fcu rvatu re  of the 235C beam is 0.5 m

in a field of 1.5 T (a) if the energies of the two 
isotopes are the same and (b) if the velocities 
are the same. F or the purposes of this problem, 
the superscript on each isotope may be 
identified with the mass of the atom  in amu.
4.10 A uniform magnetic field M lies in the 
E-direction as shown in Fig. 4-24. Find the 
m agnitude and the direction of the force on a 
charge q whose instantaneous velocity is e for 
each οΓ the directions shown in the figure. 
(The figure is a cube.)
4.11 A particle of mass m and charge q moves 
with a velocity a0 perpendicular to a uniform 
m agnetic field. Express as g function of time 
the com ponents of the velocity and the co
ordinates of the particle referred to the center 
of the path.
4.12 Repeat Problem 4.11 for a particle whose 
velocity makes an angle a with the magnetic 
field.
4.13 A particle carries a charge of 4 x  IO-9 C. 
W hen the particle moves with a velocity e, 
of 3 x  IO4, m s 1 at 45r above the E-axis in 
the EZ-plane, a uniform magnetic field exerts 
a force F 1 along the Y-axis. W hen the particle 
moves with a velocity u2 of 2 x IO4 m s ] along 
the Y-axis, the particle experiences a force 
F 2 of 4 x 10“ 5 N along the E-axis. W hat are 
the m agnitude and the direction of the mag
netic field? (See Fig. 4-25.)
4.14 Charged particles are shot into a region 
of crossed electric and magnetic fields. I he 
incident particle velocity is norm al to  the plane 
of the two fields, and the fields are norm al to 
each other. The magnetic field strength is

Figure 4-24
A'

Figure 4-25
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0.1 T. The electric field is generated between a 
pair of equal and oppositely charged parallel 
plates, placed 0.02 m apart. W hen the potential 
difference between the plates is 300 V, there 
is no deflection οΓ the particles. W hat is the 
particle velocity?
4.15 (a) W hat is the velocity of a beam of 
electrons when the simultaneous influence of 
an electric field of intensity 3.4 x IO5 V m 1 
and a magnetic field of 2 x 10' 1 T. both fields 
being normal to the beam and to each other, 
produces no deflection of the electrons? 
lb) Show in a diagram the relative orientation 
of the vectors ». S , and J l
4.16 A particle having a mass of 5 x 10 4 kg 
carries a charge of 2.5 x 10' 8 C. The particle is 
given an initial horizontal velocity of 6 x IO4 m 
s '  *. W hat is the magnitude and the direction 
of the minimum magnetic field that will keep 
the particle moving in a horizontal direction 
and balance the earth’s gravitational force'’
4.17 In a mass spectrom eter such as that 
illustrated in Fig. 4-12, a  potential difference 
of 1000 V makes the single ionized ions of 
24M g describe a path  of radius R  (a) Wliat 
will be the radius described by 25M g ions if 
they are accelerated through the same poten
tial'’ (b) W hat potential difference would make 
the 25M g ions describe a path of the same 
radius R ? (Assume that the masses in am u are 
the same as the mass numbers in the super
script to the left of the chemical symbol.)
4.18 A mass spectrom eter has an accelerating 
voltage of 5 keV and a magnetic field of 10 2 T.
(a) C om pute the velocity of the ions to  see if it 
will be necessary to  use a relativistic correction.
(b) Find the distance between the two isotopes 
of zinc, 68Zn and 70Zn. By distance we mean the 
separation of the two spots that appear on the 
emulsion of the photographic plate after the 
singly charged ions 68Zn and 70Zn are first 
accelerated and then turned around in a half 
circle. See Fig. 4-12. [Hint: Do not find the 
individual radii: rather write an equation to 
find lhe separation directly.]
4.19 Protons in a  cyclotron, just before they 
emerge, describe a circle o f radius 0.40 m. The

frequency of the alternating potential between 
the dees is IO7 Hz Neglecting relativistic 
effects, com pute (a) the magnetic field, (b) the 
velocity of the protons, (c) the energy of the 
protons in J and in MeV. and (d) the minimum 
num ber of complete turns o f the protons if the 
peak value of the potential between the dees is 
20 keV.
4.20 Repeat Problem 4.19 for a  deuleron and 
for an  alpha particle (helium nucleus). Fhet- 
respective masses are 2.014 amu and 4.003 amu.
4.21 The magnetic field in a cyclotron acceler
ating protons is 1.5 T (a) H ow m any times oer 
second should the potential across the dees 
reverse? (b) The maximum radius of the 
cyclotron is 0.35 m. W hal is the maximum 
velocity of the proton? (c) Through what 
potential difference would the proton have io 
be accelerated to give it the maximum cyclotron 
velocity?
4.22 Deulerons in a cyclotron describe a circle 
of radius 32.0 cm just before emerging froir. the 
dees. The frequency of the applied alternating 
voltage is 10 Hz. F ind (a) the magnetic field 
(b) the energy and (cl the speed of the deuterons 
when they emerge. The mass of a deuleron is
2.014 amu.
4.23 A cathode ray tube is placed in a umlorm 
magnetic field M with the axis of the tube 
parallel to  the lines of force. If electrons 
emerging from the gun with a velocity v make 
an angle Θ with the axis as they pass through 
the origin O so that their trajectory is a helix, 
show (a) that they will touch the axis again at 
the time

2nm
"  Μ ξ '

(b) that the coordinate of the point of touching
is

2π»ΐΓ cos Θ 
X = ~  a k [ ~ '

and (c) that for small values of 0. the coordinate 
of the point of crossing or touching the axis is 
independent of Θ.
4.24 The arrangem ent in Problem  4,23 is 
called a magnetic lens, (a) Why ? (b) How do the
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trajectories of the electrons passing through 
the origin at an angle Θ above the axis differ 
Irorn those directed at an angle 0 below the

axis ■
475 Protons with an energy of 3 MeV are 
injected at a small angle with respect to  a uni
form magnetic field of I T. At what distance will 
the particles return to a com m on point of inter
section with the axis?
4 26 Relative to observer 0 , observer 0 '  moves 
with a velocity v parallel to the common 
X-axis. Two charges q, and q2 are at rest 
relative to O', are separated the distance r , and 
are placed along the X-axis as measured by O'. 
la) Find the forces on each charge as recorded 
by 0 ' and 0 . (b) Assume that the charges are on 
the I"-axis, and repeat the problem.
4.27 Referring to Eq. (4.27), which gives the 
electric field of a point charge, find the ratio 
between the electric field in a plane through 
the charge perpendicular to  the direction of 
motion and the field along the direction of 
motion for points at the same distance from 
the charge. Consider values of v/c equal to
(a) 0, (b) 0.1, (c) 0.5, and (d) 0.9.

4.28 Evaluate the ratio between the relativistic 
and the nonrclativistic values of the electric 
field produced by a moving charge at a point 
on the plane through the charge perpendicular 
to the direction of motion. Consider values of 
v/c equal to (a) 0, (b) 0.1, (c) 0,5, and (d) 0.9.
4.29 Evaluate the ratio between the relativistic 
and the nonrelativistic values of the magnetic 
field produced by a moving charge at a point 
on the plane through the charge perpendicular 
to the direction of motion. Consider values of 
v/c equal to (a) 0, (b) 0.1, (c) 0.5, and (d) 0.9.
4.30 Consider two electrons moving in straight 
parallel paths separated by 10 4 m. (a) If the 
electrons are moving side by side at the same 
velocity of IO6 m s “ ‘, find the electric and 
magnetic forces between them as seen by a 
laboratory observer (assume that IO6 m s “ 1 
can be considered a nonrelativistic velocity),
(b) W hat is the force according to  an observer 
moving with the electrons? (c) Repeat the 
inquiry above for the case of velocity 2.4 x 
IO8 m s ',  which is relativistic.

CHALLENGING PROBLEMS

4.31 Two equally charged particles. A  and B. 
with equal kinetic energies enter a constant 
magnetic field. The angle between the field and 
the velocity for each particle is 90". If the mass 
of A is 4 times the mass o f B. find the ratio  of 
the radius of the circular path of A to  the radius 
of the circular path of B. (AP-B; 1971)
4-32 A charged particle accelerated from rest 
through a potential difference V  enters a 
uniform magnetic field perpendicular to  its 
direction of m otion and moves in a circular 
Path o f radius R. If, instead, the potential 
difference were VjX  determine the radius of 
the path. (AP-B; 1972)
433 An electron in a vacuum cham ber is 
accelerated through an electric potential differ

ence, and then enters the space between two 
charged, parallel metal plates as shown in 
Fig. 4-26. The distance between the plates is 
0.010 m eter and the potential difference 
between the plates is 300 volts, (a) If the speed 
of the electron as it enters the space between 
the plates is 6.0 x IO6 meters per second, 
through what potential difference I 0 has the 
electron been accelerated? (b) If between the 
plates there also exists a constant magnetic 
field acting into the page as shown in the 
diagram, what m agnitude of the magnetic field 
S  will allow the electron to move undefieeted 
between the plates? (AP-B; 1973)
4.34 Electrons of various nonreiativislic speeds 
are moving in a plane perpendicular to a
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uniform magnetic field Si. Because of the 
magnetic force, the electrons move in circles 
of various radii. Show that the time required 
to travel around one complete circle is the 
same for all electrons, regardless of their 
speeds. (AP-B; 1974)
4.35 In a mass spectrometer, singly charged 
16O ions are first accelerated electrostatically 
through a voltage V to  a speed va: they then 
enter a region of uniform magnetic field P  
directed ou t of the plane o f the paper as shown 
in Fig. 4-27. (a) If singly charged 32S ions are

© © © © © Θ

© © © © © © Θ ©

© „ © vO © __2® © Θ © ©

© 9 '
/ ®<B ©

\
Θ Θ Θ

Θ I © © © Θ t® Θ Θ

- I
:—

Photographic plate 

Figure 4-27

m, q - r i 

© © ©

© © ©

Θ ©

Θ © ©

© © ©

© © Θ

© O ©

s e s  
( [ T o s  S

ψ s  Y  a
& \e  fe s
d> ψ  s  ®
<j> s  ® s
φ © © ©

Region I I Region II

(a)

m, q

substituted for the 16O ions, w hat will be theii 
speed for the same accelerating voltage?
(b) W hen 32S is substituted for 16O  in part fat, 
determine by what factor the radius o f curva
ture of the ions’ path in the magnetic field 
changes. (AP B; 1975)
4.36 An ion of mass m and charge of known 
m agnitude q is observed to  move in a straight 
line through a region of space in which a 
uniform magnetic field P  points out of the 
paper and a uniform electric field S  points 
toward the lop edge of the paper, as in region I 
(Fig. 4-28a). The particle travels into region U 
in which the same magnetic field is present, 
but the electric field is zero. In region U the 
ion moves in a circular path as shown, (a) Indi 
cate on a diagram, as shown in Fig. 4-28b. the 
direction of the force on the ion at point P2 tr. 
region II. (b) Is the ion positively or negatively 
charged? Explain clearly the reasoning on 
which you base your conclusion, (c) Indicate 
and label clearly on a diagram, as shown in 
Ftg. 4-28c, the forces which act on the ion at 
point P 1 in region I. (d) Find an expression for

L A
I
I

Region I | Region II 

(b)

Figure 4-28

m,q
— t ------
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I Region I Region I'
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lhe ion's speed v al point P i in terms of & and 
jg  (el Starting with Newton's law. derive an 
expression for the mass m of the ion in terms 
0 f JS. S . q. and K. (AP-B: 1976)
4.37 An electron is accelerated from rest 
through a potential difference of m agnitude V 
between infinite parallel plates P 1 and P 1. 
The electron then passes into a region of uni
form magnetic held strength JS which exists 
everywhere to the right of plate P2. The 
magnetic field is directed into the page (Fig. 
4-291. (at O n a diagram, clearly indicate the 
direction of the electric field between the plates,
(b) In terms of V and the electron’s mass and 
charge, determine the electron’s speed al plate 
P2. (c) Describe in detail the m otion of the 
electron through the magnetic field and explain 
why the electron moves this way. (d) If the 
magnetic field remains unchanged, what could 
be done to cause the electron to follow a 
straiglit-line path to the right of plate P 1I  
(ΛΡ-Β: 1977)

x x x x x

X X X X
ίB

X X X X  

X X X X  

X X X X X

X x x x x

P  i P 2

Figure 4-29

4.38 Electrons are accelerated from rest in an 
electron gun between two plates that have a 
voltage Vg across them. Fhe electrons then 
move into the region between two other parallel 
plates of separation d that have voltage Kp 
across them. The electrons are projected into 
this region at an angle 9 to the plates as shown 
in Fig, 4-30. Assume that the entire apparatus 
is in vacuum and tha t Fp >  F e. Display all

Electron

Figure 4-30

results in term s that include d, F e, Fp, 0, e 
(the m agnitude of the electron charge!, and 
Ih0 (the electron mass), (a) Develop an equation 
for the speed ue with which the electrons leave 
the electron gun. (b) Develop an equation for 
the maximum distance Draax that the electrons 
travel above the lower plate. Suppose that a 
magnetic field directed into the plane of the 
paper is introduced in the region between the 
upper plates, (cl How will the speed with which 
the electrons strike the lower plate be affected? 
Explain, (d) Sketch on a diagram a trajectory 
that an electron might follow with the magnetic 
field present. Account qualitatively for the 
difference between the new and old trajectory. 
(ΛΡ-C: 19781
4.39 Determine the magnitude and the direc
tion of the force on a proton in each of the 
following situations. Describe qualitatively the 
path followed by the proton in each situation 
and sketch the path on diagrams copied from 
Fig. 4-31. Neglect gravity, (a) The proton is 
released from rest at the point P in an electric 
field S  having intensity IO4 newtons per 
coulom b and directed up in the plane of the 
page as shown in Fig. 4 -31 a. (b) In the same 
electric field as in part (a), the proton at point 
P has velocity D=IO5 meters per second 
directed to the right as shown in Fig. 4 -3lb.
(c) The proton is released from rest at point P 
in a magnetic field Λ  having intensity 10 Jesla 
and directed into the page as shown in t ig. 
4-31c. (d) In the same magnetic field as in
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(a) (b)
Figure

part (c), the proton at point P  has velocity 
i'=  IO5 meters per second directed to  the right 
as shown in Fig. 4-3Id. (AP-B; 1979)
4.40 A uniform magnetic field exists in a region 
of space. Two experiments were done to 
discover the direction of the field and the 
following results were obtained. Experiment I:
A proton moving to  the right with in
stantaneous velocity D1 experienced a force 
F I directed in to  the page as shown in Fig.
4-32a. Experiment I I : A proton moving out of 
the page with instantaneous velocity d, ex
perienced a force F2 in the plane o f the page as 
shown in Fig. 4-32b. (a) State the direction of 
the magnetic field and show tha t your choice 
accounts for the directions of the forces in 
both experiments, (b) In which experiment did 
the proton describe a circular orbit? Explain 
your choice and determine the radius o f the 
circular orbit in terms of the given force and 
velocity for the proton and the proton mass m.
(c) Describe qualitatively the m otion of the 
proton in the o ther experiment. (AP-C; 1979)
4.41 A proton having a kinetic energy of 
30 GeV moves transverse to  a magnetic field 
of 1.5T. (a) Determine the radius of the path and 
the period of revolution. N ote that the proton

X X X X X ® X X X X X X <B

X X X X X X X X X X X

X X X X X X X x  X X X
• ■ MFt• V

X X ^ X X X X X x P  X X X

X X x X X X X x  X X X

X X x X X X X X X X X

( C) ( d )

31

must be treated relativistically. Dempster’s 
mass spectrometer, illustrated in Fig. 4-12, uses 
a magnetic field to separate ions having 
different masses but the same energy. Another 
arrangem ent is Bainbridge's mass spectrometer 
(Fig. 4-33), which separates ions having the 
same velocity. The ions, after crossing the slits, 
pass through a velocity selector composed ol an 
electric field produced by the charged plates 
P  and P \ and a  magnetic field M perpendicular 
to the electric field. Those ions that pass 
undeviated through the crossed fields enter 
into a region in which a  second magnetic field 
SS' exists, and are bent into circular orbits. A 
photographic plate P  registers the arrival of 
the ions, (bl Show that q/m = SfrMM
4.42 The electric field between the plates of 
the velocity selector in a Bainbridge mass 
spectrograph is 1.2 x 1 0 s V m _1, and both 
magnetic fields are 0.6 T. A stream of singly

Fi (in to  page)

+9

(a)

+  9

Θ
t>2 (o u to fp ag e) 

(b)

Figure 4-32 Figure 4-33
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charged neon ions m oves in a c ircu lar path 
of 7.28 x 10 2 m rad ius in the m agnetic  field. 
D eterm ine the  m ass of the  neon  isotope.
4 43 Suppose that the electric intensity between 
lhe plates P and P' in Fig. 4-33 is 1.5 x IO4 V 
m ' 1 and both magnetic fields are 0.5 T. If the 
source contains the three isotopes of m ag
nesium. 24Mg, 25Mg, and 26Mg, and the ions 
are singly charged, find the distance between 
the lines formed by the three isotopes on the 
photographic plate. Assume that the isotopes' 
atomic masses in am u are equal to their mass 
numbers shown at the left of the chemical 
symbol.
4.44 In a mass spectrometer, such as that 
shown in Fig. 4-34, it is difficult to ensure that 
all particles arrive perpendicular to the slit, 
la) if R is the radius of their path, show that 
those particles arriving at the slit making a 
small angle 0 with the norm al will arrive a t the 
photographic plate at a distance p (approxi
mately equal to  RB2) from those tha t fall 
perpendicularly, (b) W hat is the value of 0 so 
that this separation is less than O l percent 
of 2R1 (The situation described in this problem 
is called magnetic focusing.)
4.45 In the mass spectrograph of Fig. 4-35, 
tons accelerated by a  potential difference 
between S and A  fall on  the magnetic field 
covering a sector of 60' and are sent tow ard a 
photographic emulsion, (a) Show that

I  -  J v .
m ~  P 2D2

lb) Discuss the change in the position of C for a 
small deviation in the direction of incidence.

4.46 A particle of charge q and velocity B0 
(along the Y-axis) enters a region in which a 
magnetic field exists (along the Y-axis). Show 
that if the velocity B0 is large enough so that its 
change in direction is negligible and the 
magnetic force can be considered as constant 
and parallel to the Z-axis, the equation of the 
path of the particle is

V2' W

4.47 A particle of charge q and velocity B 0  

(along the Y-axis) enters a region (Fig. 4-36) 
in which uniform electric and magnetic fields 
exist in the same direction (along the Y-axis). 
Show that if the velocity B 0  is large enough so 
that its change in direction is negligible and the 
magnetic force can be considered as constant 
and parallel to  the Z-axis, (a) the coordinates 
at time t are

„ w  h (S)··
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(b) By eliminating t and D0 between these 
equations, obtain the relation

""Li' to-K W
and (cl that the particle will just fail to reach the 
upper plate if

The result has an application in one of the 
earliest mass spectrographs because if we 
insert a screen perpendicular to the X-axis 
(Fig. 4-36), all particles having the same ratio 
q/m  will fall along a given parabola, irrespec
tive of their initial velocity. Therefore there 
will be one parabola for each isotope present 
in the incoming beam.
4.48 \  particle of charge q and mass in moves 
between two parallel charged plates separated 
a distance h. A uniform magnetic field is 
applied parallel to the plates and is directed in 
the Z-direction (Fig. 4-37). Initially the particle 
is at rest at the lower plate, (a) W rite the 
equations of m otion οΓ the particle, (b) Show 
that at the distance y from the lower plate.

V*~ (to)
(c) Show that the magnitude of the velocity is

Idl From  the two preceding results, show that

\

‘" I "

4.49 In a region in which there are uniform 
electric and magnetic fields in the same direc
tion. a particle of charge q and mass m is 
injected with a velocity D0 in a direction 
perpendicular to the comm on direction of the 
two fields, (a) Write the equation of m otion in 
rectangular coordinates, (b) Show by direct 
substitution in the equation of m otion that 
the com ponents of the velocity at time f are

(H)'

V /
(c) From the previous result, obtain tne co
ordinates of the particle at time r. (d) M ake a 
plot of the path, (e) W hat would the m otion of 
the particle be if the initial velocity of the 
particle were parallel to the fields? [H im : For 
the answers given, the X-axis is in the direction 
of D 0 ,  and the 7-axis is in the comm on direction 
of the two fields (Fig. 4-38).]
4.50 In a certain region there are uniform 
electric and magnetic fields perpendicular to 
each other. A particle is injected with a vclocit) 
D 0  parallel to the magnetic field In rectangular 
coordinates (a) write the equation of motion 
of the particle, (b) Show by direct substitution 
that the com ponents of the velocity at time < 
are

and

sjt’ · " " © 1
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|C) From the previous result, derive the co
ordinates of the particle at time t. (dl M ake a 
p|0l of the path. [Hint: The magnetic field 
points along the λ '-axis and the electric field 
is along the l'-axis.]
4 51 (a) Solve Problem 4.50 for a particle 
whose initial velocity is parallel to  the electric 
IieId Ibl Verify that the com ponents of the
velocity arc

4.52 (a) Solve Problem  4.50 for a particle 
whose initial velocity is perpendicular to both 
fields, (b) Verify that the components of the 
velocity are

IVt =  O.

(c) Show that in order for the particles to move 
through the field undeflected, it is necessary 
that D0=  —S;M. (di C om pare the result with 
the statem ents made in Section 4.4.
4.53 (a) Referring to Problem 4.50, verify that 
when the velocity has an initial arbitrary 
direction, the com ponents of the velocity at 
time t are

(b) O btain (by integration) the coordinates of 
the particle and discuss the path, (c) C om pare 
with the results of Problems 4,51 and 4.52.
4.54 Referring to  Problem  4.49 (a) show that 
when I, the coordinates of the 
particle can be expressed as

-(£> · 
in agreement with Problem 4.47.
4.55 A proton having an energy of 30 GeV 
passes at a  distance of 10“ m from an ion. 
Since the proton must be considered rel- 
ativistically. (a) find the angle 2 for which the 
electric field at the ion is 50 percent of the 
field when the p ro ton  is at its distance of closest 
approach to the ion. (b) Estimate the duration  
of the impulse to which the ion is subject and 
its change in m om entum , considering it is 
essentially the result of the field w ithin the 
angle found in (a). Repeat if the passing 
particle is an electron with the same energy, 
instead of a proton, (See Fig. 4-39.)

Figure 4-39

4.56 U sing the relativistic expression (4.28) 
for the magnetic field of a moving charge, 
obtain the expression for the magnetic field 
of a rectilinear current.
4.57 Using the general rule for the relativistic 
transform ation οΓ force, obtain the relativistic 
transform ations o f the electromagnetic fields, 
Eqs. (4.21) and (4.23).
458 Using Eqs. (4.21) and (4.23), prove that 
the quantities S  ■ SS and  S 2 — :M: are invariant 
with respect to  a Lorentz transform ation 
4.59 A particle of charge q and mass m moves 
in a region in which an electric field S  and a 
magnetic field M  a re present (a) Sho w lha t i f I he 
m otion of the particle is referred 10 a frame of
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reference rotating with the L annor frequency verify that the last term is negligible l 'n d e P
of the particle, ω, = - q P ' l m  (see Eq. 4.7). its this approxim ation the equation of m otion of
equation of motion becomes the particle relative to the rotating Iratne

becomes ma' = qS. C om paring this result Vnffi 
Example 4.10 shows us how to eliminate Lhe 
effect of a magnetic field. Iffm t : Express Ih6 
accep ta tion  and the velocity of the particle

(b) Estim ate the value ol v>, tor an electron and relative to the rotating frame ]

ma = q
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Magnetic Fields and Electric Cuirents

5.1 Introauction

Although the discussion in the previous chapter presented an analysis oi the forces 
that magnetic fields exert on moving charges and o f the magnetic fields that moving 
charges produce, electromagnetism evolved historically in an entirely different way. 
As previously mentioned, the Danish physicist Hans C. Oersted (1770-1851), 
professor at the University of Copenhagen, discovered in 1819 that electric currents 
exert forces on magnets; he thereby proved that electric currents produce magnetic 
fields. Oersted placed a rectilinear conductor directly above and parallel to a compass 
needle. To his great surprise he observed that when there was a current in the con
ductor, the compass needle swung and became perpendicular to the current. Immedi
ately after Oersted published his results in 1820, several other scientists began to 
study the interactions between magnetic fields and electric currents. Among the 
early investigators were Andre M. Ampeje (1775-1836) and Pierre Laplace (1749 
1827), the French scientists who developed the quantitative theory of magnetic 
interactions of currents and introduced the terminology still used touav. Not until 
the end of the 19th century was the relation between magnetic fields and moving 
electric charges established, partly as a result o f the 1878 experiments o f the American 
physicist H. A. Rowland (1848-1901).

5.2 Magnetic Force on an Electric Current

An electric current is a stream of electric charges moving in vacuum or through a 
conducting medium. The intensity o f the electric current has been defined as the 
charge passing through a section o f the conductor per unit time. Consider a cross 
section o f a conductor through which particles with charge q  are moving with 
velocity v. If there are n particles per unit volume, the total number o f particles 
passing through the unit area per unit time is nv. and the curren t d e n s i ty , defined as 
the charge passing through the unit area per unit time, is the vector

j= n q v ·  (5.1)

If S  is the conductor’s cross-sectional area, oriented perpendicular to j .  the current 
is the scalar

l = j - S  =  nqvS. (5.2)

Suppose now that the conductor is in a magnetic field. The force on each charge 
is given by F =  q(vx 08): and since there are n particles per unit volume, the force 
per unit volume f  is

f  =  nqvx 08=J x  08.
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Figure 5-1
force on a current-carrying conductor- the 
magnetic field, and the current. The force is 
perpendicular to  the plane defined by uT and ES.

The total force on a small volume d V  of the medium will be dF = J  d V = j x  ES d V .  
and the total force on a finite volume is obtained by integrating this expression over 
all the volume. T hat is,

F =  f J X 'SdV. (5.4)
J vol

Consider the case in which there is a current along a wire or filament. A volume 
element d V  is given by S d l  (Fig. 5-1), and therefore Eq. (5.4) givesiF = I  j  x  SSS dl.

I fiianicnl
Now J --Ju1 where Hr is the unit vector tangent to the axis of the filament. Then

F =  j Iyur ) x SSS d l=  j  {JS)ur x  SS dl. (5.5)

However JS= I where the current along the wire is the same at all points of a con
ductor because of the law of conservation of electric charge. Therefore Eq. f5.5) 
for the force on a conductor carrying an electric current becomes

F =  I I'm,!·x BdL (5.6)

This result may be verified by placing conductors o f  different shapes in a magnetic 
field and measuring the force on the conductor.

Consider the case o f a rectilinear conductor placed in a uniform magnetic field B  
(Fig. 5-2). Then both u, and SS are constant, and Eq. (5.6) becomes
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or if L = I  dl is the length o f  the rectilinear conductor,

F =  TLut X 38. 15.7)

The conductor is therefore subject to a force perpendicular to itself and to the 
magnetic field. This is the principle on which electric motors operate. If 0 is the 
angle between the conductor and the magnetic field, we may write for the magnitude 
of the force F

The force is zero if the conductor is parallel to the field (0 =  0) and maximum when 
the conductor is perpendicular to the field (0 =  π/2), a result confirmed by experiment. 
The direction o f the force is found by applying the right-hand rule o f  the cross 
product as shown in Fig. 3-2.

The torque due to the force produced by a magnetic field on a closed electric currem 
can be computed from either Eq. (5.7) or (5.8). For simplicity consider first a current 
along a rectangular circuit placed so that the normal u v to the circuit’s plane (oriented 
by the right-hand rule in the sense o f the direction o f the current) makes an angle ft 
with the field 38, and two sides o f the circuit are perpendicular to the field (Fig 5-3). 
The forces F' acting on the sides L' have the same magnitude (equal to W L  sin ϋ) 
but are in opposite directions. The forces F' tend to defonr the circuit bur produce 
no torque. The forces F on the sides L are o f  magnitude F = W L , and constitute a 
couple whose lever arm is L' sin 0. Therefore the forces F produce on the circuit a

F = W L  sin 0. (5.8)

5.3 Magnetic Torque on a Closed Electric Current

Fig. 5-3. Magnetic torque on a rec
tangular electric circuit placed in a 
magnetic field. The torque is zero 
when the plane of the circuit is per
pendicular to the magnetic field.
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0rqiie that tends to orient the loop perpendicular to the field and whose magnitude is

τ =  (IBL)(L' sin 0).

H ow ever L L 1 =  Swhere S isth earea  o f  the circuit. Thus T =  (ZS)^sin 0. The direction 
,fthe torque is perpendicular to the plane o f the couple; that is, along the line PQ  
n F ig 5-3- Let us define a vector

M  =  IS un (5.9)

norm al to the plane o f the circuit so that the torque τ may be written as

T =  MES sin 0. (5.10)

or in vector form
T = M x S S .  (5.11)

R e su lt '(5.11) is mathematically similar to Eq. (1.36), which gives the torque an 
external electric field produces on an electric dipole. The quantity M 1 defined in 
Eq. (5.9) and equivalent to p in Eq. (1.35), is called the magnetic dipole moment of
the current loop. Note Irom Eq. (5.9) that the direction of M is given by the right-
hand rule shown in Fig. 5-3.

To obtain the energv o f a current in a magnetic field, the logic used for the electric 
dipole in Section 1.10 to relate Eqs. (1.35) and (1.36) is applied in reverse; therefore 
the energy o f the current loop placed in the magnetic field SS is

Lmss=  - M B  cos 0 =  -M -S S  (5.12)

Although Eqs. (5.11) and (5.12) have been derived for a rectangular current with 
a special orientation in a uniform magnetic field, a more laborious mathematical 
discussion indicates that the equations have general validity. For example consider a 
small current loop o f  any shape whose area is S  (Fig. 5-4). The magnetic dipole

.'U- 5-4. Relation between the magnetic 
Qlpole moment o f an electric current loop 
and the direction o f the current.
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moment M  of t h e  current loop is still given by Eq. (5.9), and the torque and potentia l  
energy when the current loop is placed in a magnetic field are given by Eqs. (5 Jn  
and (5.12). 

The unit o f magnetic moment from Eq. (5.12) is usually expressed as joules, 
tesla or IT "  1. In terms o f the fundamental units the J T - 1 is m 2 s ' 1 C, in agieement 
with the definition in Eq. (5.9).

Example 5.1. Λ current measuring device: the galvanometer.

T Λ simple design of a galvanom eter is illustrated in Fig. 5-5. The current to be measured passes 
through a coil suspended between the poles of a magnet. (In some cases the coil is w rapped around 
an iron cylinder C l The magnetic field exerts a torque on the coil and rotates it by a certain angle. 
The angle can then be related to the current passing through the rectangular loop. Let S he the 
area of the coil. The torque produced by the magnetic field tends to place the coil perpendicular 
to the field and twist the spring Q. The coil adopts an equilibrium position, rotated an angle a, 
when the magnetic torque is balanced by the elastic torque fcx produced by the spring where k 
is the spring’s elastic constant. The angle a is indicated by a pointer attached to the coil The pole 
Taces are shaped as indicated in the figure so that the magnetic field between the pole faces and the 
iron cylinder C is radial as shown in the top view in Fig. 5-5. In this case P  is always in the plane 
of the circuit, and 0 in Eq. (5 10) is π/2 so that sin 0 =  I. Then the torque is given by τ = IS P  since 
M  = IS. At equilibrium when the torque produced by the magnetic field is balanced by the torque 
produced by the twisting of the spring, IS P = k a , and therefore l=k<x/SP. If  k. S, and M are 
known, this equation gives the value of the current I  in terms of the angle a. Usually the scale is 
calibrated so tha t the value of I  can be read directly in some convenient units. A
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5.4 M agnetic Field Produced by a Closed Current Loop

The presence o f a magnetic field is recognized from the force the field produces on a 
moving charge. In addition as already seen in Section 4.5, moving charges produce a 
magnetic field The English scientist Michael Faraday {1791 1867) became intrigued 
with magnetism after reading Oersted’s paper in 1820; after some experimentation 
Faraday came to the conclusion that the magnetic lines set up by the current are 
closed and encircle the current. This experiment may be done by placing a small 
compass needle in different positions close to the current. The needle tends to line 
up perpendicular to both the direction of the current and the radial direction from the 
wire to the compass position.

After many experiments over a period of years a general expression was obtained 
for calculating the magnetic field produced by a closed current loop of any shape. 
This expression, called the Ampere-Laplace law, is

f u r x  Mr ,,
Μ = Κ „ ΐ ψ ^ ~ ά Ι  (5.13)

where the meaning o f all symbols is indicated in Fig. 5-6, the integral is extended 
along the entire closed circuit (therefore the symbol f  is used), and K m is a constant 
whose value in the SI is 10 7 T m /A or m kg C “ 2 as was indicated in Section 4,5.
[Note that the integral in Eq. (5.13) is expressed in m -1 when r and I are given in
meters.] Therefore

M = I O ' 7 i j i ^ ^ d l .  (5.141

It was also mentioned in Section 4.5 that it is customary to write K m =  μ0/4π where 
μ0 is the magnetic permeability oj vacuum. Thus Eq. (5.13) for the Ampere-Laplace 
law becomes

(5.1514π J r

fig. 5-6. Description for defining terms in Ampere- 
Laplace law. The small segment dt o f the current 
loop contributes to  the magnetic field a t point P . 
This contribution is perpendicular to the plane 
defined by uT and uR.
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E xam p le 5.2. M agnetic field of a moving charge.

▼ In Section 4.5 it was stated that a moving charge produces a magnetic field The expression 
for the magnetic field of a moving charge will now be shown to be compatible with the result for 
the magnetic field of an electric current. The magnetic field o f an electric current as given by 
Lq. (5.15) may be written as

ο ,  X W  ά1=μο 
4π J r  4π J  r

Recall Eqs. (5.1) and (5.2), and that dV= SdI. as well as that j = j  u T=nqv: then the term in paren
theses above m ay be written

I d lu T= {jS) dl U j = J  dV = nqv dV.

Therefore the magnetic field of a m oving charge is

.*=g^%,(/K JJ
Since ndV  is the num ber of particles in the volume dV, we may interpret the result above by saying 
that each charged particle produces at a distance r a magnetic field given by

(5.17)4π r

which is Eq. (4.14) in Section 4.5 for the (nonrelativistic) magnetic field of a moving charge.
Recall that Eq. (4.28) is the expression for the magnetic field of a moving charge and is valid at 

all velocities of the charge. The question may now arise as to whether Eq. (4.28) is com patible also 
with Eq. (5.15) for the field of a closed current. A detailed calculation, here omitted, shows Ihai 
Eq. (5.15) does rem ain valid, independent of the velocities of the charges composing the closed 
current. A

5.5 Magnetic Field of a Rectilinear Current

As an example of the Ampere-Laplace law, consider a very long and thin rectilinear 
current as in Fig. 5-7. For any point P  and any element dl o f  the current, the vector 
ur x ur is perpendicular to the plane determined by P  and the current, and therefore 
the vector’s direction is that of the unit vector ue. At P  the magnetic field produced 
by dl is then tangent to the circle o f radius R centered on the current element that 
passes through P, and in a plane perpendicular to the current. Therefore when the 
integration in Eq. (5.15) is performed, the contributions from all terms in the integral 
have the same direction ue; and the resultant magnetic field ES is also tangent to the 
circle. Thus it is necessary to find only the magnitude o f ES. The magnitude o f uT x U1 
is sin Θ since uT and ur are unit vectors. Therefore for a rectilinear current Eq. (5.15) 
is in magnitude
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Fig. 5-7. M agnetic field produced by a recti
linear current at point P.

Fig. 5-8. M agnetic lines o f force about a 
rectilinear current.

* = Ϊ 2 / Γ  G L
4π J . m T

dl. (5.18)

From Fig. 5-7, r =  R esc 0 and I = R  cot (180 —0 )=  — R cot 0 so that d l=  R esc2 0 d8. 
Substitution in Eq. (5.18) yields-m: (K CSC3 β I J  sin Θ

where I =  — oo corresponds to 0 =  0 and / =  +  oo to 0 =  π. Then

,3, _  I1U7

or in vector form

InR

P - J h l  u 
2nR 0

( 5 . 1 9 )

(5.20)

The magnetic field o f an infinitely long current-carrying conductor is inversely 
proportional to the distance R, and the lines o f force are circles concentric with the 
current and perpendicular to it as shown in Fig. 5-8. The right-hand rule for determin
ing the direction o f the magnetic field relative to the direction of the current is also 
indicated in the figure. This result is sometimes called the Biot-Savart formula after 
the French experimenters Jean Biot (1774—1862) and Felix Savart (1791- Its41 j who 
discovered the relation given by Eq. (5.20).

In the case of a rectilinear current in a conductor, there is a magnetic field M but 
no electric field S  because in addition to the moving electrons there are the metal s 
fixed positive ions that produce an electric field equal and opposite to that of the
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Θ Θ Θ Θ Θ Θ Θ Θ Θ Θ  Θ Θ Θ 0 § 0 Θ Θ Θ Ο

(a) </ positive (b) q negative

Fig. 5-9. Relation between the electric and magnetic fields produced by a stream  o f  positive 
(negative) ions moving in a straight line.

electrons. Therefore the net electric field is zero. However for ions moving along thl 
axis of a linear accelerator, there are both a magnetic field and an electric field. Tht 
electric field corresponds to the value given in Example 1.5 for the electric field of a 
charged filament, £  =  Xur/2ne0R (Fig. 5-9). Therefore comparing this value with 
Eq. (5.20) gives the relation of the two fields:

M = ,- ^ - u r x £  (5.21)

Example 5.3. Verification that result (5.21) for the magnetic field of a rectilinear current is com
patible with Eq. (4.17),

v x  S.
C i

V The magnetic field produced by a rectilinear current is the result of the individual fields pro
duced by all the charges moving along the conductor. According to Eq. (5.2) if S is the cross 
section of the conductor, I= IiqSv  where v is the velocity o f the charges. Because nq is the charge 
per unit volume, the charge of a conductor having unit length and cross section S is nqS=X. 
Therefore I= X v. M aking the substitutions in Eq. (5.21) and noting that v = v u T give

_ / o^ol U] x S  = / i0e0ii x S  = - ί  i' x S.

which is just Eq, (4.17). A

Example 5.4. D erivation of the magnetic field of a rectilinear current by means of the relativistic 
transform ation for the electromagnetic field.

▼ Although the derivation of Eq. (5.21) for the magnetic field of a  rectilinear current used the 
Ampere Laplace law, the result can be obtained using the theory οΓ relativity. Consider an 
infinite row of equally spaced charges moving along the X-axis with velocity e relative to  observe» 
0  (Fig. 5-10). These moving charges constitute a rectilinear electric current. If /  is the electric 
charge per unit length, the electric current measured by O is I= Xv. Now consider an observer
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Fig. 5-10. Electromagnetic field produced by a stream o f charges moving along the Y-axis as 
observed by two observers in relative m otion.

O' moving in the Y -direction with velocity ». Relative to  O', the charges appear at rest; and O' 
measures only an electric field. However, O records an electric and a magnetic field.

As measured by 0 . the charge in a segment dx  is dq =  A dx  Observer O' measures the same 
charge; but because of the Lorentz contraction, the segment appears to  have a length dx' such 
that dx = J  l —v2/c 2 dx'. Therefore O' measures a different charge per unit length A', such that 
A’ d x = A dx  and therefore

dx
A'= A -J1= J I - V 2Ic2 A. 

dx

Theelectricfield as measured by O’ is transverse and at a point P isg iven  by the result of Example 
1.5; that is. S ' = P /2ne0R'. By placing the Y-axes parallel to  the line PQ and noting that R = A  
because it is a transverse length, we may write

S ’X=Q. S '.= 01 2ne0R

Then from Eqs. (4.22) with P = O ,  the com ponents of the electric field relative to O are

S I  A' A
S x = S-=O . S t = - -  £ _ , =  -------- = - - = = - ------

V 1 -V 1Ici  Ine0R J l - V  /c Ine0R

Similarly Eqs. t4.24) give the com ponents of the magnetic field relative to  O as

vS'y/c1 _ P vje2 μ 01P 1 = P 1 = O. P-_ =
V 1 - V 2Ic2 In e 0R s i I - V 2Ic2 2nR

where the relation e0;i0 =  l /c 2 has been used. Thus are found no t only the correct electric field 
in frame Y Y Z fo r a rectilinear charge distribution, but also the correct expression for the magnetic 
field produced by a rectilinear current with Eq. (5.15) as the starting point. Hence we may feel 
confident that the Ampere Laplace law (5.15) is com patible with the requirements οΓ Ilie principle 
of relativity, and therefore gives the correct magnetic field associated with a  closed electric circuit A
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Fig. 5-11. M agnetic interaction between two rectilinear currents.

5.6 Forces between Currents

Equation (5.20) for the magnetic field o f an infinitely long current-carrying conductor 
will now be combined with Eq. (5.2) for the magnetic force on a current to obtain the 
magnetic interaction between two electric currents. For simplicity consider two 
parallel currents I  and I’ (Fig. 5-11) in the same direction and separated by the 
distance R. The magnetic field M  produced by I  at any point o f I' is given by Eq.
(5.20), and has the direction indicated. The force F' on I' will be from Eq. (5.6)

F' =  I' [ u'T x  i08 d!’.

r " \  

1 1

Fig. 5-12. A ttraction and repulsion between two current loops.
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IsJ0W Ur7 x ES= - U r B  where u R is defined as the unit vector from I  to Γ. Therefore, 
from Eq. (5.20) for ES the force is

F  =  I'

This result indicates that current /  attracts current I'. A similar calculation of the 
force on I produced by I ' gives the same result but with a plus sign so that the force 
has the same direction as u R and again represents an attraction. Therefore two 
parallel currents in the same direction attract each other with equal forces as a result of 
their magnetic interaction. The student should verify that if  parallel currents are in 
opposite directions, the currents repel each other.

This result can be extended to currents of any configuration. The circuits of Fig. 
5-!2(a) attract each other, but those in Fig. 5-12(b) repel each other. Interactions 
between currents and circuits have great practical importance for electric motors 
as well as other engineering applications.

5.7 Note on SI Units

For a fourth basic unit to add to those o f length, mass, and time, there are two laws 
from which to choose: Coulomb’s law for the electrostatic interaction between two 
charges is given by Eq. (1.2) as

and the law o f interaction between two rectilinear currents is given by Eq. (5.22) with 
Ro/'4π replaced by the magnetic constant K m as

C = K m 211' LV 
m R

Although two constants, K e and K m, correspond to the electric and magnetic forces, 
there is only one degree o f freedom because only one new physical quantity, the 
electric charge, has been introduced. The current is related to the charge by the 
equation current =  charge/time. Therefore an arbitrary value can be assigned to only 
one of the constants. When the Eleventh General Conference on Weights and 
Measures, held in 1960, established the SI, Kra =  IO-7 was adopted, and the ampere 
father than the coulomb was chosen as the fundamental unit. Because oi this arbitrary 
adoption, the ampere is defined as the current that, circulating in two parallel con
ductors separated a distance of one meter, results in a force on each conductor of 
2 x IO-7 N per meter of length of each conductor (F ig. 5-13). Once the ampere is so
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Fig. 5-13. A pparatus for defining the ampere Fig. 5-14. A cu rre n tb a la n c e fo rm e a su r in g a  
experimentally. current in terms o f  the magnetic force

between two parallel current-carrying con
ductors.

defined, the coulomb is defined as the quantity of charge that flows across any cross 
section o f a conductor in one second when the current is one ampere.

A current balance is an experimental arrangement for measuring the force between 
two parallel conductors (Fig. 5-14). The same current passes through the two con
ductors so that F = 2 x lO “ 7 I2L '1R. The balance is first set in equilibrium with no 
current in the circuit. When the current is sent through the circuit, additional weights 
are required on the left pan to bring the balance back to equilibrium. From the known 
values o f F. L'. and R. Ihe value o f I can be calculated. In practice, two parallel 
circular coils are used.

Since in terms o f the auxiliary constants e0 and μα we have K e =  1/4πε0 and K m =  
μ J An. it follows that the ratio o f these two constants yields

where e = \ /y je f f t0. This constant is equal to the velocity of light (or o f any electro
magnetic signal) in vacuum as will be proved in Chapter 11. The constant c has been 
measured experimentally with very great accuracy. In terms o f the velocity of light. 
K e= K mC2 =  10" 7 c2. Choosing this value for K e in Section 1.3 may have appeared 
somewhat arbitrary at the time but is now explained.

One reason why the Eleventh Conference recommended the use o f the ampere as 
the fourth fundamental unit is that it is easier to prepare a standard of current and 
to measure the force between two currents than to set up a standard of charge and
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measure the force between two charges. However from the physical point of view', 
Lhe concept o f charge is more fundamental than that of current. Also from the 
practical as well as from the theoretical point o f view the use o f  either the coulomb 
0r the ampere as a Fundamental unit may be considered as alternate expressions 
0 f the SI unit.

5.8 Magnetic Field of a Circular Current Loop

Consider a circular current loop of radius a (Fig. 5-15). Using the Ampere-Laplace 
law to calculate the magnetic field at an arbitrary point is a somewhat complicated 
mathematical problem; but at points along the axis o f  the circle, the compulation 
is a fairly easy task. First recognize that Eq. (5.15) can be interpreted mathematically 
as saying that at P the resultant magnetic field M produced by the current is the sum 
of a large number of very small or elementary contributions d38 by each of the seg
ments or length elements dl composing the circuit. Each elementary contribution is

d M ^ l ^ d l .
4 π r

However, this equation must be considered only in relation to Eq. (5.15) and not as 
an independent statement.

In the case o f a circular current loop, the vector product ur x « , o f Fig. 5-15 is 
perpendicular to the plane PAA' and has unit magnitude because these twO unit 
vectors are perpendicular. Therefore the field d08 produced by the length element df 
aI P has the magnitude

daJ/jii
4π r~

and is perpendicular to the plane PAA'. However the field is oblique to the X-axis. 
Decomposing dM  into a component parallel to the axis and a component d38L 
Perpendicular to it, we see that when w'e integrate along the circle for each J M i 
Ihere is another in the opposite direction from the length element directly opposed
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Fig. 5-16. M agnetic lines o f force produced by 
a circular current loop.

Fig. 5-17. Magnetic field at the point P  pro
duced by a magnetic dipole current.

to dl, and therefore all vectors d P L add to zero. The resultant P  will be the sum 
of all the d P  and therefore is parallel to the axis. Now since cos ot=alr.

dP , ,  =  (dP)  cos a = -  d P = fJ ^  dl.
r Anr

The distance r remains constant for the integration around the circle. Then since 
$ dl =  2na, the magnitude o f the resultant magnetic field is given by

Because r =  (a2 -K v2 )1' 2 . the magnetic field for points on the axis o f a circular current 
loop is

/ i0/ a 2
P =

2(a2 + x 2)2'2 '
(5.23)

From the definition (5.9) the magnetic dipole moment o f the circuit is M = I (n a 2). 
Then . .

p = —  — _______ (5 241
2 π (α 2 + χ 2)3/2 ' '  I

The magnetic field o f a circular current loop has been represented in Fig. 5-16.
An interesting case occurs when the circuit is very small so that the radius it can 

be neglected in comparison with the distance x. Then Eq. (5.24) reduces to

P =
μ0Μ  _ μ 0{2 M ) 
2nx3 4πχ3 (5.25)

When Eq. (5.25) is compared with Eq. (1.32) with 0 = 0 , that is, tfr=(l/4rce0)(2/7//i)J 
it is seen that the magnetic field along the axis of the small current is identical to 
the electric field along the axis o f an electric dipole if (μ0/4η)Μ  is made to correspond 
to p 'Ane0. For that reason the circuit is called a magnetic dipole. Therefore Eqs. (1.32) 
and (1.33) for an electric dipole can apply to a magnetic dipole so that the magnetic
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field off-axis may be computed (Fig. 5-17). This application gives
n 1JXA β /j_ Azf c tn  Θ/j_ M  c tn  Θ

(5 .26)

In Chapter I the lines of force of an electric field were seen to go from the negative 
to the positive charges or perhaps from or to infinity in some cases. However Figs. 
5-8 and 5-16 showed that the lines of force of a magnetic field are dosed  lines, linked 
about the current. The reason is that the magnetic field does not originate with 
magnetic poles. This kind of field, which does not have point sources, is called 
solenoidal.

Example 5.5. The tangent galvanometer.

A tangent galvanom eter consists of a circular coil (Fig. 5-18) having N  turns and carrying a 
current I. The galvanom eter is placed in a region in which there is a  magnetic field ES so that the 
plane of the coil is parallel to ES. At the center of the coil the current I produces a magnetic field 
given by M 0IH a  [from Eq. (5.23) with x = 0 ] .  Because there are N  turns, the total magnetic field 
produced at the center is SSc= p 0IN,'2a. Therefore the resultant magnetic field Sfi at the center of 
the coil makes an angle Θ with the axis of the coil; angle Θ is given by

A small magnetic needle placed at the center o f the coil will turn and rest in equilibrium a t an 
angle Θ with the axis. Thus the external field ES can he calculated if the current I is known; con
versely the current I can be measured if the field M is known. Usually M is the earth  s magnetic 
field. F or precise m easurem ents the torm uia has to  be corrected to  take into account the finite 
length of the needle since the field acting on the needle is not exactly the field at the center o f the 
coil. The name "tangent galvanom eter” is derived from the trigonom etric function appearing 
above, k

Example 5.6. T he magnetic field of a solenoidal circuit.

▼ A solenoidal circuit, o r simply a solenoid, is a circuit composed of several coaxial circular loops 
of the same radius, which all carry the same current (Fig. 5-19). The magnetic field of a solenoidal

Fig. 5-18. Tangent galvanometer.
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circuit is found by adding the magnetic fields of each of the com ponent circular currents. The 
field is indicated by lines of magnetic force in the figure, in which some fluctuations in tlie space 
between loops have been sm oothed out. The field of the solenoid will be computed only at points 
on the axis.

Fig. 5-20 shows a longitudinal cross section of the solenoid. If L is the length and N  the numbei 
of loops, the num ber of loops per unit length is N  L. and the num ber of loops in a section of 
length dR is (JV L) dR. The field produced by each loop at a point P on the axis is calculated by 
using Eq. (5.23), and the field produced by the loops in the section dR can be com puted in the 
following way:

Rola1 
2 [a2+ R 2)*12

N id μ π1Ν a dR 
L IL  [a2 + R 2)3r- '

(5.27)

From Fig. 5-20 R = a cot β, dR =  - a esc2 β άβ, and a2 +  R 2 =  O2 esc2 β. Substitution in Eq. (5.27) 
yields

ά ® = ! ^ { - & ί η β ά β )

L

H R h

Fig. 5-2(1. C om putation of the magnetic field at a point P  located along the axis o f a  solennidal 
circuit.
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The resultant field is found by integrating Trom one end of the solenoid to  the other. That is. 
ihe resultant field is

f  -s in  βιΐβ  = ^ r j - (cos /J2- C o s 0,). (5.28)
-E  Jii, -E

If the solenoid is very long, a point at the center such that R i «  and /J2 results in

(5.29)

For a point at one end, β , =  π/2 and β ,  ΐ ϋ .  or /I1 ^  π, β 2 = π /2 . In either case.

(5.30)

or one-half the value at the center. A long solenoid is used Io produce fairly uniform magnetic 
fields in limited regions around the center. A

Example 5.7. The magnetic field of a magnetic qaadrupole.

T The system of Fig. 5-21 is composed of two small identical circuits, carrying equal currents I. 
but circulating in opposite senses and separated by the distance 2a. Each circuit is thus a magnetic 
dipole; but because the currents circulate in opposite senses, the dipole moments are opposed 
and give a total magnetic dipole m om ent of zero. However, the resultant magnetic field is not 
zero, because of the separation οΓ the circuits, and thus the system constitutes a m agnetic quad
ru p le . N ote that mathematically the situation is very similar to that οΓ Example 1.8.

Because of the analogy between Eq. (5.26) for a magnetic dipole and Eqs. (1.32) and (1-33) for 
an electric dipole, we m ay define a “magnetic" potential Vm associated with the magnetic field 
of a magnetic dipole given by Eq, (1.311, with p/4ne0 replaced by μ0Μ  An. Therefore

! μ 0Μ  cos θ μ 0Μ  ■ r 
Anr2 Anr1

Fig. 5-21. M agnetic quadrupole.
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Thus since M , =  — M 2 = M. the resultant "magnetic” potential at P is

J i 0M  J , K0JVi 2- T2J i 0M  
m 4nr\ 4nr2 4π

rA _  r A
r f  r \ )

From  Fig. 5-21, calling a = u .a  where u. is the unit vector along the Z-axis, we have rq =  —a-f-r, 
r2—a + r, and also

T21=T2 -Fa2- I a r  cos Θ. 

r2 = r2+ a 2 + 2 ar cos Θ.

Therefore using the binomial expansion up to the first order in α/r  gives

I I /  2a cos 0 a2\  3,2 I f  3a cos I
T = -J  I — —---------- 1— T [ —r\ r \  r r4 1

2\  3:2 I f ,  3a cos Θ \

1J =A +~^~+"j'
and similarly.

Therefore

I _ 1
r? r3

( ,  3a cos Θ \

r . r ,  —a+r f ,  3a cos Q \  a+r f ,  3a cos Θ \  — 2a 6ra cos 0
l + — r ~ + ·  I-UA-I1 — +■ J=^y + 7  +■■

Substituting this value in the expression for Vm gives

i/ 2F o i  -ra cos θ'

v^ n P y  + -------- r------
However M -a —M a  and  JW- r = M r  cos Θ. Thus

/t0M(2a)(3 cos2 0 — I) 
m= 4nr3

which is similar to Eq. (1.44) in angular and radial dependence and confirms the fact tha t we are 
dealing w ith a magnetic quadrupole. The mom ent of the magnetic quadrupole is M(2a). The 
magnetic field of the magnetic quadrupole has radial and transverse com ponents given by

?  _  _ S K  3μ0Μ(2αΧ3 cos2 O - 1 )  
dr 4 Trr4

,j, I < Vm 6μ0Μ(2α) sin O cos Θ
* r δθ ~  4 π Ρ

The student is warned that the “magnetic” potential introduced Tor m athematical convenience 
Tor com puting the magnetic field is not related to  a magnetic potential energy in the same way as 
the electric potential is related to an electric potential energy. A
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Problems

S I Find the current density (assumed uniform) 
required in a horizontal aluminum wire to 
make it “float” in the earth’s magnetic field 
at the equator. The density of Al is 2.7 x  IO3 kg 
n, - 3 Assume that the earth 's field is about 
7 x 10 5 T and that the wire is oriented in the 
cast-west direction.
5.2 Find the force on each of the wire seg
ments shown in Fig. 5-22 if the field. P =  1.5 T1 
is parallel to O Z  and  /  =  2 A. An edge of the 
cube is 0.1 m.

would be required if the loop were pivoted 
about an axis through the loop’s center, parallel 
to  the Y-axis?

5.3 The plane of a rectangular loop of wire 
.05 m x .08 m is parallel to  a magnetic field 
of 0.15 T. (a) If the loop c a rie s  a current of 
10 A, what torque acts on the loop I (b) W hat 
is the magnetic m om ent of the loop? (c) W hat 
is the maximum torque that can be obtained 
with the same total length of wire carrying the 
same current in this magnetic field?
5.4 The rectangular loop in Fig. 5-23 is pivoted 
about the Y-axis and carries a current of 10 A 
>n the direction indicated. If the loop is in a 
uniform magnetic field of 0.2 T  parallel to the 
•Y-axis, calculate (a) the force on each side of 
Ihe loop, in N , and (b) the torque in N m, 
fequired to hold the loop in the position shown.

ilh the loop in a field of 0,2 I parallel to the 
■''-axis calculate (c) the force on each side of the 
loOp in N and (d) the torque in N m required Io 
bold the loop in that position, (e) W hat torque

5.5 The rectangular loop ot wire in Fig. 5-24 
has a mass of 0,01 kg per meter of length, and 
is pivoted about side AB  as a frictionless axis. 
The current in the wire is 10 A in the direction 
shown, ta) Calculate the magnitude and the 
sense of the magnetic field, parallel to the 
Y-axis, that will cause the loop to swing up 
until its plane makes an angle of 30 with the 
YZ-plane. (b) Discuss the case in which the 
field is parallel to  the Y-axis.
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5.6 W hat is the maximum torque on a  coil 
.05 m x.12 m. composed of 600 turns, when 
it is carrying a current of 10"5 A in a uniform 
field 0.10 T?
5.7 The coil of a pivoted-coil galvanom eter 
has 50 turns and encloses an area of 6 x IO"4 
m2. The magnetic field in the region in which 
the coil swings is IO "2 T, and is radial. The 
torsional constant of the hairsprings is k = 
IO"6 N m/deg. Find the angular deflection 
of the coil for a current of 1 mA.
5.8 A wire loop in the form of a square οΓ side 
0.1 m lies in the X  E-plane as shown in Fig. 5-25. 
There is a  current of 10 A in the loop as shown. 
If a magnetic field parallel to the Z-axis and 
having an intensity M =OAx T (where x  is in 
m) is applied, calculate (a) the resultant force 
on the loop, and (b) the resultant torque relative 
to  O.
5.9 Repeat Problem 5.8 for a magnetic field 
applied along the Y-axis.
5.10 (a) Find the force on the circular portion 
of the conductor in  Fig. 5-26 if the current is I 
and the uniform magnetic field M is directed 
upward, (b) Show that the force is the same as 
if the conductor between P and Q were straight.
5.11 Consider a  square coil of wire, 0.6 m on a 
side; it carries a constant current of 0.1 A and 
is in a uniform magnetic field of strength 
IO"4 T. (a) If the plane of the coil is initially 
parallel to the magnetic field, is there any 
torque on the coil? (b) Answer (a) for a coil 
that is initially perpendicular to the magnetic 
field, (c) Express the torque as a function of the 
angle the norm al to  the coil makes with the 
magnetic field, td) Plot the torque as the angle

P Q

Figure 5-26

varies from 0 to In . (b) If a t the point where 
there is no torque on the coil, the coil has an 
angular velocity, what happens?
5.12 (a) If the state of affairs is as stated in 
(b) of Problem  5.11, but the direction of the 
electric current is instantaneously reversed, 
what happens? (b) How would you change the 
direction of the current as mentioned in the 
first part of this question? (c) O f what use 
would this change be?
5.13 (a) C om pute the intensity of the magnetic 
field produced by an infinitely long wire of 
radius 5 x 10“ -’ m carrying an electric current 
o f I A a t a distance of 5 x IO"2 m and at I ml 
lb) C om pute the electric field at these points.
5.14 A long straight wire carries a current of
1.5 A. An electron travels with a velocity of 
5 x IO4 m s 1 parallel to  the wire, 0.1 m horn 
it, and in the same direction as the current. 
W hat force does the magnetic field of the 
current exert on the moving electron?
5.15 A long straight wire carries a current of 
10 A along the E-axis. A uniform magnetic 
field ES, which is IO"6 T, is directed parallel to 
the Y-axis. W hat is the resultant magnetic 
field at the following points: (a) x=Q , z =  2 ml
(b) x  = 2 m, z = 0 ;  (c) x  = 0, z =  —0.5 m?
5.16 Two long straight parallel wires are 
separated by a distance 2a, If the wires carry 
equal currents in opposite directions, w hat is 
the magnetic field in the plane of the wires and 
at a point (a) midway between them, and (b) at 
a  distance a from one and 3a from Ihe other?
(c) F or a  case in which the wires carry equal 
currents in the same direction, answer (a) 
and (b).
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Figure 5-29

5.17 Two long straight parallel wires are
1.0 m apart as shown in Fig. 5-27. The upper 
wire carries a current I 1 of 6 A into the plane 
of the paper, (a) W hat m ust the m agnitude and 
the direction of the current I 1 be for the 
resultant field at point P  to be zero9 (b) W hat 
is then the resultant field at Q I  (c) at S I
5.18 Figure 5-28 is an end view of two long 
parallel wires perpendicular to the X  Y-plane, 
each carrying a current I. but in opposite 
directions, (a) Show by vectors the magnetic 
field at point P. (b) In terms of the coordinate x  
of the point, derive the expression for the 
magnitude of P  at any point on the Y-axis,
(c) C onstruct a  graph of the m agnitude of P  at 
any point on the Y-axis, (d) At what value of x  
is P  a maximum?
5.19 Repeat Problem 5.18 for points on the Y- 
axis.
5.20 Repeat Problem  5.18 for currents tha t are 
in the same direction.
5.21 Repeat Problem  5.19 for currents in the 
same direction.
5.22 In Fig. 5-28, a third long straight wire, 
parallel to  the other two, passes through 
point P. Each wire carries a current I = 20 A. 
Let a =  0.30 m and x =  0.4 m. Find the m agni
tude and the direction of the force per unit 
length on the third wire (a) if the current in it is 
away from the plane of the paper and (b) if the 
current is tow ard the plane of the paper.
5.23 A closely wound coil has a diam eter of 
0.4 m and carries a current of 2.5 A. How many

turns does the coil have if the magnetic field 
at the center οΓ the coil is 2 356 x 10 4 T?
5.24 A solenoid is 0.3 m long and is wound with 
two layers of wire. The inner layer consists of 
300 turns; the outer layer, 250 turns. The 
current is 3 A in the same direction in both 
layers. W hat is the magnetic field at a  point 
near the center of the solenoid?
5.25 A long horizontal wire AB  in Fig. 5-29 
rests on the surface of a table. A nother wire 
CD, vertically above the first, is 1.00 m longand  
is free to slide up and down on the two vertical 
metal guides C and D The two wires are 
connected through the sliding contacts and 
carry a current of 50 A. The mass of the wire 
CD is 5 x 10" 3 kg m " L To what equilibrium 
height will the wire CD rise if the magnetic 
force on it is caused by the current in the wire 
A B I
5.26 A long straight wire and a rectangular 
wire frame lie on a table top (Fig. 5-30). The 
side of the frame parallel to  the wire is 0.3 m 
long; the side perpendicular to  the wire is 
0.5 m long. The currents are I 1 = 10 A and
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I 1 =  20 A. (a) W hat is the force on the loop? 
(b) W hat is the torque on the loop about the 
straight wire as an axis? about the dashed 
line as an axis'2
5.27 Two long parallel wires are hung from a

comm on axis by cords 0.04 m in length. I b e  
wires have a mass of 5 x 10 2 kg m 1 and 
carry the same current in opposite directions. 
W hat is the current if the cords hang at an 
angle of 6 with the vertical?

CHALLENGING PROBLEMS

5.28 A circular loop of radius a and current I 
is centered on the Z-axis and perpendicular to 
it. A magnetic field is produced having axial 
symmetry around the Z-axis and making an 
angle β with the Z-axis and the points of the 
loop (Fig. 5-31). (a) F or each of the two possible 
directions of the current, find the m agnitude 
and the direction of the force, (b) Assume that 
the circuit is very small and can be considered 
as a  magnetic dipole, and that the magnetic 
field follows an inverse-square law [M=Htr1). 
Show that the force on the circuit is

where W is its magnetic dipole m om ent, which 
is oriented along the Z-axis. This result is 
general and shows that a dipole will move in 
the direction in  which the field increases when 
oriented along the field, and in the opposite 
direction when oriented opposite to the field. 
(Compare with the similar result for an electric 
dipole in Section 1.1.)
5.29 Show that the force on a portion PQ of a 
conducting wire shown in Fig. 5-32, carrying a

current I an d jila ced  in a uniform magnetic 
field, SS, is I(PQ)X ES and thus is independent 
of the shape of the conductor, (b) Appiy to 
Problem 5,10. (c) Conclude from this that *l,e 
force on a closed current placed in a uniform 
magnetic field is zero.
5.30 Show that the magnetic field produced 
by a  rectilinear current I of finite length is

·*=( ^ j lsinotl -sin  *7*

where R is the perpendicular distance from 
the point to the wire, and a , and <x2 are the 
angles between the lines from the point to  the 
ends of the current and the perpendicular to 
the current (see Fig. 5-33).
5.31 Apply the result of Problem 5TO to 
obtain the magnetic field at the center of a 
square circuit ol side L. [N ote the signs ol the 
angles.]
5.32 A thin flat conductor of great length has a 
uniform current density j  per unit width. That 
is. / i„tai=/'v where w is the width (Fig. 5-34).
(a) Calculate the magnetic field at a point P  a t a 
perpendicular distance d above the center of

P
Λ/

/
/S r

A Ifi -  xVn I
/ I - ,  vX. I

-O -   V

Figure 5-31 Figure 5-32 Figure 5-33
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Figure 5-35

the strip as shown. [Hint: The expression for 
the field caused by a long straight strip of 
width dw is the same as the expression for a 
long straight wire.] (b) W hat is the field if 

that is, if the strip becomes an infinite
plane?
5.33 Two circular currents of the same strength 
I and the same radius a are separated the 
distance 2b as shown in Fig. 5-35. (a) Prove 
that the magnetic field at points along the axis 
is given by

P=
(a2 +  b2)3i2

3(4b2 - a 2)

where x is m easured from the midpoint between 
the two currents, (b) Verify that for a = 2b, the 
field at the center is independent of x  up to the 
third power. (This arrangem ent is called Helm
holtz coils and is widely used in the laboratory 
to produce a uniform magnetic field over a 
limited region of space.) (c) Assuming that the 
condition in (b) is fulfilled, find the value of x  in 
terms of a for which the field differs by I percent 
from the field at the midpoint.

2 ία + b )

15 (8b4 — 12cr b2 +  u4} .
+  8 · (a2 + b 2)4 * +
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The Static Magnetic Field

6.1 Introduction

In Chapters 4 and 5 we discussed how moving charges and accordingly electric 
currents produce magnetic fields. We also gave specific rules, such as the Ampere- 
Laplace law, Eq. (5.13), for the computation o f such fields. In the present chapter 
some general properties o f the magnetic field will be examined. These properties will 
allow simplification o f the calculation o f the magnetic fields produced by current! 
having certain symmetries. In addition a description o f  the magnetic properties of 
matter will be given as well as a discussion of how the magnetic fields produced by 
electric currents are affected in the vicinity o f matter. This analysis will be similar to 
that carried out in Chapter 2 for the electric field.

6.2 A m pere's Law  for the Magnetic Field

Consider first an infinite rectilinear filament carrying a current I (Fig. 6-1). Recalling 
from Chapter 5 the results of the experiments of Oersted, Ampere, and others, we 
recognize that the current in the filament produces a magnetic field 08 about the 
wire. At the point A the magnetic field is perpendicular to OA and is given by Eq.
(5.20) as

08 P o l
' l n r '

The concept of circulation of a vector field along a closed path was defined in 
Section 2.6: when applied to the magnetic field, circulation becomes

38-dl. (6.11

Fig. 6-1. M agnetic field o f a rectilinear 
current.

Fig. 6-2. The magnetic circulation along all con
centric circular paths around a rectilinear current 
is the same, and  equal to  μ0Ι.
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The circulation of the magnetic field* around a circular path that has radius r and 
is concentric with the filament and in a plane perpendicular to the filament may be 
easily calculated. The magnetic field P  is tangent to the path so that P - d l =  P dL 
and is constant in magnitude. Therefore the magnetic circulation (designated by 
Aj,) is

Asii=  P u l l= j>  P d !  =  p j>  M = P L  =  ( ^ j l I n r )  =  HftI. (6.2)

The magnetic circulation is then proportional to the electric current I. and is inde
pendent of the radius of the path. Therefore if  around the current I  several circles 
L 1. L 2. L 3. . . . are drawn (Fig. 6-2). the magnetic circulation around all o f them is 
the same and is equal to μ0Ι according to Eq. (6.2).

Next consider an arbitrary closed path L  surrounding the current I (Fig. 6-3). 
The magnetic circulation along L is

HoweverM0- J  is the component o f dl in the direction of the unit vector Utj. and there
fore is equal to r dft. Hence

$  d e = ^ ~  ^ = I 1O1

S|nce the total plane angle around a point is In. This equation is again the previous 
result. Therefore Eq. (6.2) is valid for any closed path around the rectilinear current 
■!respective of the position of the current relative to the path. A more elaborate 
aUalysis1 which will be omitted, indicates that Eq. (6.2) is correct for arty shape of the 
current loops, not necessarily only a rectilinear one. If there are several currents

T h e  circulation of the magnetic field is railed the magnetomotive force  along the closed circuit
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Fig. 6-4. The magnetic circulation along any 
closed path is proportional to the net current 
through the path.

11, 13, - linked by a closed line L  (Fig. 6-4), each current makes a contribution
to the circulation of the magnetic field along L. Therefore Ampere’s law for the 
magnetic field may be stated as:

the circulation o f  the magnetic field along a closed path that links currents

To apply Eq. (6.3), a current is taken as positive if it passes through the interior of 
L in the sense indicated by the thumb o f the right hand when the fingers point in the 
same sense as the orientation o f L, and as negative if the current is in the opposite 
sense. Thus in Fig. 6-4 currents / ,  and I3 arc considered positive; and / 2, negative.

Recalling Example 2.1, we found that the electric current can be expressed as the 
flux of the current density (that is, I = f j ’ UNdS). Consequently, Ampere’s law F.q.
(6.3), may be expressed in the form

where S  is any surface bounded by L.
That the circulation o f the magnetic field M is not zero generally indicates that the 

magnetic field does not have a magnetic potential in the same sense that the electric 
field has an electric potential.

Ampere’s law is particularly useful when we must compute the magnetic field 
produced by current distributions having certain geometrical symmetries. Tlie 
following examples will show the effectiveness of Ampere’s law when compared with 
the more difficult procedures necessary to handle the same problems with the Ampere- 
Laplace law, Eq. (5.13).

Λ , h-> h r  ■ ■ ■ is

(6.3)

where /= Z 1H-Z2TZ3+  · · ■ stands for  the total current linked by the 
path L.

(6.4)
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Example 6.1. The magnetic field produced by a current along a circular cylinder o f infinite length.

T Let us consider a  current I along a cylinder of radius a (Fig. 6-5). The symmetry of the problem 
clearly suggests that the lines of force of the magnetic field are circles with their centers along the 
axis οΓ the cylinder, and that the magnetic field M a t a point depends only on the distance from 
the point to  the axis. Therefore choosing a  circle o f radius r concentric with the current as the 
path L gives the magnetic circulation as

' - - I
M dl = Af<j> di = M L=2nrM .

L JL

If the radius r is larger than the current radius a. all the current I  passes through the circle. There
fore applying Eq. (6.3) gives

2nrM —p 0i  o r
2nr

(r> a ). (6 5)

This result is just that found in C hapter 5 for the magnetic field o f a  current in a  filament. Therefore 
at points outside a cylindrical current the magnetic field  is the same as i f  all the current were con
centrated along the axis.

For the case in which r  is smaller than a, there are two possibilities. If the current is only along 
the surface of the cylinder fas may occur if the conductor is a cylindrical sheath of metal), the 
current through L  is zero: and Ampere’s law gives 2nrM = 0  o r M=O. Therefore the magnetic 
β eld at points inside a cylinder carrying a current on its surface is zero. However if the current is 
uniformly distributed throughout the cross section of the conductor, the current through L is

I- 1 , Λ  Ir1I  = — = ( J t r 2 ) = - J - .

Therefore Ampere’s law gives 2nr M= μ 0Γ = P 0Ir 1Ia1 or

M - b o 'r
In a 1

(r<a). (6.6)

Thus the magnetic field  at a point inside a cylinder carrying a current uniformly distributed through
out its cross section is proportional to the distance from  the point to the axis oj the cylinder. A
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Fig. 6-6. A toroidal coil. Fig. 6-7. A solenoid

Example 6.2. The magnetic field produced by a toroidal coil.

▼ A toroidal coil consists of a wire uniformly wound on a torus, or doughnut-shaped surface as

current in them. The symmetry of the problem suggests that the lines of force of the magnetic 
field are circles concentric with the torus. F irst take as the path of integration a circle L withm 
the torus. The magnetic circulation is then Aj2= ML. Path L  links with all the turns around the 
torus, and therefore the total current through the path is NI. Thus Ampere’s law gives VSL=It0A I  
o r

assume that I  is practically the same for all interior paths. Given that n =  N  L  is the num ber of 
turns per unit length, the magnetic field inside the torus is nearly uniform and has the constant
value

For any path, such as L  o r L', outside the torus, the total current linking with the path is zero. 
Therefore M=O. In other words the magneticfield o f a toroidal coil is entirely confined to its interior 
This situation applies only for toroidal coils on w hich the turns ofthe wire are very closely spaced. A

Fxample 6.3. The magnetic field at the center of a very long solenoid,

T Consider a solenoid (Fig. 6-7), having n turns per unit length, each turn carrying a  current /· 
if the turns are very closely spaced and the solenoid is very long, it can be verified that the magnetic 
field is entirely confined to  the interior and is nearly uniform. F or the path of integration choose 
the rectangle PQRS of Fig. 6-7. The contribution by sides QR  and SP  to the m agnetic circulation 
is zero because the field is perpendicular to them ; also the contribution of side R S  is zero because 
there is no field there. Therefore only side PQ contributes the am ount Mx so that Aa  =  Mx The 
total current linking with the integration path is n x l  since nx gives the num ber of turns within 
the length x. Therefore Ampere’s law' gives Μ χ = μ 0ηχΙ. o r M = μ 0η1. in agreement with the result 
in Example 5.6 for the field at the center of a long solenoid. A

in Fig. 6-6. Let N  be the num ber of turns, all equally and closely spaced, and I  be the electric

Μ = μ0ηΙ. (6.7)
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6.3 Am pere's Law  in Differential Form

S i n c e  Ampere’s law can be applied to a path ofany shape, the law will now be applied 
to a very small or infinitesimal rectangular path PORS  in the Υ Γ-plane: the path has 
sides dx and dy and an area dx dy (Fig. 6-8). The sense o f circulation around PQRS
is as indicated by the arrows. The circulation A * consists of four terms, one for each
side; that is.

A * = d )  . P - d l  =  ί  +  f  +  f  +  f  P - d l .  (6.8)
J  PQRS  JPQ  J QR J r s  J SP

N o w a l o n g t h e  path OR, which is oriented parallel to the +  T-direction, dl =  uf dy and

P - d l =  P - u y d y = P y dy.
Q R

Similarly for side SP. which is oriented in the -T -d irection . dl =  —uy dy and thus
*
I P - d l =  — P ' - U y d y = - P y d y  
J  SP

so that

f +  f = ( P y - P y )  dy.
Jqk Jsp

However since P O = d x  is the distance between the points where P y and P y are 
calculated and because P y- P ‘y= d P y. the partial differential notation may be used 
to write P y- P y as (v P y/dx) dx. Therefore,

f  +  f  P - d l = C- p d x d y .
JQR  J  SP  b X

Y

Fig. 6-8. Elem entary path to  evaluate 
Ampere's law In differential form.
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By similar reasoning the remaining two integrals in Eq. (6.8) are

f + [  d l =  - dJ ^ L d x d y .
Jps Jps

A d d in g  th e  tw o  re su lts  g ives th e  m a g n e tic  c irc u la t io n  o v e r th e  in f in ite s im a l p a th :

Given that dl  is the current passing through PQRS,  this infinitesimal current may be 
related to the current density j  by writing

d I = j - d S = j , d S = j 2d x d y  (6.10)

We write j .  because only the Z-component of the current density contributes to the 
current d l  through PQRS. The components j x and j y correspond to current densities 
parallel to the surface and not through it. Substituting Eqs. (6.9) and (6.10) into 
Ampere’s law, Eq. (6.3), yields

(c B  (I B  \
-Jx ~  -Jy xJ dx d y —Po d l  =  Paiz dx dy.

Canceling the common factor dx dy on both sides gives Ampere’s law in its differential 
form for the small area:

S B ,  B B x
- Ί 7 = Μ ,  (6.11)

The surface PQ R S  may be placed in the YZ- or the ZY-pIanes and results in the 
equivalent expressions

μ (Si Pa»
(6 12) 

(6.13)

The three equations (6.11), (6.12), and (6.13) can be combined into one vector 
equation. Note that the right-hand sides are the components o f the vector j .  the 
current density, multiplied by p 0. Similarly the left-hand sides can be considered as 
the components of a vector obtained from ES by combining derivatives in the form 
indicated, and this combination is called the curl of B . Then the three equations can 
be consolidated in the vector equation

curl B  =  P0J. (6.14)

This equation is the expression o f Ampere’s law in differential form. Equation (6.14) 
may be used to obtain the magnetic field when the current distribution is known,
and conversely. In a region in which there are no electric currents, curl ES=0.

SB. S B v
dy - - J z = P  ON,

δ B x BBZ_
δζ δχ



Magnetic Flux

Ampere’s law in differential form establishes a local relation between the magnetic 
jjeld J a t  a point and the current density j  at the same point of space, much as Gauss’s 
jaw in differential form [Eq. (2.5)] relates the electric field and the charges at the same 
point of space. By considering both Eq. (2.5) and Eq. (6.14), we may thus say that 
electric currents are the sources of the magnetic field.

The expression equivalent to Eq. (6.14) for a static electric field is

since Eq. (3.17) showed that for such a field the circulation is zero ($L <? · rf/=  0).

The magnetic flux  across any surface, closed or not, placed in a magnetic field is

The concept o f magnetic flux across an arbitrary surface is o f great importance 
especially when the surface is not closed. The magnetic flux, being magnetic field 
times area, must be expressed in SI units as T m2, a unit called the weber (Wb) in 
honor of the German physicist Wilhelm E. Weber (1804-1891). Note that since 
T =  k g s 1 C ' 1, W b = T m2 =  m2 k g s -1  C ' 1.

Since there are no magnetic masses or poles (or at least none have yet been 
observ ed), the lines of force o f  the magnetic field 08 are closed, as indicated in the 
examples discussed in Chapter 4. Therefore

the flux o f  the magnetic field through a closed surface is always zero.

That is, the inward flux through a closed surface is equal to the outward flux. Thus

a result that can also be verified mathematically from the general expression for M 
given in Eq. (5.13). (The proof will be omitted.) This result constitutes Gauss's law 
f ° r the magnetic field. In differential form by similarity with Eq. (2.4) for the electric 
field,

curl δ  = 0 (6.15)

6.4 M agnetic Flux

(6.16)

%-uNdS =  0, (6.17)
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6.5 M agnetizationofM atter

In Section 5.8 a small current was shown to constitute a magnetic dipole. Wt may 
assume that the electrons in their m otion around the nucleus of an atom constitute 
small magnetic dipoles. Depending on their symmetry or on the relative orientation 
of their electronic orbits, atoms may or may not exhibit a net magnetic dipole moment 
Since most molecules are not spherically symmetric, they may exhibit a permanent 
magnetic dipole moment because of special orientation of the electronic orbits- For 
example diatomic molecules have axial symmetry and may possess a magnetic dipole 
moment parallel to the molecular axis. Even so, with the exception of ferromagnetic 
materials, matter in bulk does not exhibit a net magnetic moment because of the 
random orientation of the molecules, a situation similar to that found in the electric 
polarization o f matter. However, the presence of an external magnetic field distorts 
the electronic motion and gives rise to a net magnetic polarization or magnetization 
of the material. What happens essentially is that the magnetic field produces on all 
the electrons a precessional or rotational motion about the direction of the local 
magnetic field as explained in Section 5.3. Each electron contributes a magnetic 
dipole moment as given by Eq. (5.9).

For simplicity consider a substance in the form of a cylinder that is magnetized 
uniformly parallel to the axis of the cylinder (Fig. 6-9). Thus the molecular magnetic 
dipoles are oriented parallel to the axis of the cylinder, and therefore the molecular 
electronic currents are oriented perpendicular to the axis of the cylinder. Figures 6-9 
and the more detailed 6-10 show that the internal currents tend to cancel each other 
because of the contrary effects of adjacent currents so that no net current is observed

Fig. 6-9. M agnetization surface current on a 
magnetized cylinder.

Fig. 6-10. Elementary currents in a mag
netized cylinder.
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inside the substance. However, the magnetization gives rise to a net current Im on the 
slirface of the material, which therefore behaves as if it were a solenoid.

The m a g n e tiza tio n  vector M  of a material is defined as the magnetic dipole moment 
0f the medium per unit volume. If m is the magnetic dipole moment contributed by 
each atom or molecule, and n is the number of atoms or molecules per unit volume, 
the magnetization is PT =  nm . The magnetic moment of an elementary current is 
expressed in A m 2; and therefore the magnetization J i  is expressed in A m 2/m 3 =  
A m -1 o r m " 1 s -1 C, and is equivalent to a current per unit length.

There is a very important relation between the surface current on the magnetized 
body and the magnetization J i . N ote from Fig. 6-9 that Zm has a direction perpendic
ular to J i  ■ The cylinder itself behaves like a large magnetic dipole resulting from the 
superposition of all individual dipoles. If S is the area of the cross section of the 
cylinder and / is its length, its volume is IS, and therefore its total magnetic dipole 
moment is M{IS) =  (Ml)S. However S is just the cross-sectional area of the circuits 
formed by the surface current. Since magnetic dipole moment =  current xarea, the 
total magnetization current that appears on the surface of the cylinder is J i  I, and 
therefore the current per unit length Im on the surface of the magnetized cylinder is 
M . or Im =  M. Although obtained for a particular geometrical arrangement, this 
result has more general validity. Thus we can say that

the  cu rren t per un it leng th  on th e  surface  o f  a m a g n e tized  p iece  o f  m a tte r  
is eq u a l to  th e  com ponen t o f  th e  m a g n e tiza tio n  vec to r  M  para lle l to  a 
p lane ta n g en t to th e  surface  o f  the  b o d y  and  has a d irec tion  perpend icu lar  
to  M .

6.6 The Magnetizing Field

In the preceding section a magnetized substance was shown to have certain currents 
on its surface (and throughout its volume if the magnetization is not uniform), 
These magnetization currents are “frozen” in that they are produced by electrons 
bound to specific atoms or molecules and are not free to move through the substance 
On the other hand in some substances such as metals, there are electric charges 
capable of moving through the substance. The electric current produced by these 
free charges will be called free  current. In many instances it is necessary to distinguish 
explicitly between free currents and magnetization currents.

Again consider a cylindrical piece of matter placed inside a long solenoid that is 
carryinga current I (Fig. 6-11). This current produces a magnetic field that magnetizes 
the cylinder and gives rise to a magnetization surface current on the cylinder in the 
same direction as I. The magnetization surface current per unit length is equal to M . 
If the solenoid has n turns per unit length, the system of solenoid plus magnetized 
cylinder is equivalent to a single solenoid carrying a current per unit length equal to 
nl + J t . This effective solenoidal current gives rise to a resultant magnetic field P
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Figure 6-11 Figure 6-12

parallel to the axis of the cylinder, a field whose magnitude is given by Eq. (b,7) 
with nl replaced by the total current per unit length nl +  J / .  That is, 38 =  μ0(ηΙ +  Jf)  or

This expression gives the conduction or free current per unit length, nl, on the surface 
of the cylinder in terms of the magnetic field M  in the medium and the magnetization 
J (  of the medium. The result above suggests the introduction of a new vector field, 
called the magnetizing field, defined by

The magnetizing field is expressed in Λ m 1 or m “ 1 s “ 1 C, which are the Si units of 
the two terms that appear on the right-hand side.

In this special example J f =  nl, which relates J f t o  the conduction or free currents 
per unit length of the solenoid. When a length PQ =  L  along the surface is considered 
then

where I free =  LnI is the total free current of the solenoid corresponding to the length L. 
Computing the circulation of J f  around the rectangle PQRS. gives Ajr=  J f L  since J? 
is zero outside the solenoid (both J  and M  are) and the sides QR and SP  do not 
contribute to the circulation since they are perpendicular to the magnetic field. Thus 
Eq. (6.20) may be written in the form Ajr =  Zfrcc where Zfree is the total free current 
across the rectangle PQRS. This result has more general validity than this simplified 
proof may suggest. In fact it can be verified that the circulation o f  the magnetizing 
field along a closed line is equal to the total free current through the path. That is.

J f  =  — 3 8 - M . 
00

(6.19)

J f L  =  LnI =  I frce (6.201

(6.21)
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where Zfree is the total current linking with the path L caused by free-flowing charges 
in the medium or in an electric circuit, but excluding currents caused by the magnetiza
tion of matter. For example if the path L (Fig. 6-12) links with circuits Z1 and I2 
and a body with magnetization J i . Eq. (6.21) includes only the currents Z1 and Z2 
while in Ampere’s law, Eq. (6.3), for the magnetic field 39, all currents must be in
cluded; that is, Z1 and I 2, produced by freely moving charges, as well as those currents 
produced by the magnetization M  of the body resulting from bound electrons. 

Equation (6.19) may be written in the form

Ρ = μ 0( J t + M ) .  (6 .22)

Since the magnetization M  of the body is physically related to the resultant magnetic 
field 39. a relation between M  and 09 could be introduced similar to the relation 
[Eq. (2.10)] between P  and & in the electrical case. However for historical reasons it 
is customary to proceed differently and express a relation between J (  and XE* instead, 
by writing

(6.23)

The quantity χ Μ is called the m a gnetic  su scep tib ility  of the material, and is a pure 
number independent of the units chosen for M  and Jt.  Substituting Eq. (6.23) into 
Eq. (6.22) gives

Ρ = μ 0( Μ + χ π.ΡΤ) =  μ0( 1 + χ ηι) Μ = μ Μ  (6.24)
where

μ = Ρ / J t =  μ0( I +  (6.25)

is called the permeability of the medium and is expressed in the same units as μ 0; 
that is. m kg-2 C. The relative permeability is defined by

Ar =  A /A o = l+ * m (6-26)

and is a pure number independent of the system of units.
When the relation P = μ J t  holds, Eq. (6.21) may be rewritten as

<£ \  P - ( I l= I trze.
j i. μ

If the medium is homogeneous so that μ is constant, the circulation of the magnetic 
field is

Λλ = £  Ρ-άΙ =  μ1(τ« . (6 27)

This result is similar to Ampere’s law, Eq. (6.3), but with the total current replaced
by the free current and μ instead of μ0. Thus the effect of magnetized matter on the
magnetic field P  is Io replace μ0 by μ. For example the magnetic field of a rectilinear

*This relationship is valid only for certain magnetic m aterials, such as isotropic diam agnets and 
ordinary param agnetic materials.
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c u r r e n t I e m b e d d e d  in a  m a g n e tiz e d  m e d iu m  is

(6.28)

instead of the formula given by Eq. (5.20).

6.7 Calculation of Magnetic Susceptibility

Section 6.6 indicated that the magnetic susceptibility expresses the response oi a 
medium to an external magnetic field; like the electric susceptibility the magnetic 
susceptibility is related to the properties of the atoms and molecules of the medium. 
Two effects enter into the phenomenon of the magnetization of matter by an external 
magnetic field. One is a distortion o f  the electronic motion caused by the magnetic 
field. The other is an orientation effect when the atom or molecule has a permanent 
magnetic dipole moment. Both effects contribute to the value of ym and will be dis
cussed separately.

A magnetic field exerts a force on a moving charge. Therefore if an external magnetic 
field is applied to a substance, the electrons moving in the atoms or molecules are 
subject to an additional force caused by the applied magnetic field. This force results 
in a perturbation of the electronic motion. To evaluate this perturbation precisely 
would require the methods of quantum mechanics. Thus we shall limit ourselves to 
stating the main results and providing a simplified illustration in Example 6.4.

The effect of a magnetic field on the electronic motion in an atom is equivalent to 
an additional current induced in the atom. This current is oriented in a direction 
such that the magnetic dipole moment associated with the current is in the direction 
opposite to that of the magnetic field. Since this effect is independent of the orientation 
of the atom and is the same for all atoms, the substance has acquired a magnetization 
J t  opposed to the magnetic field, a result in contrast to that found in the electric field 
case. This behavior, called diamagnetism, is common to all substances although in 
many materials it is masked by the paramagnetic effect described below. The resulting 
magnetization is given by

where JY is the magnetizing field in the substance, n is the number of atoms per unit 
volume, and r( is the distance of the ith electron from the nucleus in an atom. The 
summation extends over all the electrons in the atom, and the average must be 
computed according to the prescriptions ofquantum mechanics. The other quantities 
have their usual meaning. The negative sign is due to the fact that J t  is opposed to JY-

Distortion effect



Calculation of Magnetic Susceptibility

Then according to Eq. (6.23). the magnetic susceptibility is

'■ - - A v b
and since ym is negative, the relative permeability μΓ=  l +  y m is smaller than one. If 
the values o f  the known constants are placed in Eq. (6.30) and n is assumed to be 
about IO28 atoms per m 3 in a solid and r, about 10 10 m (which is the order of 
magnitude o f an electronic orbit), then ym is o f the order o f  magnitude o f  10" 5 for 
solids, in agreement with the values listed in Table 6-1.

Orientation effect

An atom or molecule may have a permanent magnetic dipole moment, associated 
with the angular momentum of its electrons. In this case the presence of an external 
magnetic field produces a torque that tends to align all the magnetic dipoles along 
the magnetic field, and results in an additional magnetization called paramagnetism. 
The magnetism acquired by a paramagnetic substance is therelore in the direction of 
the magnetic field. This effect is much stronger than diamagnetism, and in the case 
of paramagnetic substances the diamagnetic effects are in general completely screened 
by the paramagnetic effects.

The paramagnetic susceptibility o f gases is given approximately by an expression 
similar to Eq. (2.26) for the electric susceptibility produced by polar m olecules:

W mfc0
I m i k T  (6-31)

where m0 is the permanent atomic or molecular magnetic moment, T  is the absolute 
temperature of the substance, and k is the Boltzmann constant. Equation (6.31) 
is valid only when m038jkT4,1. Otherwise the relation between U  and M  is more 
complex. As in the electric case, ym decreases if the temperature of the substance 
increases. This temperature dependence is due to the molecular motion, which

Table 6-1. Magnetic Susceptibilities at Room Temperature

Diamagnetic substances Z- Paramagnetic substances Xm

Hydrogen* -2 .1  x 10 9 Oxygen* 2,1 x 10 6
Nitrogen* - 5 .0 x 1 0  9 Magnesium 1 2 x 1 0  5
Sodium — 2.4 x 10 " 6 Alumimim 2.3 x IO 5
Copper - I  O x l O '5 Tungsten 6 . 8 x 1 0  5
Bismuth - 1 .7  x 10 5 Titanium 7.1 x 10 5
Diamond - 2 .2 x 1 0  5 Platinum 3.0 x 10 4
Mercury - 3 ,2 x 1 0  5 G adolinium  chloride IGdCI3) 2.8 < 10 3

* Gases at 100 kPa.
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(a) (b) (<■)

Fig. 6-13. M agnetic domains, (a) Unmagnetized substances, (b) m agnetization b> domain 
growth, (c) magnetization by dom ain orientation. The arrows indicate the direction o f mag
netization o f  each domain.

increases with temperature and therefore tends to offset the aligning effect o f the 
magnetic field. The order o f  magnitude o f the atomic magnetic dipole moment is 
IO-23 J T 1. Thus, when the values o f  the other constants are placed in Eq. (6.31). 
the paramagnetic susceptibility at room temperature (298‘ K) has an order o f  magni
tude o f 10“ 4 for solids and 10“ 7 for gases at STP. This result is in satisfactory agree
ment with the values given in Table 6-1 for paramagnetic substances.

An important conclusion is that for both paramagnetic and diamagnetic sub
stances χ„, is very small compared with unity, and in many instances Rr=  I +χ,„  may 
be replaced by one.

Other effects

A third class of magnetic substances is called ferrom agnetic. The chief characteristic 
of ferromagnetic substances is that they exhibit a permanent magnetization, which 
suggests a natural tendency o f the magnetic dipole moments o f the atoms or molecules 
to align under their mutual interactions. The lodestone and other natural magnets 
mentioned at the beginning of Chapter 4 are examples of ferromagnetic substances. 
For these substances no linear relationship between J t  and HS exists. Ferromagnetism 
is thus similar to ferroelectricity in overall behavior although their origins differ. 
Ferromagnetism is associated with an interaction between the spins S 1 and S2 o f two 
electrons in the same atom. The interaction is basically of the form - J S 1-S2 where 
the quantity J, called the exchange integral, depends on the distance between the 
electrons. When J is positive, equilibrium is attained if S 1 and S 2 are parallel, resulting 
in a parallel orientation of electronic spins in microscopic regions called domains 
(Figs. 6 - 13a and 6 - 14a), which have dimensions of the order of 10"8 to IO -12  m 3 
and which contain from IO21 to IO17 atoms. The direction of magnetization of a 
domain depends on the crystal structure of the substance. For example for iron, 
which crystalizes with a cubic structure, the directions of easy  magnetization arc 
along the three axes of the cube. In a piece of matter the domains themselves may be 
oriented in different directions; thus the net, macroscopic effect can be zero or negli
gible. In the presence of an external magnetic field those domains oriented favorably
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Fig. 6-14. O rientation of magnetic dipole 
moments in various substances.
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with respect to the magnetic field grow at the expense of those oriented less favorably 
(Fig. 6 - i3b); as the strength of the external magnetic field increases, the magnetiza
tion of the domains tends to align in the direction of the field (Fig. 16 -13c), and the 
piece of matter becomes a magnet. Ferromagnetism is a property that depends on 
temperature; and for each ferromagnetic substance there is a temperature, called the 
Curie temperature, above which the substance becomes paramagnetic. This phe
nomenon occurs when thermal motion is great enough to offset the aligning forces. 
Substances that are ferromagnetic at room temperature are iron, nickel, cobalt, and 
gadolinium. Their Curie temperatures are 1043 K. 638 K.. 1348 K. and 288 K. 
respectively.

However, for some substances J is negative. Equilibrium is then attained if the 
electronic spins are antiparallel; and a zero net magnetization (Fig. 6-14b) results. 
In this case the substance is called antiferromagnetic. Some antiferromagnetic sub
stances are MnO, FeO, CoO, and NiO.

Another type of magnetization is called ferrimagnetism. It is similar to antifer- 
romagnetism. but the atomic or ionic magnetic dipole moments in one direction are 
different from those oriented in the opposite direction, and the result is a net magneti
zation (Fig. 6 -14c). These substances are called ferrites and can be generally repre
sented by the chemical formula M O Fe2O 3 where M stands for Mn. Co. Ni, Cu. 
Mg, Zn, Cd, etc. Note that if M is Fe, the compound F e3O 4, or magnetite, results

Example 6.4. The atom ic magnetic dipole mom ent induced by an external magnetic field

▼ That an external magnetic field produces in an atom a magnetic dipole mom ent in a direction 
opposite to the field will be justified by a very simple model. Consider an electron having a charge 
of — e and revolving about a nucleus N. For simplicity assume that the orbit of the electron is 
circular, has radius p. and is in the YV-plane. If ω 0 is the electron’s angular velocity and F the 
force on the electron caused by the nucleus, the equation of m otion of the electron is then

mciOop =  F. (6.32)

If now a magnetic field 36 is applied along the Z-axis (that is. perpendicular to the plane of the 
orbit), an additional force F '=  —eex  J6 is exerted on the electron. This force will be euher in the 
same direction as F o r in the opposite direction, depending on the relative orientation of ω 0
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Fig. 6-15. Explanation o f diamagnetism.

and B  as indicated in Fig. 6-15. Since the radial force on the electron has changed, the angular 
frequency (assuming the radius remains the same) will also change and become ω. F rom  ν=ω μ  
and the fact tha t the m agnitude of F' is evB . the equation of m otion of the electron is now

mew 2p = F ± e w p B  (6.33)

where the plus sign holds for case (a) of Fig. 6-15 and the minus sign for case (b). Substituting 
Eq. (6.32) into Eq. (6.33) to  eliminate F  yields

m jw 2 — W^jp= ± e w B  or m jio + ω 0)(ω —a>B)= ± e w B .

Now if the change in frequency, A w = W -W 0. is very small, ω + ω 0 may be replaced by 2w without 
great error to give

2mcAw =  ± e M  o r Α ω = . ± ~  B.
2 mc

This change in frequency is equal to the L arm or frequency Ω ,, which will be discussed in detail 
in Section 8.6. The plus sign holding in case (a) means an increase in ω 0, and Δω is then pointing 
to the right. The minus sign holding in case (b ' means a decrease in w 0, and Δω is then also pointing 
to  the right. Thus in both cases the vector relation is

Δ ω = B .
Im e

The change in frequency of the electronic m otion produces a net current —β{Δω/2π) and therefore 
from definition (5.9) a magnetic dipole m om ent:

M=-e{^){np2)=-Ze (6·34'
The magnetic mom ent of the atom is in the direction opposite to that of the magnetic field B- 
and the substance as a whole will acquire a  magnetization opposed to the applied magnetic field. 
This calculation has been oversimplified in order to obtain a more general result; in reality the 
random  distribution in space of the electronic orbits must be taken into account and the nature 
of the local magnetic field B  acting on the electron must be analyzed in greater detail. However, 
the simplified calculation basically coincides with the result quoted in Eq. (6.29). A
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Table 6-2. Equations of the Static Electromagnetic Field

"— ~ Integral Differrntial
Law form form

J Gauss's law for the electric field φ ί · ι ι Λ d S = - div S = 1'-

[Eqs. (2.3) and (2.5)] J  A) i B

]i. Gauss’s law for the magnetic field 
[Eqs. (6.17) and (6.18)]

(j) J - U jv c/5 = 0 div J - - O

Id ( irculation o f the electric field 
[Eqs. (3.17) and (6.15)]

<ji s - a = 0 curl g  -  0

IV. Circulation o f the magnetic field 
(Ampere’s Iavii) [Eqs. (6.3) and (6.14)] (j) 38- a  =  II0I curl J = /Ia /'

6.8 Summ arv of the Law s for Static Fields

In the la s t th re e  c h a p te rs  s ta tic  e le c tr ic  a n d  m a g n e tic  fields h av e  b een  d iscu ssed  
as tw o  s e p a ra te  e n titie s  w ith  n o  re la tio n  w h a tso e v e r  b e tw een  th em  ex cep t th a t  th e  
sources o f  th e  e le c tr ic  field  a re  e le c tr ic  ch a rg e s  a n d  th e  so u rc e s  o f  th e  m a g n e tic  field  
are e lec tric  c u rre n ts . H en ce  tw o  s e p a ra te  se ts  o f  e q u a t io n s  w ere d e riv e d ; th ese  
ap p e a r  in  b o th  in te g ra l a n d  d iffe ren tia l fo rm  in  T a b le  6-2. T h ese  e q u a tio n s  a llo w  
c o m p u tin g  th e  s ta tic  e le c tric  field  S  a n d  th e  s ta tic  m a g n e tic  field 08 i f  th e  c h a rg e s  a n d  
cu rre n ts  a re  k n o w n , a n d  co n v e rse ly . I t th u s  a p p e a rs  th a t  s ta tic  e lec tric  a n d  m a g n e tic  
fields c a n  be c o n s id e re d  as  tw o  in d e p e n d e n t fields. It is w ell k n o w n , h o w ev e r, th a t  th is  
is no t tru e . In  C h a p te r  4 th e  ru le s  fo r re la tin g  th e  e le c tr ic  a n d  m a g n e tic  fields a s  
m easu red  by  tw o  o b se rv e rs  in  u n ifo rm  re la tiv e  m o t io n  w ere  de riv ed , u s in g  th e
I o re n tz  t r a n s fo rm a tio n . It w as n o te d  th a t  S  a n d  08 a re  in tim a te ly  re la ted . T h u s  w e 
m ay ex p ec t th a t  in  t im e -d e p e n d e n t cases  th e  p re c e d in g  e q u a tio n s  w ill re q u ire  so m e  
m o d ifica tio n s . H o w  to  m a k e  these  m o d if ic a tio n s  is th e  su b je c t o f C h a p te r  8, in  w h ich  
a new  se t o f  e q u a tio n s  th a t  a re  b a se d  o n  e x p e rim e n ta l ev id en c e  a n d  th a t  a re  ex te n s io n s  
of th e  p re c e d in g  e q u a tio n s  w ill be o b ta in e d .
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Problems

6.1 An infinitely long rectilinear wire contains 
a uniformly continuous current of 10 A. The 
radius of the wire is 4 x  IO-2 m. (a) Calculate 
the magnetic field at the center of the wire, at 
2 x 10" 2 m from the center, and at the surface 
of the wire, (b) Calculate the magnetic field at 
the surface of the wire, at 8 x 10 2 m, and at 
1.5 m from the center o f the wire, (c) Calculate 
the point at which the field is IO-2 as strong 
as that at the wire’s surface.
6.2 A toroidal coil has a radius of 0.5 m and 
contains a constant current of 7 A. If the coil 
has been wound with 600 turns, calculate the 
magnitude of the magnetic field within the 
toroid.
6.3 A very long solenoid with 1400 turns per 
meter has a constant current of 25 A in its 
coils. Determine the magnetic field within the 
solenoid.
6.4 A hollow cylindrical conductor o f radii R i 
and R 2 carries a current / uniformly distribu
ted over its cross section (Fig. 6-16). Using 
Ampere’s law, show (a) that the magnelic field 
at r > R 2 is μ αΙ/2πι·, (b) that the field for 
R 1 < r < R 2 is

Ao Kr2- R j)
2jt ( R j - R 2)r’

and (c) that the field is zero for ;-< R ,.
6.5 A coaxial cable is formed by surrounding a 
solid cylindrical conductor o f radius R 1 with a 
concentric conducting shell of inner radius R2 
and outer radius R 3 (Fig. 6-17). In usual 
practice a current I is sent down the inner wire

and is returned via the outer shell, (a) llsin. 
Ampere’s law. determine the magnetic field for 
all points about and within the conductot. 
(b) Plot P  as a Tunction of r Assume uniform 
current density.
6.6 A solenoid is to  be constructed with a 
magnetic field of 0.25 T in its interior. The 
radius of the solenoid is to  be 0.1 m and the 
wire may carry a maximum current o f 7 A.
(a) How many turns per m eter are needed? 
lb) If the solenoid is I m long, what length ol 
wire is needed?
6.7 Show that in a medium in which a unilorm 
electric current of constant density exists, the 
magnetic field is S S = ^ 0J x r  (H in t: Verify 
that the relation curl 36 = /Iq/  holds.)
6.8 Show that there is no electric current 
density at a point in space at which the mag
netic field is constant. {Hint: Let 3 9= uxiSfund 
verify that curl 36= 0.)
6.9 The magnetic field 36 in a certain region 
is 2 T  and has the direction of the positive 
Y-axis in Fig. 6-18. (a) W hat is the magnetic 
flux across the surface abed in the figure?
(b) W hat is the magnetic flux across the surface 
befc'l (c) W hat is the magnetic flux across the 
surface aefd'l
6.10 Determine the magnetic flux through the 
rectangular circuit of Fig. 6-19 when there is a 
current I along the straight wire.
6.11 Consider an infinitely long rectilinear 
wire carrying a current I. By use of Eq. (5.20) 
to define the magnetic field of a current- 
carrying wire along with a closed cylindrical

Figure 6-16 Figure 6-17
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surface to enclose a portion of the wire (see 
Fig. 6-20), calculate the magnetic Iiux through 
the surface. {H im : There are three surfaces to 
consider: two circular areas and the cylindrical 
surface.)
6.12 Show that for a uniform magnetic field 
div J  =  O.
6.13 Show that the magnetic field given in 
Problem 6.7 results in div J = O .

Figure 6-20

6.14 Introduce into Eq. (6.14) the value of J f  
given by Eq. (6.19), and show that

curl J = ^ 0(/frcc+  curl SB).

(This result indicates that the effect o f the 
m agnetization of a medium is equivalent to 
the addition of a m agnetization-current 
density, Jm =  curl 9JI, to the free-current 
density.]

CHALLENGING PROBLEMS

6.15 A slab o f infinite length and infinite width 
has a thickness d. Point P 1 is a point inside 
the slab at x  = a, and point P 2 is a  point inside 
the slab a t x =  —a as shown in Fig. 6-21. For 
parts (a) and (b), consider the slab to  be non
conducting with a uniform charge per unit 
volume p as shown in Fig. 6-21a. (a) O n a 
diagram identica) to  Fig. 6-21b, sketch vectors 
representing the electric field S  at points P 1 
and P2. (b) Use G auss’s law and symmetry 
arguments to determ ine the m agnitude of δ  
at point P 1. For parts (c) and (d), consider the 
slab to be conducting and uncharged bu t with 
a uniform current density j  directed out of 
the page as shown in Fig. 6-21c. (c) O n a 
diagram identical to  Fig. 6 -2Id, sketch vectors 
representing the magnetic field J  at points 
P I and P 2. (d) Use Ampere’s law and symmetry 
arguments to  determine the magnitude of J  
at point P 1. (AP-C; 1979)
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6 16 Using the com ponents o f the magnetic 
field of a magnetic dipole given in Eq. (5.26), 
verify that curl ES= 0  and div B = O .
6 .17 Using the operator called del (V),--(S+-(I)+-(I)'
show that the following identities hold 

div A = V x  A 
curl A = S  x  A,

and

grad V = V V

where V  is a scalar and A  is a vector.
6.18 Using the operator V, rewrite the differ
ential equations of the electrom agnetic field 
that appear in Table 6-2.
6.19 Using the result of Problem 6.17 show that

curl grad F=V  X (VF)=O

and

div curl A =  V -(V x /0  =  0.

Two im portan t results derive from Ihesc 
identities. O ne result is that since for a Staqt 
electric field < S = -g ra d  K then curl g  
= V x S = O ; this result was stated in Lq 
(6.15). The other is that since for the magnetic 
field div B  = V - B -  0. then there is a vectui 
field d  such that B = V x  B . The vector fieid 
s i  is called the vector potential of the electro
magnetic field.
6.20 Show that the vector potential of a uni
form magnetic field B  is s t = \ B x r .  (/Jint 
Assume that B  is along the Z-axis, obtain the 
rectangular com ponents of sd. and then tind 
V x J . )
6.21 W rite th e o p e ra to rV 2 =  V-V. Ihen show 
that Laplace's equation (2.7) and Poisson’s 
equation (2.6) can be written as V2F=U  and 
V 2V= -  pie 0, respectively.
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TIic Electrical Stroflure of Matter

7.1 Introduction

Until the discovery of the electron, the proton, and the neutron, a satisfactory model 
for the structure of atoms and molecules was not available. Understanding how 
atoms and molecules are composed progressed very rapidly once the motion of elec
trons around the positively charged nucleus of the atom was understood in terms of 
the electric and magnetic interactions just discussed. To a first approximation the 
electron motion about a nucleus can be analyzed with the methods of newtonian 
mechanics; however for a precise description of electron motion in atoms and mole
cules, quantum mechanics must be used. In this chapter we shall discuss the funda
mental aspects of atomic structure in terms of newtonian mechanics aud refer to 
quantum mechanics only when absolutely necessary lor an understanding of certain 
aspects. Detailed descriptions using quantum mechanics will be found in Chapter 18 
and in Volume III.

7.2 Electric Interactions in Atom s and M olecules

The student has been reminded on several occasions that matter is composed of 
charged particles. One manifestation of this composition is the frequently observed 
fact that bodies of certain substances can be electrified by rubbing them with cloth 
or fur. Many other laboratory experiments point to the fact that the basic constituents 
of all atoms are charged particles. P7Or example when a metallic filament is heated, 
it emits electrons just as molecules are vaporized when a liquid is heated. This phenom
enon is called thermionic emission.

Another interesting phenomenon related to the electric structure of matter is 
that of electrolysis. Suppose that an electric field S  is produced (Fig. 7-1) in a molten 
salt (such as K H F2) or in a solution containing an acid (such as HCl), a base (such as 
NaOH), or a salt (such as NaCl). The electric field can be produced by immersing 
in the solution two oppositely charged bars or plates called electrodes. Under the 
influence o f the electric field electric charges flow; certain kinds of charged atoms 
move toward the positive electrode or anode, and others move toward the negative 
electrode or cathode. This phenomenon suggests that the molecules o f the dissolved 
substance have separated (or dissociated) into two different kinds of charged parts, or 
ions. Some ions are positively charged and move in the direction of the electric field; 
others are negatively charged and move in the direction opposite to the electric field- 
For example in the case of NaCl, Na ions move toward the cathode and therefore are 
positive ions, called cations, while the Cl ions go to the anode and are negative ions, 
called anions. The dissociation may be written in the form

N a C l- N a + T C U
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C a th o d e

Fig. 7-1· Electrolysis. Ions move under the action o f  the 
e le c tr ic  field produced by the charged electrodes.

Since normal molecules of NaCl do not exhibit any obvious electrical charge, 
it may be assumed that they are composed of equal amounts of positive and negative 
charges. When the NaCl moleeules dissociate, the charges are no longer balanced. One 
of the ions carries an excess of negative electricity: and the other part, an excess of 
positive electricity. Since it has been shown that all charges are multiples of a funda
mental unit charge e, suppose that the positive ions carry a charge +  ve; and the 
negative ions, a charge — ve where v is an integer to be determined later. When the 
ions arrive at each electrode, they become neutralized by exchanging their charge 
with the charge available at the electrodes. Usually there follows a series of chemical 
reactions that are of no concern here; these reactions serve to identify the nature of 
the ions that move to each electrode.

After a certain time I, a number N  of each kind of ion has gone to each electrode. 
The total charge Q transferred at each electrode is then, in absolute value, Q =  Nve. 
If m is the mass of each molecule, the total mass M deposited at both electrodes is 
M = Nm. Dividing the first relation by the second, gives

Q j e  
M m (7.1)

If N k is A v o g a d r o rS c o n s ta n t  (the number of molecules in one mole of any substance), 
the mass of one mole of the substance is (If A =  N Am. Therefore Eq. (7.1) can be written 
in the form

Q ve N a v c  F v

Af= ~ =  = _
The quantity

F =  N t e (7.3)

N .m  M .
(7.2)

is a universal constant called the Faraday constant. It represents the charge of one 
mole of ions having v =  I. The experimental value of the Faraday constant is found to
be

F = ^ S T x l O 4 Cmole-1. (7-4>
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From this value and the one previously found for e, Avogadro's constant is then

JVa =  6.0225 x IO23 m ole-1 (Z j1

in agreement with other calculations of this constant.
Equation (7.2) has been verified experimentally, and v has been found equal to the 

chemical valence of the ion concerned. That v is the chemical valence suggests that 
when two atoms bind together to make a molecule, they exchange the chaige rp 
and one becomes a positive ion and the other a negative ion. The resultant electric 
interaction between the two ions holds them together. A safe assumption is that 
electrons are the particles that are exchanged since they are much lightei than the 
protons and more easily moved. This picture of chemical binding, called ionic binding, 
must be considered as only a preliminary discussion and subject to furthe=· revision 
and criticism.

Gravitational forces were shown in Chapter 13 of Volume I to be loo weak to 
produce the attraction necessary to bind two atoms together to make a molecule, 
or two molecules together to form a piece of matter, and that gravity was too small bv a 
factor of IO35. Let us now compare the order of magnitude of the electrical and 
gravitational forces. If the distances are the same, the strength of the electrical inter
action is determined by the coupling constant q ̂ 2JAne0, and that of the gravitational 
interaction by /Mi1Wi2. Therefore

Electrical interaction q tq 2
Gravitational interaction 4rtf0}w ,m 2

To obtain the order of magnitude, set q l = q 2 =  e and Ui1 = m 2=i«p so that for two 
protons or two hydrogen ions

Electrical interaction e2 _-------------------------------------- — __ — j ^  10 .
Gravitational interaction 4ne0ym£

For the interaction between a proton and an electron (Wi1 =Uip, m2 =  me), the ratio 
above is even larger: 2.76 x IO40. Therefore we conclude that

the electrical interaction is of  the order of  magnitude required to produce 
the binding between atoms to form molecules, or the binding between 
electrons and protons to form atoms.

The conclusion now is obvious: chemical processes (and in general the behavior 
of matter in bulk) are due to electrical interactions hetween atoms and molecules. 
A thorough understanding of the electrical structure of atoms and molecules is thus 
essential for explaining chemical processes and in general for explaining all the 
phenomena currently observed around us in both inert and living mailer. The ieader 
is reminded that the aim of physics is to understand the structure of the fundamental 
constituents of matter and to explain the behavior of matter in bulk in terms of their 
interactions.



7.3'
Atomic Structure

Whenever electrically charged bodies are present, gravitational forces are in 
ngral negligible. Gravitational forces are important only in dealing with massive 

bodies with no net electrical charge or very small charge compared with their masses 
aS is the case of planetary motion or the motion of bodies near the earth’s surface

Understanding atomic structure is one of the basic problems of physics. Some pre
liminary ideas will now be presented and a satisfactory model of the atoms will be 
developed. Atoms are normally electrically neutral since matter in bulk does not 
exhibit gross electrical forces. Therefore atoms must contain equal amounts of 
positive and negative electricity, or in other words equal numbers of protons and 
electrons. The equal number of protons and electrons is called the atomic number 
and is designated by Z. Therefore the atom consists o f a positive charge +  Ze  associ
ated with the protons and an equal negative charge from the electrons.

The distribution of electrons and protons in an atom may be determined by 
experimentally probing the interior of the atom. In a scattering experiment a stream 
of fast charged particles such as hydrogen ions (that is, protons) or helium ions 
(called alpha particles) is sent against the atom, and the interactions produced are 
observed. Symmetry suggests that atoms may be considered spherical with a radius 
of the order of IO-10 m. As proved in Example 2.4, a charged sphere of radius a 
(Fig. 7-2) with the charge Q uniformly distributed throughout all its volume produces 
at all exterior points (r> a) an electric field given by

7.3 Atom ic Structure

(7.6)

(*Ε· 7-2. Electric field o f  a  charged sphere o f
radius a.
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and at all interior points (r< «) an electric field given by

QrS = -
4 π ί 0α3

r< a . (7-71

The deflection experienced by the particles of charge q, mass m. and velocity y0, 
approaching a uniformly charged sphere of radius a, but not passing through it, 
is computed in Example 7.1; the result is

, 4neQmv0
cot Ϊ Φ = -  b

Qq
(7.8)

where b is the impact parameter, defined as the perpendicular distance from the 
scattering center to the initial path of the incident particle (see Fig. 7-3). Scattering 
experiments with protons and α-particles show that many particles are deflected at 
large angles and even through 180° in some cases.

Assume a nuclear model of the atom (Fig. 7-4): all protons are clustered at the 
center of the atom in a very small region called the nucleus; the nucleus therefore 
carries a charge +  Ze; and the electrons orbit around the nucleus as planets do 
around the sun. In this model, Q = Z e ; set q =  ve for the bombarding particle tv — I 
for protons, v = 2  for α-particles); and, from Eq. (7.8) the impact parameter is related 
to the deflection angle by the expression

b =
vZe

rc o t%φ.
4 n e 0m vo

In the experimental arrangement several particles are directed against a very thin 
foil and the deflections are observed (Fig, 7-3). Since b cannot be controlled because 
aiming directly at a particular atom is impossible, a statistical analysis is made to 
interpret the experimental results.

Consider a thin metallic foil with thickness t and with n atoms of the scattering 
material per unit volume. If N  particles per unit area of the foil impinge on the foil,
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~ 1 0 ~ 10 m

Fig. 7-4. Electron distribution in an atom .

some will pass close to a nucleus in the foil (small impact parameter) and thereby 
suffer a large deflection. Some will pass at a relatively large distance from the nuclei 
in the foil (large impact parameter) and suffer a small deflection. The result of a 
statistical analysis (see Example 7.2) shows that the number of particles dN  deviated 
within the solid angle άΩ (corresponding to the scattering angles φ  and φ +  άφ 
relative to the direction of incidence) is given by

dJlt- Nny2Zle4  CSC4 - J ,  (79)
rffi"  4(4 n t0)2m X  ]

The sign is negative because dN  represents the particles removed from the incident 
beam as a consequence of scattering, and this removal corresponds to a decrease in N.

The result predicted by Eq. (7.9) is that the particles scattered per unit solid angle
must be distributed statistically according to a esc4 r φ law. The verification of this 
prediction for all angles is thus an indirect proof that all positive charge is con
centrated near the center of the atom. This proof was obtained by experiments per
formed for the first time during the period 1911-1913 by H. Geiger and E. Marsden 
under the direction of the British physicist Ernest Rutherford (1871-1937). These 
experiments were the foundation for the nuclear model of the atom; this model has 
been accepted since then as the correct one.

For each value of the impact parameter b, there is a distance R  (Fig. 7-3) of closest 
approach; at this distance the bombarding particie is closest to the center. The mini
mum distance occurs for a head-on collision; that is when b =  0. Then the particle is 
reflected directly back and suffers a deflection of 180". This minimum value for the 
distance of closest approach can be obtained by equating the initial kinetic energy 
°Γ the particle, to the potential energy, v Z e 2/4 n e 0R , at the point at which the 
particle stops momentarily before it is sent back. Then

vZ e 2
R = a T1 l v  (7 10)4π£0Ο ν 2)

Calculation of this distance for different experimental conditions isee Example 7.3) 
indicates that this distance is of the order of 10 14 m for energies of the order of
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10"13 J (or one MeV). This distance gives an upper limit for the radius of the atomic 
nucleus. Therefore the protons are concentrated in a region whose dimensions are of 
the order of 10“ 14 m. Because the atomic radius is of the order of 10"10 m, it is seen 
that the nucleus occupies only a small fraction of the atomic volume.

For very small values of the impact parameter and sufficiently high energy, when 
the incoming particle comes very close to the nucleus, we observe that the esc4 \φ  law is 
not followed. This observation indicates the presence of other interactions, the 
nuclear forces. Analysis of the discrepancies from the pure coulomb scattering given 
by Eq. (7.9) gives valuable information about nuclear forces.

The simplest and lightest of all atoms are hydrogen atoms. A hydrogen atom is 
composed of one electron orbiting around a single proton. Then Z =  i , and the nucleus 
of the hydrogen atom is just one proton. Since the electron is subject to a cential 
Mr2 attractive force, the orbits should be ellipses with the proton at one focus for the 
same reason as that for planetary motion. Analysis of electron orbits, however, 
requires special techniques since some special features make electron orbits different 
from planetary orbits. These techniques rely on quantum mechanical principles.

For atoms heavier than hydrogen, the atomic mass is greater than the mass of the Z 
protons they contain. The difference may be attributed to the presence o f neutrons in 
the nucleus. The total number of particles in a nucleus is called the mass number and 
is designated by A. Therefore an atom has Z electrons, Z protons, and A - Z  neutrons. 
Neutrons are apparently necessary to stabilize the nucleus. If protons were subject 
to their own electrical interaction alone, they would repel each other since they are 
all charged positively. That they stay together in a nucleus indicates that besides 
their electrical interaction other very strong interactions, corresponding to the so- 
called nuclear forces, counterbalance the electrical repulsion. The neutrons contribute 
to the nuclear force without adding electrical repulsion, and thus produce a stabilizing 
effect.

Since it is an electrical effect, the chemical behavior of an atom is determined by 
the atomic number Z. Thus each chemical element is composed o f atoms having the 
same number Z. However for a given Z there may be several values of the mass 
number A. In other words to a given number of protons in a nucleus there may 
correspond different numbers of neutrons. Atoms having the same atomic number 
but different mass number are called isotopes. They all correspond to the same 
chemical element. Different isotopes of a chemical element are designated by the 
symbol of the chemical element (which also identifies the atomic number) along with a 
superscript to the left to indicate the mass number. For example hydrogen (Z=-I) 
has three isotopes: 1H, 2H or deuterium, and 3H or tritium. Similarly two of the 
most important isotopes of carbon ( Z = 6) are 12C and 14C. The isotope 12C is the 
one used to define the atomic mass unit.

Example 7.1. Scattering o f  a charged particle by the Coulom b repulsion o f another charged 
particle.
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Y Consider the deviation (or ^altering) that a charged particle suffers when subjected Io the 
CgpllIsive force of another charged particle with a mass so much larger that the larger mass may 
be considered at rest during the interaction. (This problem is especially interesting because of its 
jpplication to a num ber of different situations in atom ic and nuclear physics.) Foi example 
when a proton, accelerated by a m achine such as a cyclotron, passes near a nucleus of the target 
iaierial. the proton is deflected (or scattered) under the action of the electrostatic repulsion of 

the nucleus.
Let O be the origin of a coordinate system in which a particle of charge β  may be considered at 

rest. From the point A a particle of charge q and mass m is propelled toward the origin with 
velocity Uo- The point A  is at a large distance from O (Fig. 7-3). The distance b. called the impact 
parameter, is the perpendicular distance between the line of action of K0 and a line (defined heie 
as the X-axis) draw n through O parallel to  the line of action. The moving particle will follow the 
path A MB. which is a branch of a hyperbola, whenever the force is repulsive and varies inversely 
as the square of the distance: for the Coulom b force

F -'-P -IV4lieO/

When the particle is at A, the magnitude of the particle’s angular m om entum  relative to O is 
mv:0b. At any position, such as Ai. the angular m om entum  relative to O is given by mr2(d9/dt). 
Because the Coulom b force is central, the angular mom entum must rem ain constant; that is,

2 M  
mr — = m v0b.

ut

The equation of m otion in the Indirection is given by

dv (  I \  qQ sin O
I t i - A = F  = i  S m  Θ=      ̂ .

dt J V4jreo /

From the previous equation, r2 may be eliminated to give an equation of motion in the !-direction

dv, T I \ qQ . αάθ
- r = h  - L s i nf l T -  dt \4 n e n } m vJ) dt

T his equation m ust be integrated from one extreme of the path  to the other in order to find the 
total deflection of the particle. At A the value of t;„ is zero because the initial m otion is parallel 
to the Y-axis and  also Β =  π. At B Uv=U0 sin φ  and 0 = φ . N ote that at B the velocity is again D0 
because by symmetry the velocity lost as the particle approaches must be regained as it recedes. 
The principle of conservation of energy also verifies this assertion. Therefore

I ™  * J ' ) « L h f s in B d B  
Jo \4rce0/  mv0b J k

or
/  j  ^  Λ

D 0  s i n  ψ  =  I I —  ( I  + c o s  φ ) .
\ Ane0 J mv0b

From the trigonom etric identity, col \ φ = 11 -‘-cos φ),sin φ. the result above may be written

cot τ φ = (4 π ε 0) b. (7.11)
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This relation gives the scattering angle φ  in terms of the im pact param eter b and may be rearranged 
to give Eq. (7.81 for the case q =  ve and Q = Z e .

N ote that Eq. (7.111 is valid only for an inverse-square force. If the force depends on the distance 
in a different m anner, the angle of scattering satisfies a different equation. Therefore Scatierin1 
experiments may also be very useful to  determ ine the law of force in interactions between panicle s

In nuclear physics laboratories, scattering experiments are performed by accelerating electron 
protons, or o ther particles by means of a cyclotron, a Van de G raaff accelerator, or some orher 
similar device. The observed angular distribution of the scattered particles is then used to  Lnjdefl 
stand the forces between the particles. A

Exam ple 7.2. Derivation of Eq. (7.9) for Coulom b scattering.

T Let n be the num ber of atom s per unit volume of the scatterer. Then nt will be the numbe· of 
scattering atom s in a thin foil of thickness t and unit area. The num ber of atom s in a  ring of radius 
b and width db (and therefore of area Inb  db) will be [nt)(2nb db), as shown in Fig. 7-5. If V particles 
impinge on a unit area of the foil, the num ber of particles whose im pact param eter is between 
b and b+ db  is dN  =N[nl)(2nb db). However, differentiating the expression for the im pact para
m eter b given by Eq, (7.11) yields db =  —A(qQiAn(0mvf) esc2 \φ  άφ. Returning to  the notation 
q = ve and Q =  Ze, dN  may be written as

nN nv1Z 1e*t
d N =  — jz -----τ — cot  Αφ esc2 Αφ άφ. (7 121

(4/rf0) m i/q

For light target atom s the mass m of the particle is replaced by the reduced mass of the system οΓ 
particle plus atom .

If two cones of angles φ  and φ + άφ  are drawn around the nucleus (Fig, 7-6), all particles given 
by Eq. (7.12) will be deflected through the solid angle between the two conical surfaces. The solid 
angle is m easured by dividing the shaded area by the square of its radius. The shaded area is 
{2nr sin φ)[Γάφ)= 2nr2 sin φ άφ. Therefore m view of the definition of a solid angle as area divided 
by radius squared, the solid angle is d il = In  sin φ άφ = 4 π  sin \φ  cos Αφ άφ where the relation 
sin φ =  2 sin Αφ cos \φ  has been used. The angular distribution is given by the num ber of particles 
scattered per unit solid angle. Then

rIN  IVav2Z V t  ,  , ,
d Q ~ ~  A(Ane0) W v i c x

which is Eq. (7.9).
Sometimes the results of scattering experiments are better expressed by using the concept of 

cross section. The differential cross section for a process is defined by the ratio of the fraction of 
particles scattered per unit solid angle to  the total num ber of atom s in the scattering foil per unit

Fig. 7-5. Deflection o f a positive 
ion by the Coulom b repulsion of 
the nucleus.



7.3) Atomic Structure

Figure 7-6 Figure 7-7

area: that is,

σ(φ)= η—-Nnt
dN
άΩ

The vertical bars indicate that the absolute value of dN  άΩ is to be used. The quantity σ(φ) repre
sents the probability that an incident particle will be deflected through an angle between φ  and 
φ+ άφ , and is expressed in units of area (m2) since n is a density (m “ 3) and ( is a distance (m) 
(note that the units of N  cancel out). Therefore substituting Eq. (7.9) in Eq. (7.13) gives the differ
ential cross section for coulom b scattering:

A{4ne0) m  V0 ' 2 Φ- A

Example 7.3. The distance o f  closest approach o f a particle having charge ve and directed with a 
velocity V 0 against an atom  whose atom ic num ber is Z .

▼ Figure 7-7 shows the geometry of the problem. According to Example 7.1. the particle describes 
a branch of a hyperbola with the nucleus + Z e  at the most distant focus F'. T hedistance of closest 
approach is R =  F A .  Let b= F 'D  be the im pact param eter. We shall first prove that b is equal to 
ihe vertical axis OB of the hyperbola. The angle φ  =  POQ between the two asymptotes is the angie 
by which the particle has been deviated by the Coulom b repulsion of the nucleus. The distance 
OA = OA1 = a is the horizontal axis, and from the properties of the hyperbola it follows that 
O F = O C  Therefore triangles OF'D and OCA’ are equal so that b = F D = C A '= O B . From the 
geometry of the figure OF’= b  esc a and O A = a = b  cot a. Therefore R = F 'A = b  (esc a + c o t a); 
but 2χ +  ψ = π  so that at- \ π —^φ. Therefore

R =Wsec ^φ +  tan j φ )

f>( I +  esc \φ ) ' 
cot \φ
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From result (7.8) with Q = Ze  and q = ve. the distance of closest approach is

v Z e 2
K =  4 ^ j ) (]+CSC^ ·  j | 4

The distance of closest approach is given in terms of the initial energy of the particle, |m r2. and 
the angle of scattering φ. F o r a head-on collision the particle bounces back so that it is scattered 
through an angle equal to  π. Therefore esc \φ  =  I and

R =  ^
4π Cn(ImBo)

F or example substituting numerical values with v = l ,  Z = 6  (corresponding to carbon), and 
ImBo= 1.6 x 10’ 13 J or I MeV gives the distance of closest approach as approximately IO 11 rp 
This is Ihe order of magnitude quoted previously for nuclear dimensions. A

Example 7.4. Use of the principle of conservation of energy to com pute the distance of closest 
approach of a charged particle directed against an atom ic nucleus in terms of the angular rncrreu- 
tum of the particle.

T I f the charges are Ze for the nucleus and vc for the projectile, the potential energy of the system 
of projectile plus nucleus is

_  vZ e2
L η —

P 4ac0r ■

If the mass Ai of the nucleus is much greater than the mass m of the projectile, the total energy of 
the system relative to  the nucleus is

Γ I 2 , vZe*E = Im c z + -  .
47i£0r

However if, for example, protons are directed against pro tons (v= Z = I ) ,  the reduced mass, μ = ]m j 
must be used. W hen the particle is very far away, all its energy is kinetic and equal to \mv%. Call 
B the particle’s velocity at the point of closest approach A (Fig. 7-7) when r =  R. The conservation 
of energy requires that

: I vZ e2 , ,
i»U' + 2— O = VIWo-Ane0R 2

At the point of closest approach A, the velocity is all transverse, and therefore the angular m om er 
turn is L = m vR  This relation may be used to eliminate the velocity υ at 4 since L  is a  constant of 
the motion. Therefore

I f  vZe2 , I
v ~ F 2 + 7  —- =  ]m in. (7.16)2 mR Ane0R

This equation of second degree in I R allows obtaining R in term s of the energy and the angular 
momentum of the particle. F o r a head-on collision. L =  0 and
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hich is in agreement with the result previously obtained in Example 7.3. N ote tha t for a head-on 
collision. u = 0  at the point of closest approach, and all the kinetic energy has been transformed 
into potential energy. A

7.4 Electron Energy Levels; The Bohr Theory

Jf the motion of an electron in an atom can be described by the laws of newtonian 
mechanics, the possible orbits of a single electron about a nucleus having a nuclear 
charge Ze  may be predicted. The case Z = I  corresponds to the hydrogen atom; 
Z =  2, to a singly ionized helium atom H e+ (i.e., a helium atom that has lost one 
electron); Z =  3, to a doubly ionized lithium atom Li + + (i.e., a lithium atom that has 
lost two electrons); and so on.

The inverse-square electrical interaction involved in the motion of an electron 
around a nucleus is dynamically identical to the gravitational interaction involved 
in the motion of a planet around the sun; and therefore the results derived in the 
gravitational case (Chapter 13 of Volume I) are directly applicable if ymm' is replaced 
by Ze2I1Ane0 in the corresponding expressions. For example the orbits will have to be 
ellipses (or circles) with the nucleus at one focus.

Consider two charges. q 2 and q 2, separated a distance r and moving with velocities 
D1 and d2. The electric potential energy of the two charges is Ep= q iq 2/'Ane0r and 
their total energy is

E ^ 2M 1V21 T i w 2D2 -;-
4 n e 0r '

In the case of two particles referred to their center of mass, the energy can be written 
in the form

E=ApY+ M l .  (7.18,
A ne0T

where p  is the reduced mass of the system of two particles and d  is their relative velocity.
For an electron moving around a nucleus, q 2 =  —e and q2= Z e .  Also since the 

mass of the nucleus is much greater than the mass of the electron, the reduced mass 
of the electron-nucleus system may be approximated by the electron mass mc. Only 
in the lightest atoms, such as hydrogen and helium, can the effect of the reduced mass 
be detected. Therefore within this approximation the total energy of the atom is

E  =  AtneV2 — ir~~~  · (7 ·19>Ane0T

If we assume that the orbit is circular, the equation of motion o f the electron is 
IiicV2Zr= F. If we recognize that the Coulomb force, Z e2 Ane0T1, is the centripetal
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m.v2 Z e 2 , Ze1
' — —ϊ or m.v = —- — . (7 201
r 4 π ί0Γ e 4jrc0r

When this result is inserted in Eq. (7.19), the total energy may be written

force, th e  e q u a tio n  o f  m o tio n  o f  a n  e le c tro n  in a  c ir c u la r  o rb i t  is

Z e 2 . Z e2
— V T =  — 9 x 10 -V- ' 43ce0(:2r) Ir

E =  - -  —  = - 9 x l 0 9 ~ -  (7.21)

where the constant has been given in SI units. With this value, E is in J, r is in m, 
and e is in C.

Expression (7.21) for the energy of the electron-nucleus system will be revised later 
to take into account relativistic and magnetic effects. For the hydrogen atom (Z =  I). 
E represents the energy required to separate the electron from the proton; that is. 
the ionization energy of the hydrogen atom. Theexperimental value for this ionization 
energy is 2.177 x 10" 18 J or 13.6 eV. from which the radius of the electron orbit of a 
hydrogen atom is r=0.53 x 10“ 10 m. This quantity is called the Bohr radius and is 
designated by a0. That this radius is of the same order of magnitude as the estimate 
of atomic dimensions gives confidence in the nuclear model of the atom.

The next question to investigate is whether the energy of the electron in an atom 
can have any value or is restricted to certain values. The best way to answer this 
question is to perform experiments that excite an atom and thus increase the energy 
of the orbiting electron. The excitation can be produced by bombarding the atom 
with fast electrons; through inelastic collisions these electrons transfer part of their 
kinetic energy to the electron in the atom. The excitation may also be accomplished 
by letting the atom absorb energy from electromagnetic radiation.

These experiments show that the energy of electronic motion is quantized: that is,
that the energy of the electrons can have only certain values F 1, E2, E3, . . . , F l ___
The states corresponding to these energies are called stationary states. The state 
having the lowest possible energy is the ground state. To determine the energies of 
the stationary states is one of the tasks of quantum mechanics. Since the energy (in a 
classical sense) determines the “size” of the orbit, only certain regions of space are 
available for the electronic motion as was indicated schematically by the shaded 
region in Fig. 7-4.

In the case of atoms with only one electron, such as the hydrogen atom, or ions 
such as H e+, Li ' +, etc., the experimental values of the energy levels F11 with n = 
I, 2, 3 ,—  are inversely proportional to n 2 ; that is,

constant 
F 11= ----- =— .

Since for n =  I the ground state energy is E1 =  —2.177 x 10 8 Z J, the general quan
tized energies for hydrogen are
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(7.22)

C om paring Eq. (7.22) with Eq. (7.21) shows that the radius of the allowed electron 
orbits Hiust be proportional to n2; that is, the radius corresponding to the energy 
F is r„ =  constant x n1.

If the energy and the radius of the electron orbits are limited to certain values (i.e.. 
are quantized), one may suspect that other quantities may also be quantized. Consider 
for example the electron’s angular momentum, defined by L = m evr, Then from

and since r is proportional to n2, L must then be proportional to it. or L =  Const xn. 
This quantization of angular momentum was suggested for the first time in 1913 
by the Danish scientist Niels Bohr (1885-1962), who was the founder of the quantum 
theory of atomic orbits. Therefore it is assumed that the angular momentum of the 
electronic motion is quantized; that is, that the magnitude of the angular momentum  
of an electron may have only certain discrete values and that since angular momentum 
is a vector, it can point along only certain directions in space. This last property is 
sometimes referred to as space quantization.

Bnhr wrote the relation between L and n in the form

where 0 =  6.6256 x IO-34 J s is a constant called Planck's constant and h =  h/2n =  
1.0545 x IO-34 J s. Then Eq. (7.24) applied to Eq. (7.23) allows the radii of the electron 
orbits to be written as

where H0 is the Bohr radius, given by

The value of r„ must not be taken too literally because of the previous implication 
that electronic motion, unlike planetary motion, does not correspond to well-defined 
orbits. Instead. r„ can be considered as only an indication of the order of magnitude 
of the region in which the electron is likely to be found.

Substituting Eq. (7.25) into Eq. (7.21) gives the allowed energy values of the hydrogen 
stom :

Eq. (7.20)

(7.24)

/I2Eo 

T E e 2 W l 1
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Comparison with the experimental values for En confirms the value of h as equal to 
that of Planck’s constant, which the German physicist Max Planck (1858-194?) 
introduced in 1901 in connection with the radiation emitted from a cavity held at a 
constant temperature; the radiation is known as blackbody radiation.

Example 7.5. C orrection to  the energy produced in an orbiting electron in an atom  because of 
relativistic effects.

T Whenever m otion under an inverse-square law has been discussed previously, newtonian 
mechanics has been used and all relativistic effects neglected. This method is correct for almost 
all planetary m otion; but for the electrons in an atom , ignoring relativity is not justified in many 
cases. The inner electrons in atom s move with velocities large enough so that the relativistic 
correction can be measured experimentally. The order of m agnitude of lhe relativistic effect will 
now be estimated.

The total energy of a fast electron in an atom (subtracting its rest-mass energy) is. according 
to Eq. (11.15) of Volume I,*

E = C sJm fc2 + p2 + (—e V )—mcc2

where ( — eV) is the electric potential energy of the system. If the momentum p is m uch smaller 
than mcc, the radical may be expanded up to the second-order term ; and the expansion results in

The two term s inside the brackets give the nonrelativistic approxim ation for the energy, which 
for circular orbits is given by Eq. (7.21). Therefore the last term is the first-order relativistic cor
rection to  the total energy of the electron, and can be designated by AE,., Thus

The two terms inside the parentheses correspond to the nonrelativistic kinetic energy of the 
electron. As a reasonable approxim ation, the first of the two bracketed terms, using Eq. (7.21) 
for the total energy, may be written as

Thus the relativistic correction is of the order of (c.'c)2 times the energy of the electron. In the 
hydrogen atom  for example, ti.e is of the order of 10 2: and therefore AEr ^  IO-5 E, or about

(7.26)

*See also the appendix.
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OOOl0u of E. a quantity that can easily be detected in the laboratory with experimental tech- 
J1Iques now in use. A

Consider a charge q describing a closed orbit like that of an electron in an atom. 
For simplicity let the orbit be circular. If ν= ω /2π  is the frequency of the charge’s 
motion, then the current at any point of the charge’s path is I = q v  since v gives the 
number of times per second that the charge q passes the same point of the orbit, 
and therefore qv gives the total charge that passes through the point per unit time. 
The current is either in the same direction as the velocity or in the opposite direction, 
depending on whether q is positive or negative. Then, applying Eq. (5.9) gives the 
magnetic dipole moment of the orbiting charge:

According to the rule previously given, the direction of the current depends on the 
sign of q as indicated in Fig. 7-8. If m is the mass of the particle, its orbital angular 
momentum L is

Therefore M and L are either in the same direction or in opposite directions, depend
ing on whether the charge q is positive or negative. For an electron q = —e and 
W=W1., and the result is

M s= - ^ - L .  (7.31)
2 m e

F or a proton q =  + e  and In=Inp, and thus we obtain

7.5 Magnetic Dipole Moment Caused by 
the Orbital Motion of a Charged Particle

(7.28)

(7.29)

(7.30)

(7.32)
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M  1 Fig. 7-8. Vector relation between the magnetic
dipole m om ent and the angular m om entum  or an 

<I negative orbiting charge.7 positive

If the charged particle can be assumed also to rotate about a diameter in the same way 
that the earth spins about its NS axis, the particle will have, in addition to its orbital 
angular momentum L, some internal angular momentum S, called spin. Associated 
with the spin S will be a magnetic dipole moment since each volume element of the 
rotating charged particle behaves in the same way as the charge q in Fig. 7-8. How
ever, the relation between the magnetic dipole moment and the spin is not the same 
as the relation of Eq. (7.30) because the coefficient by which one has to multiply the 
spin angular momentum S to obtain the corresponding magnetic moment depends 
on the internal structure of the particle. Consequently it is useful to write the magnetic 
dipole moment caused by the spin in the form

where the coefficient γ, called the gyromagnetic ratio, depends on the structure of the 
particle and the sign of its charge. Combining Eqs. (7.30) and (7.33) gives the total 
magnetic dipole moment of an orbiting and spinning particle carrying a charge ± e :

The plus (minus) sign before L corresponds to a positively (negatively) charged 
particle. Although the neutron has no net electric charge and therefore no orbital 
magnetic dipole moment, as given by (7.30), the neutron does have a spin magnetic 
dipole moment, which is opposite to the spin S. The total magnetic dipole moment 
of the neutron is given not by Eq. (7.34), but by Eq. (7.33). The non vanishing value of 
M s suggests some complex internal structure of the neutron. Similarly that the 
magnitude of γ for the proton is different from the magnitude of y for the electron 
indicates that the internal structure of the proton is different from that of the electron.

The experimental values of y for the electron, the proton, and the neutron are given 
in Table 7-1.

(7.33)

M  =  J - ( ± L + y S ) .  
2m

(7.34)



Torque and Energy of a Charged Particle

Table 7-1. Gyromagnetic Ratios

Particle y

Electron -2 .0024
Proton 5.5851
N eutron -3 .8 2 5 6

7.6 Torque and Enorgy of a Charged Particle Moving 
in a Magnetic Field; Space Quantization

Suppose that an orbiting particle without spin is placed in a uniform magnetic field 
(Fig. 7-9). Using Eqs. (5.11) and (7.30) gives the torque exerted on the particle:

τ =  ~  L x P = - ^ - P x L  (7.35)
2m  2m

in a direction perpendicular to L and P .  This torque tends to change the orbital 
angular momentum L of the particle according to the relation (ILjdt =  X. Using the 
Larmor frequency Ω =  —(q/2m)P, which is one-half the cyclotron frequency given 
in Eq. (4.7), the torque given in Eq. (7.35) is

T =  QxJL. (7.36)

This equation is similar to that for gyroscopic motion so that the plane of motion of 
the charged particle may be expected to precess about the direction of the field. The 
precession of a gyroscope is due to the torque produced by the gravitational inter
action. The precession in the case of an orbiting charge is due Io the torque produced
by the magnetic interaction. The angular momentum L precesses around P  and 
produces a rotation of the orbit of the particle. In Fig. 7-10 the direction of Ω and the 
sense of precession for a positive and a negative charge have been indicated.

Fig. 7-9. The magnetic torque t o n a  moving 
charged particle is perpendicular lo the angular 
momentum L o f the particle and the magnetic 
field P .
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Fig. 7-10. Precessional m otion o f the angular 
m om entum  o f  a  charged particle around the mag
netic field.

The energy of an orbiting charged particle in a magnetic field is found by combining 
Eqs. (5.12) and (7.30) and results in

E. =  ^ 4 - L - M = Q L .  (7.37)
+ 2m

If the particle has spin as well, Eq. (7.34) for the magnetic dipole moment should be 
used, and the expression becomes

Ep=  — J ~ ( ± L + y S ) ·  M.  (7.38)
2m

These results are very important to understanding the behavior of an atom or a 
molecule in an external magnetic field, a subject of interest from both the theoretical 
and the practical points of view.

For example when an atom is placed in an external magnetic field (taken to be 
along the Z =axis), the motion ofthe electrons is disturbed and the energy is changed 
according to Eq. (7.38}. When this theoretical value of Ep is compared with ihe 
experimental results, it is found that the Z-components of the orbital and spin 
angular momenta are quantized. That is, L z and S7 can attain only certain values, 
which are expressed in the form

Lz =  Inf,  Sz= m ft .  (7.39)

According to experiment and quantum mechanics, the possible values of m, are 0. +  I,
± 2 , + 3  and m5 can attain only two values, + |o r  -  4 The number m( is called the
magnetic quantum number of the electron and ms is the spin quantum number. A similar 
result is obtained for protons and neutrons. For that reason it is said that the electron, 
the proton, and the neutron have spin 

In Section 7.4 it was stated that the angular momentum L is also quantized in units 
o f  nh; however, an analysis more detailed than that of Section 7.4 and using the 
methods of quantum mechanics shows that the allowed values of the angular momen-
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L = V liM T )/, (7.40)

Jiere 1 = 0 .1 ,2 ,3  is a positive integer and is called the angular momentum quantum
dumber- Since L, cannot be larger than L , the values of m, cannot exceed I: that is,

mf= 0 , +  I, H 2 , ,  +(I — I), +  /, (7.41)

or a total of 21 +1 different values or orientations of L. For / = 0 . only ,n, =  0 is possible. 
por / =  ], the values ofm ( may be 0, +  I, and so on.

Also it is shown in quantum mechanics that for the energy level E„, the allowed 
v a lu es  of the angular momentum quantum number are

/= 0 , 1 , 2 , . . .  (n —I), (7.42)

w h i c h  gives a total of n different values of I. States with /= 0 , I, 2, 3 , . . .  are designated 
s, p .  d. f , . . · , respectively. In the same atom all electrons having both the same energy 
and Ihe same angular momentum (that is, having the same n and I values, such as 
all 3p electrons in an atom) constitute an electron shell of the atom. Each shell of 
course contain electrons with spin up and spin down.

That for a given value of L only certain values of L z are possible implies that L 
can attain only certain directions in space (Fig. 7-1 la). This is what is meant by space 
quantization. In the case of spin since ms has only two possible values ( +  £), we 
conclude that S can attain in space only two directions relative to the Z-axis; these 
directions are usually called up (f) and down (j). The allowed orientation of the 
spin vector is shown in Fig. 7-1 lb.

ton i o f  a n  e le c tro n  a re  ^ iven  b y

Fig. 7-11. Possible orientations o f (a) the angular m om entum  corresponding to I=  I. I  = J S  "ft, 
ai)d (b) the spin s =  i ,  S = ( N/3/2)f,
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For a given value of n the number of different combinations of I and m, are 
if the two possible values of ms are included, the combinations of the quantum 
numbers /, m(, ms is 2n2. Thus for n =  l, 2, 3. 4 , . the number of different angulail 
momentum states are 2. 8, 18, 32, —  This is of considerable relevance when atomic 
structures are analyzed since it has been found that no two electrons in the same 
energy state in an atom can have the same set of quantum numbers I, mh and /Ji 
Thus 2n2 gives the maximum number of electrons that can exist in the energy state £  

When Eqs. (7.39) are introduced in Eq. (7.38) with the direction of the magnetic 
field chosen as the Z-axis so that L- P = L zP  and S- P  =  S .P ,  we find that the energy 
of an electron in a magnetic field has the possible values

eh
Ep=  -  —  P [m ,+ 2m s) (7.43)

where 2 has been substituted for the gyromagnetic ratio of the electron. This iesult 
means that the energy levels for a given energy En are split into several levels spaced 
apart by the amount (eh/2me) when the atom is placed in a magnetic field. This 
result is known as the Zeeman effect, after the Dutch physicist Peter Zeeman 11865- 
1943), who discovered the phenomenon experimentally.

Example 7.6. M agnetic interaction between an orbiting electron and the nucleus in an  atom

T Consider an electron having a charge of — e and revolving with velocity » around a nucleus 
whose charge is Ze. The electron’s path relative to the proton is the solid curve of Fig. 7-12, which 
for simplicity is assumed to be a circle. However if the m otion is referred to  a frame of reference 
attached to  the electron, the electron will be at rest: and the proton will appear to be describing 
the broken path, also a  circle, with velocity — r. If we neglect the electron’s acceleration (the 
student should be able to com pute it and judge the reasonableness of this assumption), this new  
frame may be considered inertial. Thus relative to  the electron, the nucleus produces an electric 
field given nonrelativistically by S  = (Ze/4ne0r1)ur and a magnetic field related to S  by Eq. (4.17) 
with i) replaced by — c. That is,

3 2 = - K ( - v ) x  <?=-!■ <?xi)
C i  C i

Ze
- a — T 2 " r XI!4;t£0c V

However the angular mom entum of the electron relative to the nucleus is L =  mr  x v =  mi ur x r 
Thus, P  and L are related by

a =  Zf_ L
4ne0c2m r3

Therefore the magnetic field produced by the relative motion of the nucleus is proportional arid 
parallel to the angular momentum of the electron as indicated In the figure.
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/ “ I—  ' t
E n

ΔΕ,

pig. 7-12. S p in -o rb it in te rac tio n  o f  a n  e lectron  
orbiting ab o u t a  positive  nucleus.

\  i _  J j  | s

Figure 7-13

Because J  is a m agnetic  field referred to  a fram e in which th e  e lectron  is a t rest. J  does no t 
produce any in te rac tio n  with the o rb ita l m o tio n  o f the  e le c tro n ; but the  electron  has a  m agnetic  
dipole m om ent Ms caused  by its spin. Thus the m agnetic  in te rac tio n  o f the  e lectron  w ith the 
nuclear m agnetic  field from  Eqs. (5.12) a n d  (7.33) is

E = - M s - & = - ( y ^ s \ ( -  Z \  3 L )=  -  -  yZf  , , S L .
\  2m J  \ 4n (0c mr3 J &ne0c m~r

The most im portant aspect of this result is that the magnetic interaction depends on the relative 
orientation of the spin S  and the orbital angular m om entum  L of the electron. For that reason 
this interaction is called spin-orbit interaction and is often designated by Es l . A m ore detailed  
relativistic calculation indicates tha t the value of Esl is one-half the value obtained above.

Next we shall estim ate its order of magnitude. Recall from Table 7-1 that, for the electron, 
y is approximately —2. Also from Eq. (7.21) the energy of the electron in a circular orbit is to  the 
zeroth order of approxim ation E =  — Z e 2 4ne0(2r). Thus with Esl corrected by the factor o f one- 
half mentioned above, the spin-orbit interaction energy is

However L has a magnitude mrv, and  S  is of the same order of magnitude as L  Thus S - L  is 
approximately (mrv)2. W ith these substitutions the energy may be approxim ated by

Esl J f l E l

Comparing this value with the result of Example 7.5 shows that the spin-orbit interaction of an 
orbiting electron is of the same order of m agnitude as the relativistic correction to the energv 
However, the spin-orbit interaction has the peculiarity of showing a distinct directional effect 
because of the S -L  factor, which depends on the relative orientation of L and S.

A careful analysis of experimental evidence of the energy levels of an electron in an atom show's 
that S can have only two orientations relative to L, either parallel or antiparallef in agreement 
with the earlier discussion. Thus the spin-orbit interaction breaks each energy level in to  pairs 
(or doublets) of closely spaced energy levels.

The details of atom ic structure and the consequences they entail for the structure and behavior 
of materials are refined with quantum  mechanical details; these are discussed in Volume III. *
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Problems

7.1 (a) Calculate the mass οΓ copper (bivalent) 
deposited on an electrode by a current of 2.0 A 
during one hour, (b) How' many atom s of 
copper have been deposited?
7.2 O ne mole of sodium is deposited on the 
cathode o f an electrolytic cell, (a) W hat electric 
current and (b) w hat charge passed through 
the cell if the deposit took one day?
7.3 A proton produced in a I-MeV Van de 
G raaff accelerator is sent against a gold foil. 
Calculate the distance of closest approach
(a) for a head-on collision, and for collisions 
with im pact param eters of (b) 10 15 m and
(c) IO-14 m. (d) W hat is the deflection of the 
proton in each case?
7.4 An alpha particle with a kinetic energy οΓ 
4 MeV is directed straight tow ard the nucleus 
of a mercury atom, (a) Find the distance of 
closest approach of the alpha particle to the 
nucleus, lb) Com pare the result with the 
nuclear radius, ~  IO14 m.
7.5 W hen they investigated low-atomic- 
num ber nuclei with 4-MeV alpha particles, 
Geiger and M arsden observed deviations from 
the predicted Coulom b scattering. Considering 
that nuclei have a radius of approximately 
10“ 14 m (this is the region in which the nuclear 
interaction has an effect), calculate the atomic 
number at which deviations from Rutherford 
scattering for head-on collisions will be ob
served writh 4-MeV alphas.
7.6 In a hydrogen atom in its state o f lowest 
energy (also called the ground state) the elec
tron moves around the proton in what can be 
described as a circular orbit of radius 0.53 x 
10 10 m. C om pute (a) the potential energy,
(b) the kinetic energy, (c) the total energy, and
(d) the frequency of the m otion. (For com
parison. the frequency of the radiation emitted 
by the hydrogen atom is of the order of IO15 
Hz.)
7.7 (a) Using the virial theorem for one particle, 
determine the energy of an electron (charge

—e) revolving around a nucleus of char,., 
+  Ze  at a distance r. (bl Apply your result to a 
hydrogen atom  (r~0 .53  x 10“ 10 ml ar.d com
pare with the result obtained in (cl of Pioblcm
7.6.
7.8 If the average lifetime of an excited state ol 
hydrogen is of the order of I O '8 s. estimate 
how many orbits an electron m akes (a) when 
it is in the state n =  2 and lb) when it is in Ihc 
state n = 1 5 , before it suffers a transition to 
state /i =  l. (c) C om pare these num bers with the 
num ber o f orbits the earth  has made arouna 
the sun in its approxim ately 2 x IO9 (years of 
existence.
7.9 It is customary to write the energy of the 
stationary state of atom s with one electron in 
the form Er = — R Z 2Iic n1 where R is called 
the Rydberg constant. Using the expression 
given in Section 7.4 for E„. show' that R is equal 
to 1.0974 x 1 0 'm ’ 1.
7.10 (a) Com pute the energies of the first lour 
stationary states o f H and H e ' (b) In each 
case find the energy required to raise the 
system from the ground state to  the first 
excited state, (c) Represent the energies on a 
vertical scale by properly spaced horizontal 
lines. N ote that some energies coincide, (d ' < 'an 
you derive a general rule?
7.11 Using the result of Problem  7.6, (ai esti
mate the velocity of an electron in a hydrogen 
atom  in its ground state and (b) check the 
calculations made at the end of Example 7.5.
7.12 (a) Calculate the angular velocity of pre
cession of a spinning electron in a magnetic 
field of 0.5 T. |b) Calculate the same quantity 
for a proton in the same field if a proton spins 
with the same angular m om entum  as that ol an 
electron. I Hint: Use the y values given in 
Table 7-1.)
7.13 (a) Com pute the magnetic dipole moment 
of the electron in a hydrogen atom  orbiting 
inac ircu la r path at a distance ofO.53 x 10 "1J m 
from the proton, (b) Com pute the angular
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Drecessional velocity o f the  electron  if it is in a 
'magnetic field o f IO- s T.
7 14 C om p u te  the  gyrom agnetic  ra tio  >■ for a 
rotating disk o f rad ius R carry ing  a charge  q 
uniformly d istrib u ted  over the  surface o f the  
disk. 7.15(a) W hat is the  m ag n itu d e  o f the 
angular m o m entum  o f an  electron if 1=21 (bl 
W hat angles, re la tive  to  a m agnetic  field 
parallel to  the  Z -axis. m ay the  an g u la r m o m en 
tum vector have w hen /= 2 7

7.16 (a) In to  how many levels does a magnetic 
field split the n - 3 level of the hydrogen atom ?
(b) W hat is the magnetic energy difference 
between these levels when the field is 4.0 T?
7.17 C om pare the energy of the magnetic 
splitting of the H =  3 level in atom ic hydrogen 
with the energy difference between the elec
tronic energies for Ji =  2 and ;i —3 when the 
m agnetic splitting is due to  a 4-T magnetic 
field.

CHALLENGING PROBLEMS

7.18 The electron in a hydrogen atom may be 
assumed to be "spread” over all space with a 
density p =  Ce 2r/°° where α0 =  0·53 x 10 10 m. 
Ial Find the constant C such that the total 
charge is —e. (b) Determ ine the total charge 
within a sphere of radius a0. which corresponds 
to the orbit radius of the electron, (c) O btain 
the electric field as a function of r. (d) At what 
distance does the electric field differ front 
- e /4 n e ar2 by I 0;,? {Hint: For part (a), divide 
the space into spherical shells, each of volume 
4m·2 dr.)
7.19 Protons accelerated by a  voltage of 
8 x IO5 V fall on a gold foil (Z =  79). Com pute 
the differential cross section for Coulom b scat
tering, in intervals of 20% for φ  between 20 and 
180 Make a polar graph of <r(</>). (Afore; 
Equation (7.14) becomes infinite for φ = 0 
because we have assumed that the scattering 
nucleus is a point charge. When the finite size 
of the nucleus is taken into account, this 
infinity disappears.)
7.20 The average separation of protons within 
Sn atomic nucleus is of the order of IO- 1 5  m. 
Estimate in J and in MeV the order of magni
tude oi the electric potential energy of two 
protons in a nucleus.
I  ?! If one assumes that all protons in an 
alOinic nucleus of radius R are uniformly dis
tributed, the internal electric potential energy

can be computed by

3Z (Z -I )C 2 
4n €0R

(see Problem 1.72). The nuclear radius can in 
turn be com puted by R =  1 .2x10 15 T 1'3 m. 
W rite expressions giving the nuclear electric 
potential energy in J and in MeV as a function 
of Z  and 4.
7.22 Using the results of Problem 7.21, com 
pute the total electric potential energy and the 
energy per proton for the following nucleus: 
(a) lfiO  (Z =  8), (b) 40C a (Z =  20), (c) 91Zr 
(Z =  40), (d) l44Nd (Z =  60), (e) 200Hg (Z =80), 
and (Γ) 238U (Z =  92). (g) W hat do your results 
tell you about the effect of the electric inter
action between protons on the stability of the 
nucleus?(h) U singyour data, plot the potential 
energy against the mass number.
7.23 (a) Repeat Problem 7.14 for a sphere 
uniformly charged throughout its volume. 
{Hint: Divide the sphere into disks perpendic
ular to  the axis of rotation.) (b) From  the 
result of this problem, what do you conclude 
about the electron’s structure?
7.24 An electron changes its value of ms from 
+  2 to —4. (a) W hat is the change in angular 
m omentum of the electron? (b) If this change 
occurs in a magnetic field of 2 T. what is the 
change in the electron’s energy?
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The Time-Dependent Electromagnetic Field

8.1 Introduction

In previous chapters, the electric and magnetic fields were considered to be time 
independent, or in other words static. In this chapter fields that are time dependent 
will be studied; that is, at a given point in space the fields may change with time. New 
relations are found to exist in this case. In Section 4.6 the close relationship between 
the electric and magnetic parts of an electromagnetic field was investigated, especially 
with respect to the electromagnetic field’s transformation properties, which are re
quired by the principle of relativity. In this chapter it will be ^ en  that a varying mag
netic field requires the presence of an electric field, that conversely a varying electric 
field requires a magnetic field, and that this relationship is required by the principle ol 
relativity. The laws describing these two situations are called the Faraday-Hcnry 
law and the Ampere-Maxwell law.

8.2 The Faraday -  Henry Law

One of the many electromagnetic phenomena familiar to the student is electro
magnetic induction, which was discovered independently and almost simultaneously 
around 1830 by Michael Faraday (1791-1867) and Joseph Henry (1797-1878). Electro
magnetic induction is the working principle of the electric generator, the transformer, 
and many other devices in daily use. Suppose that an electric conductor that forms a 
closed path is placed in a region in which a magnetic field exists. If the magnetic flux Φ„ 
through the closed path varies with time, a current may be observed in the circuit while 
the flux is varying. The presence of an electric current indicates the existence or induc
tion of an emf in the circuit. Measurement of this induced emf shows that it depends on 
the time rate of change of the magnetic flux d<bjdt.  For example if a magnet is placed 
near a closed conductor, an emf appears in the circuit when the magnet (or the circuit) 
is moved in such a way that the magnetic flux through the circuit changes. The magni
tude of the induced emf depends on whether the magnet (or circuit) is moved rapidly 
or slowly. The greater the rate of change of the flux, the larger the induced emf The 
direction in which the induced emf acts depends on w'hether the magnetic field is 
increasing or decreasing.

To be more precise, refer to Fig. 8-1. in which the curve L has been oriented in the 
same sense as the fingers of the right hand when the thumb points in the direction 
of the magnetic field 38. When the magnetic flux increases (that is, d<bjdt  is positive), 
the induced emf Facts in the negative sense; when the magnetic flux decreases (that 
is ddAjdt is negative), F acts in the positive sense. Thus the sign of the induced emi 
F is always opposite to that of d<bmjdt. More detailed measurement reveals ihat
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Fig. 8-1. Electric field produced by a time-dependent magnetic field; (a) ιΙΦ,,,/ώ positive. V  neg
ative, (b) JQ Jd t  negative. V  positive.

the value of the induced emf when expressed in volts is equal to the time rate of 
change of the magnetic flux when it is expressed in Wb s “ I  That is,

which expresses the Faraday-Henry law of electromagnetic induction:

in a varying magnetic field an emf is induced in any d o se d  circuit and 
is equal to the negative o f  the time rate of  change o f  the magnetic flux  
through the circuit.

Thenegative sign in Eq. (8 . 1 ) may be explained in terms of the conservation of energy. 
In fact if the sign of the induced emf is the same as that of d<f>„Jdt. the magnetic field 
produced by the current generated by V tends to change (J)m in the same sense and 
thereby contributes to an increased value of V. and so on. Thus a small change in (J)m 
would initiate a continuous change so that a small amount of energy used to change 
Φ,η initially would give rise to a large change in the magnetic energy of a system.

In Fig. 8-2, if the area surrounded by L is divided into infinitesimal area elements, 
each oriented according to the right-hand rule, the magnetic flux through L is Om =  
h & ·  U\ dS  according to Section 6.4. Also the emf Kimplies the existence ot an electric 
held S  such that V = § ,  S -dI  according to Eq. (3.15). Thus Eq. (8.1) may be written 
in the alternate form

I  S - d I = - j t j  M-u^dS.  (8.2)

Fhe path L need not coincide with an electric conductor such as a closed wire; instead 
consider a region o f space in which a magnetic field, varying with time, exists. Then 
Efi (8 .2 ) is equivalent to saying
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a time-dependent magnetic field implies the existence o f  an electric field 
such that the circulation o f  the electric field along an arbitrarily closed 
path is equal to the negative o f  the time rale o f  change of  the magnetic flux 
through a surface bounded by  the path.

This way of staling the Faraday-Henry law' of electromagnetic induction gives a 
deeper insight into the physical content of the phenomenon of electromagnetic 
induction; that is. an electric field must exist whenever a magnetic field is changing 
with time, the two fields being related by Eq. (8.2), The electric field can be determined 
by measuring the force on a charge at rest in the region in which the magnetic field 
is varying. This experiment may be carried out and thus confirm an interpretation 
such as Eq. (8.2).

Exam ple 8.1 C om putation of the emf induced in a simple circuit.

▼ Consider a plane circuit composed of JV turns, each of area S. placed perpendicular to an 
alternating uniform magnetic field that varies with time. The equation of the field is P =  P 0 sin tut 
The magnetic flux through one turn of the circuit is Qtm= S P = S P 0 sin cut. and the total flux 
through the JV turns is

Qtm = N S P 0 sin cot.

Therefore applying Eq. (8.1) gives for the induced emf*

ί/Φ
F = -----Vn= - N S P 0ω  cos cot, (8.3)

III

which indicates that the induced emf is oscillatory or alternating with the same frequency as 
the magnetic field, A
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Fig. 8-3. Electric field produced by a time-dependent magnetic field having cylindrical symmetry; 
(a) side view, (b) top view.

Example 8.2. D eterm ination of the electric field S  produced by an alternating axial magnetic field.

T Assume that in a region of space there is a magnetic field parallel to the Z-axis and having 
axial symmetry: tha t is. the field’s m agnitude at each point depends on the distance r to the Z- 
axis only. The m agnitude also varies with time. Assume also that the magnetic field decreases with 
the distance from the Z-axis. Figure 8-3(a) shows a side view of the field, and Fig. 8-3(b) shows a 
cross section.

The symmetry of the problem suggests that the electric field & m ust depend on the distance r 
alone, and at each point be perpendicular to the magnetic field B  and to the radius r. In other 
words the lines οΓ force of the electric field S  are circles concentric with the Z-axis. Choosing the 
path L in Eq. (8.2) as one of these circles gives the induced emf;

T he average magnetic field B eve in a region covering an area S is defined as B awe= Φ„/8 or ‘I’m =  
Y cS. Here S = n r 1 so that Φ „ =  B meInr1). Then Eq. (8.4) gives the electric field at a distance r 
from the axis as

Therefore Eq. (8.1) yields

</φ
S ( I n r ) =  - m

dt
(8.4)

(8.5)

If the magnetic field were uniform. B eve would simply equal B. A
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8.3 The Betatron

The results of Example 8.2 were used to design an electron accelerator called a 
betatron, invented in 1941 by the American physicist D. Kerst (1911- ). The idea is 
very simple in principle. If an electron (or any kind of charged particle) is injected 
into the region in which a varying magnetic field exists, the electron will be accelerated 
by the associated electric field S  as given by Eq. (8.2) or Eq. (8.5). As the electron 
gains velocity, the electron’s path w ill be bent by the magnetic field P  If the magnetic 
field has axial symmetry and the electric and magnetic fields are adjusted properb 
the orbit of the electron is a circle such that in each revolution the electron gains 
energy.

To see the problem in more detail, consider the electron at point P (Fig. 8-3). If 
things are arranged so that the electron describes a circular path of radius r. the 
electric field will produce a tangential component to the electron’s motion; this 
component is computed by using d p / d t = F T w;here the tangential force F t =  - e t f  
so that

To generate circular motion, the magnetic field must produce the necessary centripetal 
acceleration. Accordingto Eq. (4.1) the magnitude of the centripetal force is t  s =  ev S. 
Recall that In circular motion the centripetal acceleration is m v 2jr  =  {mv)(v/r)=  
p{vfr) so that Pvjr =  F lv; then the two equations may be combined to give

Taking the time derivative of Eq. (8.7) and observing that r is constant because the 
path is a circle give

When this equation is compared with Eq. (8 .6 ). the necessary condition for the 
electron to describe a circular orbit of radius r under the combined action of fhe 
electric and magnetic fields is that at the distance r the magnetic field must be

where S zw is the average value of S  in the region surrounded by L. This condition 
imposes certain requirements on the manner in w'hich the magnetic field S  may vary 
as a function of the radial distance r from the axis. The exact variation of S  with r 
is determined by the requirement of a certain stability of the orbital motion. That is. 
given the radius of the desired orbit, the forces on the electron must be such that if the 
motion of the electron is slightly disturbed (i.e.. if it is pushed to one side or the other

( 8 .6 )

pv/r =  e v P  or p=er3S. (8.7)

dp d P
dt '

( 8 .8 )
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Fig. 8-4. Accelerating time in a betatron.

of the orbit), the electric and magnetic forces acting on the electron tend to pull it 
back into the correct orbit.

In general the magnetic field is oscillatory with some angular frequency ω. Now  
because of Eq. (8 .6 ) the electron is accelerated only while the magnetic field is in
creasing. On the other hand since electrons are in practice injected with very small 
momentum, they must be injected when the magnetic field is zero. Therefore only 
one quarter of the period of variation of the magnetic field is good for accelerating 
the electrons. The accelerating times have been indicated by the shaded areas in 
Fig. 8-4.

According to Eq. (8.7). the maximum momentum gained by the electron is Pmax =  
erM0. and therefore the maximum kinetic energy of the accelerated electrons is

E 1 η2 J * *  
k ' 2me 2me

if they are not accelerated to very high energy compared wdth the electron rest energy 
m y 2. However w hen the energy is rather large, comparable to or larger than the rest 
energy m· 2 of the electron, relativistic equations must be used and result in

Ek.m* = c\ m;r2+ e V J 5 - m y1

Actual betatrons consist of a toroidal tube (Fig. 8-5) placed in the magnetic field 
produced by a magnet whose pole faces have been so designed or shaped that the 
correct variation of the magnetic field 38 with r according to Eq. (8 .8 ) is produced 
and stability conditions are fulfilled. The electrons are injected at the beginning of the 
accelerating period and slightly deflected at its end so that they may hit a target 
Properly located. The kinetic energy of the electrons is given off as electromagnetic 
radiation and/or as internal energy of the target that is heated up. Betatrons have 
heen built with energies up to 350 Mev. Betatrons are used for studies of certain types 
°f nuclear reactions and for radiation treatment of cancer.



The Time-Depenaent Electromagnetic Field

(a)

(b)

Fig. 8-5. (a) View of the accelerating tube and pole faces of a betatron, (b) Assembling the accelerat
ing tube in a betatron.



Electromagnetic Induction Caused by Relative Motion

8.4 Electromagnetic Induction Caused by Relative Motion 
of Conductor and Magnetic Field

The law of electromagnetic induction as expressed in Eq. (8.2) implies the existence 
of a local electric field whenever the magnetic field at that point is changing with 
time. As expressed in Eq. (8.1). the law implies the existence of an emf when the 
magnetic flux through the circuit changes with time. It is important to discover 
whether the same results occur when the change in flux is due to a motion or deforma
tion of the path L  without ES necessarily changing with time. Consider two simple 
cases.

First consider the arrangement of conductors illustrated in Fig. 8 -6 . in which the 
conductor PQ can move parallel to itself with velocity v while maintaining contact 
with conductors R T  and SU.  The system PQRS  forms a closed circuit. Suppose 
also that there is a uniform magnetic field ES perpendicular to the plane of the system.

When the bar PO is moving, each charge q in the conductor PO is subject to a 
force q t x  ES acting along QP,  according to Eq. (2.1), N ow  the same force on the 
charge could be assumed to be due to an “equivalent” electric field S cq given by

or

S eq =  Vx ES.

Since e and ES are perpendicular, the relation among the magnitudes is

S cq= v B .  (8.9)

Fig. 8-6. Emf induced in a conductor mov ing in a magnetic field.
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If PQ =  L the potential difference existing between P  and Q is given by A F = tfcq/=. p vj 
N o forces are exerted on the sections QR. RS. and SP since they are stationary 
relative to the magnetic field. Therefore the circulation of S eq (or the emf) along 
circuit PQRS  is just V -AV'm the direction of e x  P .  that is.

On the other hand if the length SP is called x, the area of PQRS is Ix: and the magnetic 
flux through PQRS  is

In other words Eq. (8.1) is the result. The minus sign is not included because only the 
relation between the magnitudes has been considered. However, relation (8.1) still 
holds in sign since the flux Φ„, is increasing; and the sign of V is that of n x P  so that 
it agrees with Fig. 8-1.

As a second example, consider a rectangular circuit rotating in a uniform magnetic 
field P  with angular frequency ω (Fig. 8-7). When the normal hn to ihe plane of the 
circuit makes an angle 6=a>t  with the magnetic field P ,  all points of PQ are moving 
with a velocity» such that the “equivalent” electric field S tq =  V x P  points from 
Q to P  and has a magnitude S cq= v P  sin Θ. Similarly for points on RS the direction 
of d x  P  is from S to R and has the same magnitude. On the sides RQ and PS. we 
see that dx P  is perpendicular to the conductors: and thus no potential difference 
exists between S and P and between R and Q. If P Q = R S  =  L the circulation of the 
equivalent electric field S tq around PQRS , is

I fx  =  SP. the radius of the circle described by the charges in PQ and SR is ^x; and 
therefore ν=ω(^χ)=^ωχ.  Then since S =  Ix is the area of the circuit and B =  wt.

for the emf induced in the circuit as a result of its rotation in the magnetic field. On 
the other hand the magnetic flux through the circuit is

V= P v l .

Φ „= P -  us dS -  P lx.
J  P Q RS

The change of flux per unit time is then

Because d x / d t = i \

V=2l(jcox)P  sin ωί= ωΡ (Ιχ)  sin w t = i o P S  sin cut

Φm =  P -  usS =  P S  cos O =  P S  cos ωί.
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Fig. 8-7. Em f induced in a rotating coil placed 
in a magnetic field.

Then

</Φ
 , m= i o B S  sin tot =  V.

dt

Therefore the induced emf resulting from the motion of the' conductor can also be 
calculated by applying Eqs. (8.1) or ( 8  2) instead of Eqs. (4.1) and (3.15).

Although the discussion has dealt only with circuits of special shapes, a more 
detailed mathematical calculation indicates that for any circuit

the law of  electromagnetic induction V= — άΦ^/dt can be applied when 
the change in magnetic flux Φ„, is due either to a change in the magnetic 
field ES or to a motion or a deformation of the circuit along which the emf  
is calculated, or both.

The induced emf in the second case is sometimes called motional emf

8.5 Electrom agnetic Induction and the Principle of Relativity

Although the law of electromagnetic induction as expressed by Eqs. (8.1) and (8.2) 
is valid no matter what the origin of the change of magnetic flux, there is a profound 
difference in the physical situations in the two possibilities. When an observer 
recognizes that the change of magnetic flux through a circuit stationary in the ob
server’s own frame of reference is due to a change in the magnetic field ES. an electric 
field S. related to ES as indicated by Eq. (8.2). is measured at the same time and the 
presence of the electric field is recognized by measuring the force on a charge at rest 
in the observer’s frame of reference. However when the observer recognizes that the
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Figure 8-8

change of magnetic flux is due to lhe conductors motion relative to its frame of 
reference, no electric field is observed but the emf measured is assigned to the force 
q x  M exerted by the magnetic field on the charges of the moving conductor.

How does it happen that two different and apparently unrelated situations have a 
common description? This is not a matter of coincidence, but strictly a consequence 
of the principle of relativity. A full mathematical analysis will not be attempted here; 
instead, the situation will be examined from an intuitive point of view. Consider the 
case of the rotating circuit discussed in connection with Fig. 8-7. In a frame of reierence 
in which the magnetic field 08 is constant (Fig. 8 -8 a) and the circuit is rotating, no 
electric field is observed and the forces on the electrons in the circuit are due to 
Eq. (3.1); but an observer attached to a frame moving with the circuit sees a stationary 
conductor and a magnetic field 08 whose direction rotates in space (Fig. 8 -8 b). The 
observer then relates the forces on the electrons in the circuit to the electric fielu S 
associated with a changing magnetic field, according to the law of electromagnetic 
induction as expressed by Eq. (8.2).

The experimental verification of the law' of electromagnetic induction for changing 
magnetic fields is simply a reaffirmation of the general validity of the principle of 
relativity.

8.6 Electric Potential and Electromagnetic Induction

In Chapters I and 2 it was shown that a static electric field S  is associated with an 
electric potential F in  such a way that the components of S  along the X-, Y-. and 
Z-axes are the negatives of the derivatives of V relative to x, y. and z. That is, S x =  
—cV  dx , etc.; or to state the matter more simply, the electric field is the negative of 
the gradient of the electric potential. A consequence of this fact is that the circulation 
of the static electric field around any closed path is zero, a property that is expressed
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mathematically by the statement (3.17) or

is - d l  =  0.

However when the electromagnetic field is time dependent, we have seen that the 
e q u a t io n  above is no longer valid; instead E q . (8.2) applies:

Thus in a time-dependent electromagnetic field the circulation of the electric field 
is not zero, and therefore the electric field cannot be expressed as the negative of the 
gradient of the electric potential. This statement does not mean that the concept of 
potential is completely inapplicable in this case, but only that the concept must Oe 
used in a different form. In fact, two potentials are required. One is called the scalar 
potential, similar to the one used in the static case, and the other is a vector potential. 
There will be no occasion to use these potentials in this text; they are mentioned 
here only to point out the need for great care about which static-field concepts may 
be kepi and which must be modified in passing from static to time-dependent fields.

The law of electromagnetic induction as expressed by Eq. (8.2) can be applied to a 
path of any shape. This law will now be applied to a very small or infinitesimal 
rectangular path PQRS  placed in the ΥΎ-plane and having sides dx  and dy (Fig. 8-9). 
First the circulation of the electric field S  must be evaluated. The procedure is exactly 
similar to the one followed in the discussion of Ampere’s law in differential form;

8.7 The Faraday -  Henry Law in Differential Form

Fig. 8-9. Elem entary circuit tor deriving the 
Faraday-Henry law in differential form.
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the student is referred to Section 6.3 for the details. For the infinitesimal surface 
PQRS in the X  Y-plane.

S - d l  =  I + f +  f + Γ  S - d l .
J  P O R S  J  Po J o r  J r s  J s p1 P Q R S  J PQ J Q R  J R S  J SP

Now Sq H S-dl=·  S y dy  and S SP S - d l =  — S y dy  so that

r f g
+  I S-dl  — { S v — S ‘y)dy =  dSy dy =  —* dx dy.

-QR Jsp cx

We may replace dS y by (dSy/dx) dx  since dS y corresponds to the difference in S y for 
two points separated by a very small distance dx, but having the same y and z co
ordinates. Similarly for the other two sides

Γ ( '  (J

-F S - d l =  — tjx dy. 
J r s  c yPQ -JRS cy

Adding the two results gives

<f S -dl  =  I cP -  -  ~ x\  dx dv■ i  I Li
J  P Q R S  \ C X  (  V )

Next compute the magnetic flux through the surface. Because the surface PORS is
in the X  V-plane. the normal unit vector uv is just u. and P - wv =  P - U z =  S 2. Therefore
the magnetic flux is

I P - us dS =  S z dx dy  (1 1 1 )
- PQRS

since dx dy is the area of the rectangle. Substituting Eqs. (8.10) and (8.11) into Eq (8.2), 
and canceling the common factor dx dy  on both sides give

cS.. dSx c S .. I -  _Ξ= _  - ,8 . 1 2 1
cx cy Ct

By placing the rectangle in the YZ-  and Z X -planes, two other expressions may be 
written:

CS. CS, c S x
(8  13)

cy c 2 Ct

and

CS, M z c S y
— 2 = - - -  ' . (8.14)

CZ CX Cf

Expressions (8.12). (8.13). and (8.14) together constitute the Faraday-Henry law' 
expressed in differential form. They can be combined into a single vector equation 
as was done in Section 6.3 for Ampere’s law1:
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curl S =  r~
dt

(8.15)

E q u a t i o n  (8.15). as well as its equivalents (8.12). (8.13). and (8.14). expresses tlie 
relations that must exist between the time rate of change of the magnetic field a i  

a point and the electric field existing at the same point of space. Equation (8.15) 
illustrates in a very obvious way the close interrelationship between the electric and 
m a g n e t i c  components of an electromagnetic field.

In Section 1,2 the fact that electric charge is conserved was discussed. In other words 
in all processes that occur in the universe, the net amount of charge must always 
remain the same. This statement may be expressed in a quantitative way that is very 
useful. Consider a closed surlace S (big. 8-10), and designate by q the net charge 
inside S at a given time. Since the problem is dynamic and not static, free charges 
(such as electrons in metals or ions in a plasma) are moving through the medium 
and crossing the surface S. At some times there may be more outgoing charges than 
entering ones; this difference results m a decrease in the net charge q within the 
surface S. At other limes the situation may be reversed, and the incoming charges 
may exceed those leaving; the result is an increase in the net charge q. Of course if 
the outgoing and the incoming charge fluxes through S are the same, the net charge q 
remains the same. The principle of conservation of charge obviously requires that

Now the net charge flux per unit time, or current, through a surface S was found 
in Example 4.1 to be I = i sj -UfidS  where j  is the current density. In the present case 
the surface S is closed so that

8.8 The Principle of Conserv ation of Charge

Loss of charge =  outgoing charge flux—incoming charge flux 
=  net outgoing charge flux. (8.16)

(8.17)

Fig. 8 - 1 0 .  Current across a closed surface enclosing a 
charge q.
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gives the net charge passing out through the surface per unit time. On the other hand 
the loss o f charge per unit time w ithin S is — dq/dt. Therefore in mathematical terms 
Eq. (8.16) becomes —dq/dt =  I or

- s H ’/ · * ' * 5· ,8 m

q =  (0<y S -U s dS

I - ' ·  i f , '-" " ·

an equation that expresses the principle of conservation of charge under the assump
tion that charge is neither created nor annihilated. Now according to Gauss’s law 
for the electric field as given by Fq. (5.3). the total charge within a closed surface is 
expressed in terms of the electric field at the surface by

so that

Substituting this result into Eq. (8.18) allows us to write

<j> j - m N dS +  e0 ^(j) S - u Nd S = 0 (8.19·

for the expression of the principle of conservation of charge in a wav that incorporates 
Gauss’s law. When the fields are static, the integral S - u NdS does not depend on 
time. The integral’s time derivative is therefore zero and results then in

J-H1ViiS=O for static fields. ( 8  2 0 )
1 s

This expression means that for static fields there is no accumulation or loss of charge 
in any region of space, and the net current across a closed surface is zero. (This is 
essentially the content of Kirchhoffs first law for network analysis, introduced :n 
Example 3.4.)

8.9 The Ampere -  Maxwell Law

The Faraday-Henry law as expressed in Eqs. (8.2) or (8.15) establishes a relation 
between the magnetic field and the electric field in the same region of space. The 
close relationship that exists between the electric and magnetic fields suggests that an 
analogous relation should exist between the time rate of change of an electric field 
and a magnetic field at the same place. That is, since



The Ampere-Mawvell Law

Fig. 8-11. Surface bounded by line L. W hen iine L shrinks to a point, the surface becomes closed.

relates the circulation of the electric field to the time rate of change of the flux of the 
magnetic field, it might be expected that a similar expression must relate the circula
tion of the magnetic field to the time rate of change of the flux of the electric field. 
The circulation of the magnetic field was expressed in Ampere’s Iawi as

φ  Μ - ά Ι = μ 0 I j - u s dS\  (8.21)
J l J s

but this expression does not contain any time rate of change of the flux of the electric 
field. This lack is not surprising since this expression was derived under static con
ditions. However. Ampere's law needs a revision it it is to be applied to time-dependent
fields.

Ampere's law in the form (8.21) applies to a surface S bounded by a contour L 
The surface S is arbitrary so long as it is bounded by L. If the line L shrinks, the 
value o f 08-dl decreases (Fig. 8-11) until eventually the value becomes zero when 
Tsbrinks to a point, and the surface S becomes a closed surface. Ampere’s law as 
expressed by Eq. (8.21) then requires that

O j -  Hw d S = 0.
* s

This equation agrees w'ith Eq. (8.20) for the conservation of charge so long as the field 
is static. How'ever. when the field is not static but time dependent. Eq. (8.20i is no 
longer correct Instead it is Eq. (8.19), w'hich incorporates Gauss’s law in the con
servation of charge, that is always currect. Thus the suspicion that Ampere’s lav 
m list be modified w hen dealing with time-dependent fields is confirmed. The modifica
tion seems obvious. The integral S f j - U s dS  in Eq. (8.21) must be replaced by

y_j-us dS +  e0 ^  J" S  -Us dS

in accordance with Eq. (8.19). The result is
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O m - d l =  μ0 J  j  ■ uN dS +  e0R0 J  S ' 1U dS- (822)

Remember that f sj - u N dS is the current I through the surface S; then Eq. (8.22) ma3 

be rewritten as

(j) m - dl =  p 0I +  (o P o j t f  S - u N dS. (8.231

This equation should be compared with Eq. (6.3) for Ampere’s law. Equation (8.23 
reduces to Ampere’s law for static fields since then the last term is zero; and Lq. (8.2?' 
becomes Eq. (8.19) when the line Lshrinks to a point and the surface S becomes 
closed. Therefore Eq. (8.23) satisfies all the physical principles previously discussed,

So far we have merely played with mathematics in an attempt to make Ampere’s 
law compatible with the law of conservation of charge. One necessary furthei step 
is to verify experimentally that Eq. (8.22) is correct, and that it describes the actual 
situation found in nature. The best proof is the existence of electromagnetic waves, a 
subject that will be discussed in a later chapter.

The person who first suggested the modification of Ampere’s law in the way 
indicated here was the British physicist James Clerk Maxwell (1831—1879). and 
therefore Eq. (8.22) is called the Ampere-Maxwell law. Maxwell’s modification came 
about more because of the urge for mathematical consistency than because of experi
mentation. In fact the experiments substantiating Maxwell’s ideas came only some 
years later.

Ampere’s law (Eq. 8.21) relates a steady current to the magnetic field the current 
produces. The Ampere-Maxwell law (Eq. 8.22) goes a step further and indicates that a 
time-dependent electric field S  also contributes to the magnetic field. For example 
in the absence of currents Eq. (8.22) becomes

(j> Λ -dl =  C0P0 ^  I S - u s dS. (8.24)

which shows more clearly the relation between a time-dependent electric field ana 
its associated magnetic field. In other words

a time-dependent electric field at some point in space implies the existence 
of  a magnetic field at the same place.

The circulation of the magnetic field is called the magnetomotive force applied 
to the closed line L and is designated by As . The electric flux across the surface S 
bounded by the contour L is designated by Φβ. Then Eq. (8.24) may be written in the 
form

A z = W o j f ,

which the student should compare with Eq. (8.1) for the law of electromagnetic 
induction. The student should also verify that the factor e0p 0 is consistent with SI
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(a) (b)
Fig. 8-12. Magnetic field produced by a time-dependent electric field.

units. The relative orientation of the electric and the magnetic fields is shown in 
Fig. 8-12. corresponding to a time-dependent uniform electric field, tf the electric 
field increases (decreases). the orientation of the magnetic lines of force is the same 
as (opposite to) the sense of rotation of a right-handed screw that advances in the 
direction of the electric field. The student should compare this result with Fig. 8-1.

The Ampere-Maxwell law as expressed by Eq. (8.23) differs from the Faraday- 
Henry law as expressed by Eq. (8.2). in several respects. In the first place Eq. (8.23) 
has a term corresponding to an electric current: in Eq. (8.2) no term corresponds to a 
magnetic current simply because there are apparently no free magnetic poles m  
nature. In the second place the time rate of change of the electric flux appears with a 
positive sign in Eq. (8.231; the magnetic flux appears with a negative sign in Eq. (8.2).

Although Ampere’s law has been amended using the principle of conservation of 
charge as guide, the principle of relativity could have equally been used to develop 
this modification. With relativity, it has been found that when the electric and mag
netic fields are related in two inertial frames of reference as in Eqs. (2.21) and (2.23), 
and the Faraday-Henry law' is correct, then Eq. (8 23) must also be satisfied. This 
procedure is a little more difficult, but in a sense it is more fundamental.

8.10 ThE A m p era- M axwell Law in Differential Form

Since Eq. (8.22) for the Ampere-Maxwell law is very similar to Eq. (8.2) for the Faraday- 
Henry law', the technique used in Section 8.7 for obtaining the Ampere-Maxwell 
law in differential form may again be applied. Figure 8-9 is now replaced by Fig. 8-13. 
'n analogy with Eq. (8.10) the circulation of the magnetic field along the rectangular 
path PQRS whose sides are dx and dy  is
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Fig, 8-13. Elem entary circuit for deriving the 
Ampere-Maxwell law in differential form

The flux of the electric current through the surface bounded by PQRS  was obtained 
in Eq. (6.10) when Ampere’s law in differential form was derived. It was

[ j - u s d S = j 2dxdy .  (8 26)
J  PQKS

Finally the flux of the electric field through the surface bounded by PQRS  is analogous 
to Eq. (8.26) and is

S -uNdS =  S„dxdy',
-I P Q R S

and therefore

■j- f  S - u s dS = - ~ ~  dx dy. (8.27)
A t  J  P Q R S

Substituting Eqs. (8.25). (8.26), and (8.27) in Eq. (8.22). and canceling the common 
factor dx dy  on both sides yield

CS

' l f - 18281

rectangle placed in the YZ-  and Z-Y-pla
obtained:

B 01 ?JA BX
(8.291

C S y CS1
0 7 - Cy ~

in the YZ-

C S 2 C S y
By Cz

δΛ  _ C S 2
Cz Cx

CS 
' ' S J

and

dJ i
1 dt '

(8.30)
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Expressions (8.28), (8.29). and (8.30) together constitute the Anipere-Maxwell law
in differential form. As done previously for Ampere’s law and Faraday-Henry’s
|aw. these equations may be combined into a single vector equation by writing

curl M = n 0 ( j  +  e0 l- S j ,  (831)

which expresses a relation between the electric current at a point in space and the 
electric and the magnetic fields at the same point. In empty space with no currents, 
y =  0. and Eq. (8.31) becomes

c S
curl Μ =  μ0(η —  , (8.32)

ct

which is the equivalent to Eq. (8.24) in differential form. Equation (8.32) is similar 
to Eq. (8.15) for the Faraday-Henry law. and clearly shows the relationship between 
the magnetic field and the time rate of change of the electric field at the same point.

8.11 M axwell's Equations

At this point let us summarize our discussion of the electromagnetic field. An import
ant kind of interaction among the fundamental particles composing matter is the 
electromagnetic interaction. It is associated with electric charge, a characteristic 
property of each particle. To describe the electromagnetic interaction, the notion of 
electromagnetic field (characterized by two vectors: the electric field S  and the mag
netic field 38) has been introduced, such that the force on an electric charge is given by

F =  q(S  +  v x M ) .  (8.33)

The elecLiic and the magnetic fields S  and 38 arc in turn determined by the positions 
of the charges themselves and by their motions. Theseparation ofHhe electromagnetic 
field into its electric and magnetic components depends on l he relative motion of the 
observer and the charges producing tne field. Also the fields S  and 38 are directly 
correlated with each other by the Ampcie-Maxwell and Faraday-Henry laws. AU 
these relations are expressed by four laws, which have been analyzed in the previous 
chapters, and which may be v ritten both in their integral and difteremial forms as in 
Table 8 - 1 .

The entire theory of the electromagnetic field is condensed into these four laws. 
T hey are called M axwel l s equations since it wras Maxwell v, ho, in addition to formulat
ing the fourth law. recognized that they, together with Eq. (8.33). constitute the basic 
Tramework of the theory of electromagnetic interactions. The electric charge q and 
the current I are called the sources of the electromagnetic field since given q and I. 
Maxwell’s equations allow the calculation of S  and 38.



250 Die Time-Dependent Electromagnetic Field (8.11

Table 8-1. Maxwell's Equations for the Electromagnetic Field

Law Integral form Differential form

I. Gauss’s law for 
the electric field 
[(2.3) and (2.5)]

(j) S-U lf d S = —
w €0

div S = - E  TvT=- 
t O - E -

11. G auss’s law for 
the magnetic field 
[(6.17) and (6.18)]

j) S - u s d S = 0 div S = 0 ,

III. Faraday-H enry 
law [(8.2) and 
(8.15)]

Z I ® · " - " curl S = T - dt  -[T l 
Ct I k

[V. Ampere-Maxwell 
law [(8.23) and 
(8.31)]

(J) S -  dl =  A0/ +  T0Ao 'J 1 I  S-UydS Ptf —
curl ^ = A 0/ +  GA0 U

Note that Gauss’s laws for the electric and magnetic fields. Eqs. (2.3) and (6.17), 
were derived for static fields. However, we are now incorporating these laws into a 
theory involving time-dependent fields The student may wonder if perhaps these 
laws may have to be revised in the same way that Ampere’s law ^as modified to 
make it applicable to a time-dependent situation. The answer is no. It has been found 
that this set of laws is in agreement with experiment, and the consequences derived 
from them have so far been found to agree with experimental results. Therefore the 
two Gauss laws stay the same when applied to time-dependent electric and magnetic 
fields.

Maxwell’s equations also form a consistent set of equations. On one side. Eqs.
(2.3) and (8.23), which involve a surface integral of the electric field, are consistent: 
this consistency was our basic requirement in revising Ampere’s law. Also Eqs. (6.17) 
and (8.2). which involve a surface integral of the magnetic field, are consistent For 
example, applying Eq. (8.2) to the surface of Fig. (8-11) when the curve L shrinks until 
the surface is closed, Ihe circulation of S  becomes zero: and therefore

P - u Nd S = 0  or (j> M - us dS =  const,

w hich coincides with Eq. (6.17) if the constant of integration is zero.
In free or empty space where there are no charges (p = 0 ) nor currents ( / = I I  

Maxwell’s equations are slightly simpler and become in the differential form
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which exhibit a certain symmetry. The student should compare Maxwell’s equations, 
in either the integral or the differential form, with the equations listed in Table 6 - 1  

for the static field, and note the main differences introduced. In particular observe 
I hat the Faraday-Henry and Ampere-Maxwell laws provide the connection between 
the electric and the magnetic fields that was absent in the equations tor the static 
fields.

Maxwell’s equations are used in integral or in differential form, depending on the 
problem to be solved. In Chapter II, for example, they are used for discussing electro
magnetic waves.

Remembering all these equations may seem a formidable task but is not so. In 
the first place they have a certain symmetry that, once recognized, helps to organize 
them in one’s mind; and continuous application produces Tamiliarity In the second 
place, more important than remembering them in detail is understanding the physical 
message they convey.

Maxwell’s equations are compatible with the principle of relativity in that they 
remain invariant under a Lorentz transformation. That is, their form does not change 
when the coordinates x, y, z and (he time t are transformed according to (he Eorentz 
transformation (6.28) of Volume I. and the fields S  and ES are transformed according 
to Eqs. (4.22) and (4.24), The mathematical proof of this belongs in a more advanced 
course, and so will be omitted here.

The synthesis of electromagnetic interactions as expressed by Maxwell's equations 
is one of the greatest achievements in physics, and that synthesis is what places these 
interactions in a unique position. They are the best understood of all interactions 
and the only ones, so far. that can be expressed in a closed, consistent, mathematical 
form. This fact has been rather fortunate since much of modern civilization has been 
made possible because of our understanding of electromagnetic mleracMons, which 
are responsible for most of the processes, natural and resulting from technological 
development, that affect our daily life.

However. Maxwell’s equations as they have been presented have their limitations. 
They work very w;ell when dealing with electromagnetic interactions between large 
aggregates of charges, such as radiating antennas, electric circuits, and even beams 
of ionized atoms or molecules. However although the equations themselves are still 
correct, the electromagnetic interactions between fundamental particles (especially 
st high energies) must he treated somew'hat differently according to the laws of 
quantum mechanics by a technique called quantum electrodynamics. Even granted 
these limitations, the results derived from the form of Maxw'ell’s equations given in 
lhis chapter are an excellent approximation for describing electromagnetic interac
tions. This method is called classical electrodynamics. It is this approximate technique 
that is used in this book when electromagnetic waves and the structure of matter are 
discussed.
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Problems

8.1 A coil consisting of 200 turns and having a 
radius of 0.10 m is placed perpendicular to a 
uniform magnetic field of 0.2 T. Find the emf 
induced in the coil ίΓ in 0.1 s (a) the field is 
doubled, (b) the field is reduced to  zero, (c) the 
field is reversed in direction, (d) the coil is 
rotated 90?, and (e) the coil is rotated 180·. 
In  each case m ake a  diagram showing the 
direction of the emf.
8.2 Refer to Problem 6.10; if the current varies 
according to  I =  I 0 sin tut, determine the emf 
induced in the circuit.
8.3 Show that if F1 is an oscillating emf 
applied to term inals AB, the emf V1 a t terminals 
A 'B' as a result o f the m utual induction between 
the two coils is V2 =  ( N 2I N i )Vi (see Fig. 8-14). 
This is the principle of the transform er: the 
formula is correct as long as the m agnetic flux 
is the same through both coils, and as long as 
the resistance is negligible.

Iron core
> < 
• I

A2; 
> <

/

A '
τ ’
V2

Figure 8-14

8.4 The magnetic field B  at all points within 
the dashed circle of Fig. 8-15 equals 0.5 T. The 
field is directed into the plane of the paper and 
is decreasing at the rate of 0.1 T s _1. (a) W hat 
is the shape of the lines of force of the induced 
electric field in Fig. 8-15, within the dashed 
circle? (b) W hat are the m agnitude and the 
direction of this field at any point of the circular 
conducting rin g  and w hat is the emf in the 
ring? (c) W hat is the current in the ring if its 
resistance is 2 ohm s? (d) W hat is the potential 
difference between any two points of the ring?

(e) How do you reconcile your answers to iC) 
and (d)? (f) If the ring is cut at some point and 
the ends are separated slightly, w hat w ill be the 
potential difference between the ends?

Figure 8-15

8.5 A square loop of wire is moved at constant 
velocity v across a uniform magnetic field 
confined to a square region whose sides are 
twice the length of those of the square loop 
(see Fig. 8-16). Sketch a  graph ol the induced 

emf in the loop as a function of c, from x =  -21  
to X =  +21: plot clockwise emf’s upward and 
counterclockwise emf's downward.

- 2l -

IzJ X X X X X

X x x x x x
x x x x x

X X X X X X
x x x x x

X X X X X X
I ----------------------------------- 1
_________ I

Figure 8-16

8.6 A rectangular loop is moved through a 
region in which the magnetic field is given by 

0, B x=(6 — y )T (see  Fig. 8 -P I. FinJ 
the emf in the loop as a function of time, with 
r =  0 when the loop is in the position shown in 
the figure, if (a) n= 6 .5  m s_1, and (b) the loop 
starts at rest and has an acceleration of 2 m s -2 ·
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(c) Repeat for uniform m otion parallel to OZ  
in place of 0  Y. (d) Repeat Ior uniform accelera
tion of 2 m s -2  parallel to  OZ.
8.7 Suppose that the loop in Problem 8.6 is 
pivoted about the OZ-axis and rotates at a 
constant rate ω. (a) Calculate the instantaneous 
emf as a function of time, (bl W hat is the 
average emf during the first 90 of rotation if 
the period of rotation is 0.2 s?
8.8 In Fig. 8-18. let /= 1 .5  it J)= 0 .5  T and 
i> = 6 x l0 4 m s -1 . (a) W hat is the potential 
difference between the ends of the conductor? 
(bl Which end is a t the higher potential?
8.9 In Fig. 8-19 the cube, one m eter on a side, 
is in a uniform m agnetic field of 0.2 T  directed

Z

x x x x  

Figure 8-18

along the Y-axis. Wires A. C, and D move in 
the directions indicated, each with a velocity 
of 0.5 m s P. W hat is the potential difference 
between the ends of each wire?
8.10 If the rectangular circuit of Fig 8-20 is 
moving away from the rectilinear current with 
velocity u, find the induced em f Use two 
methods. {Hint: Remember Problem 6 10 and 
note that v = dr/dt.)
8.11 Referring to the situation discussed in 
Sections 8.2 and 8.4. comDute the electric field 
in the Irame of reference attached to the moving 
conductor, and determine the potential differ
ence between its end points.

CH A LLEN GIN G  PRO BLEM S

8.12 A closed square wire loop with sides of 
length I is allowed io fall with the top portion 
of the loop in a uniform magnetic field S  
The magnetic field S  is perpendicular to  and

directed into the plane of the paper as shown 
in Fig. 8-21. The loop has a resistance R and a 
weight mg. (al Find the magnitude of the cur
rent in the loop when the speed of the loop is v.
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Figure 8-21

Indicate on a diagram the direction of the cur
rent using the positive current convention.
(b) What is the total magnetic force on the loop?
(c) At what speed u would the resultant force on 
the loop be zero? (AP-ti: 1970)
8.13 A long straight wire carrying constant 
current is situated in the same plane as a 
square loop of wire as shown in Fig. 8-22. The 
long wire is parallel to one side of the loop and 
a distance b from it. The length of each side 
of the loop is I. (a) Show that the expression 
for the magnetic induction (fieldI JS is pro
portional to / |/r , where i is the perpendicular 
distance from the long straight wire, (bl Deter
mine the total magnetic flux through the loop. 
The current I , now varies with time t according 
to the relationship I 1 =Ia  where k is a constant. 
The resistance of the square loop of wire is R.
(c) Determine the induced current in the loop.
(d) What is the direction of the resultant mag-

I—  L -  H

<B (into page) 
X  X i X  x  x

X X X X X
X X X X X
X X X X X
X X X X X
X X X X X

Figure 8-22

netic force on the loop? Explain your reasoning 
in arriving at your answer. (AP-C; '971)
8.14 A uniform magnetic field JS is confined 
to a square region with sides oi length 2L. A 
square loop of wire with sides of length L is 
moved through the region at a constant speed 
p. Let t = 0  be the time at which the loop first 
encounters the magnetic field The resistance 
of the loop is R  (Fig. 8-23). (a) Plot a graph of 
the -nduced emf δ  in the wire vs. time I. Care
fully label significant points on the giaph with 
the appropriate values of δ  and i in terms of 
L, v, and B. Express the answers to Darts (b),
(c), and (dl in terms of B, a, L, and R. ibi At 
time t=L,'2v, determine the induced current I 
in the loop. (Neglect the self-inductance of the 
loop.) (c) At time t =  L/2t), determine the 
magnitude of the magnetic force ori each side 
of the loop. Indicate the directions of these 
forces, (d) Determine the net work performed 
by the external agent that moves the loop 
completely through the field at constant speed. 
(AP-B and C; 1972)
8.15 A single loop of wire fits closely aiound 
the center of a bar magnet as shown in Fig 
8-24. The cross-sectional area of the m agnei

Magnet removed 
in this direction
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is 2.0 x IO-4  m eter2, the resistance of the loop 
is 0.010 ohm, and the magnetic field S  in 
the magnet (assumed uniform) is 1.0 x IO-4  T.
(a) The bar magnet is moved far away from the 
loop in the direction indicated. Determine the 
total charge that flows past any point in the 
loop, (b) Indicate on a sketch the direction of 
the conventional current in the loop as the 
magnet is removed, tel if, instead, the magnet 
were removed in the opposite direction, would 
the current in the loop have the same direction 
as in part (b)? (AP-C; 1972)
8.16 I n a  uniform magnetic field, a square loop 
of side I is rotated with a frequency f  in the 
sense shown in Fig. 8-25. Ihe resistor R is 
connected to  the loop by means of slip rings. 
At time r =  0, the plane of the loop is in the 
plane of the figure, (a) Sketch a graph of the 
current I through R as a function of time i: 
take the positive direction of current as shown 
in the figure, (b) Calculate the maximum 
value of the current through R in terms of the 
given quantities. (ΑΓ-Β: 1973)
8.17 A surveyor attem pts to use a compass 
below a power line cariym g a steady current 
of IO3 amperes. The. compass is b.O m directly 
below the wire, (a) lf th e  horizontal component 
of the earth’s field is I x IO-4  T 1 could the 
power line disturb the compass reading? (jive 
a quantitative argum ent, (b) Suppose, instead, 
Ihat the current were IO3 amperes of 60 Hz 
alternating current. Would the compass read
ing be disturbed ? Explain your answer qualita
tively in terms of the properties of the compass. 
(AP-C; 1973)

8.18 In a uniform magnetic field S  directed 
vertically downward- a metal bar of mass m is 
released from test and slides w ithout friction 
down a tiack inclined at an angle LI as shown 
in Fig 8-26. The electrical resistance of the 
bar between its two points of contact with the 
track is R: the track has negligible resistance. 
The width of the track is I. (at Show on a 
diagram the direction of the currcnL in the 
sliding bar. lb) Denoting by v the instantaneous 
speed with which the bar is sliding down the 
incline, determine an expression lor the magni
tude of the current in the bar. (c) D eterm ine an 
expression for the force exerted on the bar by 
the magnetic field, (d) Determine an expression 
for the terminal velocity of the sliding bar. 
(AP-C; 1973)
8.19 A small circular loop of wire with radius r 
is placed at the center of a large circular loop 
of wire with radius R The two loops lie in the 
same plane, and r 4 R  (Fig. 8-27) In the outer 
loop there is a sinusoidal current I = I0 sin cos 
where £ is time and I0 and ω  are constants. 
Find an expiession for the induced emf in the 
inner loop. (AP-C; 1974)

Figure 8-27

8.20 A long straight conductor lies in the 
plane of a rectangular loop of wire as shown, 
In  F i a  S -7 R  T h f  m i n i  resistance of the Iooo
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is R. The current in the long straight conductor 
increases at a constant rate tlljdi. (a) Indicate 
on a diagram  the direction of the induced 
current in the loop and explain your reasoning,
(b) Determ ine the m agnitude of the current on 
the assum ption that the self-inductance of the 
loop may be neglected. (AP-C: 1975)
8.21 A conducting bar of mass M  slides w ith
out friction dow n two vertical conducting 
rails which are separated by a distance L  and 
are joined at the top through an unknown 
resistance R. The bar m aintains electrical 
contact with the rails at all times. There is a 
uniform magnetic field B .  directed into the 
page as show n in Fig. 8-29. The bar is observed 
to fall with a constant terminal speed D0.
(a) On a diagram, draw and label all the forces 
acting on the bar. (bj D eterm ine the magnitude 
οΓ the induced current I in the bar as it falls 
with constant speed »0 in terms of B. L. g, v0, 
and M.  (c) Determine the voltage induced in 
the bar in term s of B , L, y, t>0, and M  (d) Deter

mine the resistance R in terms ot B, L, g, νΰ. 
and M. (AP-C: 1976)
8.22 A wheel with six spokes is positioned 
perpendicular to a uniform magnetic field J i  
of m agnitude 0.5 tesla (weber per sqiiart 
meter). The field is directed into the plane ol' 
the paper and is present over the entire region 
of the wheel as shown in Fig. 8-30. When the 
switch S  is closed, there is an initial current of 
6 amperes between the axle and the r in r  and 
the wheel begins to rotate. The resistance of 
the spokes and the rim may be neglected
(a) W hat is the direction of ro tation  of the 
wheel? Explain, (b) The radius of the wheel is
0.2 m. Calculate the initial torque on the wheel
(c) Describe qualitatively the angular velocity 
of the wheel as a tunction of time (AP-C, 1977)
8.23 Two parallel conducting rails, separated 
by a distance L  of 2 m. are connected through a 
resistance Λ of 3 ohms as shown in F ig. 8-21 
A uniform magnetic field with a magnitude B 
of 2 tesla points into the page. A conducting

C o n d u c t in g  b a r
<B x  

------\

X X X

I  — 2  A
/

I
X X X X

X  I 

t f  =  3 « <

> X  X

\ H =  2  t e s la
-

L  =

X

X  I X  X
“ V L j y

X

X X  X ~ X X X

----
X X

Figure 8-31 Figure 8-32



Problems

bar with mass m of 4 kilograms can slide 
without friction across the rails, (a) Determine 
ai what speed the bar must be moved and in 
what direction to induce a counterclockwise 
current /  of 2 amperes as shown (b) Determine 
ihe magnitude and direction of the external 
farce that must be applied to the bar to  keep 
it moving at this velocity, (c) Determine the 
rate at which heat is being produced in the 
resistor and determ ine the mechanical power 
being supplied to  the bar, (d) Suppose the 
external force is suddenly removed from the 
bar. Determine the energy in tonics dissipated 
in the resistor before the bar comes to rest. 
(AP-B: 1978).
8.24 A circular loop of wire of area A  and 
electrical resistance R is placed in a spatially 
uniform magnetic field JS directed in to  the 
page and perpendicular to the plane of the 
loop as shown in Fig. 8-32. The magnetic field 
is gradually reduced from an initial value of 
Bo, in such a way that the magnetic-field 
strength as a function of time is B (I)=B 0Li-1 '. 
(al Indicate on a diagram the direction of the 
induced current. Applying the fundamental 
relation for electrom agnetic induction, explain 
your choice, (b) Do the electrom agnetic forces 
on this current tend to  make the loop expand 
or contract? Explain, (c) Determine an expres
sion, in terms of B0, A. and R. that describes 
the total quantity of charge tha t flows past a 
Point in the loop during the time the magnetic 
held is reduced from B0 to zero, (d) Determine 
an expression for the am ount of energy dissi
pated as heat in the loop, in terms of B0, A, R , 
and a, during the time the magnetic field is

ffl (out of page)

Figure 8-34

reduced fmm B0 to  zero. (AP-C; 1978)
8.25 A spatially uniform magnetic field direc
ted out of the page is confined to  a cylindrical 
region of space of radius a as shown in Fig. 
8-33. The strength of the magnetic field in
creases at a constant rate such that B =  B0 +  Cr 
where B0 and C are constants and i is time. A 
circular conducting loop of radius r and 
resistance R  is placed perpendicular to the 
magnetic field, (a) Indicate on a diagram the 
direction of the induced current in the loop. 
Explain your choice, (b) Denve an expression 
for the induced current in the loop (c) Derive 
an expression for the magnitude of the induced 
electric field at any radius r< a.  (d) Derive an 
expression for the m agnitude of the induced 
electric field at any radius r x i .  (AP-C: 1980) 
8.2b A square loop of wire of side s and resis
tance R is pulled at constant velocity r ou t of a 
uniform magnetic field of intensity B. The 
plane of the loop is always perpendicular to 
the magnetic field. After the leading edge of 
the loop has passed the edge of the B field 
as shown in Fig. 8-34, there is an induced 
current in Lhe loop, (a) O n a figure, indicate 
the direction of this induced current, ib) Using 
Faraday's law of induction, develop an expres
sion for the induced emf if in the loop, (c) Deter
mine the induced current I in the loop,
(d) Determ ine the power required to keep the 
Ioopm oving at constant velocity. (AP-C, 1981)
8.27 Show that Eq. (8.8) is satisfied if M=Cjr.  
[Hint: C om pute s ? „ ,c for an arbitrary r. insert 
the value in Eq. (8.8), and com pute the deriva
tive with respect to r.)
8.28 A charge q, o f mass m, is moving in a
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circular o rb it o f radius p under a centripetal 
force F. In  a  certain time interval, a uniform 
magnetic field is set up in a direction per
pendicular to  the plane of the orbit. Using the 
law of electrom agnetic induction, show that 
the change in the m agnitude of the velocity of 
the ion is Au =  — qpS/2m ,  and that the corre
sponding change in magnetic m om ent is 
Am =  — {q2p 2i4m)39. C om pare with Example 
6.4. {Hint . To obtain the tangential acceleration 
while the magnetic field is changing, use Eq.
(8.6). derived in discussing the betatron.)
8.29 A metallic disk of radius a rotates with 
angular velocity ω  in a plane in which there 
is a uniform m agnetic field parallel to the disk 
axis (see Fig. 8-35). Show th a t the potential 
difference between the center and the rim is 
ytue2 S.

8.30 Referring to  the situation described in 
Section 8.5, (a) show that in the frame of 
reference in which the circuit is a t rest and the 
magnetic field ro tates with angular velocity 
—ω, BSSjdt =  —ω χ  3S. tb) W riteE q. (8.15) with 
this value of d S / o t ; and using the result of 
Problem 16.20, show that the electric field 
observed in this Trame of reference is 
i = i ( ( j i x . f ) x r .  (c) Show that the emf pro
duced by this electric field is the same as the 
em f measured by the observer attached to the

magnetic field. {Hint : N ote that \ r  x dl is 
area of the triangle determ ined b> both vectors 
and that A x B - C = A - B x C . )
8.31 In a region in which a uniform magneto 
field S  exists, the m agnitude of the field is 
increasing at a constant rate that is, B S 'd t= b  
where 6 is a constant vector parallel to eg
(a) Show that accot ding to Eq (8.15), the electric 
field at each point is S =  — jf tx  r. (b) Placing 
the Z-axis parallel to  the magnetic field, ohtain 
the rectangular com ponents of S.  (c) Plot the 
lines of force of the magnetic and the eiectnc 
fields.
8.32 Find the electric flux through a sphert 
concentric with a charge moving witn a high 
velocity. [Hint: Use Eq. (4.27) in G auss’s law.j
8.33 By using the operator V, write the 
Maxwell equations in differential form (Table
8-1). (See Problem  6.17.)
8.34 Show that the equation o f coniinuity 
(8.18) expressed in differential form is Bp/dt = 
—div j.
8.35 Show that in order for the equation of 
continuity as written in Problem  8.34 to 
remain invariant for all inertial observers under 
a Lorentz transform ation, it is necesjary that 
the current and charge density transform 
according to  the law

Ix =
I* - p v  

V l - V 2I c 2 ’

Jz  Jz P  =
p - J xV j c 2

- V 2I c 2 '

W rite the nonrelativistic limit of these expres
sions and discuss their plausibility. {Hi>'r  
Recall that j = p v  is the current density for 
charges moving with velocity u.)
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Time-Dependent Electric Circuits

9.1 Introduction

The circuits considered in Chapter 3 were such that neither the applied emf nor the 
current varied with time. In these circuits the current was constant in magnitude 
and direction; for this reason these circuits are sometimes called direct-current 
circuits. The only parameter that needs to be considered in such circuits is the resist
ance of the different elements that compose the circuit. Jn many instances howevet. 
the applied emf and the electric current vary with time, and then new effects must 
be taken into account. These effects are in general related to the phenomenon of 
electromagnetic induction. In such cases the simple relation V = R I  (where F is the 
applied emf, R is the resistance, and I is the currentj corresponding to Ohm's law 
must be modified to take the induction effects into account.

Consider a circuit carrying a current I (Fig. 9-1). According to Ampere’s law the 
current produces a magnetic field that is proportional to I at each point. The magnetic 
flux through the circuit produced by its own magnetic field is called the self-flux. 
This magnetic flux is then proportional to the current I and may be written

The coefficient L depends on the geometric shape of the conductor and is called 
the self-inductance of the circuit. Self-inductance is expressed in Wb A - \  a unit called 
the henry (H) in honor of the American scientist Joseph Henry (1797-1878). That is, 
H =  Wb A ' 1 =  m 2 kg C ' 2.

9.2 Self-Induction

(9.1)

Fig, 9-1. Self flux in a circuit. Figure 9-2
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\  /

I  increasing 
(a)

■ΠΠΠΠΠΥ

I  decreasing 
0>)

Hg. 9-3. Direction of the self-induced emf in a Fig. 9-4. Representation of a self-inductance.
circuit.

Suppose that the electric current in a circuit is not constant. For example the 
current may be varied by varying either the emf applied to the circuit or the electric 
resistance of the circuit, or by varying both (Fig. 9-2) When the current /  changes 
with time, the magnetic flux through the circuit also changes; and according to the 
law1 of electromagnetic induction, an emf is induced in the circuit. This special case of 
electromagnetic induction is called self-induction. Combining Eqs. (8.1) and (9 1) 
gives the self-induced emf

The minus sign indicates that Vl is opposed to the change in the current. Thus if 
the current increases, dl /dt  is positive and V1 is opposed to the current (Fig, 9-3a). 
If the current decreases, dl/dt  is negative and Vl acts in the same direction as the 
current (Fig. 9-3b). Therefore Vl always acts in a direction that opposes the change 
in the current. When Eq. (9.2) was written, the circuit was assumed rigid and therefore 
L was considered constant when the time derivative was computed. If the shape of the 
circuit is variable, L is not constant; and instead of Eq. (9.2), the self-induced eml is

In diagrams drawn to indicate that a conductor has an appreciable inductance, 
the symbol of Fig. 9-4 is used. However, note that the self-inductance of a circuit is 
not concentrated at a particular point, but is a property of the whole circuit

Example 9.1. Establishm ent of a current in a circuit.

(9.3)

* W hen an emf V  is applied to  a circuit by closing a switch (fig . 9-5), the current does not instaii- 
' •neously attain the value V R  corresponding to O hm ’s law. but increases gradually and lUeadiIy 
aPproaches the value given by O hm ’s law. This process is due to the self-induced emf VL. which 
0Pposes the change in the current and is present while the current increases from zero up to the
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Fig. 9-5. Electric circuit containing a resistance and a self-inductance.

Iinal constant value. The total em f in the circuit is then V-+■ V1 =  V—L(di/dt). O hm 's law is now

RI = V-FV1 or RI =  V -  H d h d t ). (9.4)

The new feature of this equation is that it relates the current in the circuit to the lime rate of change 
of the current. By writing.Eq. (9.4) in the form

Li ih v- RI' (9.5)

the student may see that as the current increases, the time rate of change of the current decreases 
until it becomes 2ero when lhe current reaches the value V R  associated w ith O hm ’s law. To 
show how the current varies with time, Eq. (9.5) may be w ritten asĤH)- I
or with the-variables I and t separated.

d l R 
I — V 'R  L

I

Fig. 9-6. G rowth of the current in an inductive circuit.
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jslote that at f = 0  the current is also zero ( /= 0 ) ;  then

and integration gives

In ( I - V  (R )-In  ( - F  R ) = - ( R / L ) t .  

Using the identity In ex= x ,  the current in the circuit is

J\
(9.6)

The second term in the parentheses decreases with time, and the current asymptotically approaches 
the value F  R that is given by O hm 's law (Fig. 9-6). IfR  L is large, the current reaches this value 
very fast; but if R1L  is small, it may take a long time before the current stabilizes. The student 
niay recognize the m athematical similarity between Eq. (9.5) and the expression for the m otion 
of a body through a viscous fluid: the latter was given in Section 7.9 of Volume I as m(dv/dt)= 
R - K t i v  The following correspondences may be seen: F*-»F. and R— Κη. A

Example 9.2. Decay of the current in the circuit of Fig. 9-7 when the switch is moved from position 
I to position 2.

T Assume that the switch has been in position I for a very long time so that the current in the 
circuit has achieved its lim iting(or steady) value V R. Moving the switch overto  position 2 removes 
the applied emf w ithout actually opening the circuit. The only emf that remains is Vt - - L d I  dl. 
and O hm 's law for the circuit becomes

If time is set at 0 from the instant that F is removed from the d rcu it. the initial current is ViR  
Integratinggives

In / —In (F  R )=  - ( R 1 L)f.

- O  0 0 0 0

Fig. 9-7. Device for removing the emf applied to a 
circuit w ithout changing the resistance.
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V/R

0.63 (V/R)

O t '  r

Fig. 9-8. Decay of the current in a circuit after the emf has been removed.

Removing logarithm s results in

I .  J V I R J m (9.7)

The current decreases exponentially as shown in Fig. 9-8. The larger the resistance R  or the smaller 
the inductance L. the faster is the drop in the current, The time required for the current to drop 
to  1/e. approximately 63 of its initial value, is τ = L/R.  This time is called re lax a’i or nmr  A

Example 9.3. Self-inductance of coaxial cylinders.

T Suppose a circuit is composed of two coaxial, cylindrical, metallic sheets of radii u and b, 
each sheet carrying a current I. but in the opposite direction (Fig. 9-9). The space between the 
cylinders is filled with a substance whose permeability is μ.

In Example 6.1 the magnetic field for this current arrangem ent was com puted as Μ = μΙΙ2nr 
in the region within the two cylinders, and zero elsewhere. The vacuum permeability μ (. used 
in Example 6.1 has been replaced by μ. the permeability of the medium filling the space within 
the two cylinders. T o calculate the self-inductance, the magnetic flux through any section of the 
conductor must be computed. Consider the section PQRS, having a length I. If we divide this
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section into strips of width dr. the area of each strip  is I dr. The magnetic field S  is perpendicular 
Io PQr s  Therefore

(i dr)

J i U  [bd r _ ! 0 l ]n b
In  J0 r I n a

Therefore the self-inductance of a portion of length I is

in - , (9.8)
I I n  a

and lhe self-inductance per unit length will be {μ/2π) In b/a. A

9.3 Energy of the Magnetic Field

In Section 3.2 it was seen that to maintain a current in a circuit, energy must be 
supplied. The energy required per unit time (in other words, the power) is VI. Now  
Eq. (9.4) may be written in the form

V= RI +  L dy .  
dt

Multiplying this equation by I. we have

V I = R l 2 F L I W  (9.9)
dt

According to Eq. (3.10). the term R I 2 is the energy spent in moving the electrons 
through the crystal lattice of the conductor and is transferred to the ions that make 
up the lattice. The last term in Eq. (9.9) is then interpreted as the energy required per 
unit time to build up the current or to establish its associated magnetic field in space. 
Therefore the rate of increase of the magnetic energy is

dI n = I t dL  
dt  dt

The magnetic energy required to increase a current from zero to the value I is thus

E m=  f  d E m= f  L I d I = ^ L I 2. (9.10)
Jo Jo

For example in the circuit of Example 9.3 the magnetic energy of a section of length I 
is from Eq. (9.8)
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E mA  [ M 2 dv2/i J

T h e  m a g n e tic  en e rg y  E m c a n  a lso  be  c a lc u la te d  by u s in g  th e  ex p re ss io n

(9.12)

where the integral extends throughout all the volume in which the magnetic field 
exists, and dv  is a volume element. For example in the case of the circuit of Fig. 9 . 9  

which has been redrawn in Fig. 9-10, the magnetic field is given by Jt =  μ / /2 το·. W Iien 
the volume element is a cylindrical shell of radius r and thickness dr, the volume is 
d v = { 2 n r ) ld r .  Substituting in Eq. (9.12) and remembering that the magnetic field 
extends only from r — a to r =  b yield

e ' πρίο+Μ-αρ  (‘Tu 'f m fc.2μ J0 \ 2 n r )  4π Ja r 4π a

Expression (9.12) may be interpreted by saying that the energy spent in establishing 
the current has been stored in the surrounding space so that an energy (M2 /2 «), dv 
corresponds to a volume dv,  and the energy per unit volume Em stored in the magnetic 
field is

Em =  r  (9.13)

Although expression (9.12) has been justified for the magnetic energy density by 
using a circuit of very special symmetry, a more detailed analysis, not given here, 
would indicate that the result is completely general. When both electric and magnetic 
fields are present, the electric energy density given by Eq. (2.40) must also be con
sidered; and thus the total energy per unit volume in the electromagnetic field is

E =  W j + — M2. (9 14)
2μ

Example 9,4. Energy of the magnetic field of a slowly moving electron

▼ From Section 4,5 a slowly moving charge was shown to produce a magnetic field whose lines 
of force are circles perpendicular to  the direction of m otion and whose magnitude is obtained 
from Eq. (4.16) as

/(n υ sin Θ
3s ^ t A -  t -  4π r

with q =  — e for an electron. Suppose that the crude model of the electron introduced in Example 
2.15. in which R  is the "radius” of the electron, is used. The energy of the magnetic field exterim  
10 the charge is obtained by using Eq. (9.12) with the integral extended over all space outside the 
charge. An appropriate volume clement, illustrated by the ring in Fig. 9-11, has a perim eter equal 
to Inr  sin Θ, and a cross section with sides dr and r dim and therefore an area r dr dO. The volume 
of the ring is

dv =  perimeter x cross section= 2 jrr2 sin Θ dr άθ.
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Therefore Eq. (9.12) gives

= 1 ' N v  Γ *  T si η 3 ° Ι θ =J r r2 J 0
Po V  

2 V4tt 3R

This result gives only an order of m agnitude for the total magnetic energy because the contribution 
from the magnetic field inside the charged particle must be added, and therefore the charge 
distribution inside the particle must be known. The m ost interesting feature o f Em is that it depends 
on μ2 and therefore resembles the kinetic energy of a particle whose mass is

4 π 3  R

In the case of the electron, g =  — e and m = m c so that

_ P 0 2e2_  I 2e2 
m'  4π 3R 4ae0 3R c:

where Eq. (4.18) has been used to eliminate H0. Solving for R yields

Y l Y 1Y3 \4 n e 0mcc I

where re is the radius of th i electron as defined in Eq. (2.45). T hat our rough calculation gives a 
result of the same order of magnitude as in Example 2.15. in which R = 3I c, is a  proof of the con
sistency of the theory since only the order of m agnitude can be estimated, When the present 
result is combined with that of Example 2.15. it seems plausible to think that the rest energy of a 
charged particle is associated with the energy οΓ its electric field, and that the kinetic energy 
corresponds to the energy of the magnetic field. However, it is logical to think that the Irelds
associated with the other interactions existing in nature also contribute to the rest and kinetic
energies of a particle. However, our incomplete knowledge of those interactions makes it impos
sible to  state defi nitely that this is the case. I n fact, the calculations considered b o th in E \am p le2 .!5  
and here are what are known as the determ inations of the self energy of the electron. A

l = 3r '
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9.4 Free Electrical Oscillations in a Circuit

As shown previously three parameters characterize the flow of electricity through an 
electric circuit: the capacitance C. the resistance R, and the self-inductance I .  We 
shall now analyze the way in which the three together determine the current produced 
by a given emf in a closed circuit. If the current I in the circuit of Fig. 9-12(a> is in the 
direction indicated, charges q and — q appear on the plates of the capacitor C  such that

- tdt (9.15)

These charges produce an emf Vc =  —qjC. The minus sign appears because the emf 
opposes the current I as a result of the tendency of the capacitor to dischaige through 
the circuit. At the inductance L  there is another emf equal to Vl =  — L (d l /d t ) accordin 
to Eq. (9.2). [In addition there may be applied to the circuit some other emf, such as 
E shown in Fig. 9 -12(b).]

Consider the situation in which only the two em fs Vl and Vc are present. The 
current in this case has its origin in the charging of the capacitor or in \a iy ing the 
magnetic flux through the inductance or by inserting (and later on removing! an 
external emf before closing the circuit loop. Therefore, applying Ohm’s law, Eq. (3.1), 
gives

RI =  Vl +  Vc or r i — l Z - Ldt C
(9.16)

Taking the derivative of the whole equation with respect to t gives

- L iC l - - A .  I
dt dt C  dt

Using Eq. (9.15) and writing all terms on the left-hand side of the equation yield

- η π π π π τ -
Vi

C 
I I

T T i r9 Λ ' + 9  
Vc

-ΛΛΛΛΛ-
R(a)

Figure 9-12
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Fig. 9-13. Variation of the current of a discharging capacitor as a function of time: (a) when 
RJ < 4L /C ,(b ) when K2> 4L /C .

This expression is a differential equation whose solution gives the current I as a 
function of i. The parameters L1 R. and C characterize the circuit.

Now this equation is formally identical to that corresponding to the damped 
oscillations of a particle; the latter equation [see Eq. (12.45) of Volume I] is

if the following correspondences are established: L—*m, R—λ, l/C<-»/c. Therefore the 
description of the motion of a particle can formally be applied in this case. Assume 
that R2 <4L,'C and introduce the quantities

as the student may verify by direct substitution of I and its derivatives into Eq. (9.17). 
The graph of the current versus time has been given in Fig. 9-13(a). An oscillatory or 
alternating current is established whose amplitude decreases with time when R <  
\jALjC. When the resistance R is very small compared with the inductance L, both 
7 and the last term in the expression for ω may be neglected with the result that 
I = I 0 sin (ω ί+ a ) so that the electric oscillations are undamped and have a frequency

The current as a function of time is then given by the expression

I = I 0e~y( sin (ω ί+α) (9.19)

(9.20)
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This expression is called the characteristic frequency of an LC  circuit, and is equivalent 
to the frequency Co0= J k j m  for an undamped oscillator. N ote that the damping jn 
an electric circuit results from the dissipation of energy in the resistance R. These 
oscillations in which no external emf is applied are the free  oscillations of the circuit 

If the resistance is large enough so that R 2IAIf >  I/LC  or R2 >AL/C.  the frequent- 
cu becomes imaginary. In this case the current decreases gradually without oscillatm 
as shown in Fig. 9-13b. The lower curve in Fig. 9-13b is the special case In which 
R 2 =  ALjC and is called the critically damped circuit.

9.5 Forced Electrical Oscillations in a Circuit

Forced electric oscillations are produced when to the circuit depicted in Fig. 9-12 
is added an alternating emf of the form V=  K0 sin cut as shown in Fig. 9-14. In this 
case Eq. (9.16) now has the form

RI =  Vl + V c +  V0 sin cot.

Repeating the procedure used to obtain Eq. (9.17). differentiate with respect to time 
and arrange the terms as

r d2l  „ dl I
T + R ---F-=COK 0 cos cut. (9.21)

This equation is very similar to that for forced oscillations of a particle [see Fq.
(12.50) in Volume I] with an important difference: the frequency ω appears as a
factor in the right-hand side of Eq. (9.21). The reason is that because of the relation 
I =  dq/dt. the current in an electric circuit corresponds to the velocity v =d x/d t  in the 
motion of a particle. It is reasonable to assume that the current will oscillate with the 
same frequency as that of the applied emf. Therefore the current that satisfies Eq.
(9.21) is given by

I =  I0 sin (cut—a) (0.22)

where a is the phase lag of the current with respect to the applied emf. Substituting 
Eq. (9.22) into Eq. (9.21) gives the current amplitude as

Io ~ ^ r t TIculFTfrfrcf' (9'23)
the phase difference a between the current and the applied emf is obtained from

ruL — 1/cuC
t a n a =   — — , (9.24)

K

which the student should compare with Eq. (12.53) of Volume I.
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Table 9-1. Correspondence between a Damped 
O scillator and an Electric Circuit

Oscillator Electric circuit

Mass. m Inductance, L
Damping, λ Resistance, R
Elastic constant, fc Inverse capacitance, I, C
Displacement, v Charge, q
Velocitv, v=dxldt Current. / =dqjd\
Applied force, F 0 Applied emf, F0

The impedance of the electric circuit is defined as F0 /J0 or

Z  =  sl R 2 +  ( m L - \ , ( a C ? .  (9.25)

The reactance of the circuit is defined

X = O i L - I j m C ,  (9.26)

so that

Z = J r 2T x 2 (9.27)

and

tan K = ^ . (9.28)

The quantities Z, R, X,  and a are related as shown in Fig, 9-15. N ote that both the 
reactance and the impedance are expressed in ohms. For example the term coL
expressed in terms of the fundamental units gives s '  1 H = m 2 kg s“ 1 C “ 2. the same
expression obtained in Section 2.2 for the ohm. [The student can make the same 
verification for the term 1/toC.] If R and X  are expressed in ohms, then in view of its 
definition (9.27) Z must also be expressed in ohms.

L C
 ΗΠΓΗΠΡ---------II—

Vl Vc

V = V o  sin wI

—  *------------------ A W -
I R

Figure 9-14

X  = u ,L - <!>('

Θ
Fig. 9-15. Relation between the magnitudes of 
the resistance, the reactance, and the impedance.
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Reference line
Fig. 9-16. R otating vectors of the current and 
the emf in an ac circuit.

The emf V and the current I can be represented by rotating vectors as illustrated 
in Fig. 9-16. The components of the vectors normal to the reference line aie the 
instantaneous values of V and I. The current I lags or leads the emf according to 
whether a is positive or negative, or ouLis larger or smaller than 1/coC. Figure 9-17 
gives the plot of V and I versus time for the case where I lags V by x.

The power required to maintain the current is

P =  Vl  =  V0I 0 sin ωι sin (ω ί—a)
T (9=  F0Z0 (sin2 cot cos a —sin cot cos cut sin a). ' 1

To obtain the average power required to maintain the current, note that over a 
single cycle or over a long length of time (sin2 ω ί )ave= i  and (sin cut cos Cotleve=O 
Therefore

P m = J V 0I0 cos a =^RZ0. (9.30)

Resonance is obtained when Pavc is maximum, which occurs when a = 0 ; that is, when 
coL =  1/cuC, corresponding to a frequency co =  f  I/LC,  equal to Fq. (9.20). At resonance 
the current has maximum amplitude and is in phase with the emf; the result is maxi
mum average power. The rotating vectors F and I are in phase or superposed (Fig 
9-18a): and the current and emf vary with time as shown in Fig. 9-18b.

Fig. 9-17. V ariation of current and emf as a function of time in an ac circuit.



Forced Flectrical Oscillations Sr· a Circuit

Reference line

\  W

Fig. 9-18. Relation between emf and current when the phase difference is zero (resonance)

As in the case of the forced oscillations of a particle, the general solution of Fq.
(9.21) is the sum of Eq. (9.22) and a transient current given by Fq. (9.19). However 
because of the resistor in the circuit, the term corresponding to Eq. (9.19) quickly 
becomes negligible and only Eq. (9.22) need be taken into account. Nevertheless 
when some modification, such as a variation in L, C, or R, occurs in the circuit, the 
transient term does appear for a short time until the circuit adjusts to the new con
ditions.

Example 9.5. Discussion of an a<ternating-current circuit in terms of the rotating-vector tech
nique.

▼ The results stated in Section 9.5 can be derived very easily by means of the technique of rotating 
vectors. N ote that the equation of the circuit can be written in the form

In the same way that RI  is the potential difference across the resistance R, U d l /dt) and q/C  are 
the respective potential differences (or voltage drops) across the inductance and the Lapacitancc.

Ifil is assumed that I = I n sin (tut—a), the rotating vector ot the current lags that of the emf by 
the angle a (Fig. 9-19). Now consider that the rotating vector of the emf is the sum of the rotating 
vectors corresponding to the three terms on the right in the equation above. N ote that dVdi = 
OtI0 cos (cu t-a ) and q= S  I dt = -  (l/cu)/0 cos (ω ί-α ) .  Therefore

Potential drop across the resistance:

R l  =  R I0 sin (cut—a), in phase with I.

Potential drop across the inductance:

L  =  co/0 cos (cut —a)= cu L /0 sin (cot —α +  τπ). leading I bj n
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- I

Fig. 9-19. R otation vector diagram for the circuit shown in Fig. 9-14.

Potential drop across the capacitor:

J I 0 sin (ωί —a  —J TtI. lagging I by !,π.

The three rotating vectors are shown in Fig. 9-19. in which the reference line is given by the 
rotating vector corresponding to V  Their amplitudes are R I0, OiLI0, and I J a tC . Their resultant 
must be K0 since the three potential drops m ust add up to  the applied emf. Therefore

V 20 = / H / g + L L -  J L Y / J

or
K0 =  J J 2Y cjL  JiiC)1 10.

Solving this equation for I0 gives a result identical to Eq. (9.23). Also, from the figure the phase 
angle a m ay be computed. Its value agrees with Fq. (9.24). The rotating-vector technique is widely 
used in the engineering analysis of alternating-current circuits. A

§~(ά)I0 sin (cut —a)=  (>■(;

9.6 Coupled Circuits

Consider two circuits such as (I; and (2) in Fig. 9-20. When a current Z1 circulates in 
circuit (I), a magnetic field proportional to Z1 is established throughout space- 
through circuit (2) there is then a magnetic flux Φ2, which is also proportional to Z1. 
It is customary to write

V 2 =  M I 1 (9.31)

where M  is a coefficient of proportionality and represents the magnetic flux through 
circuit (2) per unit current in circuit (I). Similarly if a current Z2 circulates in circuit 
(2 ), a magnetic field is produced; and it in turn produces through circuit (I) a magnetic 
flux Φ,, which is proportional to Z2. Hence

Φ  ! =  M Z2. (9 32)
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Fig. 9-20. M utual induction.

Note that Eq. (9.32) uses the same coefficient M  that Eq. (9.31) uses. This common  
element means that the magnetic flux through circuit (I) caused by the unit current 
in circuit (2 ) is the same as the magnetic flux through circuit (2 ) caused by the unit 
current in circuit (I). This common coefficient is called the mutual inductance of the 
two circuits; and one can prove that it must be the same in both cases as indicated. 
In other words, mutual induction is symmetrical. The coefficient M depends on the 
shapes of the circuits and their relative orientation. Mutual inductance, like self
inductance, is measured in henrys since it corresponds to Wb \ - 1 .

If the current Z1 is variable, the flux Φ2 through circuit (2) changes; and an emf 
Kf I is induced in this circuit. This emf is given by

Vu l  =  - M dA I .
dt

The assumption in writing this equation is that the circuits are rigid and fixed in 
space so that M  is constant. Similarly if the current I 2 is variable, an emf U i  is 
induced in circuit (I) and is given by

Vu l  =  - M dJ f . (9.33)

T herefore M is called “mutual inductance” since it describes the mutual effect or 
influence between the two circuits. In addition if the circuits are moved relative to 
each other, the result is a change in M ; and em fs are again induced in both current 
loops.

The equation relating the current in circuit (I) to the parameters of the system is 
found by using Ohm’s law. AU that is needed is to add to Eq. (9.6) the emf Vmi  given 
by Eq. (9.33). That is,

R h = y L1+ v Cx + y Ml

where Vli =  - L 1 d l  Jdt  and Vci =  —q 1jC.  Therefore if the time derivative of the 
Preceding equation is taken (note that I 1 = d q j d t ) ,  instead of Eq. (9.17) the result is
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r d 2I .  d l  I A H 1
L l - d F  +  R t ^ r + C i I i= = ~ (9 34,

Similarly for circuit (2) the equation is

, 1,2h  D d I 2 I .  ^ d 2I 1
ΐ 2 ~ ά ^ +,Κ2Ί Γ + Γ 2 1 2 = ~ Μ Ί Ρ Γ · (9 ·3 5)

Equations (9.34) and (9.35) form a set o f two simultaneous differential equation,, 
similar to Eq. (12.32) of Volume I for two coupled oscillators. The coupling constae* 
is M. The general solutions will not be considered, but from the discussion of me
chanically coupled oscillators we conclude that there will be an exchange of energy 
between the circuits. Common and practical applications of this process art the 
transform er  and the induction generator.  Another application of mutual induction in a 
broader sense is the transmission of a signal from one place to another by producing 
a variable current in one circuit, called the transm itter .  This circuit in turn acts on 
another circuit, the receiver,  coupled to it. This procedure is the case for telegraph, 
radio, television, radar, etc.

Example 9.6. The m utual inductance of the system shown in Fig. 9-21.

▼ The system of Fig. 9-21 consists of a coil that contains N  turns and is wrapped around the 
central portion  of a  toroidal solenoid having n turns per unit length and a cross section of area 5 
It is first necessary to  find the magnetic flux through the solenoid when there is a current in the 
coil, or conversely to  find the magnetic fl ux through the coil wnen there is a current in the solenoid. 
We shall follow the second procedure, which is the easier o f the two. Recall from Example 6-2 that 
in a toroidal solenoid the magnetic field is confined to  the interior of the solenoid and has a value 
& = μ 0ηΙ, given by Eq. (6.7). The magnetic flux through any cross section of the solenoid is

Om =  ^S = Z V iS /

where S  is the cross-sectional area of the solenoid. This flux is the same as the flux through any 
turn of the coil even if its cross section is larger than tha t of the solenoid. Therefore the magnetic 
flux through the coil is

Φ = Ν Φ Μ= μ 0ηΝ5Ι.

Solenoid Figure 9-21



Concluding Remarks

ComParison w' lil (9.31) gives for the m utual inductance of the system

M = f i0nNS,

JiJcJ1 ;s seen to  be a function only of the geometry of the two circuits. This arrangem ent is widely 
,sed in the laboratory when a standard m utual inductance is required, A

9.7 Concluding Rem arks

The most important and fundamental aspect of mutual induction is that energy can 
be exchanged between two circuits via the electromagnetic field. That is. the electro
magnetic field produced by the currents in the circuits acts as a earner of energy and 
transports the energy through space from one circuit to the other. Since mutual 
induction between two circuits is a macroscopic phenomenon, resulting from ele
mentary interactions between the moving charges that constitute their respective 
currents, we may conclude from this phenomenon that the electromagnetic interaction 
between any two charged particles can also be described as an exchange of energy 
via their mutual electromagnetic field.

When two charged particles participate in an electromagnetic interaction, the 
principle of conservation of energy must be restated to include the energy of the field. 
[Recall that the principle of conservation of momentum in Eq. (2.31) also had to be 
restated to take the momentum of the field into account.] Thus the total energy of a 
system of two interacting charged particles is

E - E 1 +  E 2 + E field (9.36)

where E 1 and E 2 are the total energies of each particle, each energy being the sum of 
the kinetic and potential energies resulting from any force acting on the particle, 
and Elidd is the energy associated with their mutual electromagnetic interactions. It 
can be proved that under static conditions (or conditions that vary very slowly with 
time), E lldd corresponds exactly to the potential energy

0102 
p 4 π ί 0Γ12

produced by the Coulomb interaction between the two charges.
It is the sum of the three terms in Eq. (9.36) that remains constant during the motion 

°f two particles if they are subject to no other forces.
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Problems

9.1 The magnetic flux through a circuit carry
ing a current of 2 A is 0.8 Wb. Find its self
inductance. C om pute the emf induced in the 
circuit if in 0.2 s the current is (a) doubled,
(b) reduced to zero, and (c) reversed.
9.2 Find the self-inductance of a toroidal 
solenoid of N  turns. Assume that the radius 
of the coils is very small com pared with the 
radius of the torus.
9.3 A capacitor C that has an initial charge q0 
is connected to  a resistor R. If the switch S 
of Fig. 9-22 is closed, the capacitor discharges 
through the resistor. Show that (a) the current 
in the circuit is

(b) the equation of the circuit is

(c) the charge of the capacitor at time t is

q = q0e~"KC,

and (d> the energy dissipated in the resistance 
by the Joule effect is equal to the initial energy 
of the capacitor. (Hint F or (c), combine (a) 
and (b); for id), com pute the integral J + R l 2 dl.)
9.4 A capacitor C j has an initial charge q0. 
W hen the switch S is dosed  (Fig, 9-23), the 
capacitor is connected in series with a resistor 
R  and an uncharged capad to r C2. (a) Show

that the equation of the circuit is

i  J fi0JLqI =
Ci C1

(b) Find q and I as functions ot time.
9.5 A capacitor C having an initial charge  ̂
is connected to a self-inductance L  of negligible 
resistance (Fig. 9-24). If the switch S is clused. 
the capacitor discharges through the induc
tance. Show that (a) the current in the circuit is

(b) the equation of the circuit is

(c| the charge on the capacitor at time r is 
q = q0 cos on where ω =  I / v  LC so that electric 
oscillations are set up. This arrangem ent is 
used to  obtain high-frequency oscillations.
9.6 A battery of emf V  and negligible internal 
resistance is connected in series with a resis
tance R  and an uncharged capacitor C (Fig,
9-25). After the switch S is closed, show that
(a) the current in the circuit is

where q is the charge accum ulated in the 
capacitor, (b) the equation of the circuit is

+7
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Figure 9-22 Figure 9-23 Figure 9-24
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Figure 9-25

y ^ q /C = R I -  (c) the charge as a function of 

time is

q=VC-( l - e - ,,RC)

and Id) the current as a function of time is

I = iV/R)e l ' :RC.

Plot q and I as functions of time.
9.7 A circuit is composed of a resistance to 
which an alternating emf V= F0 sin cot is 
applied. Show that the current is given by

I = sin cot,

plot the rotating vector of the emf and the 
current, and show that they are in phase. W hat 
is the impedance of the circuit?
9.8 A circuit is composed of an alternating 
emf of amplitude F0 and angular frequency to 
connected to a capacitor C  (a) Find the cur
rent. (b) Draw the rotating vectors correspond
ing to the applied emf and to  the current, 
(cl Plot the current as a function of ω and ot C.
9.9 A t-/(F capacitor is connected across an 
a-c source whose voltage am plitude is kept 
constant at 50 V, but whose frequency can be 
varied. Find the current amplitude when the 
angular frequency is (a) 100 s ~ \  (b) 1000 s _1, 
and (c) 10,000 s _1, (d) Construct a log-log 
plot of current am plitude versus Irequency.
9.10 An inductor of self-inductance 10 M and 
of negligible resistance is connected across the 
source of Problem 9.9. Find the current ampli
tude when the angular frequency is (al 100 s “ *.
(b) 1000 s " 1. (c) 10.000 s “ (dl Construct a 
log-log plot of current am plitude versus fre
quency.

9.11 The voltage am plitude of an a-c source 
is 50 V and its angular frequency is 1000 s ' 1. 
Find the current am plitude if the capacitance 
of a capacitor connected across the source is 
(a) 0.01 /iF. (b) 1.0 fiF, and (c) 100 pF  Id) C on
struct a log-log plot of current am plitude 
versus capacitance.
9.12 Find the current am plitude if the self- 
inductance of a resistanceiess inductor con
nected across the source of Problem 9.11 is 
(a)0.01 H,(b) 1.0 H, and |c) 100 H. id) Consti uet 
a log-log plot of current am plitude versus self
inductance.
9.13 A circuit is composed ol an alternating 
emf ot amplitude F0 and angular frequency ω 
connected to  a self-inductance L. (a) Find the 
current, (b) Draw the rotating vectors corre
sponding to the applied emt, the potential 
drop across the seli-inductance and the cur
rent. lc) Plot the current as a function of v> and 
of L.
9.14 A circuit is com posed of a resistance and 
an inductance in series to which an alternating 
em f F = F 0 sin ω } t is applied Show that the 
impedance of the circuit is J R 1-FkoLI2, and 
that the current lags the emf by an angle t a n '1 
(taL,Ri. {Hint: Plot the rotating vector of the 
current Then, using the results of Problem 
9.13, draw the rotating vectors corresponding 
lo the potential difference or emf across the 
resistance and the inductance. Find their 
magnitude and com pare with F0 to obtain 
the impedance. The angle between the resultant 
rotating vector of the emf and the rotating 
vector of the current gives the phase differ
ence.)
9.15 R epeatthe preceding problem for a circuit 
composed of (a) a resistance and a capacitor, 
and (b) an inductance and a capacitor
9.16 A solenoid has IO'' turns/m  and a cross 
section of 1.2 x 10“ 3 m 2. Around its central 
section a coi! of 300 turns is wound Deter
mine (a) their m utual inductance and (b) the 
emf in the coil if the initial current ol 2 A in 
the solenoid is reversed in 0.2 s.
9.17 Coils A and B have 200 and 800 turns, 
respectively A current of 2 A in A produces a
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magnetic flux of 1.8 x ICT4 W b in each Ium 
of B. C om pute (a) the coefficient of mutual 
inductance, (b) the magnetic flux through A 
when there is a current of 4 A in B, and (c) 
the emf induced in B when the current in A 
changes from 3 A to I A in 0.3 s.
9.18 Two coils are placed coaxially as shown 
in Fig. 9-26. Coil I is connected to an external 
source of emf labeled V. Assume that the 
geometry is such that one-fifth of the magnetic 
flux produced by coil I pass through coil 2, 
and vice versa. The resistances of the coils are 
R I and R 2', and coil 2 is connected to an 
external resistance R  as shown. The numbers of 
turns in the coils are N i and N 2 - The to ta l flux 
produced by coil I is given by

O e = (L 1ZNx)Z1. 
where L 1 is the self-inductance of coil I. 
(a) Find the emf induced in coil 2 when I 1 
increases uniformly from 0 to  Z0 in Js , (b) Find 
the induced emf in coil 2 when I 1 = I„ sin mi
9.19 A coil having N  turns is placed around a 
very long solenoid with cross section S and n 
turns per unit length (see Fig, 9-27). Show 
that the m utual inductance of the system is 
/ i0nN S.
9.20 In the center of a  circular coil w ith radius 
a and N 1 turns, there is a very small coil with 
area S and N 2 turns as shown in Fig. 9-28. 
Show that the mutual inductance is ^ t 0N lN 2S 
cos OJa where 0 is the angle between the 
norm als to the two coils.

CHA LLEN GIN G  PR O B LEM S

9.21 In the arrangem ent shown in Fig. 9-29, 
the capacitor on the left has a capacitance C 
and has been charged to voltage K0 ; the 
capacitor on the right has a capacitance 3C 
and is initially uncharged. The switch is then 
closed. A long time after closing the switch, 
what is the voltage across each capacitor in 
terms οΓ K0? (AP-C; 1971)
9.22 In Fig. 9-30, S  =  100 volts; C 1 =  12 micro
farads; C2 =  24 microfarads; R = IO  ohms.

Initially, C , and C 2 are uncharged, and all 
switches are open, ia) First, switch S 1 is closed. 
Determ ine the charge on C 1 when equilibrium 
is reached, (b) Next S 1 is opened and afterward 
S2 is closed. Determine the charge on C 1 when 
equilibrium is again reached (c) F or 'he 
equilibrium condition of part (b), determine 
the voltage across C 1. (d) S2 remains dosed, 
and now S 1 is also closed. How much additional 
charge flows from the battery? (AP-C; 1975)
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I

Figure 9-29

9.23 Λ uniform electric field S  is established 
between two capacitor plates, each of area A, 
which are separated by a distance s as shown 
in Fig. 9-3Ia. (a) VVhat is the electric potential 
difference V between the plates? (b) Specify 
the sign of the charge on each plate. The 
capacitor is then connected electrically through 
a resistor to a second parallel-plate capacitor, 
initially uncharged, whose plates have the 
same area A  but a separation of only s/2. 
(c' Indicate on a diagram like Fig. 9-3 Ib the 
direction of the current in each wire, and 
explain why the current will eventually cease,
(d) After the current has ceased, which capaci
tor has the greater charge? Explain your 
reasoning, (el The total energy stored in the 
Iwo capacitors after the current has ceased is 
less than the initial stored energy. Explain

qualitatively w hat has become ol this "lost” 
energy. (AP-B, 1978)
9.24 The bridge illustrated in Fig. 9-32 can be 
used to com pare the two inductances L 1 and 
L 2- The bridge is balanced so that the current 
from β to  D is zero at all times when the 
alternating emf V is applied. Show that L 1IL 2 = 
R p R i .
9.25 In Problem 9.24 the resistance of the in
ductances was neglected If their resistances are 
Ri and K2- the procedure is as follows. First 
the bridge is balanced until there is no current 
between B and D when a R nsfcnt emf is 
applied Next the current is balanced as in 
Problem 9.24, without changing the resistance. 
Show that the same relation still holds.
9.26 In the circuit of Fig. 9.33 V= V0 sin cut is 
an alternating cmf. Find the am plitude and

/i Galvanometer

< 1 0 .

'v^ r tn n rH H

Figure 9-32 Figure 9-33
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I

Figure 9-34

phase relative to the emf of the potential differ
ence Kut, Vbc, Vci, Vac, KM. {Hint: Draw the 
corresponding rotating vectors, as indicated 
before in Fig. 9-19.)
9.27 An alternating emf having a maximum 
value of 100 K and an angular frequency of 
120π s “ 1 is connected in series with a  resis
tance of 1Ω, a self-inductance of 3 x IO-3 H. 
and a capacitor of 2 x 10 ' 3 F. D eterm ine (a) the 
am plitude and phase of the current, and (b) the 
potential difference across the resistance, the 
inductance, and the capacitor, (c) M ake a 
diagram showing the rotating vectors corre
sponding to  the applied emf. the current, and 
the three potential differences, (d) Verify that 
the three potential difference vectors add to 
the emf vector.
9.28 If I rm, and Krire in an a-c circuit are the 
root-m ean-square values of the current and 
the emf over one cycle, show that

I = ‘t1 rnis I I
V 2

I

Figure 9-35

and

Psve =  LnsKm, cosot

where a is the phase angle between the current 
and the emf.
9.29 A circuit consists of an alternating emi 
having a maximum value of 100 K, a resistance 
of 211. a self-inductance of 10 3 H, and a 
capacitance of IO-3  F. all connectea in series. 
Find the maximum value of the current for 
the following values of the angular frequency 
o fth eem f:(a )0 ,(b) 10s-1 , (c) IO2 s - % I d 'resun- 
ance, (e) IO4 e -1 . and (f) IO5 s ' ·  Plot the 
current against the logarithm  of the frequency.
9.30 \  circuit is composed of a resistance and 
an inductance in parallel as shown in F ig. 9-34. 
Show that the resultant im pedance of the 
circuit is given by

and the phase by ta n -1 (R/wL). {Hint: Plot 
the rotating vector of the applied emf. Then, 
using the results of Problems 9.13 and 9.14, 
draw the rotating vectors corresponding to  the 
current in the resistance and the inductance

Figure 9-36 Figure 9-37
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Their resultant gives the total current from 
which the impedance and the phase difference 
are obtained.)
9.31 Repeat the preceding problem for the 
circuit illustrated in Fig. 9-35.
9.32 Repeat Problem  9.30 for the circuit illus
trated in Fig. 9-36.
9.33 Repeat Problem  9.30 for the circuit illus
trated in Fig. 9-37.
9.34 A coil having a  resistance of 1Ω and a 
self-inductance of IO-3  H is connected in 
parallel with a  second coil having a resistance 
of I Ω and a self-inductance of 3 x  10 3 H. An 
alternating emf having an am plitude of 10 V 
and an angular frequency of 120π s_1 is con
nected to the system. Calculate (a) the current 
across each coil, (b) the total current, (c) M ake 
a plot showing the rotating vector for the emf. 
the current in each conductor, and the total 
current, (d) Verify that the vector of the total 
current is equal to the sum of the vectors of 
each current.
9.35 A circuit is composed of an inductance 
and a capacitor in parallel, connected in series 
with a resistance R  as shown in Fig. 9-38. 
la| Draw the rotating vectors corresponding 
lo K l L, I c, RI, VL, and Vc. (b) Show that the

I'

Figure 9-39

impedance of the circuit is J Z  = [R 1 + W1L 2I 
(I - W 2L C I2] 1 2. (c) W hat is the value o f the 
impedance when ω  =  11J L C I  (In this case 
there is said to  be antiresonance.) (d) M ake a 
rough sketch of the current versus the fre
quency. (Him:  N ote that the rotating vectors 
of the currents through L and C must add to 
the current through R, but those corresponding 
to the potential difference m ust be identical 
To assist the student, the rotating vector 
diagram has also been shown.)
9.36 A circular coil of radius a, resistance R. 
and self-inductance L  rotates with a constant 
angular velocity around a diam eter perpendic
ular to  a uniform magnetic field (see Fig. 9 39). 
Find (a) the emf induced and the current in the 
coil, (b) the average values of the x-  and y- 
com ponents of the magnetic field produced by 
the coil at O, and (c) the angle with the X-axis 
made by a m agnetic needle placed at O.
9.37 Verify by direct substitution that Eq. 
(9.22) is a  solution of Eq. (9.21) if I 0 and a  are 
given by Eqs. (9.23) and (9.24), respectively. 
(Hint: First expand sin (cut—a) and ieplace 
sin a and cos a by their corresponding values 
as derived from Eq. (9.24),)
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Waves

O f all concepts used in physics, two can be understood intuitively by all people, n, 
matter what their cultural level. These concepts are particle and wave. To the avera=. 
person. a particle is a small portion of matter where “small” normally is decided m 
terms of an anthropomorphic scale and means small relative to the environment ot 
the particle. Similarly waves are ordinarily pictured in terms of the waves observed 
on the surface of water on a string, or on a spring.

The physicist uses the concept of particle in a somewhat more abstract and funda
mental sense so that a great variety of physical situations may be adequately treated. 
The concept of the wave undergoes a similar transformation; the physicist has e x 
tended the concept and applied it to a large number of phenomena that do not 
resemble a wave on the surface of water, but that have the same mathematical descrip 
tion. The following chapters present a general discussion of wave phenomena in this 
broad sense.

Several types of waves will be analyzed w ith special emphasis on electromagnetic 
waves. In each case the student must concentrate on understanding the physical 
situation described and the mathematical framework used, and must avoid the 
inevitable temptation merely to picture all waves as those on the surface of a liquid. 
The most important aspects of waves are the velocity of their propagation and the 
modifications they suffer when the physical properties of the medium change (to 
produce reflection, refraction, polarization), when different kinds of obstacles are 
interposed in their paths (to produce diffraction, scattering), or when several waves 
coincide in the same region of space (to produce interference). These are the specific 
topics to be covered; the primary purpose of this portion of the text is to enable the 
student to attain a fundamental understanding of the wave description of physical 
phenomena, namely the propagation of a physical situation described by a time- 
dependent field.
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Wave Motion: Elastic Waves

10.1 Introduction

When a bell is struck, sound is heard at distant points; sound :s transmitted through 
the surrounding air. If a speeding boat passes at some distance from the shore, the 
wake that the boat has produced eventually reaches the shoie. When a light buU 
is turned on, the room is filled with light. Section 8 11 demonstrated that it is possible 
to transmit an electromagnetic signal from one place to another as a result of the 
physical relations between die electric and magnetic fields. Although the physical 
mechanism may be different for each of the processes just mentioned, they all have a 
common feature: they are physical disturbances that are produced at one point in 
space, propagate through space, and produce an effect later at anodier point. The 
propagation of any of these disturbances through a medium is an example of wave 
motion.

To examine the matter more generally, consider a physical property described bv a 
certain field. This field may be an electromagnetic field, the deformation in a spring, 
the pressure in a gas, the strain in a solid, the transverse displacement of a string, or 
even the gravitational field. Suppose that the conditions at one place become time 
dependent or dynamic so that a perturbation of the physical state o f the system 
occurs at that place. The physical properties of the system, which are described by 
the time-dependent equations of the field (such as Maxwell’s equations for the 
electromagnetic field), result in the propagation of this disturbance through space. 
The disturbance disrupts the static conditions at other places.

JU

Fig. 10-1. Elastic waves (a) of a  spring, (b) in a  gas, and (c) on a string.



jn.2) Mathematical Description of Ware Motion

For example consider the free surface of a liquid. The field in this case is the Jis- 
lacement of each point of the surface relative to the equilibrium position. Under 

equilibrium or static conditions the free surface of a liquid is plane and horizontal; 
but if at one Point the conditions at the surface are disturbed by dropping a stone 
into the liquid, it is well known that this disturbance propagates in all directions 
along the surface of the liquid. To determine the mechanism of propagation and its 
velocity, one must analyze how the displacement of a point at the surface of the 
liquid affects the rest of the surface. This analysis produces the dynamical equations 
for the process. These equations then enable us to obtain quantitative information 
about the variation in space and time of the disturbance.

In this chapter the general characteristics of wave motion are first discussed and 
then followed by specific examples. M ost of the examples will correspond to elastic 
waves in a substance. (See Fig. 10-1.) In most of these cases the molecular structure 
of matter may be ignored and a continuous medium can be assumed. This assumption 
is valid as long as the space fluctuation of the wave (determined by the wavelength) is 
large compared with the intermolecular separation of the medium supporting the 
wave motion.

Consider a function ξ=]'(χ).  represented graphically by the solid curve in Fig. 10-2. 
If every point of the curve is translated a distance Δ χ = α  to the right (or to the left) 
without deformation, then the value ol the function at each new point, say x', is the 
same as the function’s value at x ’ —a (or x'-t-α). Thus f ( x —a) represents the curve 
displaced without deformation to the right by an amount a. and similarly f i x +  a) 
represents the same curve displaced to the left by an amount a.

Now consider a continuous displacement of the curve f(x).  When the curve is 
displaced a distance Ax from the curve’s position at time r = 0  in a time At with a 
velocity v. such that a = Δ χ =  vAt =  vt (where v is called the phase velocity), then a

10.2 IVIathematicrI Description of Wave Motion

Fig. 10-2. U ndistorted translation of a function ς(χ).
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Fig. 10-3. U ndistorted propagation of a wave (a) to the right and (bl to the left, (c) Waves prop
agating in opposite directions produce additive results where the waves interfere.

“pulse” is “traveling” along the x-direction (Fig. 10-3). Therefore a mathematical 
expression of the form

ξ(χ, t )=J{x  +  vt) (10.1)

is adequate for describing a physical disturbance that travels or “propagates” without 
deformation along the positive (or negative) X-axis; this propagation is the character
istic feature of wave motion. The quantity ς(χ. f) may represent a great diversity of 
physical quantities, such as the deformation in a solid, the pressure in a gas. an 
electric or magnetic field, etc.

An especially interesting case is that in which ξ(χ, r) is a sinusoidal or harmonic 
function such as

ξ(χ, ί) =  ξ0 sin k(x — t)t) =  i 0 sin [k(x — v t )+2 n\ .  (1 0 .2 )

The quantity k has a special meaning. When the value of x is replaced by x +  2n/k, 
the function ζ(χ, f ) has the same value; that is.

=  £ 0 sin [Mx — ι?ί)+2 π] =  £ 0 sin k{x—vt) 

=  C(x. t).
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Fig. 10-4. H arm onic wave.

Then

A = -
k

(10.3)

is the “space period” of the curve in Fig. 10-4; that is, the curve repeats ,self every 
length λ. The quantity A is called the wavelength, and the quantity k =2π/Λrepresents 
the it umber of wavelengths in the distance 2π a nd is called the wave number:'Therefo re

2 π
£(χ, ί) =  ξ0 s*n k(x — νί) =  ξ0 sin —  (x -u t) (10.4)

represents a sinusoidal or harmonic wave of wavelength λ propagating iothe right 
along the X-axis with a phase velocity v. Equation (10.4) can also be written in the 
form

ξ(χ, ί) =  ξ0 sin (kx — cat)

where

ω =  kv =
2πν

(10.5)

( 10.6)

is called the angular frequency of the wave. According to Eq. (12.2) ofVolume I, 
ω = 2 πν where v is the frequency with which the physical disturbance varits at every 
point x; therefore

λ ν = ν ,  (10-7)

which relates the wavelength, the frequency, and the phase velocity of a rave. Thus 
if P, the period of oscillation at each point, is given by P =  1 /ν =  2π/ω, Eq. 1 0  4) may 
be written in the form

£(x, i ) = £ 0 sin 2ii f i - i Y
VA PJ

( 10.8)

‘Sometimes the term wave number is reserved for I,// or k/2n. corresponding to lie number of 
wavelengths in one unit of length.
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Fig. 10-5. Harmonic wave propagating to the right. The wave advances the distance λ in the time P 

Similarly

ξ(χ, f) = £ 0 sin /c(x +  ur) =  <!;0 sin (kx+cot) 

=  ξ0 sin 2 j r ( j + p ) U 0.9)

represents a sinusoidal or harmonic wave moving in the — N-direction.
It is instructive to look at the space distribution of ξ(χ. t) at different, successive 

time intervals. The function ξ(χ. i) has been represented in Fig. 10-5 at times t0, 
t0 +  P/4. t0 +  P/2, f0 +  3P/4, and t0 +  P. Note that while the wave itself propagates 
to the right, it repeats itself in space after one period. The reason for this repetition 
is that from Eq. (10.7)

λ =  ν/ν =  νΡ.



10.3)
Fourier Analysis of Wave Motion

hich shows that the wavelength may also be defined as the distance advanced by 
Jie wave in one period. Therefore in sinusoidal wave motion there are two 
ieriodicities: one in time, given by the period P. and one in space, given by the wave
length λ, with the two related by X = vP.

The student may easily verify that the general expressions (10.1) for a traveling 
harmonic wave may be written in the alternative form

ξ{χ, t )  =  F ( t ± x j v )

where the positive sign corresponds as before to propagation in the —X-direction 
and the negative sign to propagation in the +  X·-direction. Thus if we choose this 
functional form for ξ{χ, t) we may write

ξ(χ, r) =  £ 0 sin ω ( ί± χ /ν)  =  ξ 0 sin (ωί +  fcx) ( 1 0 . 1 0 )

instead of Eq. (10.5) and (10.9).

Example 10.1.The wavelength of sound from a tuning fork that oscillates with a frequency of 
440 Hz. (The velocity of sound in air is =:340 m s - ’.)

T Equation (10.7) may be rewritten as X=v/v  so that

Ό 340 m s  1 
X = - =  .TTtT— =0.772 m. A

V 440 H z

Example 10,2. The wavelength of light in the red region of the visible spectrum. The frequency 
corresponding to  red light is 5:5 x IO14 Hz. (Light in vacuum  propagates with a velocity of 
3 x1 0 s m s -1 .)

▼ Applying Eq. (10.7) as in Example 10.1 gives

v 3 x 10s m s ' 1 7
λ ~ ~ = ~ΐ— ini4~Tj— =  x m 'v 5 x IO14 H z

From these two examples the student should get a  feeling for the vast difference (six orders of 
magnitude) between the wavelength of audible sound and tha t of visible light. A

10.3 Fourier Analysis of Wave Motion

According to Fourier’s theorem in Section 12.14 of Volume I, any periodic motion  
may be expressed as a superposition of simple harmonic motions of frequencies 
ω, 2co,. . . .  ηω, . . .  or periods P, P / 2 , . . ., P h i ,  It is usually convenient to analyze
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Fig. 10-6. Arbitrary waveform periodic in time as viewed from a fixed spatial position x.

an arbitrary periodic motion by Fourier’s theorem because simple harmonic motions 
are well understood and obey simple equations.

In Section 10.2 simple harmonic waves were shown to have a dual periodicity in 
space and time; we will now show that an arbitrary waveform that is periodic in
either space or time must be periodic also in the alternate variable so that the entire
waveform may be expressed in terms of superposition of simple harmonic waves.

Let ξ  =  f ( x — v t ) be a wave motion periodic in time; that is, a motion that at a given 
point in space has the same value at times P. I P , . . . ,  n P , . . .  (Fig. 10-6). In other words

ξ —f i x  — fit) = / [ x  — v( t ±  nP)] = / ( x —v t +  nvP).

However since λ  =  νΡ, at a given time t  the displacement ξ  has the same value at 
points separated by the distances vP. 2v P , . . . , n v P ,  Therefore if instead of chang
ing t .  we change x by the amount A =  uP. the wave repeats itself in space (Fig. IO-7). 
Thus a wave motion periodic in time is also periodic in space.

As discussed in Section 12.14 of Volume I, Fourier’s theorem can be written

ξ  = /(m ) =  a 0 +  Li1 cos w +  a 2 cos 2m +  ■ · ■ + a „  cos nu

+  6 , sin  u +  b 2 sin  2m +  · · · + b „ s in  nu  ( 10.11)

where f ( u )  is a function periodic in the variable u with a periodicity of 2π. For our 
purposes u can be either x  or t: and the periodicity is either A or P , respectively. Thus 
for example

ξ =  f ( x —v t ) = a 0 +  M1 cos [fcx- ω ι ]  +  α2 cos [2(/cx —ω ί)]+  · ■ ·

Fig. 10-7. Arbitrary waveform periodic in space as viewed at a fixed time i.
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where k =  2njX and W = I n j P .  This expression is just another way of writing the more 
general principle of the linear superposition of waves:

a n y  period ic  w ave m otion  can be exp ressed  as a linear superposit ion  
o f  harm onic  waves o f  f r e q u e n c ie s  ω, 2ω, . . . ,  iitu and  w avelengths λ , 
λ,/2 ,λ,Ιη.

The coefficients α„ and b„ for each of the harmonic terms in Eq. (10.11) can be 
obtained by using the orthogonality properties of sines and cosines; that is, for the 
dimensionless variable u , with period 2π

I Γ2π

α ° = 2π  J0 f ( u U u ·

a n = ~  j  f{ucos nu d», (10.12)
π  J o

and j /*2s
b „ = ~  I /(« )  sin n ud u .

The Fourier method is useful not only for analyzing periodic curves but even for 
analyzing nonperiodic curves, such as the pulse of Fig. 10-8. The main difference 
between this case and the discussion in the text is that instead of the analysis giving a
set of d iscre te  wavenumbers k. 2k, 3k, . . . nk or a discrete frequency spec trum  ω,
2ω, 3ω, . . . , η ω , . . . , the curve must be analyzed in terms of a continuum of wave
lengths or continuous spectrum of frequencies. The amplitude corresponding to 
each wavelength or frequency is given by a continuous function of k or ω  and is 
called the F ourier  transform  of the pulse. For a particular pulse form there is always a 
unique Fourier transform.

Consider the pulse given in Fig. 10-8. Such a pulse could be produced by allowing a 
loudspeaker to oscillate for only a short interval. If the curve of Fig. 10-8 had extended 
from — oo to +  oo in space, no Fourier analysis would be necessary because the curve 
would have only one wavenumber, k0. However in order that the curve may be 
annihilated for x < x t and x > x 2, other wavenumbers must be added so that the 
resultant Fourier series in those regions is zero. Therefore a finite pulse in space is a 
composite of many wavenumbers even if the source has a single well-defined 
frequency.

Fig. 10-8. A harm onic pulse in space.

X
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A(k)

Exam ple 10.3. Fourier analysis of a wave described at time f = 0  by the function f ( x I shown in 
Fig. 10-8. The expression for this wave is

ξ =  Α sin k0x

in the interval A x= X 2- X 1, and zero outside that interval. This type of wave is called a puke  or 
Hiiue packet.

T It may be proved that the am plitude function for k (i.e.. the Fourier transform of the pulse) is 
given by

F {k)= \A A x
sin (-[ΔχΔJc)

(^AxA k)

where A x = X 2 - X 1, the length of the pulse, and  AJc=Jc-Jc0. This amplitude function is illustrated 
in Fig. 10-9. W hen Ak=O  o r Zc=Jf0, the function has a maximum o f j A A x  because the value of 
the term within the square brackets in the equation above tends toward unity as Ak tends toward 
zero. Furtherm ore because the num erator of the term within the brackets never has a magnitude 
greater than one, as the value of Ak  increases in absolute value, the value of F(Jc) decreases in an 
oscillatory manner. T herangeofvalues of Je for which F(Jc) is greater than 50 percent o f the central 
maximum corresponds roughly to  the condition

[T ΔχΔ/cl <  o r ~ E ~ < A k < E -  
12 2 Δ χ Δχ

Thus the only wavenumbers whose amplitudes are appreciable are those in the range Ak  around 
Jc0 given by

A x A k - In.  (10.13)

This equation indicates that the shorter the space length of the pulse, the larger the range of 
wavenumbers required to  represent the pulse accurately. Similarly one may consider a pulse in 
time and obtain a Fourier transform of frequency amplitude centered around the single frequency 
of oscillation where the relationship between frequency and time is

AwAt-  2π. (10.14)
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Equation (10.14) indicates that the shorter the time interval o f a single frequency pulse, the larger 
the range o f frequencies required to represent the pulse accurately. A

A second step is an investigation of how to determine when a given time-dependent 
field propagates as a wave without distortion. The fields associated with each physical 
process are governed by dynamical laws (characteristic of each process). These laws 
can be expressed in the form of differential equations as in the case of the electro
magnetic field. We may look therefore into the possibility of finding a differential 
equation applicable to all kinds of wave motion. Then every time its physical proper
ties indicate that a particular field satisfies such an equation, we may be sure that the 
field propagates through space with a definite velocity and without distortion * 
Conversely, if experiment shows that a field propagates in space with a definite 
velocity and without distortion, the field can be described by a set of equations 
compatible with the wave equation.

The equation we shall encounter over and over that describes a wave motion 
propagating with a definite velocity v and without distortion along either the +  X- 
or the — X-direction is

This expression is called the differential equation of  wave motion. The general solution 
of Eq. (10.15) is of the form of Eq. (10.1):

Thus the general solution of Eq. (10.15) can be expressed as the superposition of two 
wave motions propagating in opposite directions. O f course for a wave propagating 
in one direction, only one of the two functions appearing in Eq. (10.15) is required. 
However when (for example) there are an incoming wave along the +X-direction  
and a reflected wave along the -X -d irection . the general form of Eq. (10.16) must 
be used.

To prove that an expression of the form of Eq. (10.16) is a solution of the wave 
equation (10.15) we must first introduce some mathematical results. When there is a

‘ This technique was used in C hapter 12 of Volume I, in which an oscillatory motion was shown to 
follow an equation of the type d^x/dt1 +cuzx = 0, and this equation was used to identify several 
types of simple harm onic motion, once the physical laws of m otion associated with this equation 
were understood.

10.4 Differential Equation of Wave Motion

(10.15)

i(x , t I=C1(X-Vt)  + f 2(x+vt ) . (10.16)
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function y =  f(u)  where u is, in turn, a function of x  [that is, w(x)], then we can write

dy dy du 
dx du dx

This expression is called the chain rule for derivatives. For example if y = s in  (3 χ 2) 
then y =  sin u, u =  3x2, dy /du =  cos u, and du/dx =  6 x so that

d y / d x = { cos u)(6 x ) = 6 x cos 3x2.

Now apply the chain rule to £ = f ( x ± v t ) .  In this case make u = x ± v t  so that ζ = y ( m  
Because u is a function of two variables, x and t, we have to use partial derivatives 
where Bujdx =  I and du/dt =  ± v .  Then since ξ is also a function of two variahles. its 
partial derivatives are

Β ζ _ ά ξ Β υ _ ό ξ  δ ξ _ (Ιξοι1_ + ι άξ
δχ du dx du ’ dt du dt ~  du

Taking second derivatives gives

δ2ξ _ ^ / δ ξ \ Β α _ ά 2ζ
d x 2 du  \ d x )  d x  d u 2 ’

δ 2ξ  d  ( B d A d u  (  d 2t \  , £ ξ

dt1 ~ d u  )  S t  " ( 1 H m 2J  ( ± υ ) _  l’ d u 2 '

Combining these two equations to eliminate ί/2ξ/</η2 gives Eq. (10.15), proving that 
ζ = / ( x ± u t ) i s a  solution of the wave equation, independent of the form of the function 
f. Since the wave equation is linear, the general solution is of the type indicated in 
Eq. (10.16).

As a concrete example, we may verify that the wave equation (10.15) is satisfied 
by the sinusoidal wave, ξ =  ξ0 sin k(x — vt). The partial space and time derivatives 
of ξ are

^ = k ξ 0 cos M x - ui), _ ^2£o s· 11 Mx —vt);

Βξ Β2ξ
—  =  — cos k{x  — v t ), -γ - j  =  — Jc2B 2ξ 0 sin k ( x — vt).

Therefore Β2ξ/δι2 =  ν2δ2ξ/Βχ2, in agreement with Eq. (10.15).
To provide a better understanding of the fundamental ideas of wave motion, certain 

kinds of waves that are more or less familiar to the student will now be considered. 
The student must note that in the waves to be discussed in the succeeding sections. 
Eq. (10.15) results from the dynamical laws of the process, considered together with 
certain approximations such as small amplitude or long wavelength, etc. Therefore 
the theory related to Eq. (10.15) is applicable only under the stated approximations.
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Fig. 10-10. The forces on any section of a rod under stress are equal and opposite.

1 0 . 5  E l a s t i c  W a v e s  i n  a  S o l i d  R o d

If a disturbance is produced at one end of a solid rod, say by hitting it with a hammer, 
the disturbance propagates along the rod and eventually is felt at the other end. An 
elastic wave has propagated along the rod. In this section we will examine this elastic 
wave and show how its velocity of propagation is related to the physical properties 
οΓ the rod. Consider a rod that has a uniform cross section A  and is subject to a stress 
along the axis as indicated by the force F.  The force F  is not necessarily the 
same at all sections, and may vary along the axis of the rod. At each cross section 
(as shown in Fig. 10-10) there is a normal stress defined as the force per unit area 
acting perpendicular to the cross section in either direction. Then

y = - .  (10,17)
A

The stress is expressed in N  m -2 , a unit called the pascal (Pa) to honor the French 
scientist Blaise Pascal (1623-1662).

Under the action of such forces each section of the rod suffers a displacement ζ 
parallel to the axis. If the displacement is the same at all points of the rod. there is no 
deformation but simply a rigid displacement of the rod along its axis. We are interested 
in the case in which there is a deformation so that ξ varies along the rod: that is, ξ is a 
function of x. Consider two sections A and A' separated by a distance dx in the un-
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Fig. 10-11. Exaggerated diagram  of a longitudinal wave in a rod.

disturbed rod (Fig. 10-11). When forces are applied to the rod, the section A is dis
placed a distance ς: and the section A’, a distance ξ'. The separation between A and 
A' in the deformed state is then

ά χ + ( ξ ' - ξ ) = ά χ  +  άξ

where άξ =  ζ  — ξ. The deformation of the rod in that region has therefore been άξ. 
The normal strain e in the rod is defined as the deformation along the axis per unit 
length. Since in this case the deformation άξ corresponds to a length dx, the strain 
in the rod is άξ/dx. More generally

" , - V  ,Η ,Ιδ '

When there is no deformation, ξ is constant and e = 0 :  that is, there is no normal 
strain when there is no deformation. The strain, being the quotient of two lengths, 
is a pure number or dimensionless quantity.

The relation that exists between the normal stress Cf and the normal strain t of the 
rod is called Hooke's law:

within the elastic limit o f  the material, the normal stress is proportional 
to the normal strain;

OT

SF=Ye  (1019)

where the proportionality constant Tis called Young’s modulus of  elasticity after the 
Englishman Thomas Young (1773-1829). This law was first stated by the Englishman 
Robert Hooke (1635-1703). Hooke’s law is a good approximation for the elastic 
behavior of a substance as long as the deformations are small. For large stresses and 
deformations. Eq. (10.19) no longer holds, and the description of the physical situaiion 
becomes much more complicated.

Table 10-1 gives the elastic constants for certain materials. These constants are 
Young’s modulus T; the bulk modulus k , defined later in Eq. (10.27); and the modulus 
of rigidity or shear modulus G, later defined in Eq. (10.38).
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Table 10-1. E lasticC onstan ts(IO 11Pa)

Material Y K G

Aluminum 0.70 0.61 0.24
Copper 1.25 1.31 0.46
Iron 2.06 1.13 0.82
Lead 0.16 0.33 0.054
Nickel 2.1 1.64 0.72
Steel 2.0 1.13 0.80

In tro d u c in g  Eqs. (10.17) a n d  (10.18) into Eq. (10.19) a n d  so lv in g  fo r F y ie ld s

,3 «F = Y A
dx

( 10.20)

For the case of a rod or wire in equilibrium with one end fixed at point O (Fig. 10-12) 
and subject at the other end B to a force F, the force at each section must be the same 
and equal to F. Then integrate Eq. (10.20) with F constant to obtain the deformation 
at each section:

r{ F rx e F
or c =  —-  x.M J > Y A

In particular the deformation I at the free end B is obtained by making x =  L so 
that I =  F Lf YA. This relation provides the basis for the experimental measurement 
of Young’s modulus

When the rod is not in equilibrium, the force is not the same along the rod. As a 
result, a section of the rod of thickness dx  is subject to a net or resultant force For 
example in Fig. 10-11 the side B' of the section of thickness dx  is subject to a force F' 
toward the right because of the pull of the right part of the rod; and the side B is 
subject to a force F pointing to the Iett because of the pull of the left part of the rod. 
The net force to the right on the section is F1—F = d F = ( d F / o x )  dx. Given that p is the 
density of the material of the rod, the mass of the section is d m = p  d V = p A  dx where 
A dx is the volume of the section. The acceleration of this mass is δ2ξ/δί2. Therefore 
applying the dynamical relation force =  mass x acceleration gives the equation of 
motion of the section as
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In this problem there are two fields; one is the displacement ξ o f each section 
the rod where ξ is a function of position and time; and the other is the force F 
each section where F is also a function of position and time. These two fields are 
related by Eqs. (10.20) and (10.21). These two equations, called the differential equa 
tions of the elastic field of a deformed rod. describe the physical conditions ot 1 1, . 
problem. These equations are the mathematical equivalent of Maxwell’s equation, 
for the electromagnetic field. Taking the derivative of Eq. (10.20) with respect to v gjves

dJ - = Y A * * .  Idx Sx2

This equation can be combined with Eq. (10.21) to give the wave equation for the 
elastic field as

θ2ξ Y δ2ξ
,1U221

This equation is similar to Eq. (10.15), and therefore one may conclude that the 
deformation field ξ propagates along the rod with a phase velocity

(10.23)

a result confirmed experimentally by independently measuring the three quantities 
Equation (10.23) checks dimensionally since Tis expressed in Pa and p  in kg m ~3. 
Therefore their ratio is (Pa) (kg m ' 3)_ 1 = (N  m ~ 2) (kg m ' 3)_ 1 = m 2 s ' 2, which is 
the square of a velocity. In view of relation (10.20). it can be shown (see Example 10.5) 
that the force field F satisfies a similar equation,

W- 1M -
indicating that the force field propagates along the rod with the same phase velocity 
as the displacement field.

The wave described by Eqs. (10.22) and (10.24) corresponds to physical properties, 
deformation ξ and force F. oriented along the direction of propagation of the wave; 
i.e., along the X-axis. This kind of wave motion in which the field variations are in the 
same direction as the direction of propagation is called longitudinal wave motion.

It is important to recognize that the field equations (10.20) and (10.21) imply the 
wave equations (10.22) and (10.24), but the reverse is not true since other field equations 
may also imply a wave equation. Therefore the fundamental field equations of the 
problem are (10.20) and (10.21); the wave equations (10.22) and (10.24) are a con
sequence of the field equations.



EIastir Wai cs in a Solid Rod

Example 10.4. Velocity of propagation of longitudinal elastic waves in a steel bar.

f  Using the values of T able 10-1 and a value of 7.8 x IO3 kg m 3 for the density of steeL we have 
from Eq. (10.23) that

IY I 2.0x10“ Pa
u =  / —=  /— — —=:---------r= 5 ,06  x IO3 m s .

y  p y  7.8 x IO3 kg m

The experimental value is 5.10 x IO3 m s " 1 a t 0: C. This value should be compared with the 
velocity of sound in  air: about 340 m s ' 1. A

E xam ple 10.5. The wave equation for the force field F{x, t) that propagates along a rod.

T Beginning with the relation [given by Eq. (10.20)] for the applied force as a function of the 
variation in the displacement, we may find that the second derivative of F with respect to  time is

S-M jK ,Pr Pr

From Eq. (10.21) we find the acceleration δ 2ξ /δ ί2 as (I/pA)6F/8x, which when substituted into the 
right-hand side of the equation above yields

' 'Si =  Y A  — 'SxC
Bx C X

0 0
Sr  cx

I CF

p  A  δχ

Y i 2F 
p S x 2 '

This expression is Eq. (10.24); thus both the force field and the displacement field are shown to 
propagate along the rod with the phase velocity J  Yfp. A

Example 10.6. Longitudinal waves in a spring.

When a disturbance is produced in a stretched spring, and ξ  is the displacement suffered by a 
section of the spring, the force at that section is F = K (Sifcx)  where K  is the elastic m odulus of 
the spring. This equation is the equivalent o fE q. (10.20) for a bar. The coefficient K  should not be 
confused with the elastic constant k of the spring. To obtain the relation between K  and k. note 
that if the spring of length L  is stretched slowly until its length increases by /, the force L must 
be the same at all points of the spring in equilibrium. Thus S i fd x = H L  and F=(KfL)I.  Therelure 
k= K L o t  K = kL. Now consider a  section of the spring oflength  d x .a is  the mass per unit length 
of the spring, and a d x  is the mass of the section. The same logicusfed to obtain Eq. (10.21) produces

dH J L -  H  8H - L dL L
σ St2 Sx K  Px2 ° r St2 o 3 x2 ’

which has the form of the wave equation (10.15). Therefore the velocity of propagation of the 
longitudinal wave along the spring is

V =  v Κ /σ  = J k L fa .

This result shows that the velocity of propagation of a disturbance in a spring depends on its mass 
per unit length (σ). A _  ________
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1 0 . 6  P r e s s u r e  W a v e s  i n  a  G a s  C o l u m n

Elastic waves in a gas result from pressure variations in the gas. Sound is the most 
important example of this type of wave. There is an important difference hetween 
elastic waves in a gas and elastic waves in a solid rod: gases are very compressible; 
and when pressure fluctuations are set up in a gas, the density of the gas will suffer 
the same kind of fluctuations as the pressure.

Consider waves propagated in a gas within a cylindrical pipe or tube. Call p0 and 
P 0 the equilibrium pressure and density in the gas. Under equilibrium conditions, 
p0 and p 0 are the same throughout the volume of the gas; that is, they are independent 
of x. If the pressure of the gas is disturbed, a volume element such as A d x  in Fig. 10-13 
is set in motion because the pressures p and p' on either side of the element difler 
and give rise to a net force. As a result, section A is displaced an amount ξ ;  and 
section A', an amount ξ  so that the thickness of the volume element after the deforma
tion is ά χ + ( ξ '  — ξ ) = ά χ + ά ξ .  So far, all seems identical to the case of the sofld rod. 
However because of the change in volume, there is now also a change in density 
because of the greater compressibility of the gas. The mass within the undisturbed 
volume element is p 0A d x .  If p  is the density of the disturbed gas, the mass of the 
disturbed volume element is ρ Α ( ά χ + ά ξ ) .  The conservation of matter requires that 
both masses be equal; that is,

Since in general δ ξ / δ χ  is small, (I F  δ ξ / δ χ )  1 may be replaced by I — δ ξ / δ χ  using 
the binomial expansion (M.28). This results in p =  p0(l — δ ξ / δ χ )  or

The pressure p  is related to the gas density p  by an equation of state p = f ( p ) .  If we

so that

P X F  δ ξ / δ χ

(10.25)

Fig. 10-13. Compressional wave in a gas 
column.x dr (Al +rf£
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apply the Taylor expansion technique of (M.31), this function may be written as

■■■■

For small changes in density we need keep only the first two terms and write

P = Po+ (P-Po) h r )  (10.26)\ d p j p-p o

The bulk modulus of  elasticity is defined by the quantity

Ulp(

K=H I ( 10 2 7 >dp  J P= Pa

The bulk modulus is expressed in Pa. the same units used to express pressure. Then 
after a little manipulation, we may write Eq. (10.26) as

Ρ = Ρ ο  +  κ ( — — V (10.28)
V Po /

This expression corresponds to H ooke’s law for fluids. Using Eq. (10.25) to eliminate 
(p-Po)/P  ogives

P = P o - K ^ -  (10.291

This expression relates the pressure at any point in the gas to the deformation at 
the same point. [This expression is equivalent to Eq. (10.20) for an elastic rod J 

Next we need to determine the equation of motion of the volume element. The mass 
of the volume element is p 0A dx and its acceleration is 3 2ξ β ί 2. The gas on the left 
of the volume element pushes to the right with a force pA,  and the gas on the righi 
pushes to the left with a force p'A. Therefore the resultant force in the +X -direction  
is {p — p' )A= — A dp since dp =  p' — p. The equation of motion is then

δ 2ξ
- A  d p = ( p 0A dx)

or

| = - P o g -  00 .30)

Again we have two fields: the displacement field c and the pressure field p. Expressions 
(10.29) and (10.30) are the equations relating both fieids. These expressions can be 
combined in the following way: taking the derivative of Eq. (10.29) with respect to 
x and remembering that is constant throughout the gas gives

dp  =  __ 
dx K Px2 '
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ΰ 2ξ K δ2ξ
dt2 ρ0 dx 2

W h e n  th is  e q u a t io n  is c o m p a re d  w ith  E q . (10.30), w e see th a t

( 10.31)

Once more the displacement wave equation obtained is similar to Eq. (10.15), We 
conclude that the displacement caused by a pressure disturbance in a gas propagates 
with a velocity

The pressure also obeys a wave equation like Eq. (10.31) as the student may verify 
by using Eq. (10.29) with Eq. (10.30) in the same way as the wave equation tor the 
force field was developed in Example 10.5. The pressure wave equation may therefore 
be written as

This equation explains why elastic waves in a gas are often described as pressure 
waves. Sound is simply a pressure wave in air. An explosion, which is a sudden local 
increase in pressure, sets up a blast pressure wave: but in this case the fluctuations in 
density are usually so large that the approximations made in the theoretical develop
ment above are no longer valid; and a more complex equation results such that the 
wave does not propagate undistorted.

Similarly the student [combining Eq. (10.25) with Eq. (10.31)] may verify that the 
gas density obeys a wave equation of the same form; that is,

Therefore when referring to a gas, one may speak of a displacement wave, a pressure 
wave, and a density wave. Displacement waves resemble the picture o f waves on a 
liquid surface (i.e., the motion of matter in bulk). Although they do not correspond to 
such a physical picture, pressure and density waves also describe a physical distuib- 
ance propagated in a gas.

Wave motion in gases is generally an adiabatic process, which means that no 
energy is exchanged in the form of heat by a volume element of the gas. Under 
adiabatic conditions p =  Cpy where y is a quantity characteristic of each gas. For 
most diatomic gases the value of y is very close to 1.4. Then d p /d p = yC p y~ l . and 
K =  Po(dpfdp)0= y C p y0 = y p 0. Then dropping the subscript 0 and substituting into 
Eq. (10.32), the velocity of sound in a gas may be written

I he wave associated with the <!; field is again a longitudinal wave since the dis
placement is parallel to the direction of propagation. Since the pressure p is not a

(iu.32)

d2p K δ2ρ 
dt2 p 0 dx2

(10.34)
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vector, no direction is associated with the pressure wave. Therefore the wave motion 
c0rresponding to the pressure field is a scalar wave. The associated direction is that 
0f the force produced by the pressure difference; that is. normal to the cross-sectional 
area of the cylindrical tube. (The wave corresponding to the density p is also scalar.)

All waves discussed so far in this chapter fall into the category of elastic waves, in 
w hich the disturbance -whether it is a strain, a pressure, or a bulk displacement 
involving many atoms— propagates with a velocity depending on the elastic proper
ties of the medium.

Elastic waves are also called acoustic waves. Whenever an elastic wave propagating 
through a gas, a liquid, or a solid reaches the ear, the wave produces vibrations in the 
ears membrane resulting in a sensation called sound. The response of the human 
nervous system constitutes the process known as hearing. The human nervous system 
responds to sound frequencies between approximately 16 Hz and 20,000 Hz. Outside 
these limits, sounds are inaudible to human beings, but the elastic waves are still 
called sound. (The frequency range is different for other animals.) Elastic waves with 
frequencies above 20,000 Hz are called ultrasonic; the elastic wave region below 16 Hz 
is called infrasonic.

Sound involves the displacement of atoms and molecules of the medium through 
which sound propagates, but this displacement is an ordered collective motion in 
which all atoms in a small volume suffer essentially the same displacement. This 
ordered motion is then superposed on the random or disordered molecular agitation 
of liquids and gases. The net result is that the intensity of sound decreases or is 
attenuated while the sound wave propagates because some of the wave's energy is 
taken away by the molecules of the medium after collisions. This attenuation results 
in an increase in the molecular internal energy, mainly rotational molecular motion, 
or in the translational kinetic energy. In liquids the viscosity, w'hich in essence is an 
effect of the molecular motion, also plays an important role in sound attentuation.

The velocity of propagation of sound is practically independent of frequency for a 
very large range of frequencies, extending up to more than IO8 Hz. The value of this 
velocity for different substances is given in Table 10-2. The velocity of propagation is, 
however, rather sensitive to temperature and pressure changes because of the depen
dence of velocity on density. Many of the wave phenomena that will be described in 
succeeding chapters apply to sound waves.

Table 10-2. Velocity of Sound, m s “ l

Solids (20 C) Liquids (25 Cl Gases (O0C)

G ranite 6000 Fresh water 1493.2 Air 331.45
Iron 5130 Sea water 1532.8 Hydrogen 1269.5
Copper 3750 (3.6% salinity) Oxygen 317.2
Aluminum 5100 Kerosene 1315 N itrogen 339.3
Lead 1230 M ercury 1450 Steam (100 C) 404.8
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Example 10.7. The relation between the velocity of a pressure wave in a gas and the temrw 
of the gas. ' raturC

T The relation between pressure and volume in a gas is /JF=NRTwhereN is the number οι
of gas. Since p = m, I. we may write p p = N R T  m - R T  M  where M  =  JtilN is the mass of'"**
mole of the gas, expressed in kg. Therefore the ratio  pip  is proportional to  the tempc a 
and from Eq. 110,34)

V= JypJp  = μ '>'R  I  M  = as T  (I0 ^

where cC =  ̂ fyR  JVf. From  experimental measurem ents it has been found that at T =  273 15 ^  
(or O1 Γ) the velocity of sound in air is 331.45 m s - 1 ; therefore the coefficient a  has the value 20iiS - 
m  s -1 T  4, The velocity of sound in air al any tem perature (measured in Ki is therefore u=
20.055 v T m  s ' . a  result that agrees with experiment over a fairly large tem perature rar ; 4

Example 10.8. The relation between the amplitudes of the displacement waves and the pressure 
waves in a gas column.

T Suppose that the displacement waves are harm onic, expressed by ς = ξ 0 sin (kx -cor). Sub
stituting this result in Ea. (10.29) gives

Βξ
n —/J0 = - J C ,  =  - K k c 0 cos ( k x —on), 

ax

Thus the pressure wave oscillates about its average value with an amplitude given by+ ^  =  ' · - 
or using Eq. (10.32) to eliminate /c

S 0 =V2Paki0.

Λη alternative expression for S 0 is obtained by using the relation given in Eq. (10.6), namely 
k=u>!v. Then

S 0 = v p 0c i i0 = 2np0\%0.

These relations are extremely useful in acoustic calculations. For example at a Ireq .iency 0! 
400 Hz. the faintest sound that can be heard corresponds to  a pressure am plitude of aboul 
8 x 1 0  5 Pa. The corresponding displacement amplitude with an air density o f 1.29 kg m 3 and 
a velocity of sound of 345 m s  1 is

i 0 = ~  —°—=7.15 x 10" 11 m. A   _  2 πυρ0ν______________________________________ ____

10.7 T r a n s v e r s e W a v e s in a S t r in g

Consider next a wave in a string subject to a tension T. Under equilibrium conditions 
the string is straight. Suppose now that the string is displaced sidewise or perpen
dicular to its length by an amount small relative to the length as shown in Fig 10-14·
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Consider a section A B of the string, of length dx, that has been displaced a distance ς 
from the equilibrium position. On each end of section AB.  a tangential force T  is 
acting: the one at B is produced by the pull of the string on the right; and the one at 
A. by the pull of the string on the left. Because of the curvature of the string, the two 
forces are not directly opposed. The vertical or Y-component of each force is Ty =  T  
sin x' and Ty= - T  sin a. The resultant normal force on the section AB of the string is

Fy=  Tfsin a' —sin a).

If the curvature of the string is not very large, the angles a and a' are small; and the 
sines can be replaced by the tangents. So the normal or transverse force in the upward 
direction is

Fy =  Tftan x' —tan a),

which may also be written as

Fy= T  dflan a) =  T L  (tan x) dx

where the partial derivative is used because tan a depends not only on the position x 
but also on the time t. However, tan x is the slope of the string; and by definition the 
slope is equal to δξ/dx. Then

y  - T  J ( 1S )  dx =  T dx.
y  O X  \  O X  I  C X\  /

This force must be equal to the mass of the section AB times its upward acceleration 
H2Clct2. Given that σ is the linear density of the string, or mass per unit length, ex
pressed in kgm ~ 1Hhemass of the section H B isad x ian d  based on the relation force =  
mass x acceleration, the equation of motion of this section of the string may be written
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o r

δ2ζ _ T  c 2 ξ 
d F ~  a dx1 ' (10.36)

Once more we obtain Eq. (10.15). verifying that a transverse disturbance in a string 
propagates along the string with a velocity

V =  — (10.371

provided that the amplitude is small. The student should check the consistency of the 
units in this equation.

This example differs from the previous one in two important respects. One difiemnce 
is that there is only one field, the displacement ς; and the wave equation r10.363 is 
a direct result of the equation of motion. The second and more important difference 
is that the wave motion is transverse; that is. the displacement ξ is perpendiculai to 
the direction of the wave’s propagation, which is along the X-axis. However there 
are many directions of displacement perpendicular to the X-axis. If two mutually 
perpendicular directions Y and Z are chosen as references, the transverse displace
ment ξ (which must be considered a vector) may be expressed in terms of its com
ponents along the Y- and Z-axes. While the disturbance propagates, the direction 
of ξ may change from point to point; and a twisting of the string results (Fig. 10-15). 
However if all the displacements are in the same direction, say along the Taxisi 
the string is always in the XY-plane. and the wave motion is linearly polarized (rig  
10-16). A transverse wave can always be considered as the combination of two waves 
linearly polarized in perpendicular directions. When ξ has a constant magnitude



f ia.|0-16. Linearly polarized transverse wave Fig. 10-17. Circularly polarized transverse 
in a string wave in a string.

but changes in direction so that the string lies over a circular cylindrical surface 
(Fig. 10-17). the wave is circularly polarized. In this case, each portion of the string 
moves in a circle around the X-axis. The polarization of transverse waves is a very 
important subject and will be discussed in more detail in Chapter 14.

Note that Eq. (10.36) takes into account only the transverse motion of the string 
because there is essentially no motion along the string. To see this point, consider the 
resultant force parallel to the X-axis:

Fx= T  cos a' - T  cos a =  T(cos a '—cos a).

When the angle is very small, the cosine is essentially one. Therefore to the first order 
of approximation, cos ol'  ^cos a and F x=O so that there is no net force parallel to 
the X-axis and therefore no resultant motion of the string in the X-direction.

Transverse Waves in a Spring 311

Example 10.9. Transverse elastic waves in a bar, A shear wave.

▼ In Section 10.5 longitudinal elastic waves in a solid bar were studied. Now we shall analyze 
transverse elastic waves. Consider a  bar that in its undistorted state is represented by the dashed 
horizontal lines in Fig. 10-18. Ifw e start the bar vibrating by hitting it transversely, at a particular 
■nstam, it adopts the shape of the solid curved lines: and we may assume that each section of the

*■ iS-10-18. Transverse or shear wave in a clamped 
rod.
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U0.7

bar moves up and down w ith no horizontal motion. Call ξ  the transverse displacement or 
section tlx at a  particular time. This displacement must also be a function of position because n 
were constant, it would correspond to a parallel displacement of the bar. The quantity 
which is the change of transverse displacement per unit length along the bar. is defined as U1 
shearing Siroit!.

As a result of the deformation, each section of thickness dx  is subject to the opposing forces f 
and F'; these forces are tangent to the surface (compare with the situation in Fig. 10-11) dlKj 
produced by those portions of the bar on each side of the section. The tangential torce per i 
area. J f = F  71. is defined as the shearing stress.

Similar to H ooke’s law. Eq. (10.19). that expresses the relationship between norm al stress and 
normal strain, there is a relation between the shearing stress and the shearing strain giver, by

Z  = Gy, (10.38)

where G is a coefficient characteristic of the material and is called the shear moduhis. Therei a 
using the expressions for i f  and γ we have

F =  H G ^ .  (10.391

The resultant force on the section shown in Fig. 10-18 is F' -F = d F = (C F  6x)dx.  If p is tnt 
density of the material, the mass of the section is pH d x ; and its equation of m otion in  the transverse 
direction is

SF d2t
— dx =IpA dx) 0  
ex Dior

Cf c2c
- / - = P A f i i -  (10.40)
cx  Bt2

However front Eq. (10.39) after taking the derivative with respect to x, we have

CF C2 ζ
— = A G  ;
Cx Cx2

when this expression is substituted in Eq. (10.40) and the com m on factor A is canceled, the result is

H 1 = - H .  (10.41)
vt p Bx-

Again we obtain the differential equation of wave m otion (10.15). indicating that the transverse 
deform ation propagates along the bar with a velocity given by

■ (i°-42)

M ore properly, the wave should be called a shear nave, k

Example 10.10. Transverse elastic waves in a bar. A torsional wave.

▼ Another example of a shear wave is a torsional wave. Suppose that a variable torque is applied 
at the free end of a rod clamped at one point. This torque produces a twisting of the rod I Fig. 10-19) 
I f th e  torque is time dependent, the angle of twist, which is called torsion, changes w'ith rime I
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the re s u lt  is a torsional wave propagated along the rod. A m athem atical analysis of the problem 
shows that irrespective o f the shape of the cross section of the rod, the velocity of propagation 
of the torsional wave is also given by Eq. (10.42). It is not surprising that the shear and torsional 
waves in a bar propagate with the same velocity since both processes are essentially due to the 
sam e  internal phenomenon in the m aterial of the rod. A nother interesting aspect of torsional 
waves is that they correspond not to  displacements parallel to  or transverse Io the axis of the rod. 
but to rotations around the axis w ithout change in shape. These various examples have been 
ctven to help the student understand the great variety of elastic-wave phenom ena: all have dilferent 
internal dynamics: but under the approxim ations here used, all are described mathematically 
by the same equation: Eq. (10.15). A

10.8 Surface Waves in a Liquid

As a final example of wave motion in one direction, consider waves on the surface 
of a liquid. These are the most familiar kinds of waves; they are the waves observed 
on the oceans and lakes, or simply when a stone drops in a pond. The mathematical 
aspect, however, is more complicated than that in the previous examples, and will 
be omitted. Instead we present a description of such waves with a simplified mathe
matical discussion deferred until Examples 10.11 and 10.12.

The undisturbed surface of a liquid is plane and horizontal. A disturbance of the 
surface produces a displacement of all molecules directly underneath the surface
I Fig. 10-20). Each volume element of the liquid describes a closed path. The amplitude 
of the horizontal and the vertical displacements of a volume element of a fluid varies 
h i general with the depth. Of course the molecules at the bottom suffer hardly any 
vOrtical displacement since they must remain close to the bottom. At the surface of the 
liquid certain forces enter into play in addition to that due to the atmospheric pres
sure. One force, due to the surface tension of the liquid, gives an upward force on an 
eIement of the surface similar to that found in the case of a string. Another force is the 
weight of the liquid above the undisturbed level. The resulting equation for the 
surface displacement is not exactly of type (10.15), but slightly more complicated. 
However for harmonic waves of wavelength A. the velocity of propagation of the
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Fig. 10-20. Molecule displacement resulting from a surface wave in a liquid, 

su rface  w av e  is g iven  by

IqX I n f f  „
W i r E + T T

where p is the density of the liquid, f f  is the surface tension, and g is the acceleration 
of gravity. In Eq. (10.43) the surface tension is expressed in N  m _1. This expression is 
valid only when the depth is very great compared with the wavelength A. Otherwise a 
different expression results (see Example 10.11).

The most interesting aspect of Eq. (10.43) is that the velocity o f  propagation depends 
on the wavelength, a situation not encountered in any of the previous examples. Stnct 
the frequency is related to the wavelength and the velocity of propagation through 
ν =  ν/λ, we conclude that the velocity o f  propagation is a function of  the fi-equencv of 
the wave.

When A is large enough so that the second term in Eq. (10.43) can be neglected.

B =  / g .  ( 1 0 . 4 4 )

The waves in this case are called gravity waves. In this approximation the velocity 
of propagation is independent of the nature of the liquid since no factor pertaining 
to the liquid (such as its density or its surface tension) appears in Eq, (10.44). In this 
case the velocity of propagation is proportional to the square root of the wavelength, 
and the longer the wavelength, the faster the propagation. For this reason a strong- 
steady wind produces waves of longer wavelength than a swift, gusty wind.

When the wavelength is very small, the dominant term is the second in Eq. (10.43). 
which gives the velocity of propagation as

I l n f f  ...
V =  I —— . (10.45)

\  T -

These waves are called ripples or capillary waves. They are the waves observed when
a very gentle wind blows over the water, or when a liquid in a container is subject to
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■^rations o f  h ig h  freq u en cy  a n d  sm a ll a m p litu d e . In  th is  c ase  th e  lo n g e r  th e  w ave- 
\ m ith. th e  s lo w er th e  p ro p a g a tio n .

W hen  th e  v e lo c ity  o f  p ro p a g a t io n  o f  a w ave m o tio n  d e p e n d s  o n  th e  w av e len g th  
the frequency , w e say  th a t  th e re  is dispersion.  If  a  w av e  m o tio n  re s u ltin g  from  th e  

su p erp o sitio n  o f  sev era l h a rm o n ic  w aves o f  d iffe ren t freq u en c ie s  im p in g es  o n  a 
Jispersiee m ed iu m , th e  w ave  is d is to r te d  since  e a c h  o f  its  c o m p o n e n t w av es p ro p a g a te s  

•jth a d iffe ren t v e loc ity . D isp e rs io n  is a  v e ry  im p o r ta n t  p h e n o m e n o n  p re s e n t in 
several ty p es  o f  w ave  p ro p a g a tio n . In  p a r t ic u la r  d is p e rs io n  a p p e a rs  in  th e  case  o f  
e lec trom agnetic  w aves p ro p a g a t in g  th r o u g h  m a t te r  a s  w e sh a ll see in  th e  n ex t c h a p te r .

Example 10.11. The propagation of waves in a liquid of finite depth.

T The general expression for the velocity of propagation of surface waves in a liquid is

Ifq/. 2 n J \  2nh
V= [ '— I ltanh  — -  (10.46)

V \2 π  pa J /.

where /i is the depth of the liquid. W hen the depth h is very large compared with the wavelength 
(that is, the quantity 2nh/λ  is large com pared with unity), the value of the hyperbolic tangent is 
very close to I. and therefore the last factor in Eq. (10.46) can be replaced by I w ithout great error. 
In this approxim ation Eq. (10.46) becomes Eq. (10.43).

On the other hand when the depth h is very small compared with the wavelength λ, the quantity 
lnhik is very small compared with un ity ; and since tanh x  x  when x  is very small, the last factor 
in Eq. 110.461 may be replaced by Inhjk.  Also, the term In  A p/. can be neglected when the wave
length is large. Then

In/. Inh ,—
V= / - ---------= JqIi. (10.47)

\l In λ v
In these circumstances the velocity of propagation is independent of the wavelength and is a 
function only of depth. A

Example 10.12. Surface waves in a liquid when the wavelength is very large and the am plitude is
v«ry small com pared with the depth.

^  C onsideraliquid  in a channel of depth h and width L Ifthesu rfaceoftheliqu id  is perturbed with 
waves of small am plitude and large wavelength (compared with /i), a  particular vertical section 
of the liquid of width dx  suffers some displacement in both the vertical and the horizontal direc
tions. As a result of these displacements, the width of the section changes from dx  to d x +άξ  
(Hg. 10-21); and its height, from h to  I: + η. Assuming the liquid to  be incompressible, the volume 
of the section must remain constant. Therefore

Lh dx = U h+ q)(dx+ dc)

-=L(h dx + η d x + h  dc + q dc).

because η is very small compared with A, and d i  is very small com pared with dx, the last term
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Figure 10-21

i/ tli may be neglected. After cancellation of equivalent terms we have

S i
i ] d x + h d i = 0  o r η =  —I i d . (10.48)

cx

Equation (10.48) relates the vertical surface displacement to  the horizontal displacement for an 
incompressible liquid.

Because the disturbed level is not horizontal, the average pressure on each side of the fluid 
section is different as shown in the figure. If H=ZiL is the area of the cross section of the un 
disturbed liquid, the net force to the right on the section is

PavcH PavcH (Pave Pavc'H — — A  d p . , .

The horizontal m otion of the section is thus

B2r C2Q Cp
(IjA d x ) J 2 =  - A d p cvc or p'

v r  C r  Cx

However from the hydrostatic pressure relation, p=pgz. the pressure difference is
νη

d p ™ c = P m  - ' I ) = P Q x r d x  dx
so that BplvJ c x = P g  ίίη/cx, and the preceding equation may be written as

Γ2ς _  ΰη 
c t2 ~ ~ g <Y

Differentiation οΓ Eq. (10.48) with respect to x  gives
δ η  S 2 C

ΰχ c x 2

Therefore elimination of νη/dx  between these two equations finally yields
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v 2£ P1C
- r ,= f f / '  ,  I  ■ o r  ex

This expression is again lhe wave equation (10.15) corresponding to waves propagating with 
\ elocily L= Jgfu  and agrees with the result obtained in Eq. 110.47) for the circumstances assumed 
there. Because of relation (10.48), the vertical displacement at the surface satisfies a similar equa
tion: that is.

B2Jj d2n

+ = 9i S ? - 1

1 0 . 9  W h a t  P r o p a g a t e s  i n  W a v e  M o t i o n

It is important to understand what is propagated as a wave in wave motion. 
Generally what propagates is a physical disturbance generated at some place; as a 
consequence of the nature of the phenomenon, the condition may be transmitted 
to other regions. Since this explanation is somewhat abstract, let us try to formulate 
it in more concrete terms.

Consider the different kinds of waves discussed in the previous sections. AU these 
waves correspond to certain kinds of motion of atoms or molecules of the medium 
through which the wave propagates; but on the average the atoms remain at their 
equilibrium positions (Fig. 10-22). Then it is not matter that propagates but the 
state of  motion οΓ matter. It is a dynamic condition that is transferred from one region 
to another. We are in the habit of describing a dynamic condition in terms of momen
tum and energy. Therefore, we say that

energy and momentum are transferred or propagated in wave motion.

Look, for example, at the case of longitudinal elastic waves propagating along a rod. 
At a particular section that is displaced with velocity δξ/δί  (Fig. 10-11). the right side of 
the rod pulls on the left side with a force F and the left side pulls on the right side 
with a force — F. Then the power {or work per unit time) that the left side transmits 
to the right side at that section is

Therefore when the disturbance passes from one section to another, this power must 
he transmitted. If the wave propagates from left to right, energy must be ted into the 
left end of the rod. If the energy is fed in during a short time interval, a disturbance of 
limited length, or a transient pulse, is produced. If there is to be a continuous train of 
waves, then energy must be supplied continuously at the left end.
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Fig. 10-22. P ro p ag a tio n  o f a pulse on a sp rin -  Fh 
sections of the spring m ove up and dow n as t j^  
pulse m oves from left to right. L
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Wlial Propagates in Wave Motion
1,9)

3iy

see the problem in more detail, consider the case of a sinusoidal elastic wave. 
°  sin (k x -o n ) .  Taking the appropriate derivatives, we find that

CL- =  — ωξ0 cos (kx--ott)
St

a n d  β ζ
F = Y A -  =  ΥΑ1ιξ0 cos (kx — cut)

Sx

# bere A is the cross-sectional area of the rod. Then, with the relations co=kv  and 
e~ j Y ] p ,  the power is

( l̂ f ) = Y ΑωΙ<ξΙ cos2 (kx—cot)
dt \ s t )

=Kpv1)Α{ω2iv) il  cos2 (b c- ω ί )

=  νΑ[ρω2ξο cos2 (kx-ω ί) ] .

The presence of the factor cos2 ( k x -  cot) assures us that PWjdt is always positive, 
although fluctuating. Since dW jdt depends on fcx -w t, it also satisfies the wave 
equation and corresponds to an energy wave. The average power is

fiW _ \ _ 1,j4{p(yî 2̂ cos2 (fcx_(nf)]avc}.
\  St 7 ave

However [cos2 {be — m£)]uvê ^ so that

( 5T )  = M ( W S ) .  (10.49)
V /flVe

Now remembering Eq. (12.11) of Volume I. which gives the total energy of an oscillator 
as [MW2Cq. and that instead of the mass m we have the density p. we see that

Ε = [ρ ω 2£ο (10.50)

is the energy per unit volume, or the energy density in the rod due to the oscillations 
resulting from the wave motion. Substituting Eq. (10.50) into Eq. (10.49) gives

( * L )  =  vAz. (10-51)
V St / ave

Since u is the velocity of propagation, de is the energy flow through the unit area per
unit time. Multiplying this quantity by the area A gives the energy flow per unit
time through a cross section of the rod. Thus Eq. (10.51) may be interpreted as 
indicating an average energy flow along the rod as a result of the wave motion. 

Expressed in W m “ 2, the average energy flow per unit area and unit time is
I PW
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This quantity is called the intensity of the wave. From Eq. (10.50) for the ener 
density, the intensity is proportional not only to the square of the frequency ^  
oscillation but also to the square of the amplitude. (The student may verify 
similar results hold for pressure waves in a gas and for transverse waves in a Strine , 

In conclusion we may again say that in all wave motions, energy and momentum 
are transferred from one place to another along the wave.

Example 10.13, Intensity of the waves in a gas column expressed in terms of the amplitude ot thc 
pressure wave.

▼ From Example 10.8 at the end of Section 10.6. the am plitudes of the pressure and displacetuen
waves were found to be related by Mn -2  πυρ0νξ0. Therefore the energy density of the wave is

τ  = ·\ρ 0ω 2ξΙ = 2π2P0V2ς :0= :
2v2pu

and according to Eq. (10.52). the intensity of the wave is

The sensitivity of the hum an ear is such that for each frequency there is a minimum intensity 
or threshold o f  hearing, below which sound is not audible, and a maximum intensity or threshold 
oj feeling, above which sound produces discomfort or pain. This situation is illustrated fur each 
frequency by the two curves of Fig. 10-23, which indicates also the intensity and pressure ampli
tudes. N ote that intensity is also expressed by means of another unit called the denhel. Thc

Frequency, H z 

Fig. 10-23. Average auditory range for the hum an ear.



Group Velocity

liren-iiD' êve* sound (° r oLanY wave m ot' on) *s indicated by B and is expressed in  decibels (db) 
a c c o rd in g  to the definition

B =  IO log (-  (10.53)
*0

where I0 is a reference intensity. F o r the case of sound in air the reference level has been arbitrarily 
clioscn as 10 13W m 2 For example to the pressure am plitude given in Example 10.8 for the 
faintest sound that can be heard at 400 Hz, there corresponds an intensity of 7.2 x 10 12W m  2 
and an intensity level of 8.57 db A

10.10 Group Velocity

The velocity v =wfk.  given by Eq. (10.6) for a harmonic wave o f angular frequency ω 
and wavelength λ =  2π/k, is called the phase velocity. However, this velocity is not 
necessarily that with which a wave motion travels. For a continuous harmonic wave 
(also called a wave train of infinite length), the wave has only a single wavelength and a 
single frequency. A wave of this nature is not adequate for transmitting a signal 
because a signal implies something that begins at a certain time and ends at a certain 
later time; i.e.. the wave must have a shape similar to that indicated in Fig. 10-24. 
A wave with such a shape is called a pulse or a wave packet. Measuring the time for 
this signal to travel between two points implies measuring the velocity with which 
this pulse travels.

As a first consideration, we may say that this velocity is just the phase velocity 
v=wfk  since we kept saying in all previous sections that this is the velocity of propaga
tion of the waves. However an important factor enters here. The wave or pulse depicted 
in Fig. 10-24 is not harmonic since its amplitude is not constant along the X-axis. 
Thus we must make a Fourier analysis of the wave. When we do, it is clear that the 
pulse actually contains several frequencies and wavelengths. Of course if the velocity 
of propagation is independent of the frequency (i.e.. if there is no dispersion), then all 
Fourier components of the wave travel with the same speed, and it is correct to say

Fig. 10-24. W ave pulse or wave packet.
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Fig. 10-25. Phase and group velocity.

that the velocity of the pulse is the same as the phase velocity. However in a dispersive 
medium each Fourier component has its own velocity of propagation, and therefore 
the situation requires more careful examination.

For simplicity consider a case in which the wave motion may be broken down into 
only two frequencies to and ω’, which are almost equal so that ω '—ω is very small. 
Assume also that their amplitudes are the same. Then a linear superposition of the 
two waves gives

ς =  ί 0 sin (kx — ω ί)+ ξ 0 sin (k'x—io't)

= ^ 0[sin (kx—cur)+sin (k'x—co'f)]

= 2 ξ 0 cos ^ [(fc'-k)x—(ω'—cu)r] sin j[(k'-)-k)x — (ω '+ω )ί].

Since ω and cu' as well as k and k' are almost equal, ‘,(ω' +  ω) may be replaced by or, 
and Jk '  +  k) by k so that

ξ = 2 ξ 0 cos i[(k' — k)x-(cu' — ω)ί] sin (kx—tat), (1U.54)

Equation (10.54) represents a wave motion whose amplitude is modulated. The 
modulation is given by the factor

2 c0 cos i[(k '—k)x — (ω' —co)t].

This modulation has been indicated in Fig. 10-25. The modulating amplitude itself 
corresponds to a wave motion propagating with a velocity

ω'—ω dio . 1 1

" • - Y Z t - d i -  110551

which is called group velocity. This velocity is that with which the amplitude wave, 
represented by the dashed line in Fig. 10-25. propagates. It may also be concluded
that the maximum ol the pulse in Fig. 10-25 propagates with the group velocity Vg-
Therefore in a dispersive medium the signal velocity is the group velocity. Since 
(o =  kv, Eq. (10.55) becomes

ve= v + k  . (10.56)

If the phase velocity is independent of the wavelength, dv/dk =  0 and vg =  v. Therefore 
in nondispersive media there is no difference between phase velocity and group
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velocity as w as p re v io u s ly  in fe rre d ; b u t  in  a  d isp e rs iv e  m e d iu m  th e  g ro u p  v e lo c ity  
m ay be  la rg e r  o r  sm a lle r  th a n  th e  p h a s e  velocity .

A lth o u g h  d e riv e d  fo r th e  case  o f  o n ly  tw o  freq u en c ies . E q . (10.56) a lso  h o ld s  tru e  
f0 r th e  case  o f a  p u lse  c o n ta in in g  freq u en c ie s  in  th e  ra n g e  fro m  ω —Δ ω  to  ω + Δ ω .  
H ow ever, th is  m a t te r  is rea lly  m o re  c o m p le x  th a n  h a s  b een  sh o w n , a n d  a  th o ro u g h  
d iscu ssio n  o f  it is b e y o n d  th e  sco p e  o f  th is  b o o k .

Example 10.14. G roup velocity for surface waves.

T Consider the case of surface waves in a liquid in the long wave approxim ation. In  this case the 
phase velocity is given by Eq. (10.44); and since k = 2njk, u =  v gk/2n = Jg fk .  Then

and Eq. (10.56) gives Vg=Av so that the group velocity is just half the phase velocity. Thus if a 
long wave disturbance is produced in water, the initial disturbance is distorted in such a way that 
the components of longer wavelength "escape" from the disturbance by moving faster than  the 
group velocity, which is the velocity of the peak of the disturbance. A

W hen a n  o b se rv e r  a n d  th e  so u rc e  o f  a  w av e  a re  in  re la tiv e  m o tio n  w ith  re sp ec t to  
th e  m a te r ia l m e d iu m  in  w h ich  th e  w av es p ro p a g a te ,  th e  freq u en cy  o f  th e  w aves 
o b se rv ed  is d iffe ren t from  th e  freq u en cy  o f  th e  so u rc e . T h is  p h e n o m e n o n  is c a lled  
the Doppler e f fec t . a f te r  th e  G e rm a n -b o rn  A u s tr ia n  p h y s ic is t C. J. D o p p le r  ( 1803- 
1853). w h o  first n o tic e d  it in  so u n d  w aves.

S u p p o se  th a t  a  w ave  so u rce , su c h  as  a  v ib ra tin g  b o d y , m o v es  in  th e  p o s itiv e  X -  
d ire c tio n  (F ig. 10-26) w ith  v e lo c ity  Ds th ro u g h  a  still m e d iu m  su ch  a s  a ir  o r  w a te r. 
O b se rv in g  th e  w av es e m itte d  a t  sev era l p o s itio n s  I. 2, 3, 4 , . . . ,  w e n o te  th a t  a fte r a  
tim e  f c o u n te d  from  th e  tim e  w h en  th e  so u rc e  w as a t  p o s itio n  I, th e  w aves e m itte d  
a t th e  sev e ra l p o s i tio n s  o ccu p y  th e  sp h e re s  I , 2, 3, 4 , . . . th a t  a re  n o t co n cen tric . T h e  
w aves a re  m o re  c lo se ly  sp aced  o n  th e  side  in w h ich  th e  b o d y  is m o v in g  a n d  a re  m o re  
w idely s e p a ra te d  o n  th e  o p p o s i te  side. T o  a n  o b se rv e r  a t  re s t on  e ith e r  side , th is  
sp ac in g  c o r re s p o n d s  re sp ec tiv e ly  to  a  s h o r te r  a n d  a lo n g e r  effective w av e len g th  o r  to  a 
la rg e r a n d  a  sm a lle r  effective freq u en cy . H o w e v e r if th e  o b se rv e r  is a lso  in  m o tio n  
w ith  v e lo c ity  D0, th e  w aves w ill be  o b se rv e d  a rr iv in g  a t  a  d iffe ren t ra te . F o r  ex am p le  
if th e  o b se rv e r  is a p p ro a c h in g  from  th e  r ig h t o f th e  so u rce , a n  even  s h o r te r  w av e 
leng th  o r  h ig h e r  freq u en cy  w ill b e  o b se rv e d  s ince  th e  o b se rv e r  is m o v in g  in to  th e

10.11 ThoDoppIerEffect
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waves. The opposite happens if the observer is receding from the source and therefore 
moving away from the waves.

To obtain the relation between the frequency v of the waves produced by the 
source and the frequency v' recorded by the observer, we use the following reasoning. 
For simplicity assume that the source and the observer are moving along the same 
line. Suppose that at time i = 0  when the distance AB  (Fig. 10-27) between the source 
and the observer is /, the source emits a wave that reaches the observer at a later time t. 
In that time the observer has moved the distance D0f. and the total distance traversed 
by the wave in the time t has been i +  D0 i. If v is the velocity of propagation of the wave, 
this distance is also vt. Then

I
vt =  I+  v0t or t = — — .

D -D n

At time r =  r the source is at A', and the wave emitted at that instant will reach the 
observer at point B' at a time t \  measured from the same time origin as before The 
total distance traveled by the wave from the time it is emitted at A' until it is received 
by the observer is (/ —dst) +  D0 t'. The actual travel time of the wave has been t' — τ and 
the distance traveled is v(t' — τ) Therefore

λ , , , / + ( d - ds)tD(t - τ )  =  / —Dst +  D0f or t = -------— — .
V -  D0

- I  - - —  — W -  —

.1 A ί B B '
Il ”0

*----- VT------------ - — ------  Il i t ' - r )  — Figure 10-27
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The time interval between the two waves emitted by the source at A and at A' is 
reckoned by the observer as

V — Dsi  = t  — I =  τ.
V - V 0

Now if v is the frequency of the source, the number of waves emitted by the source in 
time τ is vi. Since the number of waves received by the observer in the time τ' must 
equal the number emitted by the source, the frequency observed is ν' =  ντ/τ' or

V = ( ^ ) » .  (10.57)

This equation gives the relation between the frequency v of the source and the fre
quency v' measured by the observer when both are moving along the same line.

When both B 0  and B s  are very small compared with v. expression (10.57) can be 
simplified. First we write

a  J x f _ / ,  _  " o V ,  _  J s V ' v.
A - V sIvJ \  V

Remembering the binomial expansion, Eq. (M.28), we may write ( I - B sZu) - 1  Sr 
I - T  B s / v. and

4  T X h M 1 ■··

Then if the term B 0 B s / B 2  is neglected, the frequency measured by the observer is

v ' = | i  — v =  0  — (10.58)

where b 0 S  =  b 0  —  B s  is the velocity of the observer relative to the source. Because 
M = I n v 1 the angular frequency detected by the observer may be written as

ω' =  ̂ 1 — -— I to. (10.59)

If t os is positive, the observer is receding from the source; and the frequency observed 
is smaller; but if Bos is negative, the observer and the source are approaching each 
other and the frequency observed is larger.

When B o s  is not along the direction of propagation but makes an angle with it, 
Eq. (10.59) must be replaced by

0 , - J ,- K M i S f f T u  (10.60)

since b o s  cos Θ is the component of the velocity of the observer relative to the source 
along the direction of propagation.
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A special situation occurs when the source moves with a velocity larger than tij 
the velocity of propagation of sound in the medium. Then in a given time the source 
advances more than the wave front; for example if in time i the source moves from 
A to B (Fig. 10-28), the wave emitted at A has traveled only from A to A' and A". 
The surface tangent to all successive waves is a cone, whose axis is the line of motion 
of the source and whose aperture a is given by

S i n a = - - .  (10.61)
i's

(®) 0 0  (c)

Fig. 10-29. Different examples of Mach (shock) waves produced by (a) a moving, vibrating reed
touching a water surface, (b) a bullet in air, and (cl a speeding boat.



Waves in Two and Three Dimensions

The resultant wave motion is then a conical wave that propagates as indicated by the 
arrows in Fig. 10-28. This wave is sometimes called a Mach wave or a shock wave, 
and is the sudden and violent sound heard when a supersonic plane passes nearby. 
These waves are also observed in the wakes of boats moving faster than the speed of 
surface waves on the water (Fig. 10-29).

10.12 Waves in Two and Three Dimensions

Although ξ = / ( x  — ut) represents a wave motion propagating in the direction of the 
positive X-axis, the wave need not necessarily be interpreted as concentrated on the 
λ'-axis. If the physical disturbance described by ξ is extended over all space, then at a 
given time t, the function c = f ( x  — v t ) takes the same value at all points having the 
same x. But x =  Const represents a plane perpendicular to the X-axis (Fig. 10-30). 
Therefore in three dimensions ξ = / ( x  — v t ) describes a plane wave propagating parallel 
to the X-axis. If ξ is a displacement (or a vector field), the wave is longitudinal when 
ξ is parallel to the direction of propagation or X-axis as indicated by the arrow 
labeled L. When ξ is perpendicular to the direction of propagation (i.e., parallel to the 
YZ-plane), the wave is transverse. In this case ξ can also be expressed as the super
position of two displacements along mutually perpendicular directions as indicated 
by the arrows labeled T  and T'.

Note that what is relevant in a plane wave is the direction of propagation, indicated 
by a unit vector u perpendicular to the plane of the wave (that is, its wave front), and 
that the orientation of the coordinate axes is a more or less arbitrary matter. It is 
therefore convenient to express the plane wave i = f ( x  — vt) in a form that is indepen
dent of the orientation of the wave relative to the axes. In Fig. 10-30 the unit vector u

I'

Fig. 111-30. Plane wave propagating along the X-axis.
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is parallel to the X-axis. If r is the position vector of any point P  on the wave lronr 
x =  n-r and we may write

C = J ( U - I - - V t ) .  (10.62)

Tfw is pointing in an arbitrary direction (Fig. 10-31), the quantity u-r is still a d istan ce  
measured from an origin O along the direction of propagation. Therefore Bq. (10.62) 
represents a plane wave propagating in the direction of u. In the case of a harmonic 
or sinusoidal plane wave propagating in the direction of u we write

ξ =  ξ0 sin k (u - r - v t ) .

It is convenient to define a vector k =  ku. This vector has a length k =  2π/λ=οι /ν  
and points in the direction of propagation. This vector is usually called the propagation 
vector (or, sometimes, the wave vector). Then since oo =  kv, a plane harmonic wave is 
expressed as

ξ =  C0 sin ( k - r - o ) t ) = i Q sin (kxx  +  kyy  +  k . z - co t )  (10.63)

where kx, ky. and k, are the components of k satisfying

k2x +  k~ + k 2. = k 2 =  (J)2Iv2. (10.641

When the propagation is in three-dimensional space, the wave equation (10.15) 
must be modified accordingly. It then becomes

a result that was to be expected from symmetry conditions alone. It may be verified 
by direct substitution that expression (10.63) for a harmonic plane wave satisfies the 
general wave equation (10.65). This check is left to the student. [Hint : It is necessary 
to use Eq. (10,64).]

Direction of 
prop,igntinn

Fig. 10-31. Plane wave propagating in an arbitrary direction.
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Fig. 10-32. (al Plane. Ibl cylindrical, and (cl spherical waves.

Although they contain the three coordinates x, y. z. the plane waves (10.62) or 
(10.63) are really one-dimensional problems since the propagation is along one 
particular direction and the physical situation is the same in all planes perpendicular 
to the direction of propagation (Fig. 10-32a). In nature, however, there are waves 
that propagate in several directions. The two most interesting cases are cylindrical 
and spherical waves. 1 1 can be proved that these more general waves are also solutions 
of the three-dimensional wave equation (10.65). In the case o f cylindrical waves the 
wave fronts are surfaces parallel to a given line, say the Z-axis, and thus perpendicular 
to the XY-plane (Fig. 10-32b). The disturbance propagates in all directions per
pendicular to the Z-axis. This type of wave is produced, for example, if a series of 
sources uniformly distributed along the Z-axis all oscillate in phase.

If a disturbance originates at a certain point and propagates with the same velocity 
in all directions (i.e., the medium is isotropic; from isos, the same, plus tropos, direction), 
spherical waves result. The wave fronts are spheres concentric with the point at 
which the disturbance originated (Fig. 10-32c). Such waves are produced, for example, 
when there is a sudden change of pressure at a point in a gas.

Sometimes the velocity of propagation is not the same in all directions, in which 
case the medium is called anisotropic. For example a gas in which there is a temper
ature gradient, a solid under certain conditions of strain, or a large crystal may have 
different elastic properties in different directions; the result is a different velocity of 
propagation for each direction. In these media, the waves are not spherical.

Even if a wave is spherical, it may not have the same amplitude or intensity in all 
directions because the source of the disturbance may produce different effects in 
different directions. For example a musician blowing a horn produces a pressure 
wave at the open end of the instrument. However because of the shape of the tube at 
(he end, a listener does not hear the sound with the same intensity in all directions 
although the sound propagates with the same velocity in all directions (Fig. 10-33).
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Fig. 10-33. Angular distribution of the in
tensity of sound produced by a horn.

In some instances a wave propagates over a surface such as a membrane or the 
free surface of a liquid. If a disturbance is produced at a certain point of the surface 
the disturbance propagates in all directions along the surface with the same velocity: 
the result is a series of circular waves (Fig. 10-34). This two-dimensional wave requires 
only two space coordinates to describe it. The equation for this wave is not Eq. (10.65) 
but

ί 2ξ . I d 2F d2c \
P Mcr*

since the z-coordinate is not required to describe the process.

Y

(a )  (b )

Fig. 10-34. Circular waves on a liquid surface.
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Example 10.15. Elastic waves on the surface of a stretched membrane.

f  Consider a thin, stretched membrane assumed for simplicity to be rectangular (Fig. 10-35). 
The membrane is mounted in a frame that exerts a force per unit length SF on the membrane. 
Ifthe membrane is deformed at a particular point, and suffers a displacement in the perpendicular 
direction, this deformation propagates along the membrane and results in a two-dimensional 
surface wave.

To obtain the equation of m otion for this situation, consider a small rectangular section of 
the membrane with sides dx  and dy  (Fig. 10-36). At a particular instant it suffers an upw ard dis
placement c. Because the surface is curved, the displacement £ is a function of coordinates x  and 
y, and the forces on the sides of the section are not directly opposite. To obtain the resultant 
vertical force on the section, use the same logic applied in Section 10.7 where transverse waves 
in a string were discussed. Following that reasoning, the sides parallel to  the 1-axis are subject to 
forces F  dy  with a resultant vertical force of

S2 ξ
l Dxj l  Dx2

Similarly the sides parallel to the X-axis are subject to  forces F  dx  with a vertical resultant force of

d2c S2C
( Z  dx) ,^ 2 d v =  F 2 dx dy.

Therefore the total vertical force is the sum of these two. or

I Z  dy) - Ϊ dx  =  F  ~  dx dy.

F‘=*(j0 +<e?)dxdy
If σ is the mass per unit area of the m em brane (or surface mass density), the mass οΓ the section 
is π dx dy: and since the vertical acceleration is B2U dt2, the equation of m otion of this section of 
the membrane is

( O d x d y ) J = F  (fJ + d̂ d x d y

Ug. 10-35. Surface wave on a stretched 
membrane.

Fig. 10-36. Forces on a surface element of a 
stretched membrane.
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or

δ 2ζ _ Ρ ( ο 2ξ Β2ξ \
dl2 σ \ p x 2 + 1y 2J  '

Since Ihis equation is similar to  Eq. (10 66), we may conclude that the disturbance propagate; 
along the mem brane as a wave with a velocity t  =  v A /n. (The student should verity that the 
expression for v is dimensionaily correct.) A

10.13 SphericaIW avesinaFIuid

Consider a pressure wave in a homogeneous, isotropic fluid that has been generated 
by a point source such that the wave is spherical. Al first we may be tempted to say 
that with r as the distance from the origin and p0 the normal pressure, the pressure 
wave can be written in the form p — p0= f ( r —vt\ since r now plays the role of x in a 
plane wave. However this expression is not correct and the situation requires more 
careful examination.

Observe that while a spherical wave propagates, the wave surface becomes larger 
and larger (increasing as r2). A wave propagating within the solid angle SI (Fig. 10-37) 
has a wave surface at a distance r from the source whose surface area is A; the wave 
surfaces at 2r, 3r,. . . , nr. are 4/1, 9A . . . . , n2A. This situation suggests that the ampli
tude of the pressure wave must drop as the distance from the source increases since 
the pressure acts over a larger area. This result is confirmed experimentally and 
predicted by a more detailed theoretical analysis than that presented here. For 
example if the fluid is isotropic and the wave has the same amplitude in all directions 
at a distance r0 from the source, it can be proved that the pressure wave is given by 
the expression

P - P a = J  . f ( r - v F ·  (10.67)

The geometrical factor 1/r that was not present in a plane wave accounts for a decrease 
in pressure with the distance from the source. When the amplitude (or intensity) is

—-"Tv  /  ν 'X1 1 /  \Source—-— s  \  /  \

2 r

Figure 10-37
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different in each direction, a more complicated expression may result. Equation 
(1U.67) represents an outgoing spherical wave. An incoming spherical wave may be 
expressed by

P ^ P o = I  A r +  vt).

The velocity of propagation is given by the same expression obtained for plane 
waves, Eq. (10.32). That is,

(1068’
A particularly interesting case is that of a spherical harmonic pressure wave expressed 
by

P=Po + ~ r  s*n (kr — cot). (10.69)

The amplitude of the pressure wave at a distance r from the source is 3* J r  and 
decreases with the distance from the source. The displacement corresponding to this 
pressure wave is given by a more complicated expression; but at large distances 
from the source, the displacement may be expressed to a good approximation by

ξ cos (kr- ω ι )  (10.70)

where

c _
• °  Vp0CO'

a relation identical to that for plane waves (Example 10.8). Note that the amplitude 
of the displacement wave also decreases with the distance from the source as 1 /r. 

The energy per unit volume at large distances is given, according to Eq, (10.50). by

t = l  P 0CD2J 2 _  M 20

2 r2 2 v2p 0r2 ’

and decreases as I//·2 because the amplitude is now ξ0/τ rather than C0. If we use 
I q. (10.51) with A =  Anr2, the energy flowing per unit time through a spherical surface 
of radius /■ is

'I r ) . . .  “  ( ϊ  ~ W )  “  =  T f  - (10-711

Note that the factor r2 has canceled from the expression above; the result is a value 
•tidependent of the radius. This result should have been expected since the conserva
tion of energy requires that on the average the same amount of energy flows per unit 
time through any spherical surface concentric with the source, irrespective of the
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radius. The appearance of the factor I Ir in Eqs. (10.69) and (10.70) now seems 
reasonable.

The intensity of the spherical wave at a distance r from the source (or the average 
energy crossing the unit area per unit time) is. according to Eq. (10.52),

/ = I E =  =-% (10.72)
2 v p 0r r 1

where

S i
Io =  J y -. (10.73)2ρϋν

a result identical to that of Example 10.13. We conclude then that

in a spherical wave both the energy density and the intensity decrease 
as the inverse of  the square of  the distance from the source,

a result of great application in both acoustics and optics. Again this result is consistent 
with the conservation of energy since if the energy flowing through each spherical 
surface has to be the same, and if the area of the sphere changes as r2. the energy- 
flowing through the unit area in unit time must change as I,V2.

The spherical waves just discussed apply only to the case of perfect fluids that 
cannot sustain a shear stress. However in an elastic solid, two kinds of waves are 
possible: irrotational and solenoida! waves. In the case of plane waves the two kinds 
correspond essentially to the longitudinal and the transverse waves discussed in 
Sections 10.5 through 10.7. The respective velocities of propagation of irrotational 
and solenoidal waves are

/K-TfG Ig

T  A ·  ' T i  110741

where κ is the bulk modulus and G the shear modulus of the solid.
Note that if G = 0 , there are only longitudinal waves with a velocity equal to 

result (10.68). On the other hand, no stable medium can have B1=O and sustain only 
transverse waves because that situation would require K  =  —  fG  =  a negative number. 
Such a value for κ would mean that an increase in pressure would result in an increase 
in volume, a situation contrary to both experience and intuition.

Problems

10.1 By rocking a boat, a m an produces shore 12 m away. Calculate the wavelength ol
surface waves on a quiet lake. He observes the surface waves.
that the boat performs 12 oscillations in 20 10.2 The equation of a certain wave is £ =  0.10
seconds, each oscillation producing a wave sin 2π(2χ--ΙΟΟ{) m, where x  is in meters and
crest. It lakes 6 s for a given crest to reach the / is in seconds. Determine (a) the amplitude
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hi the wavelength, (c) the frequency, and (d) the 
•elocity of propagation of the wave, (e) Sketch 

'   ̂ wave and show the am plitude and the
* * Ugtn.
|0 3 Given the wave

ξ = 0.02 sin 2n(0. I x - S tI n i

where x  is in meters and t in seconds, determine 
(al (he wavelength, (b) the frequency, (c) the 
period, (d) the velocity of propagation, (e) the 
a m p litu d e , and (0  th e  direction o f propagation, 
(g) Give the expression for a wave that is 
identical but propagates in the opposite direc
tion.
10.4 Given the wave

ξ =0.02 sin 2π(0.5χ — IOtl m

where f is in seconds and x  is in meters, plot 
ξ over several wavelengths for (a) t = 0  and
(b) t =  s . Repeat the problem for

ς =  0.02 sin 2π(0.5χ +  I Of) m,

for(c) f =  0 and Id) I = J  s. (e) C om pare results.
10.5 A harm onic wave,

C = A sin

propagates to  the right. O n the same set of 
axes plot the disturbance a t time 0, ]P , yP, |P .  
and P, all at x = 0 . Label each curve.
10.6 Plot the displacement ς of the previous 
problem, all at / =  0, for 13 positions x =  0. 
A/12, x/6. λ/4, 5Λ/12,.. λ  on the same set of 
axes. Label each curve,
10.7 Assuming that the wave in Problem 10.5 
corresponds to an elastic transverse wave,
(a) plot the velocity cc/ct and (b) the accelera
tion r 2C/(V at r= 0 , A P. ip ,  ^p  and P, all at
X=;,4,
10.8 Given the equation for a wave in a  string,

C=0.03 sin (3 x -2 t)m ,

where ξ and x are in m eters and t is in seconds, 
answer the following questions, (a) At t= 0 , 
what is the displacement at x =  0, 0.1 m, 0.2 m 
and 0.3 m? (b) At x =  0.1 m, what is the dis

placement at f  =  0, 0.1 s. and 0.2 s? (c) W hat 
is the equation for the velocity of oscillation 
of the particles of the string? (d) W hat is the 
maximum velocity of oscillation? (e) W hat is 
the velocity of propagation of the wave?
10.9 A certain wave is excited by a  source 
whose motion can be represented by

sin w t — ^ 2 sin 3cur

+ J 1 sin 5cur -  · · -J ■

(a) Construct the approxim ate wave form by- 
adding the first three terms graphically. The 
infinite series for the wave form leads to a 
shape called a “saw-tooth" curve, (b) Express a 
traveling wave having the same shape and 
propagating to the right with velocity v, inde
pendent of the frequency. (Note that I +  (y)2 
+  (A)2 +  · ■- =  π 2/8 and that when sin cur= I, 
sin 3coi =  — I.)
10.10 Repeat Problem  10.9 for a source whose 
motion is of the form

4
C =  -  A(sin tu t+  j  sin 3 ω ί+7 sin 5cut+ ■ ■ ·). 

π 3

(N o te th a t l - A  +  ] . - . · .  =  ji/4.)
10.11 Consider longitudinal waves along a 
rod (Section 10.5) and assume that the deforma
tion at each point is

sin 2* ^ - 1 ) .

(a) Using relation (10.20). obtain the expression 
for the force on each section, (b) Show that the 
ξ and F waves have a phase difference of one- 
quarter wavelength, (c) Plot ξ and F  against x  
at a given time for a distance of several wave
lengths.
10.12 A spring having a norm al length of I m 
and a mass o f 0.2 kg is elongated 4 x IO' 2 m 
when it is stretched by a force of 10 N, Find 
the velocity o f propagation of longitudinal 
waves along the spring.
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10.13 A steel spring has a normal length of
4 m and a mass of 0.2 kg. When the spring is 
supported vertically and a 0.1 kg body is 
attached to the lower end. the spring stretches
5 x IO-2 m. Find the velocity of longitudinal 
waves in the spring.
10.14 Com pute the velocity of propagation of 
sound in (a) hydrogen, Ibi nitrogen, and Icl 
oxygen at 0 C . Compare with the experimental 
results. For the three gases, assume y =  I 40.
10.15 Find the change of sound velocity in 
air per unit change in tem perature at 300 K 
(27:'C).
10.16 From the value given in Example 10.7 
for the coefficient a =  vf yR/M  for air, obtain the 
effective molecular mass οΓ air and compare 
with the result obtained by other means. 
Assume that for air y =  1.40.
10.17 How is the velocity of propagation of a 
transverse wave along a string modified if the 
tension is (a) doubled or (b) halved? How must 
the tension be changed to lc) double or Cd) halve 
the velocity of propagation ?
10.18 A steel wire having a diameter of 
2 x IO-4  m is subject to  a tension of 200 N. 
Determine the velocity of propagation of trans
verse waves along the wire.
10.19 A string of length I  m and mass 4 x 1 0  3 
kg is held horizontal, with one end fixed and 
with a mass of 2 kg supported at the other end. 
Find the velocity of transverse waves in the 
string.
10.20 O n een d o fa  horizontal siring is attached 
to a prong of an electrically driven tuning fork 
whose frequency of vibration is 240 Hz. The 
other end passes over a pulley and supports a 
weight of 3 kg. The mass per unit length of 
the string is 2 x 10 2 kg m “ '. (a) W hat is the 
speed of a transverse wave in the string? 
lb) What is the wavelength?
10.21 A rubber tube is fastened at one end to a 
fixed support. The oilier end passes over a 
pulley at 5 m from the fixed end and carries a 
load of 2 kg. The mass of the tube between the 
fixed end and the pulley is 0.6 kg. la] Find the 
velocity of propagation of transverse waves 
along the tube, (b) Suppose that a harmonic

wave of amplitude 10 3 m and wavelength 
0.3 m propagates along the tube: find qIL, 
maximum transverse velocity of any point or 
the lube, (c) Write the equation of the wave.
10.22 A vibrating source at the end ol a 
stretched string has a displacement given by 

the equation I =  0.1 sin 6t m, where ς is in meters 
and i is in seconds. The tension in the string 
is 4 N and the mass per unit length is IO"2 kj; 
m ' 1. (a! W hat is the wave velocity in the
string? (b) What is the frequency of the wave?
lc) What is the wavelength? (d) What is thy
equation of the displacement at a point I ni
from the source? at 3 m ? (e) Make a graph of 
i  versus t at x  = 3 m. (Γ) W hat is the amplitude 
of m otion? (g) Make a graph of £ versus v at 
t =  π/12 s.
10.23 A steel wire having a length of 2 m and 
a radius of 5 x 10 4 m hangs from the ceiling, 
la) If a body having a mass of 100 kg is hung 
from the tree end. find the elongation of the 
wire, (b) Also find the displacement and the 
downward pull at a point at the middle of the 
wire, (cl Determine the velocity of longitudinal 
and transverse waves along the wire when the 
mass is attached.
10.24 Compare the relative importance of the 
two terms in the velocity of surface waves in 
deep water [Eq. (10.43)] for the following wave
lengths: (al IO' 3 m. (bl IO-2 m. (c) I m. Idl 31 
what wavelength are the two terms equal'1 Fof 
water the surface tension is about 7 x 10"" bl 
m“ h
10.25 Consider a canal of rectangular cross 
section having a depth of 4 m. Determine the 
velocity of propagation of waves having a 
wavelength of (a) 10" 2 m, (b) I m. (Cl 10 m. 
(d) 100 m. In each case use the formula that 
corresponds best to the order of magnitude ol 
the quantities involved. The water in the 
canal has a surface tension of 7 x 10 2 N m
10.26 In Section 10.9 we obtained the energ) 
How of a longitudinal wave in a solid t'od 
Repeat the calculation for transverse waves in a 
string: show that the average power >' 
H^mrn2C2I- N ote that the quantity inside the 
parentheses now corresponds to energy Per
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unit length. (Hint: Com pute the rate of work 
done by the force perpendicular to the string: 
that is, F sin α i: F(BQBx) of Fig. 10-14.)
10.27 The Taintest sound that can be heard 
has a pressure amplitude o i about 2 x 1 0  5 Pa, 
and the loudest that can be heard w ithout 
pain has a pressure am plitude of about 28 Pa. 
In each case, determine (a) the intensity of 
the sound both in W m -2  and in db, and 
(b' the am plitude of the oscillations if the 
frequency is 500 Hz. Assume an air density of
1.29 kg m -3  and a velocity of sound of 345 m 
s "l .
10.28 Two sound waves have intensity levels 
differing by (i) 10 db. and (ii) 20 db. F ind the 
ratio of (a) their intensities and of (b) their 
pressure amplitudes.
10.29 (a) How is the intensity of a sound wave 
changed when the pressure amplitude is 
douoled? (b) How must the pressure amplitude 
change to increase the intensity by a factor 
of 107
10.30 Express in db the difference in intensity 
levels of two sound waves if (a) the intensity of 
one wave is twice the intensity of the other, 
and (b' the pressure am plitude of one is twice

that of the other.
10.31 Two sound waves, one in air and one in 
water, have the same intensity, (a) W hat is the 
ratio  of the pressure am plitude of the wave 
in w ater to that of the wave in air? (b) W hat 
would be the ratio of their intensities if the 
pressure am plitudes were the same?
10.32 The pitch of the whistle of a locomotive 
is 500 Hz. Determine the frequency of the 
sound heard by a person standing at the 
station if the train is moving with a velocity of 
72 km h r -1 (a) toward and (b) away from the 
station,
10.33 A sound source has a frequency of IO3 Hz 
and moves at 30 m s _l relative to the air. 
Assuming tha t the velocity of sound relative 
to still air is 340 m s -1 , find the effective wave
length and the frequency perceived by an 
observer w ho is at rest relative to  the air and 
who sees the source (a) receding, and (b) 
approaching.
10.34 (a) Repeat Problem 10,33 if the source is 
at rest relative to the air but the observer 
moves at 30 m s _1. (b) From your results do 
you conclude that it is im material which is in 
motion, the source or the observer?

C H A LLEN GIN G  PR O B LEM S

10.35 A train moving with speed v sounds its 
whistle, which has a frequency /  If the speed 
ol sound in air is c„ determine the wavelength 
°i the sound heard by an observer O directly 
in front of the train. (AP-B; 1971)
P 436 The horn on a very fast racing car is 
Howri as the car moves past an observer beside 
the road. After the car passes, the pitch of the 
sound heard by the observer is an  octave lower 
than the pitch of the sound heard by the ob
server as the car approached; i.e., the frequency 
ol the sound goes down by a factor of 2. If the 
sPeec o f sound is 340 m per second, how fast 
is the car traveling? (AP-B; 1972)

10.37 O btain the velocity of shear waves in 
steel. C om pare with the result for longitudinal 
waves given in Example 10.4.
10.38 (a) Show that the energy wave discussed 
in Section 10.9 can be written in the form

~ = ν{ρωζξ Ι [ \  +  ' cos 2(kx -  wt)] {.

(b) O btain from it its average value, (c) Show 
that the frequency of the energy wave is twice, 
and the wavelength one-half, that of the dis
placement wave, (d) Plot oW.dt as a function 
of x  at a given time.
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10.39 A pendulum consists of a steel wire 
2.00 m long carrying a mass of 20 kg. If the 
pendulum is released from a position that 
makes an angle of 60' with the vertical, find 
the difference in length of the wire when the 
bob is at the initial position and when the bob 
passes through the lowest point.
10.40 A steel rod is forced to transm it longi
tudinal waves by means of an oscillator 
coupled to one end. The rod has a  diam eter of 
4 x IO" 3 m. The amplitude of the oscillations 
is IO" 4 m and the frequency is 10 oscillations 
per second. Find |a) the equation of the waves 
along the rod. (b) the energy per unit volume of 
the rod. (c| the average energy flow per unit 
time across any section of the rod. and Id) the 
power required to drive the oscillator.
10.41 A rope of length L  and mass M hangs 
freely from the ceiling, (a) Show that the velocity 
of a transverse wave as a function of position 
along the rope is v = v gx  where x is the distance 
from the lower end. (b) Show that a transverse 
pulse will traverse the rope in a time 2 fL / g .  
N ote that the results are independent of the 
mass of the rope.
10.42 (a) Show that a transverse elastic wave 
propagating along the Y-axis and correspond
ing to a displacem ent ξ having as components

I y= ς 0 sin ( k x —on)

and

ς , =  ς„ cos (fcx — ωί)

is circularly polarized, lb) D eterm ine the sense 
of rotation of ξ as seen by an observer on the 
Y-axis, (c) W rite the expressions for ξ}. and 
ς._ for a wave having an opposite polarization.
10.43 Referring to  pressure waves in a gas 
colum n (Section 10.6), assume that the pressure 
changes in the form

P -P o  =  ̂ 0 Sin

(a) Using Eqs. (10.25) and (10.29), obtain the 
expressions for the density and displacement 
waves in the gas. (b) Show that the pressure and

density waves are in phase but that the dis
placement wave has a phase difference of one- 
quarter wavelength, (c) Plot the three waves 
against x  for a given time over a length nf 
several wavelengths.
10.44 A plane harm onic sound wave in air a 
293 K and standard pressure has a f r e q u e i·  
of 500 Hz and a displacement amplitude o! 
10“ 8 m. (a) W rite the expression describinj 
the displacement wave, (b) Plot the displace
ment wave form at ( = 0  s over a few wave
lengths. (c) Write the expression describing 
the pressure wave, (d) P lo t the pressure wa,e 
form at f = 0  s over a few wavelengths and 
com pare with the plot in (b). (e) Express m db 
the intensity level οΓ this wave.

10.45 Two harmonic waves of the same fre
quency and amplitude propagate with the 
same velocity in opposite directions, (a; Deter
mine the resultant wave motion, (b) Assuming 
that the resultant wave corresponds to  a trans
verse wave in a string, plot the displacement of 
the points of the string at different times.

10.46 Two waves of equal amplitude, velocity, 
and frequency, but with a phase difference of 
π/4, run in the same direction on a string. Add 
the two and show that the result is a  running 
wave of the same velocity and frequency-

10.47 T w o  waves of the same amplitude and 
velocity but of different frequencies, equal to 
1000 and 1010 Hz, travel in the same directilrj 
at 10 m s " 1. (a) Write equations for the sep
arate waves and for their sum, (b) M ake a 
sketch of the resultant wave form.
10.48 Two waves, plane polarized in per
pendicular planes, travel in the O Y-direclion 
at the same velocity. Find the resultant wave 
m otion if (a) A 1 = 2 A 2 and the phases a te the 
same, (b) Ai = 2A 2 and the phases differ by 
71/2, and (c) A 1 = A 1 and the phases differ by 
n.2.

10.49 In the discussion of longitudinal waves 
in a rod (Section 10.51, we neglected the lateral 
strain that accompanies the longitudinal strain- 
When this effect is taken into account, it can be 
shown that the phase velocity of harmonic
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l0llgitudinal waves of wavelength I  propagat- 
jng along a cylindrical rod of radius R  is

i’p= -T t1C2R 2Zk2)

where σ is a coefficient called Poisson s ratio 
(see Problem 10.55). (a) Find the group velocity 
0f waves along the rod and express it in terms 
0f tv- lb) O btain the limiting value of the 
group velocity for the case of R  much smaller 
than k. (c) Discuss the variation in vp and D9 
as a function o f R/k.
10.50 The phase velocity of a harm onic flexural  
iiiire in a solid rod is

D

Vp=y / \ A k 1IAn2K 2

where D= v Y p is the phase velocity for longi
tudinal waves, k the wavelength, and K  the 
radius of gyration of the cross section of the 
rod about an axis through the center normal 
to the rod’s longitudinal axis, (a) Find the group 
velocity for flexural waves and express it in 
terms of the phase velocity, (b) Specialize to the 
case of a rod of circu Iar cross section, (c) O btain 
the group velocity when k is much larger than 
2TiK. [Note: A flexural wane is a wave pro
pagated along a loaded rod; that is. a rod 
subject to  a transverse force (such as its own 
weight) uniformly distributed along its length.)
10.51 Equation (10.58) for the Doppler effect 
was derived on the assum ption that the medium 
through which the waves propagate remains at 
rest, Show that if the medium has a velocity 
Dm along the line joining the source and the 
observer, the equation becomes

( v ( d  -  D 0  +  Dm)

“  ( D - D s + D m )  '

10.52 The volume strain of a  body is defined 
by the relation ev = d V jV  where dV  is the 
change in volume resulting from the forces 
applied to the body of volume V. (a) Show that

that p F =  m =  const.) lb) Show also tha* the 
bulk modulus defined by Eq. (10,27) can be 
expressed in the alternative form

where d V  is the change in volume resulting 
from the change in pressure dp.
10.53 Using the values of the bulk modulus 
for iron and for lead (Table 10-1), com pute the 
percentage change in density and volume of 
each substance for a  change in pressure equal 
to IO5 Pa.
10.54 The linear strain is defined by the relation

where L  is the distance between any two points 
in the body in the undeformed state and dL  is 
their distance change resulting from the de
formation. By considering a cube of side L, 
show that e , =  3eL.
10.55 W hen a wire is stretched in the direction 
of its length, the diam eter D of the wire is 
decreased. The result is a lateral strain defined 
by

dD

The Poisson ratio is defined by

dD
a ~ d L

Show that if a rectangular parallelepiped is 
subject to  a norm al stress S on each surface, the 
net linear strain of each side is

e;.= S ( l — 2oJ/Y

(Hint: N ote that the norm al stress on each 
pair of surfaces of the parallelepiped results 
in opposite lateral strains on the othei pairs of 
surfaces.)
10.56 (a) Using the results of Problem s 10.54 
and 10.55, show that

Y= 3k(I -2a) .

where p is the density of the body. (Hint: Note (bl Solve this relation for a : and using the values
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of Table 10-1, com pute the Poisson ratio for 
some materials.
10.57 By a logic similar to  that of Problem 
10.56, it can be shown that

Y=2G (l+<r).

(a) By eliminating σ between this expression 
and that of Problem 10.56, show that

y = - 3KG-
(K + iG )'

(b) Llsing the values given in Table 10-1, for 
some of the materials listed, verify the extent 
of the validity of this theoretical expression 
for Y.
10.58 F or a certain substance G =  1.24x IO10 
Pa and V = 3 .2 0 x l0 10 Pa. (a) Calculate the 
value of the bulk m odulus and Poisson’s ratio 
for this substance, (b) Do the same for quartz, 
which has Y=  5,18 x IO10 Pa and G =  2.88x 
IO10 Pa. (c) Discuss the physical implications 
of your results.
10.59 It can be shown that for a spring the 
constant K  that was introduced in Example
10.6 is given by nGRA/la2 where R is the wire 
radius and a the spring radius, (a) Find the 
value of K  for a steel spring that has a radius of 
10 " 2 m and is made of steel wire having a radius 
of IO-3 m. (b) If the unstretched length of the 
spring is 0.5 m, find its elongation when a force 
of 50 N is applied to it.
10.60 Assume a field ζ having a propagation 
equation

B2£ _  δ*ξ 
dt2 a Sx4

where a is a certain constant, (a) Does it admit 
an expression of the form

ξ = ζ 0 sin k { x ± v t )

as a solution? If so, what is the value of u?

|b) Does it adm it ξ = / ( χ ± ν ΐ ί  as a solutiuo
(c) From the preceding results, do you con 
elude that this field propagates undistorted?
10.61 A rod of circular cross section with 
radius R is twisted as a result of to rque  
applied around its axis. Show that if ti is tf„ 
torsion angle at a point x on the abscissa, the 
torque there is

"Pgr' (I) I
where A =  JrR2 is the area of the cross section.
10.62 Using the result of the previous problem, 
show that the velocity of propagation ot 
torsional waves along the rod is

V = J G /p.

(Hint. Consider a section of thickness dx and 
note that the net torque on it is (δτ/δχ) dx)
10.63 It can be shown tha t a  spherical isotropic 
wave satisfies the differential equation

2 B2K )  
dt2 Sr2

(a) Verify that the solution of this equation is

/)N

(b) C om pare with the discussion in Section
10.13 for pressure waves in a fluid.
10.64 Show that when the amplitude is large, 
the equation for transverse waves in a string 
becomes

St2 m S x2 2 VBx)

Observe that this equation is not linear and re
duces to  Eq. (10.36) when (ΰξ/δχ)2 is negligible. 
(Hint: N ote that sin a = ta n  a / J I +  t a n » A  
tan a —A tan 3 a-i .)
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Electromagnetic Waves

11.1 Introduction

In Section 4.5 we suggested that the electromagnetic field may propagate in \acu ,,  
with a velocity

c =  —  : 5:3 x IO8 m s - %
\J *000

a velocity that corresponds to the velocity of light in vacuum. In Section 9.6 while 
dealing with the phenomenon of electromagnetic induction, we indicated the pos
sibility of transmitting a signal from one place to another using a time-dcpendert 
electromagnetic field. Near the end of the nineteenth century, the German ph ysicist 
Heinrich Hertz (1857-1894) proved beyond any doubt that the electromagnetic 
field does propagate in vacuum with a velocity equal to c*  The properties of these 
electromagnetic waves discovered by Hertz have been examined experimentally 
with great care. The large body of information that has accumulated about the 
properties of electromagnetic waves, such as their production, propagation, and 
absorption, has opened the door to the world of communications today. Before 
Hertz performed his experiments, the existence of electromagnetic waves had been 
predicted by Maxwell as a result of a careful analysis o f the equations of the electro
magnetic field. The development of our knowledge of electromagnetic waves is 
another example of the close relationship between theory and experiment in the 
evolution of physical ideas.

In this chapter we examine Maxwell’s equations (which describe the time- 
dependent electromagnetic field) to see how to interpret the propagation of this 
field in the form of waves. In order to do that, we must show that the electric and 
magnetic fields satisfy a wave equation of the form of Eq. (10.15); that is. δ2ξ!δχ2 =  
υ2(δ2ξ/δι2). We then discuss a simple solution to these equations: plane electro
magnetic waves. Finally some mechanisms for emitting, absorbing, and scattering 
electromagnetic radiation are explored.

11.2 Plane Electromagnetic Waves

We shall show that Maxwell’s equations for the electromagnetic field admit as a 
special solution an electric field S  and a magnetic field 38 perpendicular to each 
other. Assume an tf-field parallel to the Y-axis and orient a sM-ficXd parallel to the

‘ H ertz's experiments are described in Section 16.6.
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2 _aXis. In this special case, 

and

t f i  =  0 , t f y =  tf, S z = O 1

c = 0 , M = O .

Assume also that the field is in vacuum; that is, that there are no free charges or 
currents, the implication being that p  = 0  and j = 0 in Maxwell’s equations.

Under these conditions Eqs. (8.34) become

(a) Gauss’s law for the electric field, div S = 0.

es

(b) Gauss’s law for the m agnetic field, div M=O,

S M
—  = 0 . (11.2 )

(c) Faraday-Henry’s law, curl S  =  —δΜ/dt,

dS
r̂ =O, (11.3)

OZ

0 tf_  8M 
dx dt

(d) Ampere-Maxwell’s law, curl M = e 0p 0(dS/dt),

c M

(11.4)

.  = 0 . (11.5)
dy

SM es
= (lli>

Equations (11.1), (11.2), (11.3), and (11.5) indicate that neither S  nor M depends on 
>' or z. Therefore the fields S  and M  depend only on x and t so that at each instant 
the fields have the same value at all points of planes perpendicular to the X-axis 
(Fig. 1 1 - 1 ). The two equations (11.4) and ( 1 1 .6 ) can now be used to obtain the depen
dence of tf and ^ o n x  and t. Taking the derivative of Eq. (11.4) with respect to x, we get

?2S  S2M 
dx2 dx dt

Similarly taking the derivative of Eq. (11.6) with respect to f yields

d2M _  d2S  
~ Ι Γ δ χ ~ €°μ° W '
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Fig. 11-1. O rientation of the electric and the 
m agnetic fields relative to the direction of 
propagation of a plane electromagnetic wave.

Combining these two results gives

i e2s
St2 €0μ0 dx2 ' (11.7)

This equation is the same as Eq. (10.15), and indicates that the electric field S prop
agates along the Y-axis with a velocity

I
C = ( 11.8)

n/ W o 

and can be expressed as

S = S ( x - c t ) .  U 1.9)

By taking the time derivative of Eq. (11.4) and the space derivative of Eq. (116). 
we get

d2B  I B2B
v t 2 €0μ 0 dx2

(11101

so that the magnetic field B  also propagates along the Y-axis with velocity c and 
can be expressed as

B =  B ( x —ct). (11.11)

Consider the particular case of harmonic waves of frequency ν=ωΙ2π  and wave
length A=2n/k.  In such a case.

and

S = S 0 sin k(x—c t ) = S 0 sin (k x —cut) 

B  =  B 0 sin k ( x - c t ) = B 0 sin (kx -cot).

( 11.12)

In writing these equations we employed the relation co = kc ,  given by Eq. (10.6).
The amplitudes S 0 and B 0 are not independent since Eqs. (11.4) and (11.6) must 

be satisfied simultaneously. Now
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δ χ Ό
Substituting these in Eq. (11.4) gives

— =Jctf0 cos k{x -c t)  and

(11.13)

The student may verify that the same result is obtained by using Eq. (11.6) instead 
of (11.4)· Because of their special form, the instantaneous values given by Eq. (11.12) 
also have the relationship

This relationship is not necessarily true for more general cases.
From Eq. (11.14) the tf and ^SfieIds are in phase and reach their zero and maximum  

values at the same time. The electromagnetic wave described by Eq. (11.12) is repre
sented in Fig. 11-2. The electric field oscillates in the XT-plane; and the magnetic 
field, in the XZ-plane. This situation corresponds to a plane or linearly polarized 
wave. The plane of  polarization is defined as the plane in which the electric tkid  
oscillates, in this case the XT-plane. Thus an electromagnetic wave actually consists 
of two coupled waves: the electric wave and the magnetic wave.

Equation (11.12) is not the only plane wave solution of Eqs. (11.7) and (11.10). 
For example the electric field could have been oriented along the Z-axis, in which 
case the magnetic field would be along the — T-axis. That is,

In addition, in both this wave and the wave of Eq. (11.12), it is possible to use cosines 
instead of sines, or even to add an arbitrary constant phase.

S  =  cM or 0 8 = -  tf. (11.14)

S z= S 0 sin (kx—cur), My= - M 0 sin (kx—cot).

Fig. 11-2. Electric and magnetic fields in a harm onic plane electromagnetic wave.
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F i g .  1 1 - 3 .  Circularly polarized electromagnetic F i g .  1 1 - 4 .  Spherical electrom agnetic wave at a 
wave. The S  and 38 fields rotate around the large distance from the source, 
direction of propagation.

Another plane-wave solution is one in which the electric and the magnetic fields 
remain constant in magnitude but rotate around the direction of propagation, and 
result in a circularly polarized wave (Fig. 11-3). This new solution is obtained by 
combining two linearly polarized solutions for each of the S  and M  fields, previously 
discussed in Chapter 12 of Volume I, with equal amplitudes for each field and with 
the appropriate phase difference. (This combination is possible because Maxwell 
equations are linear in the tf and M fields.) The circular polarization may be ngfit- 
or left-handed according to the sense of rotation of the fields. For example we could 
take the components of the electric and the magnetic fields along two mutually 
perpendicular axes as

S y= S 0 sin (kx—ω ί) , tfz=  ± t f 0 cos (kx—ω ί) ,

and

My =  +  M0 cos (kx — ω ί) , Mz =  M0 sin (kx—ω ί) ,

corresponding to a phase difference of ±  π/ 2  between the components of each field, 
in accordance with Section 12.9 of Volume I, with the magnetic field M perpendicular 
to S  at each instant. If the amplitudes of the two rectangular components of each 
field are different, elliptical polarization results. In addition, other plane-wave solutions 
of Maxwell’s equations are possible that do not correspond to any particular state 
of polarization; the requirement is that the solutions satisfy the relations (1 1 . 1 ) 
through (11.6). However, we shall not discuss these other solutions here since for 
most applications the basic understanding of plane and circularly polarized waves 
is enough.

The choice of the relation between the tf and M fields relative to the XTZ-axes 
was a matter of convenience; the plane-wave solutions of Maxwell’s equations we
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obtained are completely general and illustrate a key feature of these waves:

plane electromagnetic waves are transverse with the S  and B  fields 
perpendicular both to each other and to the direction o f  propagation 
of the waves.

This theoretical prediction of Maxwell’s equations has been amply confirmed 
by experiment and results in several phenomena that will be considered in subsequent 
chapters. Besides plane-wave solutions to Maxwell’s equations, there are also 
cylindrical and spherical electromagnetic waves. Practically speaking, at a large 
distance from the source a limited portion of a cylindrical or a spherical wave can be 
considered as plane. In fact all solutions to Maxwell’s equations have the electric 
and the magnetic fields perpendicular to each other as well as to the direction of 
propagation (i.e., radial) as indicated in Fig. 11-4.

11.3 Energy end Momentum of an Electromagnetic Wave

From Eq. (2.40) the energy density associated with the electric field of an electro
magnetic wave in vacuum is

Ee =  ±e0<?2.

Similarly when Eqs. (11.14), B = S jc ,  and (11.8), C =  I j J e 0P0, are used, the magnetic 
energy density given by Eq. (9.13) is

Em =  J - B 2 = — H  S 2 =  Je0S 2 
2 P0 2PoC

so that Ee =  Era. That is, the electric energy density of an electromagnetic wave is 
equal to the magnetic energy density. The total energy density is

E =  Ee A t E m =  C0S 2. (11.151

The intensity of the electromagnetic wave (that is, the energy passing through the 
unit area in the unit time) is, from Eq. (10.52),

I = E c = C C 0S 2. (11.16)

The average intensity of the electromagnetic wave is Iavc =CC0(S1)ivc. In the case of a 
harmonic electromagnetic wave,

(S 2)ave=<?ol>in2 k ( x - c t ) ] avc= J s o

s°  that the average intensity is

! . M c c 0S 2. (11-17)
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Fig. 11-5. Definition of the direction ot ent r 
flow in an electromagnetic wave.

Because it has special significance, let us compute the vector product S  x JB for a 
plane electromagnetic wave. The direction of £  x 08 is perpendicular to the wave 
front and is therefore pointing in the direction of propagation of the wave (Fig. 11-5). 
The magnitude of the product is

\S x 08\ =  SM =  - S 2, 
c

and so the vector c S  x 38 has magnitude S 2. Then the vector C2C0S x 38, called the 
Poynting vector, has a magnitude equal to I. Therefore the energy crossing a surface 
S per unit time is found by calculating the flux of the Poynting vector across the 
surface S. Thus,

dE f  ,
—  =  c2e0(Sx.38)-u„dS.  (1118)
dt Js

We know from the special theory of relativity that energy and momentum are 
closely related, and that they form a four-vector (sec Section 11.7 of Volume I).
We may then expect that an electromagnetic wave carries a certain momentum
in addition to its energy. Since electromagnetic radiation propagates with velocity c, 
the energy-momentum relation. p =  Eic. given by the special theory o f relativity [see 
Eq. (11.18) of Volume I], may be used to obtain the momentum P per unit volume 
associated with an electromagnetic wave. Thus

P = E= io fL = e j  S x 3 8 \ .  (11.19)
c c

(The student should verify that e0|S  x 38\ has the dimensions of m 2 kg s ' 1, which 
corresponds to momentum per unit volume.) Since momentum is a vector quantity, Ij 
must have the same direction as the direction of propagation of the wave. The equation 
above may then be written in vector form as

EP = -  U  =  C0 S x  38  
C

where u is the unit vector in the direction of propagation.
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[f an electromagnetic wave has momentum, the wave may also have an angular 
^omentum. The angular momentum per unit volume relative to a point O is

L =  IX P  =  e0r x (tf x M)

where r is the vector from O to the point of the wave where P is evaluated. This value 
could be called the “orbital” angular momentum of radiation because of the similarity 
to the angular momentum of an orbiting particle. In addition, electromagnetic 
radiation possesses an intrinsic angular momentum, or spin, similar to the spin of 
fundamental particles (recall Section 7.5). For circularly polarized plane waves it 
can be shown that the spin component along the direction of propagation is equal to 
T £/a>, depending on whether the polarization is clockwise or counterclockwise. 
For a linearly polarized wave, the average value of the spin component along the 
direction of propagation is zero because such a wave may be considered as the 
combination of two oppositely rotating, circularly polarized waves. In summary

an electromagnetic wave carries momentum and angular momentum as 
well as energy.

This result is not surprising since an electromagnetic field describes the electro
magnetic interaction between electric charges, and this interaction means an ex
change of energy and momentum between the charges. This exchange is accomplished 
by means of the electromagnetic field, which is the carrier of the energy and momen
tum exchanged. The existence of a momentum associated with the electromagnetic 
field has already been suggested in Section 4.8. The relation p — Etc between the 
energy and momentum of electromagnetic radiation is particularly important. We 
shall have the opportunity to refer to the relation again several limes, and shall 
indicate the experimental evidence that supports this assumption. Also, when a 
charged particle absorbs or emits electromagnetic radiation, not only do the energy 
and momentum of the particle change but also its angular momentum changes 
accordingly, a result that has been verified experimentally.

Example 11.1. Radiation pressure.

7 if electromagnetic waves carry momentum, they must give rise to a pressure when they are 
reflected or absorbed at the surface of a body. The basic principle is the same as that in the case 
of the pressure exerted by a gas on the walls of a container.

Consider first some simple cases. Suppose that a plane electromagnetic wave falls perpendic- 
uIarIy on a perfectly absorbing surface (Fig. I f -6). The incident momentum per unit volume is p; 
and the amount of momentum in the radiation falling on the surface A per unit time is obtained 
by multiplying p  by the volume c A : that is. PcA. If the radiation is completely absorbed by the 
surface, this expression is also the momentum absorbed per unit time by the surface A ; that is, 
the force on A. Dividing by A gives the pressure caused by the radiation:

P rad =  C P = E  =  f 0t f 2 .
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Thus for normal incidence the radiation pressure on a perfect absorber is equal to the energy 
density in the wave.

On the other hand if the surface is a perfect reflector, the radiation after reflection has a momen
tum equal in magnitude but opposite in direction to the incident radiation. The change in momen
tum per unit volume is thus 2p, and the radiation pressure is accordingly

Frnd=2cP  =  2E =  2 e , / 2.

These results can be generalized to the case o f oblique incidence (Fig. 11-7), in which case the 
change in momentum of the radiation per unit volume at the perfectly reflecting surface js 2 p 
cos (I and the volume is cA  cos (I The corresponding radiation pressure is

Prnd=2cP  cos20 =  2E Cos2O.

This result is identical to the pressure produced by a stream of particles falling on a surface if c 
is replaced by v. the molecular velocity, and P is replaced by nmv If the radiation propagates in all 
directions, one must integrate over all directions to obtain the result

P,M cp M -
When the surface is a perfect absorber, the change In momentum normal to the surface is reduced

2 1- cos fl pig. 11-7. Radiation pressure at oblique
incidence. The momentum diagram is 
shown at the right.
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to one-half the previously determined value (because there is no reflected wave carrying momen
tum). and results in

P  rad — 3E·

To estimate the radiation pressure on the earth's surface from the sun, we must consider that 
the incident energy is about M x lO 3 W m -2 . corresponding to an energy density equal to
4,7 x 10“ 6 J m -3  (when we divide by e). On the assumption that the earth is a perfect absorber 
and that the radiation comes from all directions, the radiation pressure is Prad = IiE =  1.6 x 10 6 Pa 
This pressure should be compared with atmospheric pressure, which is about IO5 Pa. L

11.4 Radiation from an Oscillating Electric Dipolo

So far, electromagnetic waves have been considered without mentioning how they 
are produced; in other words, without explaining what the sources of the electro
magnetic waves are. The sources of electromagnetic waves are clearly the same as 
the sources of the electromagnetic field; that is, moving electric charges. Given a set 
of charges in motion, Maxwell’s equations give (in principle) the electromagnetic field 
the charges produce, and therefore the nature of the resulting electromagnetic waves. 
Instead of considering the general solution of Maxwell’s equations for charges in 
arbitrary motion (which is a very important theoretical problem, but too complicated 
Io be discussed in this book), we shall concentrate on several special but important 
cases: an oscillating electric dipole, an oscillating magnetic dipole, and finally radia
tion from accelerated charges in general.

The case of an oscillating electric dipole arises when the motion of the charges 
can be described collectively by an electric dipole whose moment changes with time 
according to the law Π =  Π 0 sin ωι * This situation could be the case, for example, 
of an oscillating current in a linear antenna of a broadcasting station or of an electron 
within an atom when the orbiting motion of the electron is perturbed. When the 
electric dipole moment is constant, the only field produced is electric as explained in 
Section 1.9; but when the electric dipole moment is oscillating, the electric field is also 
oscillating and is therefore time dependent. Therefore a magnetic field is also present 
(the Ampere-Maxwell law). The magnetic field arises because an oscillating electnc 
dipole is equivalent to a linear oscillating current, and an electric current always 
produces a magnetic field.

The solution of Maxwell’s equations for the case of an oscillating electric dipole 
is too difficult a mathematical problem to be presented here, but we may use our

‘ In this chapter the symbol 11 is used for the electric dipole moment to avoid confusion with 
•nomenturn and pressure.
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physical intuition to determine its main characteristics. At points very close to the 
electric dipole, the effect of retardation caused by the finite velocity of propagation 
of the electromagnetic waves is negligible because the distance r is very small 
(remember the discussion in Section 4.8). The electric field is then similar to the 
field created by a static electric dipole, varying as I /r3, as computed in Section L a  
and the magnetic field is negligible. At large distances, however, the finite propagation 
of the waves produces a modification in the field. The solution of the wave equation 
for spherical waves of equal amplitude in all directions was given in Section 1 0 . 1 3  

and suggests that in this case (although there is no spherical symmetry but rather 
axial symmetry around the axis of oscillation of the dipole) the electromagnetic field 
may depend asymptotically on the distance by a factor 1 /r, instead of 1 /r3 as for small 
distances. (This suggestion is corroborated by the actual solution of Maxwell’s 
equations.) In addition at large distances when a small portion of the wave front looks 
like a plane wave, the electric field is perpendicular to the direction o f propagation, 
which is along the radius vector r. so that <?r= 0 .

If we assume that the Z-axis is oriented parallel to the oscillating electric dipole, 
the magnitude of the electric field is then found to be

and has the orientation indicated in Fig. 11-8. On the other hand since the oscillating 
dipole corresponds to a current along the Z-axis, the magnetic field is parallel to the 
X  T-plane. From the relation Sd=Sjc, the magnitude of the magnetic field is

with the field oriented as indicated in Fig. 11-8. Again, S  and SS are perpendicular 
to each other and to the direction of propagation. N ote that both S  and SS are zero

(11.20)

( 112 1 )

D irection  
Z  of energy 

an d  m om en
tum  flow J

Y

X
Fig. 11-8. Electric and magnetic fields pro
duced by an oscillating electric dipole.
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F i g .  11-9. Electric field lines produced by an oscillating electric dipole.

for Θ = 0  and π; that is, for points along the Z-axis. Thus the amplitude of the electro
magnetic wave of an oscillating electric dipole is zero along the direction of oscillation. 
On the other hand, sin Θ has its maximum value for 0 =  π/2, or points on the X  Y-plane. 
Therefore the electromagnetic wave of an oscillating electric dipole has its maximum 
intensity in the equatorial plane of the electric dipole. The waves are linearly polarized 
with the electric field oscillating in a meridian plane. Figure 11-9 is a description of 
the electric lines of force in such a meridian plane at a particular time. Each loop  
corresponds to one complete oscillation. The magnetic lines of force are circles 
parallel to the XT-plane with their centers on the Z-axis.

The vector S  x £8 has the direction of r as shown in Fig. 11-8, and so energy and 
momentum flow away from the electric dipole in the radial direction; therefore to keep 
the electric dipole oscillating, energy must be supplied to it. If we use Eqs. (11.15) and
( 1 1 .2 0 ), we find that the energy density in the wave at large distances from the oscil
lating electric dipole is

j Πο sm 2 0 ω4 . ,
E =  e0<?2 = — -j— 5 s in “ ( k r - ω ί ) .

\6π*€0Γ  c

Since [sin2 (kr—coi)]av(.=^, the average energy density is

E (0 ) =— - Qf fl4 sin2 θ (Π-2 2 )32^ 4 ^ 2  sm
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Fig. 11-10, Angular dependence of the intensity 
of the electromagnetic radiation produced by 
an oscillating electric dipole.

Fig. 11-11. Calculation of the total energy 
radiated per unit time by an oscillating electric
dipole.

The intensity of the radiation from the oscillating electric dipole (that is, the energy 
passing per unit area and unit time in the direction of propagation) is

/(A)avc =CEavc(0) =
Π> 4 .

— sin 0.
32n2c3€0r

(11.23)

This intensity shows two interesting features. In the first place it exhibits the 
1/r2 dependence expected from the discussion of spherical waves in Section 111. 13. 
In addition the intensity has an angular dependence, proportional to sin2 Θ. Therelore 
the intensity of electric dipole radiation is maximum in the equatorial plane and zero 
along the axis of the oscillating electric dipole; that is, an oscillating electric dipole 
does not radiate energy along its axis. The angular dependence of /(A) is shown in 
Fig. 11-10.

The total energy radiated per unit time by the dipole is calculated as follows. 
Since the energy flows in the radial direction, we draw a sphere of very large radius 
around the dipole (Fig. 11-11). The average energy passing per unit time through the 
small area dS is /(A)ave dS, and therefore the average energy radiated through the 
entire sphere per unit time is

iIE 
dt =  f  /(A),

J  S p h e re

I C  _  7 lO 0 j 4

*vc 3 2 ; t V V 2
f sin2A
Ŝphere

dS. (11.24)

The computation of this integral is a mathematical exercise and will be omitted. The 
result is

dE
T t

n < > 4

I ln e0C3
(11.25)

Since the electric dipole moment may be written as qz where q is the oscillating 
charge, and z = z 0 sin ωί is the displacement of the charge along the Z-axis, Π 0 may
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be replaced by qz0 where z0 is the amplitude of the oscillations. In many cases the 
oscillating charge is a proton within a nucleus or an electron within an atom so that q 
is equal to the fundamental charge ± e .  Then Eq. (11.25) becomes

In the case of an electron in an atom, the quantity z0 is of the order o f magnitude 
of the atomic size, or about 10 1 0  m. Introducing the values of the other constants, 
we see then that for atomic electric dipole radiation

In the optical region, Cu is of the order of IO1 4  Hz, and therefore (dE/dt) — 10 1 8 W 
or 10 eV s ' 1, a quantity small by engineering standards but appreciable from the 
atomic point of view.

Electric dipole radiation is one of the most effective ways for producing electro
magnetic waves and constitutes the most important mechanism by which atoms, 
molecules, and nuclei emit (and absorb) electromagnetic radiation. However to 
discuss electric dipole radiation by atoms, molecules, and nuclei requires use of the 
methods of quantum mechanics. Therefore the results stated here and in succeeding 
sections give only a rough estimate of the orders of magnitude involved. One of the 
more important experimental results to be considered in the quantum-mechanical 
treatment is that an atom does emits radiation not continuously but in bursts. Another 
experimental result that must be accounted for is that the radiation emitted by atoms
(or molecules or nuclei) is composed of a well-defined set of frequencies Cu1, ω2, ω3, __
characteristic of each atom, molecule, or nucleus; this set is called the emission 
spectrum of the substance, a fact mentioned in Section 2.7.

As pointed out in the discussion of Fig. 11-9, electric dipole radiation is polarized, 
with the electric field always in a meridian plane. However, the human eye does net 
seem to be sensitive to the direction of polarization o f an electromagnetic wave. It is 
interesting that certain insects, however, do seem to be sensitive to polarization. In 
addition in most substances the radiating atomic dipoles are oriented at random and 
no net polarization is observed in the total radiation from the substance.

Example 11.2. Power transmitted by the antenna of a radio station in the electric dipole approxi
mation.

▼ An antenna in simplified form is just a wire of length zB in which an oscillating current is 
maintained. The current is related to the charges by i —dqjdt, and therefore the current amplitude 
is I0 =  q<jo. Therefore Tl0=qz0 = / 0ζ0/ω . Introducing this relation into Eq. (11.25» gives

(11.26)

(11.27)
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This expression gives the power required to broadcast at a frequency ω. From the discussion 
of Ohm’s law applied to circuits with alternating currents (Section 9.5) the average power required 
to maintain a current is [Eq. (9.30)]. Accordingly we rewrite Eq. (11.27) in the form

as the antenna’s radiation resistance. It is expressed in ohms as may be verified from its dimensions 
in terms of fundamental units. (The total resistance of the antenna is, of course, the iadiation 
resistance plus the conduction resistance.) Introducing numerical values in Eq. (II 29) gives 
/Ϊ»  787(30/λ)2 ohms Note that both Eqs. (11.28) and (11.29) for a linear antenna have been derived 
by means of the electric dipole approximation, and thus these equations are valid only if the 
length z0 is very small compared with the wavelength of the radiation.

For example consider a 30-m-long linear antenna that radiates electromagnetic waves of 
frequency 5 x 10s Hz with an rms (or rool-mean-square) value of the current of 20 A. Using 
Eq. (11.29) with ω  =  2πν =  3.14 x IO6 s ' 1 and zo =  30 m gives R  =  1.97 Ω for the radiation resistance. 
Since = (remember Problem 9.28), /■„ = \S 0. Therefore the power radiated is

Note that in this case λ = c/v= 600 m so that z j l  I, and this approximation can be used. A

Another source of electromagnetic waves is an oscillating magnetic dipole. The 
interrelation between the fields of a magnetic dipole is similar to that of an electric 
dipole, except that the roles of the electric and magnetic fields are interchanged.

We have defined a magnetic dipole as a small current loop, the magnetic moment 
being J t = I A  where I is the current and A the area of the loop. Suppose that the 
loop lies in the X  T-plane with its center at the origin of a coordinate system (Fig. 11 -1 ?.)■ 
If the current oscillates with frequency ω  so that it is given by I =  I 0 sin (at, the mag
netic moment is J t -  J t 0 sin cot where J t 0- I 0A. A static magnetic dipole produces 
only a constant magnetic field; but when the magnetic dipole oscillates, its magnetic 
field at each point of space is also time dependent. Thus an electric field is also present 
as was the case when the Faraday-Maxwell law was discussed.

Just as for the oscillating electric dipole, the derivation of the exact expressions for 
the electric and magnetic fields will be omitted. At points close to the magnetic dipole

(11.28)

and by analogy define

(11.29)

11.5 Radiation from an Oscillating Magnetic Oipola
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Z

Fig. 11-12. Electric and magnetic fields pro
duced by an oscillating magnetic dipole.

Y

X

the effect of retardation caused by the finite velocity of propagation of the elec*ro- 
magnetic waves is negligible because the distance r is very small. The magnetic 
field is then similar to that of a static magnetic dipole varying as 1 /r3 as explained in 
Section 5.3. and the electric field is negligible. At large distances, however, the finite 
propagation velocity of the waves produces a noticeable modification of the field. 
As in the case of an oscillating electric dipole, we may expect a solution depending 
asymptotically on I/r instead of I/r3 oscillating with the electric and the magnetic 
fields in a plane perpendicular to the direction of propagation of the waves. However 
for magnetic dipole radiation the magnetic field is in a meridian plane and the electric 
field in a transverse direction so that the electric lines of force are circles concentric 
with the Z-axis. In this approximation the fields are

Note that the relation $ = $ j c  still holds. The relative orientation of the & and &  
fields for an oscillating magnetic dipole is illustrated in Fig. 11-12. N ote that the 
vector S  x  3S is still in the outward radial direction. The wave is plane polarized 
with the magnetic field oscillating in a meridian plane. In other words the plane of 
Polarization is rotated 90" with respect to electric dipole waves.

By the same reasoning as that with the oscillating electric dipole, the average 
energy density of the radiation emitted by an oscillating magnetic dipole is

and (11.30)

(11.31)
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where Li0= l / e 0c2 has been used. The intensity of the radiation from the magnetic 
dipole, given by /(ff)ave =  cEave(0), is again zero along the axis of the dipole (Z-axis).’ and  
is maximum in the equatorial plane, a  situation similar to that found for the oscilla tin -*  
electric dipole. The average energy radiated per unit time by the oscillating m a g n e tic  
dipole is

This result is obtained by following the same procedure used for the electric dipole 
In the case of an electron in an atom we have from Eq. (7.31) that H0 =  —(e / l m J L  

where L  is the orbital angular momentum of the electron so that

The quantity e/2mc is 8.794 x IO1 0  C kg \  and the angular momentum L is of the 
order of 10 3 4  J s" 1 [see Eq. (7.24)] so that

When we compare this result with the corresponding result for an electric dipole, 
we conclude that for atoms (and also molecules) the ratio of the intensity of the 
magnetic dipole radiation to the electric dipole radiation is of the order of 1 0  5. 
Therefore for the same frequency the magnetic dipole radiation from atoms is neg
ligible compared with the electric dipole radiation, and must be taken into con
sideration only when the electric dipole radiation is absent. Actually since L =m rv  
and r and z0 are of the same order of magnitude, we find that

so that only for very fast electrons are the two comparable.

Example 11.3. Magnetic dipole radiation from an antenna.

▼ Equation (11.32), applied lo a radiating circular antenna with J i 0 = I0A, gives the average 
power required to drive the antenna. This power is written as

(11.32)

(11.33)

(11.34)

Comparison with Eq. (11.27) for the radiation from an electric dipole antenna gives
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However atjc^-k = 2njX and A is of the order of magnitude of z%. Therefore

(11.35)
(dE /dt)i-uipciî dipoic ^ ( 2 π ζ 0\ 2
(dE/dt)  ElaitKiiipoic V ^ /

Since z0 is normally much smaller than 7. for broadcasting antennas, we conclude again that the 
magnetic mode of radiation is much weaker than the electric mode.

for  an atom Z0 is of the order of 10 ' 10 m. and in the optical region /  is about IO' 7 m and gives 
a value of the order of 10' 5 for the ratio appearing in Eq. (11.35). in agreement with the previous 
estimate. On the other hand for nuclei, z0 is of the order of 10“ 14 m and /. is of the order of 10“12 m 
so that the ratio (11.35) is about 10“ 3. A

Example 11.4. Radiation resistance of a loop antenna.

▼ Consider a circular, 30-m-long antenna that carries an rms current of 20 A oscillating with a 
frequency of 5 x  IO5 Hz. (These are the same values used in Example 11.2.) From Eq. (11.34)

dj\LC ifi T ) , ;

where the terms have been arranged to give the form (i/E/i/t) =  ̂ Rf0. The radiation resistance of a 
loop antenna is then

Α 2ω Λ 8 π 3 Iμ 0 ( Α \ 2 / 4 \ 2

R = e ^ ? = T sI t0 ^ )  = 3 u 7H ? )  ohms-

In this case the radius is 30/2πιτι and the area is A =900/4π=71.6  m2. Therefore jR =  1.23 x 10“ 3 Ω. 
The average power radiated is

( J ) - K t - 0-25 W.

These results should be compared with the results of Example 11.2. A

1 1 . 6  R a d i a t i o n  f r o m  H i g h e r - O r d e r  O s c i l l a t i n g  M u l t i p o l e s

In the tw o  p rev ious section s w e h ave con sid ered  th e rad ia tion  em itted  from  electric  
and m agnetic  d ip o les; b u t C hapters I an d  5 d iscu ssed  h igh er-order m u ltip o les, b oth  
electric and  m agnetic , related to different charge and  current arrangem ents. If these  
m ultipo les o sc illa te , they  produce elec trom agn etic  w a v es th at differ in  their angular  
distribution  and  sta te  o f  p o lar iza tion  from  the d ip o le  w aves. In  general th e  h igher the  
order o f  the m u ltip o le , the low er th e  in ten sity  o f  the rad ia tion  w hen  com p ared  w ith  a  
dipole o f  sim ilar d im en sion s and  the sam e frequency; that is, e lectric  d ip o le  rad ia tion  
‘s the m ost im portant m echan ism  for rad iation  in a to m ic  system s. F or exam ple if r0 
*s the order o f  m agn itu d e o f  the d im en sion s o f  the system  an d  λ  th e  w avelength , the
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ratio between electric quadrupole radiation and electric dipole radiation is o f the 
order of (r0/A)2. For atoms. r0 is of the order o f 10 1 0 m; and for visible light, A is 
of the order of 10 m so that fi-0/A)2 is about IO-6 . For nuclei, on the other hand, 
r0 is of the order of 10 1 4  m and A is of the order of 1 0 ' 1 2  m so that Ir0i A)2 is ahout 
10 4 and electric quadrupole radiation is relatively more important. Note that 
electric quadrupole radiation is of the same order as magnetic dipole radiation. 
Although higher-order multipole radiation is much weaker than dipole radiation 
to explain some transitions in certain nuclei, the electric quadrupole and even the 
electric octupole radiation must be taken into consideration.

1 1 . 7  R a d i a t i o n  f r o m  a n  A c c e l e r a t e d  C h a r g e

The electromagnetic radiations studied in Sections 1 1.4 and I 1.5 were related to two 
special charge configurations. We will now discuss the production of radiation in 
general, resulting from the acceleration of charged bodies. First, however, it is impor
tant to understand why an unaccelerated charge does not radiate.
Consider the case of a charge in uniform motion; that is, a charge moving with 
constant velocity u. The electric and the magnetic fields of such a charge were discussed 
in Section 4.7. The electric field is radial, and the magnetic field is transverse with 
circular lines of force concentric with the line of motion. Figure 11-13 shows the 
electric field S  and the magnetic field .48 at the four symmetric points P 1. P 2. P 3, and 
P4. At each point the vector < S x sf has also been indicated. From the figure it can 
be seen that the contribution of the components of S  x M  perpendicular to the direc
tion of motion cancel each other because of symmetry; the components of S  x  08 paral
lel to the direction of motion are all in the forward direction and add to each other. 
There is therefore a net flux of energy in the direction in which the charge is moving; 
this is understandable from a physical point of view since the particle carries the 
field with itself (and therefore the field's energy and momentum as well). At points 
behind the moving charge in the laboratory frame of reference, the electromagnetic 
field is decreasing; at points ahead of the charge, the field is increasing by the same 
amount. The transfer of energy in the direction of motion of the charge gives rise to the 
energy flux.

To see if energy is radiated by a charge in uniform motion, we must compute the 
flux of the vector S x M  through a closed surface surrounding the charge. Using 
Eq. (11.18) for a closed surface gives

(IE f
— = o 2 f0 (j> S x M - us dS

when a sphere of radius r concentric with the charge is chosen for the closed surface. 
From Fig. 11-13 it is seen that the vector S x M  is tangent to the spherical surface at
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pig, 11-13. Electric and magnetic fields of a uni
formly moving charge.

all its points, and is therefore everywhere perpendicular to the unit vector tilN normal 
to the surface. Thus

S  x JS-M v =O,

and the net energy flux across the spherical surface is zero. We conclude then that

a charge in uniform rectilinear motion does not radiate electromagnetic 
energy but carries the energy o f  the electromagnetic field along with 
itself.

Since the field is static and the energy remains constant in the inertial frame of reference 
οΓ the charge, the total energy must also remain constant in the laboratory frame of 
reference. There is merely a steady flow of energy along the direction o f motion of the 
charge.
A very different situation exists for a charge that is in accelerated motion. The electric 
field of an accelerated charge is no longer radial and does not have the left-io-nght 
symmetry present when the charge is in uniform motion. Since it is complicated, 
the expression for the field will not be given here; but its lines of force have a pattern 
similar to that shown in Fig. 11-14. When the particle moves, the field on the left 
decreases and the one on the right increases; but because of the acceleration, the 
increase of the field (corresponding to the new. larger velocity) is greater than the 
decrease of the field that existed previously (corresponding to an earlier, smaller 
velocity). Therefore a net excess energy must be transferred to all space to build up 
the field. Thus

an accelerated charge radiates electromagnetic energy.
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Fig. 11-14. Electric lines of force produced bv an accelerated charge.

Accordingly, the equation of motion of a charged particle under an applied force 
must be modified to take into account the radiation of energy. This factor has not 
previously been considered because in most practical cases (in which the acceleration 
is small and the velocity is much less than c), the radiation is negligible.

By using the appropriate values for the fields S  and SS, it may be proved that if the 
accelerated charge is momentarily at rest or is moving slowly relative to the observer 
(so that all retardation effects due to the finite velocity of propagation of the wave 
can be neglected), the energy radiated per unit time through a spherical surface of 
radius r around the charge is

dE q2a2
dt 6 ne0c3

(11.36)

where a is the acceleration of the charge. This result is called Larmor’s formula. For 
a charge oscillating along the Z-axis with simple harmonic motion, the acceleration 
is given by a =  — ω2 ζ, and Larmor’s formula for the oscillating charge is

dE _ q 2z2(o* 
dt 67re0c 3 ’

To obtain the average energy radiated, we replace z 2 by (Z 2 )ave, which is equai to 
^Zq. After this substitution, Larmor’s formula becomes Eq. (11.26), the equation 
that gives the energy radiated by an oscillating electric dipole.

One important conclusion from the study of accelerated charges is that to maintain 
a charge in accelerated motion, energy must be supplied to compensate for the energy 
lost by radiation. Thus for example when an ion is accelerated in a linear accelerator, 
such as a Van de GraafT machine, a fraction of the energy supplied to the ion is lost
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aS electromagnetic radiation. This loss is negligible, however, except at relativistic 
energies.

Ifthe acceleration is parallel to the velocity, the angular distribution of the radiated 
energy is similar to that illustrated in Fig. 11-10 for an electric dipole as long as the 
velocity of the particle is small compared to the velocity of light. That is, using F,q. 
( 1 1.23) with certain changes (replace Π 5 by q2z l  and z0co2 by the acceleration a and 
note that using instantaneous values rather than average values necessitates removing 
a factor of )̂, the intensity of the radiation in the direction given by the angle Θ with 
respect to the direction of the velocity can be expressed by

2 2

Ι(θ )= ~ q< * , sin2 0. (11.37)
Ιοπ-c e0r

The angular distribution /(0) is symmetric relative to a plane through the charge 
and perpendicular to the direction o f motion as shown in Fig. 11-15. However in the 
high energy region the intensity of the energy radiated by an accelerated charge has its 
maximum over a conical surface oriented in the direction of motion of the panicle 
as also indicated in Fig. 11-15. The angle of the cone decreases as the velocity of the 
particle increases.

If the particle is decelerated instead of accelerated, expression (11.36) still holds, 
and the energy radiated is that which the electromagnetic field has in excess at each 
moment as a result of the decrease in the velocity of the charge. This situation occurs, 
for example, when a fast charge, such as an electron or a proton, hits a target. A 
substantial part of the total energy of the charge goes off as radiation, called decelera
tion radiation, or more commonly bremsstrahlung (from the German Bremsung.

Hg. 11-15. Angular distribution of the radiation 
emitted by an accelerated charge for different 
values of υ/c and with kinetic energy Ek.

= 0.03mfr
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Fig. 11-16. Radiation emitted by a charge de- Fig. 11-17. Synchrotron radiation of a particle
celerated when hilling the targel A in an X-ray moving in a magnetic field. The angular distri-
tubc. The target must be constructed from bution of the intensity is shown at two
material with a high melting point and it must positions. The directions o f the velocity anj
be continuously cooled. acceleration are also shown.

deceleration, and Strahlung, radiation) (Fig. 11-16). This process is the main mech
anism by which radiation is produced in X-ray tubes used for physical, medical, and 
industrial applications.

Although Fig, 11-15 shows the case for which the acceleration is in the =ame 
direction as the motion, this discussion holds true for any kind of motion in which 
there is acceleration. For example a charged particle moving in a circular path has a 
centripetal acceleration, and hence emits radiation. Therefore when an ion is acceler
ated in a cyclical accelerator, such as a cyclotron, a betatron, or a synchrotron, a 
fraction of the energy applied to the ion is lost as electromagnetic radiation, an eifect 
that is relatively more important in cyclical than in linear accelerators because the 
accelerations are generally larger. Our previous discussion of the cyclotron and tne 
betatron did not take this fact into account because this omission is justified when 
the energy involved is not very great and the acceleration is small.

When particles reach high energies, as they do in synchrotrons, where the acceler
ation is large, the loss produced by radiation, called synchrotron radiation, becomes 
very important and constitutes a serious limitation in the construction of cyclic 
accelerators of very high energy. When a particle trapped in a magnetic field spirals 
as discussed in Section 4.3, the particle also emits synchrotron radiation Since 
electromagnetic radiation is emitted preferentially in a direction perpendicular to the 
acceleration (see Fig. 11-15), and since the acceleration is pointing toward the axis 
of the helix and is perpendicular to the velocity, synchrotron radiation is emitted 
mainly in the direction of motion within a cone whose axis is tangent to the electron’s 
path as indicated in Fig. 11-17. Radiation coming from the charged particles trapped 
in the earth’s magnetic field, from sun spots, or from some more distant bodies tsuch
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Fig. 11-18. Synchrotron radiation from the Crab Nebula, Each photograph was taken through a 
device that accepts only radiation with the electric vector as shown. The fact that the photographs 
are different indicates that the radiation is polarized. (Photographs courtesy of Mt. Wilson and 
Palomar Observatories.)

as certain nebulae) shows the same characteristics. Figure 11-18 shows four photo
graphs of the Crab Nebula. The radiation received, which extends from radio fre
quencies to the extreme ultraviolet, is thought to be synchrotron radiation from 
electrons having an energy up to about IO1 2  eV and moving in circular or helical 
orbits in a magnetic field of the order of 10“ 8 T. The radiation shows a strong polariza
tion as can be seen from the differences in the photographs, which were taken through 
 ̂ polarizing filter, allowing only radiation with the electric field in the specified 

direction to be photographed. The arrows indicate the direction of the electric field.
Another interesting consideration is related to atomic structure. In Section 7.3 

we indicated that as a result of Rutherford’s experiments on the scattering of alpha 
particles, we picture the atom as formed by a central nucleus, positivel| charged, 
with negatively charged electrons describing closed orbits around it. However this 
conceptualization means that the electrons are moving with accelerated motion, 
and if the ideas expressed in this section are applied, all atoms would be radiating 
energy continuously. As a result of this loss of energy, the electron orbits would be
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shrinking, and there would be a corresponding contraction in size of all bodies. Of 
course if all bodies were identical, this contraction would be impossible to detect 
since it would afiect the bodies measured and the measuring ruler equally. However 
since atoms o f different elements are different, they would shrink at different rates, 
and the effect would be noticeable. However neither this contraction of matter nor 
the continuous radiation associated with it has been observed. Therefore it must be 
concluded that the motion of atomic electrons is governed by some additional 
principles that we have not yet considered. This behavior is explained by the principles 
of quantum mechanics.

Example 11.5. Energy radiated per unit time by an accelerated charge for any velocity of the 
charge and any direction of the acceleration.

T Larmor1S formula, Eq (11.36), is strictly correct only when the particle is momentarily at rest 
relative to an observer. To obtain the value of the energy radiattd by the charge as mtasuied 
by an observer who sees the particle moving with velocity v, we must simply make a Loientz 
transformation of all quantities involved in that expression Suppose that the charge is moman-l 
tarily at rest relative to an observer 0 '  who uses the frame of reference X 1Y'Z'.  Equation (I I 36) is

dE’ q2a'2 

dt' 6 7t€0c3

For an observer O in the frame X  YZ,  relative to whom the particle has a velocity v, dF’/dt’ is 
replaced by dE/dt where dl and dt' are the respective time intervals. Since these two lime intervals 
correspond to the same point in X T Z they are related by dt = d t \ f I — V1Ic2 [see Eq. (6 36) of 
Volume I or the appendix]. Similarly dE and dE' (which are the changes in energy of a particle 
having zero momentum relative to X 'Y 'Z ')  are related by dE = A E j ^  I - V 2Ic1 [see Eq. (11.24) 
of Volume I or the appendix]. (An alternative logic would be to remember that Ejc  transforms 
as ct does since they are both the fourth component of four-vectors.) Therefore dE jd t—dE'idt'.

To transform the right-hand side of Larmor’s formula, the accelerations of the particle as 
measured by the observers are related through

<2 a2 — (u x a)2/c 2

° =  (I -~ ^ V )3~
(see Problem 6.40 of Volume I). Therefore

dE q2 Oj - ( I i x i i ) V
- = —----   - x - 4 ^ - ·  (11.38)

dt 6πC0C3 ( I — v / c 2)3

a result known as LienariTs formula , first derived by A. Lienard in 1898, before the theory of 
relativity was developed, ft can be proved that Lienard’s formula already incorporates the retarda
tion effects caused by the finite velocity of propagation of electromagnetic radiation.

If the acceleration is parallel to the velocity, Iixa=O  and Eq. (11.38) reduces to

(dE)  XX1 (11.39)
\ d t j „  6tte0c (I - V 2Ic2)

This expression must be used to estimate radiation losses in linear accelerators. On the other
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hand when the acceleration is perpendicular to the velocity as in the case of a circular orbit. 
Iuxol2=P 2Oi and Eq. (11.38) reduces to

dE\ q2a2
IirJi  6ne0c3(l —u2/c2)2 (U 4 0 )

This expression is used Tor computing synchrotron radiation. In both cases, dEJdt increases very 
rapidly as v approaches c. At very low velocity (a <sc), both expressions (11.39) and (11.40) become 
identical with Eq. (11.36). A

Example 11.6. The energy radiated by a proton accelerated in a Van de GraaIT accelerator.

▼ If t is the time required by the proton to travel the length of the accelerator tube (on the assump
tion that the motion is nonrelativistic) and v. is the proton’s final velocity, then a = ar. For such an 
assumption, Eq. (11.36) applies. Noting that the acceleration a is constant, the total energy lost 
by the proton through radiation in the time t [with a= a ( and q = e in Eq. 111.36)] is

I dE\ e2u2

Vdr J t 6  ne0c3t
However if s is the length of the accelerator tube, S=-^ar2 =^(ar)r=^ur. Thus t - I s j v  and

rad 1 2 π fnc3s
On the other hand the kinetic energy gained by the proton in going through the potential differ
ence V  is Et = ^m pV2 =eV. Thus

-“rad 2 eF Y '2(2eV

; VEk 6ae0cJmps 6rre0t’3w,,s V mp )

since v = (IeV jm p)112, For an accelerator having a length of 2.0 meters and a potential diliercnce 
of 5 x IO5 V, we find £ lad/£ k=  1.7 x 10 20. Therefore radiation losses by protons can be con
sidered negligible for this accelerator. A

Example 11.7. The energy radiated in one revolution by a proton accelerated in a cyclotron.

▼ I he acceleration of the proton in a circular path of radius r is η = ω 2ι·=4π2ν2ι\ and relativistic 
effects may be neglected as long as the energy is small. Thus Eq. (11,36) with q = e yields

dE  e2(4Tt2v2r)2 8ji3e2v*r2 

dt 6π C0C3 3c0c3

and the energy radiated in one revolution (the time for which is 1,’v) is

r  (tiE\ I Sit3C2V3T2

This expression, of course, is not the total energy radiated by the proton since we have to add the 
energy radiated because of the acceleration experienced when the proton crosses the gaps; how
le r ,  a simple calculation shows that this energy is, relatively speaking, much smaller than the
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“synchrotron” radiation. The maximum kinetic energy gained by the proton in each revolution 
is E t = IeV max since the proton crosses the dees’ gap twice. Then

£ rld 8it3e2v3r2 47t3ev3r2 

E ~  ^ f 0C3Ce KnJ ^ e 0C3Kmal'

For a cyclotron with a radius of 0.92 m, an applied frequency o f 1.5 x IO7 Hz, and a peak value 
for the potential difference of 2 x l 0 4 V, one finds that £ rad/£* =  4.0 x 10“ 15 Here E t i  is still 
much smaller than Ek, but is relatively more important than in the previous example of the linea> 
accelerator. A

Problems

11.1 Write the equations of the S  - and .^-fields, 
describing the following electromagnetic waves 
that propagate in the X-direction: (a) a linearly 
polarized wave whose plane of vibration lies at 
an angle of 45: with the X T-pIane: (b) a linearly 
polarized wave whose plane of vibration lies at 
an angle of 120“ with the XT-plane; (c) a wave 
with right-handed circular polarization; and 
(d) a wave with right-handed elliptical polariza
tion. and with the major axis parallel to the Τ'- 
axis; the major axis is twice the minor axis.
11.2 (a) Describe the state of polarization of the 
waves represented by the following equations:

(I) S y= A  cos ω ^ r -  —̂  

S ,  = A  sin ω ^t -

(II) S s= A  cos ω I i —
V cJ

S r= - A  cos ω — -

(III) S  ,= A  cos eu 11 — -  I
V cJ

S -= A  cos

M)\ cJ

( π ]
ω t - - +  T

\  Cj 1 4

(IV) S r= A  cos ω

S- = A  cos

(b) For each case represent the magnetic field 
showing how it changes as the wave pro
gresses.
11.3 The electric field of a plane electromag
netic wave in vacuum is represented by

S x= 0, 

i f ,= 0 .5  cos 

<f. =  0.

2n x IO8BINC

(a) Determine the wavelength, the state of 
polarization, and the direction of propagation 
of the field, (b) Write down the magnetic field of 
the wave, (c) Compute the average intensity or 
energy flux per unit area.
11.4 Solve (a), (b), and (c) of Problem 11.3 for 
the wave represented by

S x=O,

S y= 0.5 cos

S .=0.5  sin

4π x 10

4π

Ή)N C -

N C -
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11.5 Consider the wave represented by:

S t = S 0 cos 2π ^

1 1 x I 
S 2 = S 0 cos 2π I -  -  J  +  g

(a) Compute the magnitude of the electric 
vector and the angle formed by the electric 
vector with the 1-axis at the times (i) t =  0 and 
(ji) f = P/4 and at the points x =  0. x=A /4, x  = 
}J2, x =  3Λ/4. x =  λ. (bl For each case express the 
resultant magnetic field.
11.6 A plane sinusoidal linearly polarized light 
wave of wavelength A =  5.0 x IO-7  m travels in 
vacuum. The average intensity is 0.1 W m -2 . 
The direction of propagation lies in the XT- 
plane at 45° with the X-axis. The electric field 
oscillates parallel to the Z-axis. Write the equa
tions describing the electric and magnetic fields 
of this wave.
11.7 A plane sinusoidal linearly polarized 
electromagnetic wave of wavelength λ  =  5.0 
x 10“ 7 m travels in vacuum in the direction of 
the X-axis. The average intensity of the wave 
per unit area is 0.1 W m " 2 and the plane of 
vibration of the electric field is parallel to the 
T-axis, Write the equations describing the elec
tric and magnetic fields of this wave.
11.8 The electric field of a plane electromag
netic wave has an amplitude of IO" 2 N C "1. 
Find (a) the magnitude of the magnetic field, 
and (b) the energy per unit volume of the wave, 
(cl If the wave is completely absorbed when it 
falls on a body, determine the radiation pres
sure. (d) Repeat the previous question if the 
body is a perfect reflector.
11.9 Electromagnetic radiation from the sun 
falls on the earth’s surface at the rate of 1.4 
XlO3 W m “ 2. Assuming that this radiation 

can be considered as a plane wave, calculate 
!he magnitude of the electric and magnetic field 
amplitudes in the wave.
‘ I 10 Assume that a 100-W lamp of 80% 
efficiency radiates all its energy isotropically. 
Compute the amplitude of the electric and mag- 
uetic fields 2 m from the lamp.

11.1 !Radio waves received by a radio set have 
an electric field of maximum amplitude equal 
to 10" 1 NC" E Assuming that the wave can be 
considered as plane, calculate (a) the amplitude 
of the magnetic field, (b) the average intensity 
of the wave, (c) the average energy density, (d) 
Assuming that the radio set is I km from the 
broadcasting station and that the station 
radiates energy isotropically, determine the 
power of the station.
11.12 Two harmonic electromagnetic waves, 
both of frequency v and amplitude S 0. travel in 
vacuum in the directions of the X-axis and T- 
axis, respectively. The electric fields of both 
waves are parallel to the Z-axis. For the wave 
resulting from their superposition, compute (a) 
the components of the electric field <J, (b) the 
components of the magnetic field Λ .  (c) the 
energy density E, and (d) the components οΓ the 
Poynting vector.
11.13 Show that the average value of the 
Poynting vector of a plane harmonic wave is 
^ce0<?6 or δ 0380/2μ0. Compare with Eq (11.17).
11.14 Show that if a system of oscillating 
charges radiates electromagnetic energy iso
tropically, the average value of the Poyntmg 
vector at a distance r is

' (dI)
Anr2 \ d t  J iyc

11.15 A system of oscillating charges con
centrated around a point radiates energy at the 
rate of IO4 W. Assuming that the energy is radi
ated isotropically, for a point at a distance of 
I m find (a) the average value of the Poynting 
vector, (b) the amplitude of the electric and 
magnetic fields, and (c) the energy and momen
tum densities. (Him:  N ote that at large 
distances from the source, a small portion of 
the wave front can be considered as plane I
11.16 A gaseous source emits light of wave
length 5 x IO"7 m. Assume that each molecule 
acts as an oscillator of charge e and amplitude 
IO"10 m. (a) Compute the average rate ol 
energy radiation per molecule ib) If the total 
rate of energy radiation of the souice is I W
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how many molecules are emitting simul
taneously?
11.17 Estimate the value of (dE/dt)avc as given 
by Eq. (11.25) for a proton in a nucleus. Assume 
that ; 0 *s of t l̂e order of 10 15 m and v about 
5 x IO20 Hz for low-energy gamma rays.
11.18 Obtain an expression for the rate of 
energy radiated by a charged particle moving 
with velocity » perpendicular to a magnetic

field 36.
11.19 (a) The electron in a hydrogen atom has a 
kinetic energy of 13.6 eV and a radius of 5.3 
x lO _ l l m. Assuming that the theory 0f 
Example 11.7 can be applied, calculate the 
energy radiated per second and per revolution,
(b) Repeat the problem for a 50-keV electron 
on a 1-m circular path, (c) Repeat for a 50-keV 
proton on a 1-m circular path.

CHALLENGING PROBLEMS

11.20 The average power of a broadcasting 
station is IO5 W. Assume that the power is radi
ated uniformly over any hemisphere concentric 
with the station. For a point 10 km from the 
source, find the magnitude of the Poynting 
vector and the amplitudes of the electric and 
magnetic fields. Assume that at that distance 
the wave is plane.
11.21 A radar transmitter emits its energy with
in a cone having a solid angle of IO-2  sterad. 
At a distance of IO3 m from the transmitter the 
electric field has an amplitude of 10 NC " 1. Find 
the amplitude of the magnetic field and the 
power of the transmitter.
11.22 Show that if

T= T0 sin (Λ·r -tot),

then the condition div T=O implies that 
fc- T0=O or that k is perpendicular to T0. This 
proves, according to Eqs. (8.34), that in vacuum 
both S  and SS are perpendicular to ft, and the 
results of Section 11.2 are of general validity.
11.23 (a) Show that if

T= T0 Sinfk-I--CUf),

then

curl T= k x T0 c o s(k -r —cur) 

and Eqs. (8.34) imply that

fc x  SS =  - / f 0e0cu<f

and

k x S  — wSS.

(b) Show that the two results are compatible,
(c) From the results of this and the preceding 
problem, discuss the relative orientation ol the 
vectors fc, S.  and SS. (d) Compare with the 
results of Section 11.2.
11.24 Using the results of the previous prob
lems, show that the S  and SS fields of a plane 
electromagnetic wave must be in phase.
11.25 Show that the Poynting vector may be 
written as i  x j f .  This expression is applicable 
to an electromagnetic wave propagating either 
in vacuum or in a material medium.
11.26 Compute the energy flux per umt area 
through a plane perpendicular to the velocity 
of a charge moving with constant velocity and 
passing through the charge. Assume that the 
charge has a radius R  and use the noti- 
relativistic expression of the electric and mag
netic fields. Discuss your result critically. {Hint 
Use rings of radius r and width dr concentric 
with the charge as area elements for the flux.)
11.27 Expression (11.37) gives the intensity ot 
the radiation from an accelerated chatge in 
terms of the direction of the radiation. Obtain 
Eq. (11.36) from it by integration over all direc
tions. {Hint: Multiply /((I) by the area element 
d S = Iitr1 sin Θ dO, and integrate from 0 to π.)
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11 28 Show that for a particle moving in a linear 
accelerator the rate o f energy radiation is

where Et is the kinetic energy of the particle.

11.29 Show that the rate of energy radiation in 
a circular accelerator is
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12.1 Introduction

In nature there is a continuous exchange of energy between atoms, molecules, and 
electromagnetic radiation. The sun is the main source of the electromagnetic radiation 
that reaches the earth. The interaction of electromagnetic radiation from the sun and 
the bodies on the earth’s surface accounts for most of the phenomena observed daily, 
including life itself.

In the previous chapter we showed that electromagnetic radiation may be produced 
by oscillating electric and/or magnetic dipoles and that the electromagnetic field 
propagates through vacuum with the speed oflight, c. In this chapter we will examine 
the effect matter has upon electromagnetic radiation and the effect of electromagnetic 
radiation on matter. In particular we will introduce the concept of the photon as the 
interaction carrier or “particle” that is needed to interpret the way matter and electro
magnetic waves interact.

12.2 Absorption of Electromagnetic Radiation

The most important radiative mechanisms by which an electromagnetic wave can 
be produced were outlined in Chapter 11. We now analyze the reverse process and see 
what happens when an electromagnetic wave interacts with an atom or a system of 
charges so that energy from the wave is absorbed by the system. The absorption of 
energy from an electromagnetic wave is a complicated problem that requires extensive 
mathematical calculations and the use of quantum mechanics, but the fundamental 
ideas are easy to understand. When an electromagnetic wave impinges on an atom, 
both the electric and the magnetic fields of the wave interact with the electrons in 
the atom. The effect of the magnetic field can be neglected in a first approximation 
because the magnetic force is of the order of magnitude of ev3S0, which may be written 
as (vjc)e&o by using the relation JS0 =  S 0/c. Since Ctf0 is the force of the electric field, 
the two forces are comparable only when v ^c.

In a region of space small compared with the wavelength of the radiation fas 
within an atom), the electric field of the electromagnetic wave can be written as 
S  — ^ 0 Sinmi since the x  part of the wave expression is practically constant over 
the dimensions of the small region where the electron moves. The electron performs 
forced oscillations under the influence of the electric force — e&. Recalling the discus
sion of Section 12.13 of Volume I, we may see that the rate at which energy is absorbed 
by the electron (that is, the average power transferred to the oscillator by the wave’s 
electric field) is maximum at energy resonance, which occurs when the frequency of 
the wave is equal to the natural frequency of the electron. A more detailed quantum-
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Fig. 12-1. Intensities of absorbed and transmitted radiation passing through a substance.

mechanical analysis, omitted here, shows that this frequency is any of the frequencies 
ω„ CU2. ω3, . . .  of the emission spectrum of the atom (or molecule) to which the 
electron is bound. In other words

an atom or molecule absorbs electromagnetic radiation preferentially 
when the frequency of the electromagnetic wave coincides with one of 
the frequencies of  the emission spectrum of the atom or molecule:

or in a more synthetic form, the emission and absorption spectra of a substance are 
composed of the same frequencies. The intensity of absorption is greatest for those 
frequencies that involve a transition from the ground state since atoms are ordinarily 
in the ground state.

Figure 12-l(a) shows the intensity distribution of an incident wave and the energy 
absorbed by a substance as functions of the frequency. Figure 12-i(b) shows the 
intensity distribution of the transmitted radiation. N ote the correspondence between 
the two curves since the transmitted radiation is depleted in the frequencies corre
sponding to favored absorption by the atom.

What is the result of energy absorption by the atom (or molecule)? This energy 
absorption results in an adjustment of the electronic motion to correspond to the 
new higher energy state of the atom (or molecule). The atom (or molecule) is then 
said to be in an excited state. An excited atom (or molecule) may in turn, by means of 
electric dipole radiation, re-emit the excess energy it has just absorbed. These are the 
Processes we will discuss in this chapter.
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12.3  Scattering of Electrom agnetic Radiation by Bound Electrons

When an electromagnetic wave passes through an atom (or molecule), the wave 
disturbs the motion of the bound electrons; and the atom (or molecule) may be Ielt 
in an excited state. By the reciprocal process since the electrons act as forced oscillating 
electric dipoles, the excited atom may emit electromagnetic radiation of the same 
frequency as the incident wave without an appreciable time delay. The energy the 
atom emits has been absorbed from the incident wave by the atom’s bound electrons. 
This process is called scattering, and the radiation emitted is the scattered wave 
(Fig. 12-2).

Inciden t Scattered  B ound
wave wftve electron

/  ^  \ I

Fig. 12-2. Schematic description of scattering 
of radiation by a bound electron.

Scattering helps to decrease the intensity of the primary or incident wave because 
the energy absorbed from the wave is re-emitted in all directions, and the result is 
an effective removal of energy from the primary radiation.

It has been observed experimentally that the intensity of the scattered waves 
depends on the frequency of the primary wave and on the angle of scattering To 
calculate this dependence, the extent of the perturbation of the motion of the atomic 
electrons by the electric field of the primary wave must be determined. This analysis 
must be accomplished by means of quantum mechanics.

One important feature is that the scattered waves are more intense when the fre
quency of the incident radiation is equal to one of  the frequencies Co1, ω 2, ω , , . . of the 
emission spectrum of the atom (or molecule), a result that is known as resonant fluores
cence* This physical behavior should be expected since the intensity of the scattered 
radiation should be greater at those frequencies at which the energy absorption from 
the wave is greater, and these are the same frequencies as the emission spectrum of

*In the visible region of the electromagnetic spectrum, the luminescence induced in a substance 
by radiation absorption and subsequent emission is called fluorescence when the time delay 
between absorption and emission is less than 10" 8 s. When the delay time is longer, the phenom
enon is called phosphorescence. Fluorescent and phosphorescent radiation are generally of 
different frequencies.
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Fig. 12-3. Polarization of scattered radiation, (a) Linearly polarized and (b) unpolarized incident 
radiation.

the atom (as explained in Section 12.2). However even at frequencies different from 
those of the emission spectrum, scattering may still be appreciable.

Another interesting property of the scattering phenomenon is that for gases whose 
molecules have an emission spectrum in the ultraviolet region (see Section 12.9) the 
scattering of electromagnetic waves falling in the visible region increases with their 
frequency. This property is easy to understand since the larger the frequency in the 
visible region, the closer the frequency is to the ultraviolet resonant frequency of the 
molecule and the larger the amplitude of the forced oscillations; and greater scattering 
results. As an illustration, the brightness and blue color of the sky are attributed to 
the scattering of sunlight by air molecules; in particular the blue color o f the sky is 
the result of the more intense scattering of the higher frequencies (or shorter wave
lengths). The same process accounts for the bright red colors observed at sunrise and 
at sunset when the sun’s rays traverse a very large thickness of air before reaching the 
earth’s surface; the result is a strong attenuation of the high frequencies (or short 
wavelengths) by the scattering process.

Scattering can also be produced by small particles (such as smoke or dust) or 
water droplets (such as clouds) suspended in the air. Liquids carrying a suspension 
of particles, as in a colloid, show a strong scattering called the Tyndall effect.

When the primary radiation is linearly polarized, the atomic oscillations are in 
the fixed direction of the electric field of the wave, and the scattered radiation has 
the polarization characteristic of the electric dipole radiation (Fig. 12-3a). However 
even if the incident radiation is not polarized, the scattered radiation is always 
Partially polarized. Consider, for example, an unpolarized wave incident on an 
alom S (Fig. 12-3b). The electric dipole oscillations induced in the atom are parallel 
to the electric field of the wave, and therefore are all in a plane P  perpendicular to 
the direction of propagation IA  of the incident wave. The polarization of the scattered
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radiation in each direction depends on the direction of the dipole oscillation, and 
therefore is not always fixed when the incident wave is unpolarized. However for 
any direction SB perpendicular to IS, the scattered radiation is linearly polarized 
parallel to the plane P, perpendicular to IS, since for these directions the dipoles 
always oscillate in such a plane. For other directions the degree of polarization of thc 
scattered radiation depends on the angle that the direction of scattering makes with 
IA. If the incident radiation is unpolarized, the scattered radiation is completely 
unpolarized along IA.

12.4 Scattering of Electromagnetic Radiation by a Free Electron;
Compton Effect

The scattering of electromagnetic radiation by a free electron has certain peculiarities 
that require a discussion apart from that of scattering by bound electrons or molecules. 
As we have just seen, scattering is a double process by which an electron in an atom 
quickly absorbs energy from an electromagnetic wave and quickly reradiates that 
energy as scattered radiation. Keep in mind that an electromagnetic wave carries 
energy and momentum; and if some energy E is removed from the wave, a corre
sponding amount of momentum p =  E/c must also be removed from the wave.

A free electron cannot absorb an amount of energy E and at the same time acquire 
a momentum Pc =  E 1C because the relation between kinetic energy and momentum 
for an electron is

Ek =  E - mec2 =  J (mec2)2 +  (pec )2 - m ec2

at high energies and Ek= p 2/2mc at lower energies. Either of these expressions is 
incompatible with the relation p = E /c  if we have E = E k as required by the conserva
tion of energy. We should conclude then that a free electron cannot absorb electro
magnetic energy without violating the principle o f conservation of momentum. The 
student may wonder why this problem of momentum was not mentioned at all in the 
previous section when scattering and absorption of electromagnetic waves by bound 
electrons were discussed. The reason is that although conservation of momentum and 
energy applies in both cases, in the case of a bound electron the energy and momentum  
absorbed are shared by both the electron and the ion forming the remaining part 
of the atom. It is always possible to split both energy and momentum in the correct 
proportions; however, the ion, having a much larger mass, carries (along with some 
momentum) only a small fraction of the energy available, and usually it is not necessary 
to consider that fraction at all (see Example 9.13 in Volume I). In the case of a free 
electron, there is no other particle with which the electron can share the energy 
and the momentum, and no absorption or scattering should be possible.
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pig. 12-4. Intensity distribution ofthe radiation 
scattered by a free electron at different scatter
ing angles.

Experiment, however, tells a different story. When monochromatic electromagnetic 
radiation passes through a region in which essentially free electrons are present 
(for instance a metallic solid contains many electrons not bound to a given atom), 
we observe that in addition to the incident radiation, there is another sort of radiation 
of frequency different from that of the incident radiation. This new radiation is 
interpreted as the radiation scattered by the free electrons. The frequency of the 
scattered radiation is smaller than the incident frequency, and accordingly the wave
length of the scattered radiation is longer than the incident wavelength (Fig. 12-4). 
The wavelength of the scattered radiation is also different for each direction of 
scattering. This interesting phenomenon is called the Compton effect, after the 
American physicist A. H. Compton (1892-1962), who first observed and analyzed 
it in the early 1920s.

Given that λ is the wavelength of the incident radiation and λ' that of the scattered 
radiation, Compton found that A' is determined solely by the direction of the scatter
ing. That is, if Θ is the angle between the incident radiation and the direction in w hich 
the scattered radiation is observed (Fig. 12-5), the wavelength of the scattered radiation
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Fig. 12-5. Geometry in Compton scatterin'-

A' is determined solely by the angle Θ. The experimental relation is

A ' - A =  Zc O - c o s  0) (12.1)

where Ac is a constant whose value if A and A' are measured in meters, is

Ac =  2.4262 x IO- 1 2  m.

This constant is called the Compton wavelength for  electrons.
Remembering that A =c/v where v is the frequency ω/2π of the wave, wc may 

write Eq. (12.1) in the form

I I Ac_  = _ l ( i  - c o s  0 ). ( 1 2 .2 )
v v c I

The scattering of an electromagnetic wave by an electron may be visualized as a 
“collision” between the wave and the electron since the scattering comprises an 
exchange of energy and momentum. Since the wave propagates with the velocity c, 
and its energy-momentum relationship as given by Eq. (11.19) is E = c p  (which is 
identical to that for a particle of zero rest mass), this scattering must resemble a 
collision in which one of the particles has zero rest mass and is moving with velocity c. 
Such a collision was discussed in Example I l.S in Volume I and is reproduced at the 
end of this section as Example 12.1. The result is

i - r =  Ο —cos 0) (12.3)
E E RieC1

where E and E' are the energies of the particle of zero rest mass before and after the 
collision, and me is the rest mass of the other particle involved in the collision, iu 
this case an electron. The similarity between Eqs. (12.2) and (12.3) is striking and 
goes beyond a simple algebraic similarity. Both equations apply to a collision process 
in its most general sense; and as already stated, the energy-momentum relationship 
E = c p  for an electromagnetic wave is o f the same type as that relationship corre
sponding to a particle of zero rest mass to which Eq. (12.3) applies. The obvious 
conclusion is to link the frequency v and the energy E by writing

E = h \ (12.4)
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,̂ iere h is a universal constant that describes the proportionality between the fre- 
uency of an electromagnetic wave and the energy associated with it in the “collision” 

process. Then Eq. (12.3) becomes

— j (I -  cos Θ)
in  in  m tc~

or
I I h
- - - = — ϊ U - cos 0), (12.5)v v mec

which is identical to Eq. (12.2). To obtain the equivalent of Eq. (12.1), multiply
Eq. (12.5) by c and use λ —c/v. The result is

2 ' — )(l - c o s 0 ). ( 1 2 .6 )
VmeCJ

Then the Compton wavelength for an electron Xc is related to the mass of the scatter
ing electron by

I l l eC

From the known values of /Ic , me, and c, we obtain the constant h, whose value is

Ii =  6.6256 x IO- 3 4  J s or ir ^ k g s " 1;

Λ is called Planck's constant. Planck's constant plays a very important role in physics. 
Historically the constant first appeared in a different context; the constant was 
introduced at the end of the nineteenth century by the German physicist Max Planck 
(1858-1947) as a result of his attempt to explain the intensity of blackbody radiation, 
the electromagnetic radiation in equilibrium with matter. We also referred to Planck’s 
constant in the Section 7.4 discussion of Bohr’s theory of the atom. Bohr’s work 
preceded the discovery of the Compton effect. The speed of light c. the fundamental 
charge e, the electron mass mc, and Planck’s constant h constitute four fundamental 
constants of physics.

A proton, which has a mass different from that of an electron, has a Compton 
wavelength (using the value of Λ above) of

7.c,p =  h/nipC =  1.3214 x IO ' 1 5  m.

I hat this result has been experimentally confirmed ensures the validity of assumption 
"2.4). However because the Compton wavelength of the proton is IO- 3  that of the 
dectron, Compton radiation from scattered protons is much less noticeable than 
lhat from electrons.
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Example 12.1. Discussion of a relativistic collision when the incident particle has zero rest mass 
and the target particle is an electron at rest in our laboratory system.

▼ The process is shown schematically in Fig. 12-6 The particles are labeled I and 2 before the 
collision, and 3 and 4T respectively, after the collision. Using Eqs. (11.15) and (11.18) o f Volume I 
(see also the appendix), we obtain the value of the moment urn and the energy relative to observer O ■

Suppose we are interested in the energy E  of the incident particle after the collision. We must then 
eliminate p4 from the equations above. From the momentum equation we obtain P4- P 1 -  p3. 
Squaring the result gives

P i= P i +  P s - 2p,· Pa-

Using the corresponding values for the momenta yields

, E2 En  IEE'
p i = — + — ------—  cosO.

c c c

Solving the energy equation above for p4 gives

P 1 = E 1C, p 2 =  0, P i  = E c .  p 4 .

E 1 = E, E 2 = I n cC2,  E2 = E .  E4 = C^i  m2c2 + pi.

The conservation of momentum allows us to write

Pi - P i  +  P*·

and the conservation of energy for this process yields

E + I t icC2 = E + c v  mc2c 2 + P 24 .

P 14 =  P  (£ + m cc 2 -  E ) 2 - i n 2C2

E1 E 2 2 ( E - E ) m cc2 2 E E
- T i  + 72  H ~ji-------------- .1

Equating both results for pj, we have

2 E E
P  COS 0

or
E E

E - E = — τ (I - c o s  0).S' ZOIcC

Fig, 12-6, High-energy collison.
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Dividing both sides by E E  yields

This expression gives £' in terms of E  and the scattering angle Θ of particle 3. N ote that £ > £ '  
always, and the incident particle loses energy as it should since the other particle, initially at rest, 
is in motion after the collision.

We may then conclude that we can “explain” the scattering of electromagnetic radiation by a 
free electron by identifying the process with the collision of a free electron and a particle of zero 
rest mass A

Our “explanation” of the Compton effect requires a careful analysis because of its 
possible, far-reaching consequences. First, let us recapitulate our assumptions,

1. The scattering of electromagnetic radiation by a free electron can be considered 
as a collision between the electron and a particle of zero rest mass.
2. Electromagnetic radiation plays the role of the particle of zero rest mass, which 
for brevity will be called a photon.
3. The energy and the momentum of the photon (particle of zero rest mass) arc 
related to the frequency and the wavelength of the electromagnetic radiation by

The second relation is due to the fact that p =  E /c= hv/c  and v /c=  1/2. We may 
visualize the Compton effect as the collision illustrated in Fig. 12-7, in which a photon 
of frequency v collides with an electron at rest. The photon transfers a certain amount 
of energy and momentum to the electron, As a result of the interaction, the energy of 
the scattered photon is smaller, with a correspondingly smaller frequency ν'.

12.5 Photons

( 12 .8)

E' = hr

Incident
photon

E = hv 
h

Pig. 12-7. Momentum and energy relations in 
Compton scattering.

E lectron  after 
sc a tte rin g
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One further test is to see whether the electron after the scattering has a momentum 
equal to the difference between the momentum of the incident photon and that of 
the scattered photon. This experiment is difficult, but it has been performed and the 
results check very well.

What physical meaning can be attributed to the photon concept and to the defining 
relations (12.8)? It is not a necessary conclusion that electromagnetic radiation is a 
stream of photons even though that is a possible pictorial explanation. Wc could 
interpret the photon energy E=Ziv and the momentum p=hjX  as the energy and 
momentum absorbed by the free electron from the incident electromagnetic wave. The 
photon of energy E'=/iv' and the momentum p' = h jλ' are then the energy and momen
tum re-emitted by the electron into the scattered radiation. The electron acquires a 
kinetic energy Ek =  E - E '  and a momentum Pe =  p  — P ,  related by Ek=C s/ mec2 + p % -  
mcc2 as required by high-energy dynamics and by the conservation of energy and 
momentum. Therefore we may come to the interpretation that the photon is the 
“quantum” of electromagnetic energy and momentum absorbed or emitted in a 
single process by a charged particle. The concept o f a photon is in fact only applicable 
to interactions between electromagnetic radiation and charged particles; the concept 
plays a role in all processes in which electromagnetic radiation interacts with matter, 
and not just with free electrons. Therefore we state the following principle:

When an electromagnetic wave interacts with an electron (or any other 
charged particle), the amounts of energy and momentum that can be 
exchanged in the process are those corresponding to the energy and 
momentum of a photon.

This principle is one of the fundamental laws of physics and is characteristic of all 
radiative processes involving charged particles and electromagnetic fields. It does 
not stem from any law previously stated or discussed, but is a completely new principle 
to be added to such universal laws as the conservation of energy and momentum. 
The discovery of this new principle in the first quarter of this century was a milestone 
in the development of physics. The consequences of this principle have given rise to 
the branch of physics called quantum mechanics.

This important principle is basic to the understanding of emission and absorption 
of electromagnetic radiation in atoms, molecules, and nuclei. We have mentioned 
that an atom (or molecule) can emit or absorb electromagnetic radiation of only 
certain frequencies. Also we indicated in Section 7.4 that the energy of atoms (and 
molecules) is quantized and can have only certain values corresponding to so-called 
stationary states or energy levels. These two important facts are related through the 
concept of the photon. Suppose that an atom in the stationary state of energy E 
absorbs electromagnetic radiation of frequency v and passes to another stationary 
state of higher energy E'. The change in energy of the atom is E' — E. On the other 
hand the energy of the photon absorbed is Ziv. Conservation of energy requires that 
both quantities be equal. Therefore

E' — E= h v, (12.9)
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Fig. 12.8. Transitions between stationary states 
in an atom, molecule, or nucleus. The relative 
spacing of the energy levels and the possible 
transitions depend on the nature of the system. (a) Absorption

i ’s
Ri
R.

(b) Emission

an expression known as Bohr's formula because it was first proposed in 1913 by 
the Danish physicist Niels Bohr (1885-1962). The expression above also applies to 
the energy of a photon emitted when an atom passes from a stationary state of energy 
£' to another of lower energy E.

Since the energy of the stationary state is quantized and can have only certain
values E u E 2, E 3,  Bohr’s formula limits the frequency of the radiation emitted
or absorbed. Thus a discrete spectrum of frequencies results. Historically Bohr 
proposed the concept of stationary states to explain the existence of a discrete spec
trum of frequencies. Figure 12-8 is a schematic diagram listing some of the possible 
changes in energy of a system. They correspond to transitions between stationary 
states or energy levels of an atom. For example the energies of the stationary state 
of atoms with only one electron (H, H e+, L i+ +, etc.) is given by (recall Section 7.4)

R Z2Ac
E =  2-

t r

where R is Rydberg’s constant, whose value in SI is 1.0974 x IO7 m _1. Therefore in a 
transition between states with quantum numbers n and ri(ri>n), the frequency of 
the radiation emitted or absorbed is

E ' - E  . 
V = — -— = R Z  c 

h
± _ J \
n2 n 1)

or with numerical values introduced

/ I  I n
v =  3.2899 x IO1 5 Z 2 (  - ,J  Hz.

\n n j

This formula fits the emission and absorption frequencies of the spectra of this kind 
of atom quite well. The formula is called Balmer's formula, after the Swiss mathe
matician and physicist Johann Balmer (1825-1898), who determined it empirically 
in attempting to catalog the visible spectral lines of hydrogen.
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Fig. 12-9. Electromagnetic interaction considered 
as an exchange of photons. The photons transfer 
energy and momentum from one charge to the 
other.

The concept of the photon suggests the simple pictorial representation of the 
electromagnetic interaction between two charged particles shown in Fig. 12-9. The 
interaction corresponds to an exchange of momentum and energy. The particles’ 
initial momenta P 1 and p 2 become p\  and p '2 after the interaction. Although not 
localized at a particular instant, the interaction has for simplicity been indicated at a 
particular time and at positions A and B. Particle I interacts with particle 2 via its 
electromagnetic field, with the result that particle 2  takes from the field certain energy 
and momentum, equivalent to a photon, with a corresponding change in particle 2 ’s 
motion. The motion of particle I must then be adjusted to correspond to the new 
field, which is the original field minus one photon. Of course the reverse process is 
also possible, and particle I may absorb a photon from the field of particle 2. We 
may say then that there has been an exchange of photons between particle I and 
particle 2. In other words

electromagnetic interactions can be pictured as being the result o f  the 
exchange of photons between the interacting charged particles: and a 
change in the energy and momentum of both particles results.

[Diagrams such as Fig. 12-9 are called Feynman diagrams to honor their originator, 
the American scientist Richard P. Feynman (1918- ). They are very useful in analyz
ing complex processes involving different kinds of particle-particle interactions.]

At any instant the total momentum of a system of two charged particles is P 1 -H 
P2 + Plield where P iield is the momentum associated with the electromagnetic field of 
the charged particles. This situation corresponds to the picture of an interaction 
described in Section 4.8 where the principle of conservation of momentum was 
analyzed when an interaction propagates with a finite velocity. Now that conceptual 
picture of a field possessing energy and momentum has a firmer theoretical and 
experimental basis.

At the end of Section 11.3 we indicated that electromagnetic radiation carries 
intrinsic angular momentum or spin in addition to energy and momentum, and 
that for circularly polarized waves the spin along the direction of propagation is 
+  Ε/ω. Using the relation ω =  2πν, we see that the energy of a photon is E =Iiw Iln  =



fco where ft = h /2 n .  Thus circularly polarized photons have a spin along the direction 
0f propagation equal to +  ft.
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Example 12.2. Energy of a photon expressed in electron volts when its wavelength is given in 
meters. The wavelength of X-rays in terms of the accelerating voltage applied to an X-ray tube.

f  From E=Iiv  and λ ν —c, we may write E =hcj).. But

=  (6.6256 x IO" 34 J s)(2.9979 x IOs m s ‘I 

=  1.9863 x 10' J m.

R e m e m b e r in g  that I eV =  1.6021 x 10' 19 J, we have that he =  1.2398 x IO-6  eV m. Therefore

£  =  1.2398 x10·® //.

where E is expressed in electron volts when λ is expressed in meters.
As explained in connection with Fig. 11-16, X-rays are produced by the impact of fast electrons 

against the anticathode (anode) of an X-ray tube. The energy of an electron may be radiated as a 
result of successive collisions, giving rise to several photons, or the energy may all be radiated in 
just one collision. The most energetic photons coming out of the X-ray tube would be those emitted 
in the latter process, and they correspond to the shortest wavelength. In other words given that 
Fis the accelerating voltage, the wavelengths of the X-rays produced are equal to or larger than 
the threshold wavelength, satisfying the relation

, 1.2398x10·®  1 .24 x 1 0 -*
'•ο= ~y ----- ' -------- T-----  m

since in this case the energy E of the photon is equal to the electron’s energy, which in turn is 
equal to V expressed in volts. For example, in a television tube, electrons are accelerated by a 
potential difference of the order of 18,000 V. When the electrons reach the screen of the tube, 
they are abruptly slopped and emit X-rays for the same reason as in an X-ray tube. The minimum 
wavelength of the X-rays produced when the electrons are stopped at the screen is then 2 =  
6.9 x 10 11 m. The intensity, however, is quite low. A

12.6 More about Photons: The Photoelectric EKect

Further research has shown that the concept of the photon applies not only to the 
Process of scattering by a free electron, but to all  processes in which electromagnetic 
waves interact with matter. Another example that illustrates the use of the photon 
concept is the photoe lec tr ic  effect.  In 1887 the German physicist Heinrich Hertz 
(1857 -1894) observed that the intensity of the electric discharge between two charged 
electrodes could be increased if the electrodes were illuminated with ultraviolet 
radiation. This observation suggested the availability of more charged particles or
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electrons in the presence of light. A year later another German physicist, Wilnelnj 
Hallwachs (1859-1922), observed an electronic emission from the freshly cleaned 
surfaces of certain metals such as Zn, Rb, K, Na, etc., when they were illuminated 
These electrons are called photoelectrons because of the method of their production 
The electronic emission increases with the intensity of the radiation falling on the 
metal surface since more energy is available to release electrons. However for each 
substance there is a minimum frequency v0 of electromagnetic radiation such that for 
radiation of frequency less than v0, no photoelectrons are produced, no matter how 
intense the radiation may be.

We have explained before that in a metal there are electrons that are more or less 
free to move throughout the crystal lattice. These electrons do not escape from the 
metal at normal temperature because if one escapes, the electrical balance of the 
metal is destroyed and the metal becomes positively charged, attracting the electron. 
Unless the electron has enough energy to overcome this attraction, the electron will 
fall back on the metal. One way to increase the energy of the electrons is by heating 
the metal. The “evaporated” electrons are then called thermoelectrons. This kind of 
electronic emission exists in electron tubes. Another way to release electrons front a 
metal is by the absorption of energy from electromagnetic radiation and the con
sequent production of photoelectrons.

The photoelectric effect is a process by which conduction electrons in metals and 
in other substances absorb energy from the electromagnetic field and escape from 
the substance, in contrast to the absorption process discussed in Section 12.2, which 
corresponds to absorption by an electron bound to an atom or molecule. Designate 
the energy required by an electron to escape from a given metal by φ . Then, if the 
electron absorbs the energy E, the difference Ε — φ  will appear as the kinetic energy 
of the electron; and we may write in the low-energy or nonrelativistic limit

If E is less than φ. no electronic emission will result. From the photon concept if E 
is the energy absorbed by an electron from the electromagnetic radiation and v is the 
frequency of the radiation, then E =hv,  according to Eq. (12.8). Thus we may write 
Eq. (12.10) as

This equation was first proposed by Albert Einstein in 1905, prior to the discovery of 
the Compton effect, as a means for explaining the observed relation between the 
kinetic energy of the photoelectrons and the frequency o f the incident radiation. 
Not all electrons require the same energy φ  to escape from a metal. The minimum 
value φ 0 is called the work junction of the metal. Then the maximum kinetic energy 
of the electrons is

|im ; 2 =  E -  φ. 12. 10)

(12.11)

^ V 2max =  hv- φ ο -  ( 1 2 . 1 2 )

The maximum kinetic energy Jmvfnax can be measured by the method indicated in
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Fo

Fig. 12-10. E>.perLmental arrangement for Fig. 12-11. Relationbctweenstoppingpotential 
observing the photoelectric effect. and frequency in the photoelectric effect.

Fig. 12-10. By applying a potential difference Fbetween the plates A and C, we can 
retard the m otion of the photoelectrons. At a particular voltage F0 the current 
detected by the galvanometer becomes zero, indicating that no electrons, not even 
the fastest, are reaching plate C. Then by Eq. (1.28), ^mv^n = e V 0, and Eq. (12.12) 
becomes

eV0 =hv-<t>0. (12.13)

Changing the frequency v of the illuminating radiation yields a series of values for the 
stopping potential F0. The result of plotting the values of F0 against v is a straight 
line as shown in Fig. 12-11. The slope of the straight line is tan ot=h/e. Measuring ot. 
and using the known value of e, we may calculate Planck’s constant h and obtain 
the same result found for the Compton effect. This agreement can be considered 
as a further justification of the photon concept.

From Eq. (12.12), we see that for the frequency V0 =  ̂ 0// j, the kinetic energy of the 
electrons is zero. Therefore v0 is the minimum frequency at which there is photo
electric emission, and is called the threshold frequency. For frequencies smaller than 
V0. there is no emission at all.

When electromagnetic radiation has sufficiently high frequency (or photons 
of sufficient energy), electrons may be ejected from atoms (or molecules) in what is 
called the atomic photoelectric effect. This process is responsible for most of the 
absorption of X- and y-rays by any material. The atomic photoelectric effect results 
in a corresponding ionization of the material (including air) through which the X- 
and y-rays pass, and is one of the mechanisms by which radiation affects matter. 
A similar process is the photonuclear effect, by which a particle, usually a proton, 
after it absorbs electromagnetic radiation, is ejected from a nucleus. These photons 
must have much more energy and a corresponding frequency much higher than the

Mloctric field

Force on 
electron
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photons involved in the atomic photoelectric effect so that the former fall within thL 
range of the higher-energy y-rays.

N ote that the conservation of momentum was not mentioned in the discussion 
of the photoelectric effect. The reason is again that the electron absorbing Ihe electro
magnetic radiation is bound to the crystal lattice of the solid, or to an atom or a 
molecule; the momentum of the absorbed photon is shared by the electron and the 
lattice, atom, or molecule. However because of the relatively large mass of the lattice 
atom, or molecule, its kinetic energy is negligible; and one may assume without 
noticeable error that all the energy of the photon goes to the electron. The s&mc 
analysis applies to the protons in the photonuclear effect.

1 2 . 7  P r o p a g a t i o n  o f  E l e c t r o m a g n e t i c  W a v e s  i n  M a t t e r :  D i s p e r s i o n

So far only the propagation of electromagnetic waves in vacuum has been considered. 
Experiments reveal that the velocity of propagation of an electromagnetic wave 
through matter is different from the velocity of propagation in vacuum. To under
stand the reason for these different velocities of propagation in matter and in vacuum, 
recall that the discussion in Section 11.2 was based on the absence of charges and 
currents. However when an electromagnetic wave propagates through matter, even 
if there are no free charges and currents, the time-varying electromagnetic field 
induces certain charges and currents in the substance as a result of the polarization 
and magnetization of matter. If the substance is homogeneous and isotropic, the net 
effect o f the polarization and magnetization of the medium by the electromagnetic 
wave is to replace the constants e0 and μ0 in the Maxwell equations by the electric 
permittivity e and the magnetic permeability μ characteristic of the material. Every
thing in the calculations o f Section 11.2 remains the same except that the velocity 
of the wave now becomes

The ratio between the velocity of electromagnetic waves in vacuum, c, and in matter, 
v, is called the index of refraction of the substance, and is designated by n. This concept 
is useful for describing the properties of materials in relation to electromagnetic 
waves. Thus

However e/e0 =  er and μ/μ0 = μ ,  where e,. and μΓ are the relative permittivity and 
permeability of the medium. Then

c
n = -

V =  s [W r (12.151
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Fig. 12-12. Variation oi the index of refraction with frequency and wavelength.

In general μ,, differs very little from I for the majority of substances that transmit 
electromagnetic waves in the visible region (see Table 6-1); a satisfactory approxima
tion is therefore

This relation affords a simple experimental method for determining the relative 
permittivity of the substance if the index of refraction is obtained independently 
(as may be done). The consistency of the values of er obtained by this method with 
those from other kinds of measurement gives a satisfactory foundation to the theory. 
In Section 2.7 we calculated er, given by Eq, (2.24). Then using N  for the number of 
electrons per unit volume to avoid confusion with the index of refraction, one may 
write

where /; is the fraction of the oscillations with characteristic frequency tof. Therefore 
the index of refraction depends on the wave frequency and hence also on the wave
length in a manner similar to that illustrated in Fig. 2-2 for e, and shown in Fig. 12-12, 
in which ω ,, ω 2, . . . are the characteristic frequencies of the emission spectrum of 
the substance. Consequently the phase velocity v = c /n  of the electromagnetic wave 
in matter also depends on the frequency of the radiation. Therefore electromagnetic 
waves suffer dispersion when propagating in matter. That is, a pulse containing 
several frequencies will be distorted because each component will travel with a 
different velocity as discussed in Chapter 10.

The group velocity vg from Eq. (10.56) is given by

Now, since vg=do)/dk,

n (12.16)

(12.17)

dv dv don dv
dk da> dk e d o

U sing  v =  cln g ives

dv c dn
don n2 dio
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where Fig. 12-12 shows the functional relationship between n and ω. Therefore

v„ck dn
η άω

Solving for v gives

I’» = I +(ckln'tdnjdoj) n+cu(dn/d(a) ( 1 2  18)

where the last expression is obtained by using & =ω/υ=ωη/ο.
When dn/άω is positive, the group velocity is smaller than the phase velocity 

Such a situation is called normal dispersion: but if dn/άω is negative, then the group 
velocity is larger than the phase velocity and anomalous dispersion results. The pos
sibility exists in this case that the group velocity as here defined is larger than c and 
that therefore an electromagnetic pulse can apparently be transmitted at a velocity 
larger than c. This situation is in contradiction to the results derived from the Lorentz 
transformation and the principle of relativity. However a careful analysis of the 
transmission of an electromagnetic signal, made by Brillouin, Sommerfeld, and others 
(an analysis that is very complex mathematically), revealed that even in a dispersive 
medium it is impossible to transmit a signal with a velocity larger than c. Figure 12-1? 
shows the variation of the phase velocity v, the group velocity vg, and the signal velocity 
va near a characteristic frequency ω ι. The signal velocity practically coincides with 
the group velocity except near the characteristic frequency, and is never larger .han 
c, even in the region of anomalous dispersion.

When n is larger than one so that v is smaller than c, there is the possibility that 
a charged particle q, emitting electromagnetic waves, moves in the medium with a 
velocity vq larger than the phase velocity v of the electromagnetic waves. This situation 
corresponds to that depicted in Fig. 10-28 for Mach waves in a fluid. Then the electro
magnetic waves propagate along conical surfaces that make an angle a with the 
direction of propagation given by

sin a = - 5 
v

Fig. 12-13. Phase, group, and signal velocities 
of an electromagnetic pulse in a dispersive 
medium. There is anomalous dispersion in the 
region ω, <ω ,·<ω ,.
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jn accordance with Eq. (10,61). These waves are called Cerenkov radiation to honor 
the Russian scientist Pavel Cerenkov (1904- ). Because the effective direction of 
propagation of the wave front is related to the velocity of the charged particle, 
measurement of the angle of Cerenkov radiation may be used to measure the particle 
speed. Devices used for this purpose are called Cerenkov detectors, which are widely 
used in experiments with fundamental particles because the detectors provide direct 
information about the velocity of the particles.

We have said that electromagnetic waves appear to propagate in matter with a 
phase velocity different from their propagation velocity in vacuum; but that difference 
seems to stem from the fact that the permittivity and permeability of matter are 
different from those of vacuum. This difference (in the permittivity and permeability) 
is in turn a consequence of the electric and magnetic polarization of matter under the 
action of the incoming electromagnetic wave. Thus when an electromagnetic wave 
falls on a piece of matter, the wave induces oscillations in the charged particles of the 
atoms or molecules, which then emit secondary or “scattered” waves (see Section 12.3). 
These scattered waves are superposed on the original wave to give a resultant wave. 
The phases of the secondary waves are generally different from those of the original 
wave since a forced oscillator is not always in phase with the driving force (remember 
Section 12.13 of Volume I). A detailed analysis, here omitted, indicates that this 
phase difference affects the resultant wave in such a way that the wave appears to 
have a velocity different from that in vacuum. This result is particularly satisfying 
since from the atomic point of view, all charges, both free and bound, are equivalent, 
and the electromagnetic waves they emit must all propagate with the velocity c. 
It is the wave resulting from the superposition of their individual waves, each with a 
different phase, that consequently appears to have a different velocity of propagation.

Example 12.3. Group velocity for very-high-frequency electromagnetic radiation, such as X-rays.

▼ ΙΓω is much greater than the characteristic frequencies Coi in Eq. (12.17), we may neglect the 
ω/s and write Eq. (12.17) in the form

U2 =  I - ,,IeC0Co- — IncC0CO2

since Zf /j =  l as indicated in Section 2.7. With the approximation given in (M.28) (I —jc)1 ,z =
* - ; ' + · · · ,  which applies when x  <i I, the index of refraction is

Ne2
n — I ~~ -« ~2'2  C0UicW2

which is smaller than one and gives v>c.  From this expression we get dnfdco—N e 2/c0meco3, and 
substitution in Eq. (12.18) yields

c e
1 “ n+cn(dn/dw) I -  (JVe2/2 c0mcm2) +co{Ne2!c0niew3) 

c
I  +(jVe2/ 2e0mc(jj2) ‘
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Therefore although the phase velocity v is larger than c because n is smaller than one, the group 
velocity vq is smaller than c. A

In Section 10.11 we discussed the Dopier effect for elastic waves and other kinds oi 
mechanical waves that consist of matter in motion. The Doppler effect for electro
magnetic waves must be discussed separately because in the first place electro
magnetic waves do not consist of matter in motion, and therefore the velocity of the 
source relative to the medium does not enter into the discussion. Second, their 
velocity of propagation is c and is the same for all observers irrespective of their 
relative motion. The Doppler effect for electromagnetic waves must necessarily be 
computed by means of the principle of relativity.

To an observer in one inertial frame of reference, a plane, harmonic, electro
magnetic wave can be described by a function of the form sin (/cx—ωί) multiplied 
by an appropriate amplitude factor. To an observer attached to a different inertial 
frame of reference, the coordinates x and t must be replaced by x' and t' as given by 
the Lorentz transformation; and therefore the observer will write sin (k'x'—cat1) 
where k' and ω' are not necessarily the same as for the other observer. On the other 
hand the principle of relativity requires that the expression k x —ωί must remain 
invariant when we pass from one inertial observer to another. Therefore we must have

Using the first and fourth equations of the reciprocal Lorentz transformation (see 
the appendix) gives

12.8 Doppler Effect in Electromagnetic Waves

k x —a>t=k'x’ — co't'.

x' +  ui' t ' A-vxIc2
κ ——— =  —ω

or

(12.19)

Remembering that to =  ck, we can write these equations in the form

(12.2(1)
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por small velocities, that is, a <gc, the denominator may be set to unity, resulting in

which is the same as Eq. (10.59) for motion of the observer relative to the source 
along the line of propagation. [N ote that v0 in Eq. (10.59) is now denoted by v, and 
p by c.]

Equation (12.20) relates the frequencies ω and ω' as measured by two observers 
O and O' when O' is moving along the X-axis with a velocity v relative to 0 .  When 
the relative motion of the two observers is not along the line of propagation, a more 
elaborate calculation (see Example 12.4) indicates that

where Θ is the angle between the direction of propagation and the direction of the 
relative motion. Assumingthat O is at rest relative to the source of the electromagnetic 
wave, we see that if the source O and the observer O' are receding from each other, 
O' observes a lower frequency, or correspondingly longer wavelength. This situation 
is observed in the spectrum of stars and is called the red shift since the visible spectrum 
of the light from receding stars is shifted toward the red (or longer) wavelengths. 
This factor allows estimating the velocity with which these stars are receding.

Figure 12-14 shows the red shift of the calcium lines H and K observed in the spectra 
of several nebulas. The shift is indicated by the horizontal arrow. The data given in 
Fig. 12-14 has been plotted in Fig. 12-15, which shows that the greater the distance 
of the nebula, the larger the shift and therefore the larger the relative velocity. This 
information supports the theory of an expanding universe. Recently certain nebulas 
have been observed to have such a large red shift that they appear to be receding 
at velocities as large as half the velocity of light; such high velocity has provoked 
thoughts that the Doppler effect may not be solely responsible for the red shift 
It is interesting to note that the light from Andromeda (Fig. 1-6 in Volume I) shows a 
shift toward shorter wavelengths, or a blue shift. This seems to indicate that the 
present motion of the solar system within our rotating galaxy is in a direction to
ward this nebula.

Figure 12-16 shows the shift of the spectrum from the star Arct urus, which is about 
36 light years from the sun. The two spectra were recorded six months apart; the 
shift of one is toward the red and the shift of the other is toward the blue. This shift is 
due to the reversal in the direction of the orbital motion of the earth relative to 
Arct urus.

We have derived expression (12.20), applying the principle of relativity to the 
phase k x —iot of the wave. On the other hand we have attached certain momentum  
and energy to the radiation and used them to develop the concept of the photon. 
We must then see if our logic is consistent by checking the Lorentz transformation

I — (v/c) cos 0
( 12 .2 1 )ω =oj
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Virgo
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Hg, 12-14. DopplerefTect in extragalactic nebulas. The red shift οΓ the spectral H and K calcium 
lines (indicated by the arrow) increases with the distance of the nebula, this increase suggests 
greater recessional velocities. (Photograph courtesy of Mt, Wilson and Palomar Observatories I
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Figure 12-15 Distance from the earth (10'J light years)

of the energy and momentum for a photon to see if they are compatible with Eq. 
112.19). From Eq. (12.8) we have, for a photon, that

E = h v , p = j . (12.22)

Applying the Lorentz transformation for energy and momentum from one inertial 
frame to another gives

, p - v E / c 2 E - v p
p   and E = -

I - V 2Zc2
(12.23)

Fig. 12-16. Spectra ( /  4200 A to λ 4300 A) of the constant-velocity star Arcturus taken about six 
months apart, (a) July I, 1939; measured velocity +  18 km s 1 relative to earth, (b) January 19, 
'940; measured velocity —32 km s_ l . The velocity difference of 50 knt s -1  is entirely due to the 
change in orbital velocity of the earth. One can see the shift in the spectral lines clearly when one 
compares them with the two reference spectra. (Photograph courtesy of Mt. Wilson and Palomar 
Observatories.)
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Then using the relations F = Λ ν', p' =/ι/Λ' =hv'/c, and similarly for E and p, and 
canceling the common factor h in all terms both equations reduce to

I -n /c
ν " ' 'Γ Π Τ ^ 5  112.24)

which is equivalent to Eq. (12.20). We may then conclude that the concept of the 
photon is certainly consistent with the principle of relativity. Tf we assume that the 
relation E = c p  holds along with ω — ck. we see that the mere comparison of Eqs.
(12.19) and (12.23) would have tempted the physicist to look for a correspondence of 
the type £->co or v and p —>k or 1/2. If this had been the guiding principle, the concept 
of a photon would most probably have evolved earlier as a theoretical requirement 
of the model.

Example 12.4. Proof of relation (12.21) for the Doppler effect.

▼ When the direction of propagation of a plane electromagnetic wave makes an angle Θ with 
respect to the direction of relative motion of two observers O and O', instead of the second equation 
of (12.23) we must write the equation

r , _  E - v p x 

U V I -P 2 O2 '
However px= p  cos 0. Then remembering that E = cp for a photon, we may write

£  — iw co s 0  I — tv r l  co s Θ
£ = — —  , S =F.  , (12.25)

^ l - P 2Ar v  I - V 1 I c 2 I
Using Ε=Ιη·=Ιιω/2π  and canceling common factors finally yields

I — (u/c)cosfl 
ω —ω  — —  , ,

V l - P  V c 2

which is Eq. (12.21). k

Example 115. Relation between the directions of propagation of a plane electromagnetic wave 
as determined by two observers in relative motion. This effect is called aberration.

T Consider a source at rest relative to observer O where the observer sees an electromagnetic 
wave propagating in a direction making an angle 0 with the .Y-axis. The Y-axis coincides with the 
direction of the relative motion of the two observers. Then according to Eq. (11.23) of Volume I,

, px — vE/c2
p* = V i  - V i J ?  ’

but px —p cos θ : and similarly for observer O', p'x= p' cos θ'. Therefore setting £ = c p  gives
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I f w e  make p —h/ λ = hm/lnc,  and similarly for p .  and cancel common factors, we obtain

cos Θ—e/c
ω' cos ί)'=ω

v/ 1 —u2/c2

C o m b in in g  this with Eq. (12.21) to eliminate the f r e q u e n c ie s  y ie ld s

cos 0 —vie
co st)'= -— —    12.26)

I — (v/c) cos Θ

which relates the directions of propagation of the electromagnetic wave as determined by the 
iwo inertial observers. A

1 2 . 9  T h e  S p e c t r u m  o f  E l e c t r o m a g n e t i c  R a d i a t i o n

Electromagnetic waves cover a wide range of frequencies or wavelengths, and may 
be classified according to their main source. The classification does not have very 
sharp boundaries since different sources may produce waves in overlapping ranges 
of frequencies.

The usual classification of the electromagnetic spectrum has seven specific cate
gories. They are as follows.

1. Radiofrequency waves. These have wavelengths ranging from a few kilometers down 
to 0.3 m. The frequency range is from a few Hz up to IO9 Hz. The energy of the photons 
goes from almost zero up to about 10“ 5 eV. These waves, which are used in television 
and radio broadcasting systems, are generated by electronic devices, mainly oscillating 
circuits.

2. Microwaves. The wavelengths of microwaves range from 0.3 m down to IO- 3  m.
The frequency range is from IO9 Hz up to 3 x IOn  Hz. The energy of the photons
goes from about 10“ 5 eV up to 10“ 3 eV. These waves are used in radar and other
communication systems, as well as in the analysis of very fine details of atomic and
molecular structure, and are also generated by electronic devices. The microwave
region is also designated as UHF (ultrahigh frequency relative to radio frequency).

Infrared spectrum. This region covers wavelengths from IO- 3  m down to 7.8 x
Ό - 7  m. The frequency range is from 3 x IO1 1  Hz up to 4 x IO1 4  Hz and the energy
°l the photons goes from IO- 3  eV up to about 1.6 eV. The region is further subdivided
into three: the far  infrared, from IO- 3  m to 3 x IO- 5  m; the middle infrared,  from
3 x IQ- 5  m to 3 x IO- 6  m; and the near infrared, extending up to about 7.8 x 10 m.
These waves are produced by molecules and hot bodies, and have many applications
ln industry, medicine, astronomy, etc.
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4. Light or visible spectrum. This is a narrow band formed by the wavelengths to which 
the human retina is sensitive. The band extends from a wavelength of 7.8 x 10 7 nJ 
down to 3.8 x 10 ' 7 m and frequencies from 4 x IO1 4  Hz up to 8 x IO1 4  Hz. The ener-n 
of the photons goes from 1.6 eV up to about 3.2 eV. Light is produced by atoms and 
molecules as a result of internal adjustment in the motion of its components 
mainly the electrons. It is not necessary to emphasize the importance of light in our 
world.

Light is so important that a special branch of applied physics, called optics, has 
evolved. Optics deals with light phenomena as well as vision, and includes the design 
of optical instruments. Because of the similarity in the behavior of the infrared and 
the ultraviolet regions of the spectrum, the field of optics now includes both, in 
addition to the visible spectrum. The different sensations, called colors, that light 
produces on the eye depend on the frequency, or the wavelength, o f the electro
magnetic wave, and correspond to the following ranges for the average person:

Color λ. in v. Hz

Violet 3.90 4.55 x 10" 7 7.69-6,59 x IO14
Blue 4.55-4.92 6.59-6.10
Green 4.92-5.77 6.10-5.20
Yellow 5.77-5.97 5.20-5.03
Orange 5.97-6.22 5.03-4.82
Red 6.22-7.80 4.82-3.84

The sensitivity of the eye depends also on the wavelength of light; this sensitivity 
is a maximum for wavelengths of approximately 5.6 x 10" 7 m. Because of the relation 
between color and wavelength or frequency, an electromagnetic wave of well-defined 
wavelength or frequency is also called a monochromatic wave (from monos, one, and 
chromos, color).

Vision is the result of the signals transmitted to the brain by two elements present 
in a membrane called the retina, lying in the back of the eye. These elements are the 
cones and the rods. Cones are active in the presence of intense light, such as that w'hieh 
exists during the daylight hours. Cones are very sensitive to the frequency or color 
of the wave. Rods, on the other hand, are able to act under very dim illumination, 
such as that in a darkened room; they are quite insensitive to frequency or color. 
The vision associated with cones is called photopic, that associated with rods is called 
scoiopic. The sensitivity of the eye for different wavelengths for both kinds of vision 
is illustrated in Fig. 12-17.

5. Ultraviolet rays. These wavelengths cover from 3 .8 x 1 0 "1 m down to about
6  x 10" 1 0  m, with frequencies from 8  x IO1 4  Hz to about 3 x IO1 7  Hz. The energy of
the photons goes from about 3 eV up to 2 x IO3 eV. These waves are produced by
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Fig. 12-17. Sensitivity of the eye for scotopic and photopic vision.

atoms and molecules and in electric discharges. Their energy is of the order of magni
tude of the energy involved in many chemical reactions, accounting for many of their 
chemical effects. The sun is a very powerful source of ultraviolet radiation, and it is 
this factor that is mainly responsible for suntans. The sums ultraviolet radiation also 
interacts with the atoms in the upper atmosphere and produces a large number of ions, 
thus explaining why the upper atmosphere at a height greater than about 80 km is 
highly ionized and is called the ionosphere. When some living cells absorb ultraviolet 
radiation, they can be destroyed as a result of the chemical reactions produced by the 
ionization and dissociation of their molecules. For that reason ultraviolet rays are 
used in some medical applications and also in sterilization processes in which micro
organisms, such as bacteria, may be killed.

6 . X-rays. This part of the electromagnetic spectrum extends from wavelengths of 
about IO- 9  m down to wavelengths of about 6  x 10“ 1 2  m, or frequencies between 
3 x IO1 7  Hz and S x IO1 9  Hz. The energy of the photons goes from 1.2 x IO3 eV up 
to about 2.4 x IO5 eV. This part of the electromagnetic spectrum was discovered in 
1895 by the German physicist W. Roentgen (1845-1923) when he was studying 
cathode rays. X-rays are produced by the inner, or more tightly bound, electrons in 
atoms. Another source of X-rays is the bremsstrahlung or decelerating radiation men
tioned in Section 11.7. In fact this is the most common way of producing X-rays in 
commercial X-ray tubes. A beam of electrons, accelerated by a potential of several 
thousand volts, impinges on a metallic target called the anode (Fig. 11-16) (actually 
this method was the way in which the X-rays were produced in the original expcri 
ment of Roentgen). X-rays, because of the greater energy of their photons, produce 
more profound effects on the atoms and molecules of the substances through which 
the X-rays propagate, dissociating or ionizing the molecules. X-rays are used in
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Fig. 12-18. The electromagnetic spectrum.

medical diagnosis because the relatively greater absorption of X-radiation by bone 
as compared with tissue allows for a fairly well-defined “photograph” of bone struc
ture. As a result of the chemical processes they induce, X-rays also cause serious 
damage to living tissues and organisms; X-rays are used for treatment of cancer since 
they seem to have a tendency to destroy diseased tissue more readily than healthy 
tissue. It should be emphasized that any amount of X-radiation does destroy some 
good tissue; an exposure to a large dose may cause enough destruction to produce 
sickness or death.

7. Gamma rays. These electromagnetic waves are of nuclear origin. They overlap the
upper limit of the X-ray spectrum. Their wavelength runs from about 10" 1 0  m down
to well below 10 1 4  m, with a corresponding frequency range from 3 x IO1 8 Hz up
to more than 3 x IO22  Hz. The energies of the photons go from IO4 eV to about
IO7 eV. These energies are of the same order of magnitude as those involved in
nuclear processes, and therefore the absorption of y-rays may produce some nuclear
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changes. These rays are produced by many radioactive substances, and are present 
in large quantities in nuclear reactors. Although not easily absorbed by most sub
stances, gamma rays when they are absorbed by living organisms produce serious 
effects. Their handling requires a heavy protective shielding.

In cosmic radiation there are electromagnetic waves of even shorter wavelengths 
or larger frequencies, and with photons that are correspondingly more energetic. 
These waves are of special interest in astronomical research.

From the breadth of the spectrum of electromagnetic radiation, we can easily 
understand why the different parts of the spectrum behave differently when prop
agating through matter. For example those waves having photons with an energy 
comparable to the characteristic energies of electrons in atoms or of atoms in mole
cules will interact more strongly with atoms and molecules. This is the case for infra
red, visible, and ultraviolet radiation. Radiation having longer wavelength and carry
ing photons with less energy generally interacts weakly with matter. Radio-frequency 
waves are examples of such radiation. Waves such as X- and y-rays, that have high 
energy or very short wavelength, are also absorbed very little in matter; however, 
when they are absorbed, the effects of these waves are more profound and produce 
not only atomic and molecular ionization, but also nuclear break-up in many cases.

Figure 12-18 relates the various sections of the electromagnetic spectrum in terms 
of energy, frequency, and wavelength.

Problems

12.1 Radiation having a wavelength of 10“ 10 m 
(or I A) undergoes Compton scattering in a 
earbon sample. The scattered radiation is ob
served at a direction perpendicular to that of 
incidence. Find (a) the wavelength of the scat
tered radiation, and (bl the kinetic energy and 
direction of motion of the recoil electrons. 
{Mint: See Problem 12.32.1
12.2 Refer to the preceding problem; if the elec
trons recoil at an angle of 60 relative to the 
incident radiation, find (a) the wavelength and 
direction of the scattered radiatioa and (b) the 
kinetic energy of the electron. {Hint: See 
Problems 12.3! and 12.32.)
12.3 (a) Prove that the kinetic energy of the re
coiling electron in the Compton effect is given 
by

M’cc(l - c o s  0 ) 
k [I +«(I —cos ill]

where a = /iv / jh cc·2 . (b) Show that the maximum 
energy of the recoil electron is

if hv$> ̂ meC2.
12.4 A photon having an energy of IO4 eV 
collides with a free electron at rest and is scat
tered through an angle of 60A Find (a) the 
changes in energy, frequency, and wavelength 
of the photon; and (b) the kinetic energy, 
momentum, and direction of the recoiling elec
tron.
12.5 Determine the frequency and the wave
length of the photons absorbed by the following 
systems; (a) a nucleus absorbing energy In the 
amount of ID3 eV, (b) an atom absorbing I eV, 
and (c) a molecule absorbing 10" 2 eV.
12.6 Sodium atoms absorb or emit electromag
netic radiation of 5.9 1 1 0  7 rrl corresponding
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to the yellow region of the visible spectrum. 
Determine the energy of the photons that are 
absorbed or emitted.
12.7 To separate the carbon and oxygen atoms 
that form the carbon monoxide molecule, a 
minimum energy of 11 eV is required. Find (a) 
the minimum frequency and (b) maximum 
wavelength of the electromagnetic radiation re
quired to dissociate the molecule.
12.8 Λ photon having an energy of IOi  eV is 
absorbed by a hydrogen atom at rest. As a 
result, the electron is ejected in the same direc
tion as the incident radiation. Neglecting the 
energy required to separate the electron (about
13.6 eV), find (a) the momentum and (b) the 
kinetic energy of the electron and of the proton.
12.9 Find the energy of a photon having the 
same momentum as a 40-MeV (a) proton, (b) 
electron. I Him: Nonrelativistic equations may 
be used.) (Hint: Note that the proton can be 
treated nonrelativistically, but for the electron 
relativistic mechanics is required.)
12.10 The binding energy of an electron in lead 
is 9 x IO4 eV. When lead is irradiated with a 
certain electromagnetic radiation and the 
photoelectrons enter a magnetic field of 10' 2 T, 
they describe a circle of radius 0.25 m. Compute 
(a) the momentum and energy of the electrons, 
and (b) the energy of the photons absorbed,
(c) Can you neglect the effect of the recoiling 
lead ion?
12.11 When a certain metal surface is illumi
nated with light of different wavelengths, the 
stopping potentials of the photoelectrons are 
measured as shown in the table:

/ ( x IO' 7 m) F(V)

3.66 1.48
4.05 1.15
4.36 0.93
4.92 0.62
5.46 0.36
5.79 0.24

(a) Plot the stopping potential as ordinate 
against the frequency of the light as abscissa.

From the graph determine (b) the threshold 
frequency, (c) the photoelectric work fu n c tio n  
of the metal, and (d) the ratio A/e.
12.12 The photoelectric work function of potas
sium is 2.0 eV. Supposing that light having a 
wavelength of 3.6 x IO-7 m falls on potassium 
find (a) the stopping potential of the photoelec- 
trons, and (b) the kinetic energy and the velocity 
of the fastest electrons ejected.
12.13 A uniform monochromatic beam of wave
length 4.0 x 10~7 m falls on amaterial hav,ns  a 
work function of 2.0 eV. If the beam has an 
intensity of 3.0 x 10 “ 9 W m “ 2, find (a) the num
ber of electrons emitted per m2 and per s, and
(b) the energy absorbed per m2 and per s.
12.14 Consider a gas whose molecules behave 
as dipole oscillators, with a restoring constant 
of A =  3 x IO2 kg s -2  The oscillating particles 
are electrons, (a) Compute their characteristic 
frequency, (b) Write the index of refraction of 
the gas as a function of the frequency if the gas is 
at STP- (c) Obtain the values of the index for 
2 = 5  x IO-7  m and 2 =  1.02 x 10“ 7 m.
12.15 Verify that the quantity N ezIine0Oi1 in 
Example 12.3 is small compared with unity in 
the X-ray region.
12.16 Consider a substance moving with a 
velocity v parallel to the X  -axis. Let V' =  c/n be 
the velocity of light in the substance as meas
ured by an observer O' at rest relative to the 
substance. Show that the velocity V of a wave 
propagating along the X-axis through the sub
stance. as measured by an observer O relative 
to w hich the substance moves with velocity v, is

fsHi- ; ? 1) ·

(Hint: Use the Lorentz transformation of 
velocities.)
12.17 Show that when light propagates through 
a medium moving with velocity v parallel to the 
X -axis, the Doppler effect is

v’ =  v(l — nv/c)

if
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12.18 (a) Using the result of Problem 12.17, 
show that

( nvv\ ihI
T  )Tv

of Problem 12.16 can also be written in the 
form

-+» _L _  L A  dn ]
i r  \ n j  άλ  ]

where n is evaluated at v' and it at v. (b) Since 
(referring to Problem 12.16) we must note that 
„ has to be evaluated at ν', show that the result

(Hint: Note that Av=c/n, and that in the last 
term n' can be replaced by u.)

CHALLENGING PROBLEMS

12.19 The minimum energy required to eject a 
photoelectron from a given metal surface is
4.0 eV. Light of what frequency would be 
needed to give photoelectrons ejected from the 
metal surface a maximum kinetic energy of
3.0 eV? [AP-B: 1969]
12.20 The graph in Fig. 12-19 shows the maxi
mum kinetic energy of electrons ejected from a 
photoelectric surface as a function of the fre
quency of light striking the surface. What is the 
minimum energy photon that will eject a photo- 
clcctron? [AP-B; 1971]
12.21 The energy level diagram of a particular 
atom is shown in Fig. 12-20. It is known that 
absorption of a photon of frequency 4,8 x IO14 
Hz will cause a transition from the ground state 
A to state B. (a) Determine the frequency of the 
photon that causes transition from state A to 
state C when the photon is absorbed by the 
atom, (b) Determine the momentum of the

photon in part (a) above, (c) What is the mini
mum amount of energy required to ionize the 
atom when it is in its ground state? I AP-B: 
1972]
12.22 A monochromatic light source emits light 
of wavelength 5.600 A at the rate of 2.00 W. 
(a) Show that the energy per photon of the light 
emitted is 2.22 eV. (b) Determine the momen
tum per photon of the light emitted, (c) Deter
mine the number of photons emitted per 
second. Id) The source is placed at the center of 
a hollow sphere of radius R, the surface of 
which absorbs all light. If the source radiates 
photons equally in all directions, find an ex
pression for the pressure of the light on the 
surface of the sphere, [AP-B; 1972]
12.23 (a) Describe and interpret an experiment 
in which electromagnetic radiation exhibits 
particlelike behavior, (b) Describe and interpret 
an experiment in which electrons exhibit wave
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like behavior. [AP-B: 1973]
12.24 A parallel beam of monochromatic visible 
light enters your laboratory through a hole in 
the wall. You cannot investigate the source of 
light, though you have all the apparatus you 
wish for investigating the properties of the 
light beam. Describe how you could determine 
experimentally the number of photons per 
second entering the laboratory. [ΛΡ-Β: 1974]
12.25 Figure 12-21 shows part of an energy- 
level diagram for a certain atom. The wave
length of the radiation associated with transi
tion A is 6.000 A and that associated with 
transition B  is 3,000 A. (a) Determine the energy 
of a photon associated with transition A. (b) 
Determine the wavelength of the radiation 
associated with transition C. (c) Describe quali
tatively what will happen to an intense beam of 
white light (4,00(L 8,000 A) that is sent through 
this gaseous element. [AP-B: 1975]

Figure 12-21

12.26 Light of wavelength A1 incident on a clean 
metal surface ejects photoelectrons of maxi
mum kinetic energy KEraax. (a) Discuss the 
effect on the pholoelectrons as the wavelength 
οΓ the incident radiation is made longer and 
longer, (b) Discuss the effect on the photoelec
trons if the intensity of the radiation is 
gradually increased while the wavelength 
remains constant at A1. (c) Stale an experi
mental observation in a photoelectric experi
ment that is not satisfactorily explained by a 
wave model of light. [AP-B: 1976]
12.27 An object o f mass 0.5 kg (500 g) is at 
rest on a frictionless surface. A burst of IO20 
photons strikes the object and all the photons 
are completely absorbed. Each photon has an 
energy of 100 eV =  1.6 x 10 17 J. As a result of 
absorbing the photons, the object’s temper
ature rises 5 K. (a) Calculate the momentum 
of a single photon, (b) Calculate the speed of

the object after it has absorbed the photons
(c) If, instead, all the photons had been reflec
ted, how would the answer to part (bi be 
changed? (dl Calculate the specific heat of tht  
material of which the object is made. [A F-B 
1978]
12.28 In a photoelectric experiment, radiation 
of several different frequencies was made to 
shine on a metal surface and the maximum 
kinetic energy of the ejected electrons was 
measured at each frequency. Selected results 0f 
the experiment are presented in the tabic below ■

Frequency (Hz)

0.5 x IOx r  
I 0 x IO' 5 
1,5 x IO15 
2.0 x IOis

Maximum kinetic energy 
of electrons (eV)

No electrons e)ected 
1.0
3.0
5.0

(a) Plot the data from this photoelectric experi
ment. (b) Determine the threshold frequency ot 
the metal surface, (c) Determine the work func
tion of the metal surface, (d) When light of 
frequency 2.0 x IO15 Hz strikes the metal sur
face, electrons of assorted speeds are ejected 
from the surface What minimum retarding 
potential would be required to stop all of the 
electrons ejected from the surface by light of 
frequency 2.0 x IO15 Hz? (e) Investigation 
reveals that some electrons ejected from the 
metal surface move in circular paths. Suggest a 
reasonable explanation for this eleciron 
behavior. [AP-B: 1980]
12.29 A helium atom of mass m moving with 
speed v zigzags back and forth between two 
parallel walls of length L separated by distance 
a as shown in Fig. 12-22. (a) In terms of a, v. 
and 0. calculate the time interval At between 
two successive collisions with the right-hand 
wall, (b) In terms of m. v, and 0, calculate the 
magnitude of the momentum Ap imparted to 
the right-hand wall each time the atom collides 
with it. (c) Calculate the average force that the 
atom exerts on the right-hand wall, and express 
the resulting pressure P on the wall in terms of
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I), the volume V of the region bounded by the 
walls, and the kinetic energy E  of the atom. 
Idl Suppose, instead, that a photon of energy E 
is following the zigzag path. Calculate the 
magnitude of the momentum Ap it imparts to 
the right-hand wall in each collision, and ex
press the resulting pressure P  in terms of E.O, 
and V. [ΛΡ-Β; 1980]
12.30 The sun is 1.5 x 10" m from the earth. 
Energy from the sun is received al the earth's 
surface at the rate of 1.4 kW m -2 . (a) This 
energy flux falls on a pond of water LOO m 2 in 
area and 0.1 m in depth. Assume all of this 
energy heats the water. Find the average 
temperature rise of the pond after IO3 seconds. 
Ibl Determine the rate in kilograms per second 
at which the sun's mass is being converted to 
energy. The surface area of a sphere is Απτ2, 
[AP-B: 1981],
12.31 Show that if the electron is scattered in a 
direction making an angle φ with the incident 
photon in a Compton scattering, the kinetic 
energy of the electron is

Av(2a c o s 2<j>)
1 [I I +  a)2 — a2 cos2 ψ]

where a =  Av/mec 6.
12.32 Show that, in a Compton scattering, the 
relation between the angles defining the direc
tions of the scattered photon and the recoil

electron is cot φ = (I +  a) tan
12.33 Electromagnetic radiation of wavelength 
equal to 10' 5 m falls normally on a metal 
sample of mass IO-1 kg, and an electron is 
ejected in a direction opposite to the incident 
radiation. Using the laws of conservation of 
energy and momentum, obtain the energy of 
the electron and the recoil energy of the metal 
sample. Assume that the work function is zero 
Does the result justify not considering momen
tum conservation in our calculation of the 
photoelectric effect?
12.34 Show that for gases the second term in 
Eq. (12.17) is small, and that we may write

. Ne2 /V  /  ^
M 5 I 4 - — - I I  —y------ Ϊ I ■2mce0 \  , ω ,- ω - /

For only one resonant frequency, the expres
sion becomes

N e2
H  £  I +  -  —  -» -XT -

2 m c€ 0{ o J i  —CU I

12.35 The index of refraction of hydrogen gas at 
STP is n=  I +  1.400 x 10“4 at /  =  5.46 x IO 7 m 
and n — I +  1.547 x IO"4 at /  =  2.54 x 10 m. 
Assuming a single resonant frequency, com
pute this frequency and the number of elec
tronic oscillators per unit volume. Compare 
with the number of molecules per unit volume. 
IHint: Use the result of Problem 12.34.)
12.36 Referring to the preceding problem, com
pute the index of refraction of hydrogen for 
/ = 4 x 1 0 " ’’ m, a pressure of IO6 Pa. and a 
temperature of 300 K.
12.37 Consider a glass plate of index of refrac
tion n and thickness Ax interposed between a 
monochromatic source S  and an observer O,
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as shown in Fig. 12-23. (a) Show that if absorp
tion by the glass plate is neglected, the effect of 
the glass plate on the wave received by O is to 
add a phase difference equal to

<5= - ω ( η — I) ^

without changing the amplitude S 0 ofthe wave,
(b) If the phase difference is small, cither

because Δλ is very small or because /i is very 
close to one. show that the wave received at o  
can be considered as a superposition U| 
the original wave of amplitude <f0, with no 
plate present, with a wave of amplitude 
^ 0Oifn- l)Ax/t· having a phase shift of --n ' 
(This problem shows the efTect of a material 
medium on an electromagnetic wave.)
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13.1 Introduction

In all the kinds of waves discussed in Chapters 10, 11, and 12, the velocity of p r o p p ^  
tion depends on some physical properties of the medium through which the waves 
propagate. For example the velocity of elastic waves depends on an elastic modulus 
and the density of the medium. The velocity of electromagnetic waves depends on the 
permittivity and permeability of the substance through which the waves propagaj| 

This dependence of the velocity of propagation of a wave on the properties of Lhe 
medium gives rise to the phenomena of reflection and refraction, which occur when a 
wave crosses a surface separating two media in which the wave propagates with 
different velocity. The reflected wave is a new wave that propagates back into the 
medium through which the initial wave was propagating. The refracted wave is the 
wave transmitted into the second medium. The energy of the incident wave splits 
and is divided between the reflected and the refracted waves. In many instances the 
reflected wave receives more of the energy as is the case for mirrors. In other instances 
the refracted wave carries most of the energy. When a transverse wave is polarized, the 
polarization is usually affected both in reflection and refraction; we shall ignore this 
effect for the present and discuss polarization in the next chapter.

1 3 . 2  H u y g e n ’ s  P r i n c i p l e

The propagation of a wave is described by the equations of the field to which the 
wave corresponds. Therefore if the source of a wave is known, its propagation from 
one region to another can in principle be traced if the changes in the properties of the 
medium are taken into account. It is also possible, however, to compute the amplitude 
of a wave at a particular point of space without making direct reference to the sources 
Around 1680 the Dutch physicist Christiaan Huygens (1629-1695) proposed a simple 
mechanism for tracing the propagation of waves. His construction is applicable to 
either elastic or mechanical waves in a material medium.

Recall that a w a v e  su r fa c e  or a w a v e  front is a surface having constant phase passing 
through those points of the medium that are reached by the wave motion at the 
same time. For example for a plane wave the disturbance is expressed by f ( u - r - v t ), 
and a wave surface is composed of all points at which the phase u-r — vt has the same 
value at a given time. Therefore the wave surface is given by the equation

w r  — vt — const,

which for a given time I corresponds to a plane perpendicular to the unit vectoi «■ 
Similarly for spherical waves the wave surfaces are given by r — vt  =  const, which for a 
given t correspond to spheres.
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F i g .  1 3 - 1 .  Huygens's 
gressmg wave.

Huygens visualized a method for passing from one wave surface to another when 
the wave is assumed to be the result of the motion of the particles comprising the 
medium. Consider a wave surface S (Fig. 13-1). When the wave motion reaches this 
surface, each particle a, b, c, . .. on the surface becomes a secondary source of waves, 
and each emits secondary waves (indicated by the small semicircles), which reach the 
next layer of particles in the medium. These particles arc then set in motion and form 
the next wave surface S'. The surface S' is tangent to all secondary waves. The process 
keeps repeating itself and results in the propagation of a wave through the medium 
This pictorial representation of the propagation of a wave looks very reasonable 
when the wave is an elastic wave resulting from mechanical vibrations of atoms or 
molecules in a body.

However, this representation has no physical meaning in cases like an electro
magnetic wave’s propagation in a vacuum, in which there are no vibrating particles. 
Huygen’s construction, although quite plausible when applied to mechanical waves 
in matter, therefore required a revision after it was recognized that other waves ot a 
different kind also exist in nature. This revision was accomplished at the end of the 
nineteenth century by the German Gustav KirchhofT (1824-1887), who replaced 
Huygens’s intuitive construction by a more mathematical treatment. Kirchhoffs 
calculations are too complicated to be reproduced here. The final result of his calcula
tions. however, is relatively simple as will be seen in the succeeding paragraphs.

Wave motion is regulated by the general wave equation (10.65). That is.

where ξ may be the displacement of the atoms of a substance for an elastic wave 
the electric or magnetic field for an electromagnetic wave, and so forth. Describing 
wave propagation in any given medium consists primarily in obtaining a solution 

t) to this differential equation. The solution of Eq. (13.1) depends on ξ satisfying 
the physical conditions of the problem; that is, the position and the nature of the 
sOurces, the physical surfaces of discontinuity, etc. Mathematicians call these con

(13.1)
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Fig. 13-2. The wave at P can  be com puted  
if the wave at the closed surface S is known

ditions the boundary conditions. The theory of differential equations states that under 
special conditions we can find the solution of an equation such as Eq. (13.1) if we know 
the values of the function c(r, i) over a closed surface S (Fig. 13-2).

To be more concrete, suppose that we want to evaluate the wave motion at some 
point P. If we know the sources σ„ σ2, σ3, . . . ,  we may add all their contributions at 
P to obtain the resultant wave motion. Now suppose that, instead, we know only the 
value of ξ at all points of the arbitrary but closed surface S. In this case we may also 
obtain the wave at P even if the distribution of the sources is ignored. Mathematically 
this statement can be expressed in the following way. Let f  (Q, t) represent the wave al 
each point Q on the surface S at time r. Let r represent the distance from ihe surface 
element dS around Q to the point P. The perturbation at P  at time t can be expressed 
by an integral of the form*

cPU)=<|> g m  f { r ~ Vt)dS (13.2)
Js  r

where the integral extends over the entire surface S. This integral has a rather simple 
physical interpretation: the factor ( l/r ) /(r  — vt) represents a spherical wave that is 
emitted by a surface element dS at time t —r/v and that reaches P at time r where r'v 
is the time for propagation from dS to P. The factor g{9) is a directional factor, meaning 
that the waves emitted by dS do not have the same amplitude in all directions. If ti 
is defined as the angle between the normal to the surface at dS and the direction from 
dS to P (Fig. 13-2), the form of g(6) is

fl(0 )= j(l +  cos Θ).

The maximum amplitude {g =  I) then corresponds to 0 —0, or forward propagation: 
and the minimum amplitude (g — 0), to (?=π, or backward propagation. We conclude 
then that we can obtain the perturbation at a point P at time I if we assume that each 
surface element dS of the closed surface S acts as a secondary source o f  waves The 
computational process of Kirchhoff just described is essentially equivalent to 
Huygens’s statement, but without reference to a mechanical model.

We shall have occasion to use Huygens’s principle, as reformulated by Kirchhoff. 
in many of the forthcoming discussions of wave propagation, especially those dealing 
with diffraction and scattering in later chapters.

*The actual expression is somewhat more complicated; but Eq. (13.2) suits our purpose here and 
provides an adequate approximation, applicable to the kind οΓ problems to be discussed in 
this book.
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13.3 M alu s's  Theorem

Another important tool for tracing the propagation of a wave through a medium is 
Malus’s theorem, named after the French physicist E. Malus (1775-1812). Referring 
back to Fig. 13-1, note that a series of lines may be drawn perpendicular to the succes
sive wave surfaces (indicated by the broken lines with arrows). These lines, called 
rays, correspond to the lines of propagation of the wave. The relation between rays 
and wave surfaces is similar to the relation between lines of force and equipotential 
surfaces. Points that are on different wave surfaces and are joined by a given ray are 
called corresponding points (see points a, a ,  a" or points b, b', b" in Fig. 13-1). The 
time required by the wave to go from S to S" must be the same measured along any 
ray since all points on S'' must have the same phase. We may thus state that

the time separation between corresponding points o f  two wave surfaces
is the same for all pairs o f  corresponding points.

We may then conclude that the distances aa”, bb", cc", etc., must depend on the velocity 
of the wave motion at each point along a given ray. In a homogeneous isotropic 
medium, in which the velocity is the same at all points and in all directions, the 
separation between two wave surfaces must be the same for all corresponding points; 
and therefore the rays are straight lines because symmetry suggests that there is no 
reason for their bending to one side or another. This situation has already been seen 
with plane and spherical waves as illustrated in parts (a) and (b) of Fig. 13-3. Therefore 
in (he general case the family of wave surfaces must have a common set of normals as 
shown in Fig. 13-3(c). and must be equally spaced along these normals.

Consider now the case where a wave propagates through a succession of hom o
geneous isotropic media. At the crossing of each interface separating two adjacent 
media, the direction of propagation may change (that is, the rays may change 
direction); but while they are going through a given medium, the rays will still be

Fig. 13-3. Plane waves, spherical waves, and waves of arbitrary shape.
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Fig. 13—4. Corresponding rays in incident and 
outgoing waves.

straight lines perpendicular to the wave surfaces. Let S (Fig. 13-4) be one wave surface 
in the first medium. Then two rays, R i and R 1. may be traced perpendicular to S. 
Successive wave surfaces in that medium must be perpendicular to Zi1 and R . If 
after the wave motion passes through a series of different media, we observe another 
wave surface S', we find that the rays R 1 and R 2 have been transformed into rays R, 
and R 2, which are also perpendicular to S'. In other words the relation of orthogonality 
between rays and wave surfaces is conserved throughout all the process of  wave pro
pagation. Therefore A 1 and A\ are corresponding points as are A 2 and Ar2. Malus’s 
theorem further assumes that the time required by the wave to propagate from 
A j to A\  on wave surfaces S and S' must be the same as the time required to go front 
A2 to A 12 on the same pair of wave surfaces.

Consider a plane wave propagating in medium (I) in the direction of the unit %'ector 
Ui as the wave approaches the boundary with another medium (Fig. 13-5). When the 
wave reaches the plane surface AB  that separates medium (I) from medium (2), a 
wave is transmitted into the second medium and another wave is reflected back into 
medium (I). These are the refracted and reflected waves, respectively. When the angle 
of incidence is oblique, the refracted waves propagate in a direction indicated by unii 
vector Hr, which is different from Hi ; and the reflected waves propagate in a direction, 
indicated by unit vector ur, which is symmetric to h, with respect to the surface

Inciden t w aves R eflected w aves

13.4 Reflection  and Refraction of Plane W aves

H

Fig. 13-5. Incident, reflected, and refracteJ
plane waves.Refracted waves
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Medium(2)
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Ilefraeted ray

HcfIeeted ray

B

(I.)
|<’ig. 13-6. (a) Incident, reflected, and refracted rays, (bl A pencil of light reflected front and refracted 
into a glass block. (From Physics: Boston: D. C. Heath, I960.)

normal. Figure 13-6 indicates the corresponding situation for rays. The angles Si, Sr, 
and Q'r are called the angles of incidence, refraction, and reflection, respectively. The 
directions of the three vectors it,·, u, and u, are related by the following experimentally 
verified laws.

(1) The directions of  incidence, refraction. and reflection are all in one plane, which 
is normal to the surface of separation and therefore contains the normal N to the 
surface.

(2) The angle of reflection is equal to the angle o f  incidence. That is,

(3) The ratio between the sine o f  the angle o f  incidence and the sine o f  the angle of 
refraction is constant. This is called SnelFs law, named after the Dutch mathematician 
Willebrod Snell von Royen (1591-1626), and is expressed by

The constant n2 1  is called the index of refraction of medium (2 ) relative to medium (I). 
The numerical value of the constant depends on the nature of the wave and on the 
properties of the two media.

These laws remain valid when neither the wave surface nor the interface is plane 
because at each point a limited section of either surface can be considered as plane 
and the rays at that point behave according to Eqs. (13.3) and (13.4).

The three laws can be verified experimentally without great difficulty. They can 
also be proved theoretically if the basic concepts of wave propagation, and in par
ticular the theorem of Malus. are used. Forexample the first law can bejustified on the 
basis of symmetry considerations alone since the incident ray and the normal (V 
determine a plane, and there is no a priori reason for the refracted and the reflected

(13.3)
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rays to be deflected from this plane. To prove the second and third laws, consider 
two incident rays R 1 and R 2 (Fig. 13-7) that are parallel since the incident waves are 
plane. Ray R 1 hits the interface at A, and R 2 hits the surface at B’. Because the geo
metrical situation is the same at A and at B', we conclude that the refracted rays 
R\ and R 1 are also parallel as are the reflected rays R 1 and R 2- Since the rays R 1 and 
R 2 were chosen arbitrarily, the refracted and reflected waves are also plane hecause 
they must be perpendicular to a corresponding set of parallel rays as required by 
Malus’s theorem.

Now consider the following wave surfaces: A B in the incident wave, A'B' in the 
refracted wave, and A 'B' in the reflected wave so that A. A1 and B, B1 are two sets of 
corresponding points for the refracted wave, and A, A" and B, B" are two sets of 
corresponding points for the reflected wave. As implied in Malus’s theorem, the rays 
between corresponding points in the wave surfaces must have been traversed in equal 
times. Call t the time taken by the incident wave to go from B to B’ along ray R2 

with velocity U1. In the same time the refracted wave moved along ray R 1 from A 
to A' with velocity v2, and the reflected wave moved along ray R 1 from A to A" with 
velocity U1. Then

BB1= V 1I-, A A 1 =  V2I., A A 11 =  Vit;

and from the geometry of the figure,

■ n BB V1Isin Oi= — - = —— ,
' AB A B  ’

/I AA' v2tsin Qr=  = —  ,
f AB' A B

. AA" Ujf
sin 0 ' = ------ = —— .

' AB A B

Comparing the first and third relations, sin Θ\ =  sin Oi or Or =  Oi, which is the law for 
reflection, Eq. (13.3). Dividing the first relation into the second yields
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pjg. 13-8. Refracted rays for (at m?i >  
(b) i < 1·

and

sin Oi P1 

sin Θ,. V2 ’

which expresses Snell’s law, Eq, (13.4), since the ratio v j v 2 between the two velocities 
of propagation is constant. Comparing this equation with Eq. (13.4) shows that the 
relative index of refraction of two substances is equal to the ratio of the velocities of 
propagation of the wave in the substances, or

"2 i = - -  (13.5)
V 2

For each kind of wave motion a particular medium is chosen as the reference or 
standard, and the velocity of propagation of the wave in that medium is designated 
by c. The index of refraction of any other medium for that wave motion is defined by

n = - .  (13.6)
v

For electromagnetic waves the reference medium is vacuum, and thus c= s3 x  
IO8 m s" T N ow  for two substances

» 2  c ui yi— x — = — = n 2 1  (13.7)
f l I V 2 C V 2

so that the relative index of refraction of two substances is equal to the ratio of their 
respective indexes of refraction. Using relation (13.7), we can write Snell’s law, Eq. 
(13.4), in more symmetric form;

n, sin S1-=H2 sin Or. (13.8)

Depending on whether P2 ^ n 1, then H2 ^ n 1 and n2 1  ^ l ,  resulting in θ ^ θ .  as 
indicated in Fig. 13-8.

In the second case, n2 1  < 1 , a special situation arises when

s in 0 ,= n 21; (13.9)

lhen sin Or=  I or Or =  π/2, indicating that the refracted ray is parallel to the surf ace I he 
angle Oi given by Eq. (13.9) is called the critical anyle  and is designated by Oc. 
The geometrical situation is illustrated in Fig. 13-9. When n2 1  <  I, and 0 '> 0 C or
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N
Incident ray R eflected ray

I
Fig. 13-9. Total reflection occurs when n2, < i  
and Oi is larger than the critical angle λ.

sin  0 ; > ί ΐ 2ι, it then fo llow s th at sin  Or >  I, w h ich  is im p ossib le . T herefore in this case 
there is no  refracted ray; there is to ta l  reflection. T h is situ ation  m ay co m e  about (or 
exam ple w hen  light passes from  g lass in to  air. Strictly  speaking, as sh ow n  in F ig. 
13-9. there is a w ave p rop agating  in  the secon d  m edium  parallel to  th e  surface; but 
the am p litu d e o f  the w ave decreases very rapidly w ith  depth , and the w ave is confined  
to  a  very  th in  layer a lo n g  the surface.

Example 13.1. Passage o f a wave through a medium limited by plane parallel sides.

▼ Consider a plate of thickness a and a ray AB  (Fig. 13-10) whose angle of incidence is Oi. Ignore 
the reflected ray. The angle of refraction is Or, corresponding to the refracted ray BC. From relation

Fig. 13-10. Propagation of a ray through a parallel plate. In (b) the photograph shows the dis 
placement of a pencil of light. (From Physics', Boston: D. C. Heath, 1960.)

A

%
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\|so  from the geometry of Fig. 13-10, O1i=Or. Therefore, combining the two relations gives sin Oi=  
sin 0' or O1= S r, which says that ray CD is parallel to ray AB. but is laterally displaced. We leave 
j, to the student to verify that the lateral displacement of the ray is

Sin(Aj - O r)
d = o   —  .

c o s  Or

[t may also be easily verified that if instead of one plate, there are several parallel plates of different 
materials, the emergent and the incident rays are still parallel. A

13.5 Reflection  and Refraction of Sp herical W aves

The reflection and the refraction of spherical waves at a plane surface will now be 
examined. Consider spherical waves generated at a point source O and incident on  
a plane surface S. Two new sets of waves are then produced: the reflected and the 
refracted or transmitted as shown in Fig. 13-11. In order to trace the shape of the 
reflected and refracted wave fronts, it would be necessary to draw many reflected 
and refracted rays. The corresponding reflected and refracted wave surfaces are 
perpendicular to the rays. In Fig. 13-11, one set of these rays has been drawn at B 
on the assumption that n21 >  I. According to laws (2) and (31 for reflection and refrac
tion, we have

„ sin O1
Vr=G b — — =  U21-

sin Or

When extended back into medium (2), the reflected ray BD intersects the extended 
normal AO at point I'. Because triangles OAB  and I'AB are right triangles and the 
angles at 0  and I' are the same, we see that AO =  AI'. Since B is an arbitrary point, 
we conclude that all reflected rays pass through a point I', symmetric from O relative 
to the plane surface. This point is called the image of O produced by reflection.

Therefore when spherical waves fall on a plane surface, the reflected waves are 
spherical and symmetrical with respect to the incident waves. This symmetry was to be 
expected because the reflected waves propagate backward with the same velocity 
as the incident waves in such a way that the reflected waves remain symmetric relative 
Io the reflecting surface.

When the direction of the refracted ray BC is extended back into medium (I) the 
ray intersects the normal OA at a point I such that tan Or=  ABjAl. Since tan Oi =  
ABjAO, the ratio of the two tangents is

tan Oi A l
0r tan  Or AO

AI =  A O m % .  13 .10)
tan Or
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Fig. 13-11. (a) Incident, reflected, and refracted spherical waves. In lb). the photograph shows 
incident and reflected surface waves in a liquid medium. (From Physics', Boston: D. C Heath, 
I960.)
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jrjg. 13-12. Refraction of rays that proceed 
from a point source When extended back, the 
refracted rays do not intersect at a single point.

Recall that Snell’s law of refraction requires that sin 0,/sin Br be constant and equal to 
,I21; but then tan 0,/tan Qr cannot be constant. Therefore the refracted rays do not all 
pass through the same point. We conclude then that when spherical waves fall on a 
plane surface, the refracted waves are not spherical.

Since the refracted rays do not pass through a single point, they do not form a 
point image of O as the reflected rays do. The refracted rays intersect at several points 
along the normal OA as well as on a conical surface called the caustic, shown in 
Fig. 13-12. The intersection of reflected rays can be observed without difficulty in the 
case of the refraction of light waves. The point a, formed by the intersection of the 
least-inclined rays, can be calculated very easily because then the angles Oi and Or 
of Fig. 13-11 are very small and the tangents may be replaced by sines in Eq. (13.10); 
the result is

sin Ih
A l ^ A O -----—= n 2iAO (for small angles). (13.11)

sin ifr

13.6  M ore about the La w s of Reflection  and Refraction

We have established the laws of reflection and refraction by using a geometrical 
reasoning based on Malus’s theorem. We shall now discuss these laws in a more 
analytical form. Suppose that an incident wave is described by an equation o f type 
(10.63), That is,

| ,  =  £0 isin ( k p r -e o t ) .  (13.12)

The refracted and reflected waves will be respectively

ξΓ= ξ θΓ sin (kr- r - o ) t )  (13.13)

and

ξ'Γ=ξ'0, sin ( k f r - ωΐ ) . (13.14)
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N ote that the same ω is used in both the reflected and the refracted waves as in the 
incident wave because it is an experimental fact that the frequency of wave motion 
does not change on reflection or refraction.

The physical property (a displacement, or a pressure, or an electric or magnetic 
field) ascribed to ξ is such that the value at the surface separating the two media 
m ust be the same from whichever side it is observed. (In the case of an electromagnetic 
wave, the relation among the components of the electric field and the magnetic 
field may be of a somewhat different nature; but the relation is still linear and involves 
the fields on both sides of the surface.) In medium (I) we have the incident and reflected 
waves, which yield ξι+ζ', for the resulting disturbance at the surface; in medium (2 ) 
we have only the refracted wave, which yields ξΓ. Then at the surface of separation,

£(+ £  =  fr  (13.15)

In order that this be satisfied at all points and times at the surface of separation, it is 
necessary that the phases in Eqs. (13.12), (13.13), and (13.14) be identical. That is,

k i- r —wt =  kr- r - ( o t  =  k'r- r —wt  (13.16)

for all points r on the surface (Fig. 13-13). After the common term cot is cancelled, 
Eq. (13.16) reduces to

k , - r = k r-r =  k’r-r. (13.17)

Ifthe X Y Z  axes are chosen as indicated in  Fig. 13-13 so that the surface of separation 
coincides with the AZ-plane and the direction of incidence lies in the λ' !-plane, 
then r must be in the λ'Ζ-plane and given by r - u xx + u ,z .  Similarly Jfj =  H1 Zci l+  ujk-J
and since we do not know a priori whether kr and k' are also in the same plane we

Y

Plane of incidence

Figure 13-13
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Fig. 13-14. Propagation vectors in incident, 
reflected, and refracted waves.

- X

must write k r =  uxkrx+  uykry +  u:krx and it' =  uxk'rx +  uyk'ry + u.k'rz. Substituting these 
expressions into Eq. (13.17) and recalling the expression for the scalar product gives

ItixX =  krxx +  krzz =  k'rxx + k'rzz.

Because this relation must hold for all points on the plane X Z ,  it follows that

kix= k rx=k'rx and k„= k'„  =  0. (13.18)

The second group of equations indicates that the vectors kr and fc' have no com
ponents along the Z-axis so that the vectors are also in the X  T-plane; and the incident, 
the reflected, and the refracted rays are in the same plane; this is the first law (I) 
mentioned in Section 13.4.

Next we see, from Fig. 13-14 that kix= k t sin On krx =  kr sin Or  and k'rx =  k'r sin 0'; 
and from Eq. (10.6), Rl =  Wr=Oijv1 and kr=Oizv1. Using all these relations in the first 
group of equations of (13.18) and factoring out the common factor ω gives

— sin Oj = — sin Or= — sin Oj
V1 V2 V1

From these relations we see that sin 0, =  sin Or or Oi=Ojr and sin 0,/sin Or= V 1Iv2= V 11 
immediately follow. Thus we recover the remaining two laws for reflection and 
refraction originally developed in Section 13.4.

When Eq. (13.16) is satisfied, Eq. (13.15) reduces to

€0( +  £'θ, =  ίθ .
which is a relation among the amplitudes of the three waves. If Eq. (13.15), or its 
equivalent, Eq. (13.19), is the only requirement that must be satisfied, there is not 
enOugh information to determine the amplitude of the reflected and refracted waves. 
However because of the physics of the problem, another boundary condition is
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usually required, such as the continuity of the stresses or of the pressure across the 
interface in the case of elastic waves, or the continuity of certain components of the 
electnc and magnetic fields in the case of electromagnetic waves. Therefore a seccmd 
relation (or boundary condition) involving the amplitudes ξ0ί, ζθΓ. and ξ θΓ must exist 
If the two boundary conditions are used, the amplitudes ξθΓ and £'0r in terms of ξ 
can be determined as illustrated in the following example.

Example 13.2. Reflection and lransmission of transverse waves at a point where two strings of 
different materials are joined.

▼ Consider two strings (I) and (2) (Fig. 13-15), attached at one point: this point will be chosen as 
the origin of coordinates. The strings are subject to the same tension T. For mathematical con
venience use the alternative form for waves given in Eq. (10.10). There is an incident wave coming 
from the left, propagating with the velocity i , -  Wjkl. and having the form

C1= C 01 sin I to t-Z i1A-).

At the point of discontinuity, a refracted or transmitted wave propagates with the velocity r2 =  
co/Z<2 along string (21. and has the form

ξΓ = ξ0Γ sin (ait - k 2x).

A reflected wave, propagating back along string (I) with velocity cOfki with the form

i j —ίό Γ sin (cot+Zf1X),

is also produced. Note that Zc1 is used for the reflected and the incident waves because they prop
agate in the same medium: string (11. The vertical displacement at any point on string (I) is 
ξ = ξ ί + ζ ' , .  On string (2) the vertical displacement is ξ = ξ , ·  Point 0, where the strings are joined] 
corresponds to x=0. At this point, in conformity with Eq. (13.15), we must have ς(+ξ'Γ=ς;, which 
becomes

This equation is a condition relating the amplitudes that is similar to Eq. (13.19). To obtain a 
second relation between the amplitudes, we follow the discussion in Section 10,7, and note that the 
vertical force at any point in string (I) is

since a is small and sin a is practically equal to tan a. Then, taking derivatives of C1 and JJ., we 
can write

F y=  T k l [ -  i 0, cos (cor-k^x) + f0r cos (cor + fqx)].

Similarly the vertical force at any point on string (2) is found to be

ξ01 sin (OtTc0r sin cor = c;0r sin rot
or

(13.20)

F y=  T — =  -  Tk2ξ(,r cos (cor —k2x).
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Refracted

Now at the junction the vertical force must be the same, whether the computation uses Ty for 
string (I) or for string (2). Then setting X=O in the two expressions above for Ty, equating them, 
and canceling Lhe common factor cos an gives

k"l(ioi — ίθι·)“ ^2ίθι·· (13.21)

This equation is a second condition to be satisfied by the three amplitudes and is imposed by the 
physical nature of the wave. Solving the system of equations (13.20) and (13.21) yields

ί θ , =
2 Jk1 ? F  —

Iil - I i 2
It1 +Zc2 τ  Or

Jc1 +fe2. Coe (13.22)

which determine the amplitudes of the refracted and reflected waves relative to the amplitude of 
the incident wave. Noting that k = m/v, we may write instead

2c2
ίο ,= C1 +C2 ίθ Ο  fo r  —

C 2 - C 1 

C 1 + C 2
ίο . · (13.23)

Since in the case of transverse waves in a siring c =  v T'<r, according to Eq. (10.37) where a is 
the mass per unit length, we may also write

ίο ,=
_ s j a  j + V ff2 .

VffI
_Vfft+ V g2_ ίο.· (13.24)

I lie ratios ί θΓ/£οί and ί'ο,/ίο. are called the coefficients o f  refraction (or transmission) and of reflec
tion, respectively, and are designated by t and r. respectively. Thus

t = - V ffI

V ffl + V ff2 ’

. v/g l y 'ff2 
V ff  I +  V f f  2

(13.25)

Note that t is always positive so that I 0r always has the same sign as ς 0ι and the transmitted wave 
is always in phase with the incident wave. But r is positive or negative depending on whether 
ffi so that the reflected wave may be in phase with or in opposition to the incident wave. 
In the second case the reflected wave has suffered a phase shift of π relative to the incident wave, 
fhe two situations are illustrated in Fig. 13-16.

The student may check the flow of energy across the junction by using the rate of energy flow 
°n strings (I) and (2). The energy transmitted is proportional to t2 and the energy reflecltd is 
Proportional to r2. L
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Reflected T ransm itted
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Fig. 13-16. Incident, reflected, and transmitted waves in two attached strings of different lineal 
densities, In Ibl and (dl the string carrying the incident wave is heavier; in (c) and (el, the string on 
the left is lighter. (Photographs from Physics', Boston: D. C  Heath. 1960.)
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1 3 .7  R e fle c tio n  an d  R e fra ctio n  at M e ta llic  S u rfa c e s

It was demonstrated in Section 2.5 that inside a conductor a static electric field is zero. 
The situation is not entirely the same when the electric field is time dependent. How
ever even when the electric field is time dependent, an electromagnetic wave is greatly 
attenuated when it propagates in a conductor, such as a metal or an ionized gas. We 
shall not present the detailed theory here, but we shall indicate one of the fundamental 
changes that take place in the equations regulating the propagation of an electro
magnetic wave in a conductor.

Equations (111) through (11.5) remain the same, but Eq. (11.6) must be modified 
to take into account the currents induced in the conductor by the electric field of the 
wave. From Eq. (3.41) we saw that the current density is j —a S  where σ is the electrical 
conductivity of the metal. When this current is incorporated into Eq. (11.6), a straight
forward manipulation gives, for the equation satisfied by the electric field.

C2 S  d 2 S  d #

ί ? - ψ  ι ? - + μ °ΪΤ<13·26)

instead of the simpler wave equation (11.7). The new term, μσ dSfdt, since it is a 
first-order time derivative, is similar to the damping term —λ dx/dt in a damped 
oscillator. Therefore the addition of this term indicates that the wave is damped 
while it progresses through the metal. Thus the intensity of the wave decreases 
rapidly as it penetrates the conductor. The solution of Eq. (13.26) can be expressed 
in the form

g  =  sin ( f c c -cot) (13.27)

where the velocity of propagation ν —ω/k and the damping coefficient a are expressed 
by some complicated algebraic relations among μ, e, and σ. The exponential in 
Eq. (13.27) indicates that the wave is damped while it is progressing into the con
ducting medium. When the frequency is small so that ω 2 can be neglected, and the 
material is a very good conductor so that σρ& ο,  the student may verify by direct 
substitution of Eq. (13.27) in Eq. (13.26) that

k =  a ZiyJ \μσω. (13.28)

The velocity of propagation is then

ω /2 ω /η -ιη .
V =  - T =  — . (13.29)

k yj μσ

This analysis explains two important characteristics concerning conductors. One 
characteristic is their opacity, resulting from the strong absorption of the waves so 
ffiat no wave is transmitted through the conductor unless it is a very thin sheet. 
Conductors are therefore excellent for shielding a region from electromagnetic waves.
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Fig. 13-17. Reflection of radio waves by the Fig. 13-18. Path of a ray in a stratified medium, 
ionosphere.

(This shielding is done by surrounding the region by a metal grid for example.) The 
other characteristic of conductors is their great reflectivity, which results because 
only a small fraction of the energy of the incident wave penetrates the conductor, and 
most of the energy goes into the reflected wave. This high reflectivity is typical of 
metals.

An ionized layer of gas can also act as a conductor, reflecting electromagnetic 
waves falling on the layer. This phenomenon is used in radio communication to trans
mit a radio signal around the earth. The signal is reflected back to the earth when the 
signal reaches a highly ionized layer in the atmosphere, called the ionosphere, which 
is 80 lo 100 km above the earth’s surface. In this way communication between two 
widely separated points A and B is possible even if a wave cannot propagate in a 
straight line between the points (Fig. 13-17).

13.8 Propagation in a !Monhomoganeous M edium ; Ferm at's Principle

The reflection and the refraction phenomena described in the previous sections corre
spond to a situation in which a wave passes from one homogeneous medium to 
another. However in many instances a wave propagates in a medium whose properties 
vary from point to point. For example on a hot day the lower layers of air are much 
warmer than the upper ones, and sound waves as well as light waves suffer a con
tinuous refraction.

Consider the propagation of a wave through a stratified medium [ray (I) in Fig. 
13-18]; that is, through a medium composed of several layers in which the velocity of 
propagation is different. If a wave reaches the first surface with an angle of incidence 
0 [, the successive refractions satisfy the conditions

U1 sin O1 = n 2 sin 0 2,

n 2 sin  θ2 =  η3 s in θ3,
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or
n sin Θ =  Const. (13.30)

Next consider a medium in which the index of refraction depends on one co
ordinate. say y. This medium can be considered as a stratified medium in which 
successive layers are very thin. Then Eq. {13.30) still holds, and we may write

where C is a constant. This expression gives the angle Θ at every point on the ray’s 
path, and the path of the ray can be traced through the inhomogeneous medium by 
applying Eq. (13.31).

Another, rather elegant method that yields the path of a ray in an inhomogeneous 
medium is the method suggested by the French mathematician Pierre de Fermat 
(1601 -1665). Fermat’s principle can be stated in the following way:

in traveling from one point to another, a ray chooses the path for which the 
propagation time has a minimum value.

The actual path for the case given in Fig. 13-18 is computed by using Eq. (13.31) and 
is shown by line (I). Another arbitrary path is indicated by line (2). This path is not a 
physically possible path since Snell’s law is not satisfied at each boundary between 
two surfaces. We may compute the times required for the ray to follow each of the 
two paths if we know the length o f each segment of the path and the velocity of 
propagation in each medium. Fermat’s principle stipulates that the time for the 
actual physical path will be smaller than the time needed for any arbitrary and non
physical neighboring path; that is. i, < t 2.

It should be clear that the time required by the ray to go from any point A to 
any other point B along a path is a function of the path; that is, Jylfl=ZIpath). This 
is a new type of functional dependence in that the variables in the function /' are not 
the coordinates of a point, but the parameters defining a path joining A and B. The 
requirement that tAB be a minimum can be stated by saying that d{tAB) = 0  for a small 
change in the values of the parameters corresponding to the physical path. A special 
mathematical technique known as the calculus of  variations permits finding the values 
of the parameters of the path satisfying d(tAB) = 0 ; and in this way the path of the ray 
can be determined.

We shall not elaborate further on how Fermat’s principle can be used to tiace 
the path of a ray in an inhomogeneous medium, but only recognize that Fermat s 
principle and Snell’s law are compatible as is shown in the following example.

Example 13.3. Verification that Fermat’s principle is compatible with Snell’s law.

^ Consider Fig. 13-19, in which a surface S separates two media of indexes of refraction U1 and 
'h- A ray that travels from A to C follows the path 4BC  Then, recalling that v ^ e jn .  the time

n(y) sin 0 =  C, (13.31)
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Figure 13-19

needed for light to  traverse  this p a th  is

t = ! , j B +  t BC=  F —  = — ( n , r , + n 2r , ) .
U1 U2 c

F erm at's  princip le  requires th a t

< «!)= - (n, dr I -Fn2 dr2) = 0  (13.32)

w here i/(tl is the change in t for neighboring  pa ths such as AB'C p roduced  by the  corresponding 
changes Ari an d  dr2 In r ,  and ι·2, respectively. N ow  rem em bering  th a t r2 = r-r. we have

rdr=r-dr  o r  dr= ^ - V d r = U -dr

w here a =  r / r  is the  un it vector in the d irec tion  of r. T herefore  drt =Ui -Jri and  Jr2 =  U2-Jr2: but
S in c e r1 +  r 2= .4 B -F S C  =  .4 C = c o n s t ,th e re fo re i l r1+ r f r 2 = 0  o r d r 2 =  —(Iri so th a t Jr2 =  - U 1-Jrv 
T hen  w ith the co n stan t factor 1/e e lim inated , E q (13.32) gives

(KiUi - U 2U2)-Jrl =O. (13.33)

As ind icated  in Fig. 13-19. the  vector Jri is in the p lane tangent to  S a t B A ccording to Eq-
(13.33), the  vector U1U1 - I i 2U2 is perpend icu lar to Jri and  thus parallel to the n o rm al Ufi to  the
surface S a t the po in t 0. T he im plication  of this result is th a t the incident ray, the refracted ray,
and the n o rm al to the surface are all in one plane, which is the first law as given in Section  13.4.
R eca llth a t iftw o  vectors a re  parallel their vector p roduct is zero : th e re fo re (iqu , - n 2u2lx u v =  0 or

Ii1U1XUv =  H2U2 XUv. (13.34)

Since all the  vectors in the eq u atio n  above are unit vectors, Eq. (13.34) im plies (in m agnitude) 
th a t n, sin Ol=It1 sin Or, which is Snell’s law, Eq. (13.4). A

Example 13.4. R adius of cu rvatu re  o f  a ray when the w ave p ro p ag ates in a m edium  with variable 
index o f refraction.
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pig. 13-20. C u rv a tu re  of rays in a nonhom ogeneous m edium . O

T C onsider tw o very close rays R an d  R' (Fig. 13-20) an d  the  tw o wave surfaces .S and S', sep
arated in tim e by one period Then their separa tion  in d istance  a lo n g  any ray is one w avelength. 
Since the  velocity o f  p ro p ag a tio n  varies from  p o in t to  po in t, the w avelength is also variab le  
because

B C 

v vn

Let λ and k' be the w avelengths a long  the  co rrespond ing  rays. T hen  from Fig. 13-20 we see th a t
ρ Ο = λ  and  (p +  d p )θ = X .  T hen Θ d p  =  X  —λ  = άλ;  but O = X j p  so that (λ /ρ)  d p = d k  o r

1 Ι ά λ  d  .I I»- = t -t = - - ( l n A )  
p  λ  dp  dp

=  - 4 -  (Inn) (13.35)
d p

since lnA  =  ln(cV n)=  I n c - I n  v -  Inn, and  b o th  c and v a re  constan t. E quation  (13.35) indicates that 
the ray's pa th  is curved so that its concav ity  is tow ard  the d irec tion  in w hich the index o f refraction  
increases. If the  index of refraction  is co n stan t, the  ray follow s a  stra igh t-line  pa th  because then
P =  DO k

Problems

*3.1 T he follow ing rule has been p roposed  to  
construct the  refracted  ray (Fig. 13-21). At the 
Point o f incidence, tw o circles o f radii I an d  n 
are draw n (using a rb itra ry  units). T he incident 
ra> ’s extended un til it in tersects the  circle o f 
radius I. A p e rp end icu lar to  the surface is 
drawn th ro u g h  th a t po int, and  the  in tersection  
° f  the perpend icu lar w ith the circle o f radius n 
ls found T he refracted  ray passes th ro u g h  this
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point, (a) Justify this rule, (b) Apply it to the 
case in which π =  1.5 and the angle of incidence 
i is 60°. (c) Repeat for n =  0.80 and an angle of 
incidence that is 30°, and another that is 60". 
Verify your results by the use of Snell’s law.
13.2 A plate of glass (n =  1.6) with parallel sides 
is 8 x 10' 1 m thick, (a) Calculate the lateral dis
placement of a ray of light whose angle of 
incidence is 45l . (b) Using the method of 
Problem 13.1, plot the path of the ray.
13.3 A ray of light makes an angle of incidence 
of 35° with a plate of glass (n=1.3) that is 
6 x IO-2 m thick. Directly below the first plate 
is another plate whose index of refraction is 1.5.
(a) What is the angle of incidence and angle of 
refraction at the boundary between the plates1
(b) If the second plate is S x lC T 2 m thick, 
determine the amount of lateral displacement 
of the ray.
13.4 A ray of light falls on a piece of glass 
(n= 1.6). The angle of incidence of the ray is 37°. 
What must be the minimum angle a between 
the first side of the glass and its second surface 
for total reflection? (See Fig. 13-22.)
13.5 A copper wire of radius I x IO-3 m is 
attached to a copper wire of radius 8 x 10 * m.

13.9 A light ray is incident on a glass-air inter
face as shown in Fig. 13-24. Find the sines of 
the angles of reflection and refraction. [AP-B; 
1969]
13.10 A hollow box with transparent parallel 
walls is held under water as shown in Fig. 13-25.

Zenith Apparent
/  position of

Find t and r at the junction for waves propag
ated along the system from the first to the 
second wire.
13.6 (a) For the situation discussed in Fxample 
13.2, show that the intensity of the transmitted 
wave plus the intensity of the reflected wave 
add to the intensity of the incident wave, (bi 
What is the physical meaning of this result?
13.7 Estimate how deeply an electromagnetic 
wave penetrates copper when the amplitude of 
the wave decreases to Xje of its value at the 
surface, if the frequency is (a) in the microwave 
region, 6 x IO9 Hz, (b) in the visible region. 
6 x IO14 Hz, and (c) in the X-ray region, 3 x IO18 
Hz. Assume that μ 'P o·
13.8 The index of refraction of air is π —
I +0.00024p where p is the density of air (in 
kg m “ 3). Let Θ be the true zenith angle of a star 
and Θ — ΑΘ the apparent zenith angle with 
respect to an observer looking at the star 
through the atmosphere (Fig. 13-23). (a) Write 
the equation giving AO as a function of the true 
zenith angle Θ, the density μ , the atmospheric 
pressure p, and the absolute temperature Tl (b' 
Compute Δ0 at sea level for a star with 0 = 45', 
assume a temperature T = 298 K.

PROBLEMS

■ A ir n = 1 .0

I
Figure 13-24
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WatPr

Figure 13-25

/V light ray is incident upon the box from the 
water at an angle of 30 with respect Io the 
normal. If the index of refraction of water is 
1.33, determine the direction (or trigonometric 
function of the angle) of this ray in the box and 
again in the water as it leaves the box [AP-B: 
1971]
13.11 Ifits index of refraction is large enough, a 
glass prism in air will totally reflect light that is 
normally incident on its base. For the prism 
shown in Fig. 13-26, determine the lowest index 
of refraction that will give total reflection. [AP- 
B; 1972]

point P. determine the speed of light in the 
plastic, (b) Determine what will happen to the 
light ray when it reaches point Q; use a diagram 
like Fig. 13-27a to illustrate your conclusion,
(c) There is an air bubble in the plastic block 
that happens to be shaped like a plano-convex 
lens as shown in Fig. 13-27b. Sketch what hap
pens to parallel rays of light that strike this air 
bubble. Explain your reasoning. [AP-B; 1979]
13.13 Copper and steel wires of the same radius 
are joined to make a long string, (a) Find t and 
r at the junction for waves propagated along 
the string. Let the common radius be I x IO-3  
m. (b) Assuming that the incident wave has a 
frequency of 10 Hz, that the amplitude is 
2 x 10“3 m, and that the tension is 50 N, write 
the equations for the incident, the reflected, and 
the I ransmitted waves. (Density of copper is 8.89 
x IO3 kg m “ 3; of steel, 7.80 x IO3 kg m “3 )
13.14 An inhomogeneous stratified medium has 
an index of refraction that varies in the T- 
direction, that is. n(y). Show that the equation 
of the path of a ray satisfying Eq. (13.31) is

P  d y ____
" Jyo v  U1(X)IC1 - 1 '

13.15 The trajectory of a ray in a nonhomo- 
geneous medium is represented by

x = A  sin f  ̂
\ B

Compute the index of refraction π in the space 
between the planes x  = 4 and x  = — A  : assume 
that π depends only on x and has the value n0
at x= 0 .
13 16 The index of refraction of a certain 
medium is given by n = h + kx. Compute the 
trajectory of the ray passing through the origin 
of the coordinate axes and forming at this point 
an angle φ 0 with the A-axis. Plot the trajectory 
of the ray;assume that Zt= E k =  I ,and φ 0 — 45ζ.

/>////K
15° 45°

Figure 13-26

13 12 A light ray enters a block of plastic and 
travels along the path shown in Fig. 13-27a. 
la) By considering the behavior of the ray at





CHAPTER FOURTEEN

REFLECTION 
AND 

REFRACTION OF 
ELECTRO
MAG N ETIC 

WAVES. 
POLARIZATION



4*6 Reflection and Retraction of Electromagnetic Waves. PoUzrization (14.2

14.1 Introduction

The case of reflection and refraction of electromagnetic waves requires special 
attention because it involves two fields: the electric and the magnetic components 
of the wave. Both electric and magnetic fields are perpendicular to the direction of 
propagation of each wave, but otherwise they may have any orientation around it. 
Thus when we discuss the reflection and refraction of electromagnetic waves, the 
analysis requires a consideration of the state of polarization of the wave. Such an 
analysis is easier if we think of each field as having a component parallel to the plane 
of incidence and a component perpendicular to the plane of incidence. This descrip
tion then allows us to look at the effects of reflection and refraction on the polariza
tion of a transverse wave.

14.2 Reflection  and Refraction of Electrom agnetic W aves

Consider an unpolarized beam of light falling on the plane interface between two 
media. The angle of incidence is Oi and the angle of refraction is Or- [Or-=Oi); the angle 
of refraction is Ot and is related to Oi by Snell’s Law. At a given point in time the 
incident wave may be broken up into two perpendicular components; one with the 
electric field in the plane of incidence is designated ; the other with the electric held 
normal to the plane of incidence is designated S x. Because of the perpendicularity of

Medium I

Iutcrf

Fig. 14-1. Electric and magnetic fields in 
the incident, reflected, and refracted waves 
for polarization parallel to the plane of 
incidence.
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Fig. 14-2. 'E lectric  and m agnetic  fields in 
the incident, reflected, an d  refracted waves 
for po lariza tion  p e rp en d icu la r to  the  plane 
of incidence.

8  and M. a component M i  is associated with , and a component M is associated 
with 8  L As defined in Chapter 11, the polarization of an electromagnetic wave is con
ventionally determined by the direction of the electric field: Fig. 14-1 indicates the 8  
and M components for polarization in the plane of incidence: and Fig. 14-2, those com 
ponents for polarization perpendicular to the plane of incidence. The arrows in each 
case indicate the directions considered positive for the ^-components. The general 
case is a combination of both polarizations since as indicated before, the fields 8  
and M can always be separated into parallel (||) and perpendicular (T) components.

Maxwell’s equations provide certain relations among the parallel and perpendic
ular components of the electric and the magnetic fields on both sides of the surface 
separating two media; these relations allow us to establish the relations between 
the components of the electric field in the incident, refracted, and reflected waves. 
From these relations we can calculate the coefficients of reflection and refraction or 
transmission as we did in Example 13.2. When —μ 2 ^ μ 0, which applies in a wide 
range of cases, the results obtained are the following:

«2 COS A1- -H 1 cos Ar
M1 cos Ar-Fn2 cos A,

« I COS Ai -H 2 cos A,
»1 cos Ai-Fn2 cos Ar

2 n, cos A;

«I cos Ar-Fn2 cos Ai

2η, cos Ai

X1 =  (L).   . (14.1)
\ π . co s Θ co s

P la n e  of in c id en ce

f

Λ Ie d iurn 2
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If Snell’s law is applied to each of Eqs. (14.1), they may be rewritten as

r = tan (Ai- A r) 
tan(fl; +  0 r)

sin (Oi -O r) 
sin (OiTOr) (14.2)

X —  1 r________

sin (Oi TOr) cos (O1- O r) 

I  cos Oi sin Or

2  cos 0 ; sin Or

Xl sin (Oi+Or)

For normal incidence, O1 =O, giving Or=O; therefore the general equations f l4 .t) 
reduce to

where n21 =  n2fnl .
Front Eq. (14.3) we see that on normal incidence one of the reflected components 

always suffers a phase change of π ; which component is out of phase with the incoming 
wave depends on whether n21 is greater or less than I. The refracted wave is always 
transmitted without a phase change.

There are a number of other interesting results. For example it may be seen from 
the first of Eqs. (14.2) that when Oi+  Or =  π /2 so that the reflected and the retracted 
rays are perpendicular, the denominator becomes infinitely large and r„ = 0 . That is 
the reflected wave is totally polarized in a plane perpendicular to the plane of inci
dence. This case is shown in Fig. 14-3, in which for clarity, only the electric com
ponents of the field are drawn. Thus when the reflected and the refracted rays are 
perpendicular, the reflected ray is totally polarized with the electric field perpendicular 
to the plane of incidence. The corresponding incident angle 0, is said to be the polariz
ing angle. When Oi +  Or =  nj2, sin 0r= sin  (π /2—O1) =  cos O1 and Snell’s law gives

for the polarizing angle. Thus total linear polarization of the reflected wave occurs 
when the angle of incidence is set such that its tangent equals the relative index of 
refraction. This result is called Brewster's law, and Oi is often called the Brewster 
angle. This phenomenon was first studied by the Scottish physicist Sir David Brewster 
(1781-1868).

(14.3)

and
I

(14.4)

tan Oi=Zt21 (14.5)
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P lane  of incidence

Medium I

f
Medium 2

Reflected ray

Fig. 14-3. Polarization of an electromagnetic Fig. 14-4. Polarization of an electromagnetic
wave by reflection (Brewster’s Law). wave by successive refractions from a stack of

plates.

Note from Eqs. (14.1) or (14.2) that the refraction or transmission coefficients 
I11 and tj can never be zero, and therefore the refracted wave is never completely 
polarized. However if an electromagnetic wave is transmitted through a stack of thin 
parallel plates (Fig. 14-4), and the angle of incidence equals the polarizing angle, the 
final transmitted wave has a much smaller component S r ± since this component 
tends to go with each reflected wave every time the wave is reflected as it passes from 
one plate to the next. Therefore if enough plates are in the stack, the transmitted wave 
is almost totally polarized, and the transmitted electric field oscillates in the plane 
of incidence.

Example 14. Ϊ. Reflection of an electromagnetic wave incident normal to a conductor.

▼ When an electromagnetic wave falls normal to a boundary between vacuum and a conductor, 
the electric vector is tangent (or parallel) to the surface of the boundary (Fig. 14-5a). Generally 
then the amplitudes of the incident, reflected, and refracted waves are related by

* o ..+ * o ,= * o ,;  I f - 6)

hut since the electric field inside a conductor is zero, one may write £Ur -  — therefore

Ehns not only is the entire wave reflected, but also there is a phase shift of n radians.
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.V V

Fig. 14-5. Reflection and refraction at normal incidence, (a) Reflection at a perfect conductor. 
Since the electric vector suffers a 180" phase change, the magnetic vector does not have a phase 
change, (b) Reflection at a dielectric. Whether the reflected magnetic vector has a phase change 
depends on the reflected electric vector.

Furthermore since the vector S x  Λ  gives the direction of propagation, the value above for 
the reflected electric field requires that the reflected magnetic field be in phase with the 'ncidcnt 
magnetic field. A

Example 14.2. Reflection and refraction of an electromagnetic wave at the boundary of vacuum 
and a dielectric.

▼ Consider the case in which the wave is incident normal to the surface (Fig. 14-5b). and assume 
that the dielectric constant of the material is a real number e. As in Example 14.1 the electric 
vector at the boundary is written

Now however, the electric field within the dielectric is not zero and a wave is refracted or trans
mitted into the dielectric. From Eqs. (11.13) and (12.15) we recall that

^oy — ~ ~ *oy

and

Since the magnetic field vector is continuous across the boundary,

or from the equations above.

(14.8)
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Table 14-1. Indexes o f Refraction o f  Several Substances for 
Electromagnetic Waves*

Substance n Substance n

Air 1.00029 Flint glass 1.65
Alcohol (293 K) 1.36 Ice 1.31
Carbon bisulfide 1.63 Quartz 1.51
Crown glass 1.52 Sodium (liquid) 4.22
Diamond 2.417 Water (298 K) 1.33

♦Average values in the visible region of the spectrum.

Note that the minus sign in the second term is necessary in order to have the correct direction for 
S x  M  in the reflected wave, f  rom the two equations (14.6) and (14.8), we find that

and (14.9)

The first of these two equations should be compared with Eqs. (14.1). We also see then that r =  
(n -l)/(n  t-l)and  t= 2 /(n  +  l), which agree with Eq, (14.3). A

Example 14.3. The coefficients of reflection and transmission for electromagnetic waves in the 
visible region for crown glass, at an angle of incidence equal to 3Cf.

T Table 14-1 lists the index of refraction in the visible region for a number of materials. From the 
table, « [„„=1.52; and with Hilir =  I. Snell’s law gives sin O1 =  I.52 sin Or. Setting 0 ,= 3 0 : gives 
0r=19 12’. Therefore applying relations (14.1) or (14.2) yields

r„ =0.164. ri = -0 .2 4 7 , t„ =0.766, t 1 = 0.753.

Note that the perpendicular component of the reflected wave has suffered a phase change of 
π radians. The Brewster angle for crown glass corresponds to tan Of=  1.52 or Of =  56 40 A

14.3 Propagation of Electrom agnetic W aves in an A nisotrop ic M edium

When a transverse wave propagates through an anisotropic medium, the velocity 
° f  propagation of the wave may depend both on the direction of polarization and 
°n  the direction of propagation of the wave. This double dependence is particularly
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true in the case of electromagnetic waves (the only ones considered in this section). 
The polarizability of most molecules is not the same in all directions. Since the 
molecules in gases and liquids are oriented at random, this directional dependence 
of the polarizability does not give rise to any particular effect; and the medium effec
tively behaves macroscopically as an isotropic substance. However in a crystalline 
solid the molecules are more or less oriented and their orientation is “frozen” ; that 
is, they are not free to rotate around their equilibrium positions within the crystal 
lattice. Thus in general the properties of the crystal depend on the direction along 
which they are measured. Depending on their molecular structure and arrangement, 
crystalline solids may behave optically as either isotropic or anisotropic media.

That the polarizability of the medium is not the same in all directions means that 
the polarization ^ d o e s  not have the same direction as the electric field <?, and their 
relative directions are different for different orientations in the crystal. As a result, 
the displacement vector 9 =  +  &  is also generally not parallel to S. We find, how
ever. that S  and Q  are parallel along at least three perpendicular directions, called 
principal axes*, characteristic of each substance. With the coordinate axes XYZ  
oriented parallel to these principal axes, and designating the three principal values 
of the permittivity of the substance that correspond to each of the principal axes by 
e i· e2> Ihe components of 3  for an arbitrary orientation of S , by extension of 
Eq. (2.14), are

Q x =  CxS x, Q y =  C2S r  Q 1 =  Ci S z. (14.10)

We may also speak of three principal indexes of refraction n,, n2, and n3, each one 
associated with the corresponding permittivity as indicated by Eq. (12.16).

Both experiment and theory (based on Maxwell’s equations and the preceding 
discussion) show that

in an anisotropic medium, for each direction of propagation of a plane 
electromagnetic wave there correspond two possible, mutually perpendic
ular states of  polarization, each of which propagates with a different 
velocity.

Thus no matter what the initial state of polarization, when an electromagneuc 
wave penetrates an anisotropic substance, the wave splits into two waves, polarized at 
right angles to each other and propagating with different phase velocities. Ihis 
situation gives rise to the phenomenon of double refraction, which will be discussed 
in Section 14.5.

If the wave’s direction of propagation is given, we can determine the phase velocity 
and state of polarization using a geometrical method suggested by the French 
physicist Augustin Fresnel (1788-1827). Construct an ellipsoid with axes n J  n2, 
and n3, oriented according to the three principal axes of the substance; this figure is

*The situation here is mathematically very similar to that encountered with rigid body rotation. 
Recall that L  and ω are not parallel except in the case of rotation along a principal axis of the body-
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Fig. 14-6. (a) The Fresnel ellipsoid, (b) Ellipse ABA 'B ’ is the intersection with the ellipsoid of a 
plane perpendicular to u, passing through C.

called the Fresnel ellipsoid (Fig. 14-6a). Then given the direction of propagation of 
the wave, determined by the unit vector u, draw a plane through the center C of the 
ellipsoid and perpendicular to u. The intersection of the plane and the ellipsoid is an 
ellipse (Fig. 14-6b). The directions of the two axes AA' and BB1 of this ellipse determine 
the planes of polarization of the wave for that direction of propagation. The lengths 
C.4 and CB  of the two axes of the ellipse give the indexes of refraction na and nb lor 
each polarization, and therefore the corresponding phase velocity.

Isotropic media are characterized by the fact that all three principal indexes of 
refraction are equal (/I1 =H2 =  H3). Fresnel’s ellipsoid is a sphere and the index of 
refraction is the same in all directions. Hence no special polarization direction exists 
since all intersections are circles. Cubic crystals, as well as most noncrystalline media, 
behave this way.

Another special case is that in which two principal indexes of refraction are the 
same, say h2 =  h3. The direction corresponding to the unequal index H1 is called the 
optical axis', it is an axis of symmetry of the crystal. For that reason these substances 
are called uniaxial crystals. To this class belong the trigonal, hexagonal, and tetragonal 
crystal systems. When H2 C n 1, the crystal is called positive', when η2> η υ the crystal 
is negative. The Fresnel ellipsoid of a uniaxial crystal is an ellipsoid of revolution 
around the optical axis (Fig. 14-7). From the geometrical properties of an ellipsoid of 
revolution, the intersection of a plane through the center C and perpendicular to the 
direction of propagation u (of an electromagnetic wave) is an ellipse, one of whose 
axes (CO) is always equal to H2 and is directed perpendicular both to the direction of 
Propagation and to the optical axis; the other axis (CE) of the ellipse has a variable 
length ne between n2 and H1, and is in the plane determined by the direction of propaga
tion and the optical axis. In this case two waves may be defined the ordinary and the 
extraordinary.
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The ordinary wave is linearly polarized in the plane determined by CO and u, and 
is thus perpendicular to the plane determined by the direction of propagation and 
the optical axis. The ordinary wave propagates in all directions with the same velocity 
Vo=ZV2=Cln2- The ordinary wave therefore behaves as a wave in an isotropic medium, 
and for this reason is called ordinary.

The extraordinary wave is linearly polarized in the plane determined by CL and 
u or (what is the same thing) by the direction of propagation and the optical axis; 
but the extraordinary wave’s velocity ve depends on the direction of propagation 
and varies from v2 to i>, (corresponding to an index of refraction between H2 and n,).

When waves are propagating along the optical axis, the ellipse of intersection is 
a circle of radius n2; and the two waves propagate with the same velocity v2- This 
may be considered as another definition of the optical axis (Fig. 14-8a): the optical 
axis is that direction along which there is only one velocity of propagation. When 
waves are propagating perpendicular to the optical axis, the ellipse of intersection 
has semi-axes H1 and H2, and the extraordinary wave has the velocity H1 (Fig. 14-8b).

Fig. 14-8. Directions of polarization of the ordinary and the extraordinary rays in a uniaxial 
crystal for propagation (a) parallel or (b) perpendicular to the optical axis.
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Fig. 14-9. Fresnel velocity surface for uniaxial crystals, (a) Λ positive crystal in which i i iO i ,  
(or i s >  i.'I ). (b) Λ negative crystal in which n2> n l (or

Another useful geometrical construction is obtained by plotting for each direction 
of propagation, vectors having lengths equal to v0 and vE, the phase velocities of the 
ordinary and the extraordinary waves, respectively; the result is a double surface 
(Fig. 14-9) called a Fresnel velocity surface. One surface is a sphere of radius v0= v 2\ 
this surface corresponds to the velocity of the ordinary wave. The other surface is an 
ellipsoid of revolution with axes U1  and u2; that surface corresponds to the extra
ordinary wave. The two surfaces are tangent at their intersection with the optical 
axis. The state of polarization for several directions of propagation is indicated in 
Fig. 14-9. The ordinary ray is polarized along a meridian; the extraordinary ray is 
polarized in a longitudinal direction.

In the general case of three different indexes of refraction, it can be proved that 
there are two directions for which the velocities of propagation of the two polarized 
waves are equal. These directions, also called optical axes, are perpendicular to the 
planes whose intersections with the Fresnel ellipsoid are circles. Substances in which 
these axes exist are called biaxial and belong to the orthorhombic, monoclinic, and 
triclinic crystal systems. The Fresnel velocity surface for biaxial crystals is more 
complicated, and we shall not enter into a discussion of the geometrical details. 
Table 14-2 lists the indexes of refraction for selected uniaxial and biaxial materials.

Many normally isotropic substances become anisotropic when subject to mech
anical stresses or to strong static electric or magnetic fields perpendicular to the 
direction of propagation, giving rise to the Kerr electro-optic effect and the Cotton- 
Mouton magneto-optic effect. In all cases the anisotropy of the substance is due to the 
Partial orientation of the molecules that results from the stresses or the applied fields.

Example 14.4. The phase difference between the ordinary and the extraordinary waves, and the 
state of polarization of the emergent wave when a linearly polarized wave falls on a thin plate of a 
uniaxial material.
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Table 14-2. Principal Indexes o f  Refraction o f Several 
Crystals*

Substance « I « I It 3

Uniaxial:
Apatite
Calcite
Quartz
Zircon

1.6417
14864
1.5533
1.9682

1.6461
1.6583
1.5442
1.9239

Biaxial:
Aragonite
Gypsum
Mica
Topaz

1.5301
1.5206
1.5692
1.6155

1.6816
1.5227
1.6049
1.6181

1.6859
1.5297
1.6117
1.6250

*For sodium light, /  =5.893 x 10 7 m.

T Figure 14-10 shows the experimental arrangement in which the uniaxial crystal has been cut 
with its faces parallel to the optical axis and placed with its optical axis (index n,) perpendicular 
to the direction of propagation of the incident electromagnetic wave. The direction of the optical 
axis has been designated by Y. The Z-direction corresponds to the direction of polarization of the 
ordinary ray (index n2). Suppose that a linearly polarized wave making an angle a with the Y-axis 
falls on the plate. For convenience write S  = S 0 sin (rnr— kx) for the electric field in the incident 
wave. The components of the electric field in the incident wave along the Y- and Z-axes are

S y= S 0>, sin (cui— kx), S. = S 0. sin (ωί — kx)
where

S 0f= S 0 Cosa and S 0. = S lt sin a.

Z

Fig. 14-10. Change of polarization of an electromagnetic wave after traversing a parallel plaie 
cut from a uniaxial crystal.
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When it propagates through the crystal, Lhe linearly polarized wave is separated into two waves 
with their electric fields along the Y- and Z-axes, respectively. These component waves correspond 
to the extraordinary and the ordinary waves. Since the velocities of propagation of the waves are 
Vl = C l n I and V1= C r t 2, the corresponding propagation vectors are

ω ωη,
fc, = — =  = I t n 1, Ic2 =  IlIi3

Ci1 c

where k=o)/c. Therefore after the waves have traversed the thickness d, the respective electric 
fields are represented by the expressions

S y= S ay sin (rot — k !</), S x= S az sin (tut—k 2d );

the result is a phase difference between the two waves of

(S =  Ifc1 — fc3)d=fc(n1 — nj)d=2π(η( — η2)ά/λ.

After traversing the plate, the two waves recombine into a single wave. Because of the phase 
difference, the transmitted wave will generally be elliptically polarized. The axes of the ellipse 
will be parallel to the Y- and Z-axes if (5 is an odd multiple of π/2; that is. if

2
((I1-O 2)C i=O ddintegerx-. (14.11)

4

If 5 is a multiple of π, that is, if

λ
(«I — (I3)Ci =  integer x - , (14.12)

the transmitted wave will be linearly polarized. In this case if the integer is even, the transmitted 
wave is linearly polarized in the same plane as the incident wave; but if the integer is odd. the wave 
is polarized in a plane symmetric with the .YZ-plane. If the initial angle κ is 45 . these two planes 
will be perpendicular.

The plates corresponding to the two conditions given above are called a quarter-wave plate 
and a half-wave plate. These types of plates are widely used in the analysis of polarized light.

The situation also works in the opposite direction: elliptically polarized light that passes 
through a quarter-wave plate becomes plane polarized. A

14.4  D ichroism

Some anisotropic substances absorb the ordinary and the extraordinary waves in 
very different proportions. Under such conditions an electromagnetic wave propaga
ting through a sufficiently thick piece of the substance becomes gradually polarized 
ln one plane since either the ordinary or the extraordinary wave is almost completely 
absorbed. The phenomenon is called dichroism  and is illustrated in Fig. 14-11. in 
which S q is the amplitude of the electric field in the incident wave and the wave is
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Y

Fig. 14-11. Dichroism.

traveling in the Ar-Clirection. As it penetrates the substance, the incident wave is 
separated into ordinary and extraordinary waves, polarized parallel to the Y- and 
Z-axes. The waves' amplitudes are * 0,  and S 0z. If S 01 is absorbed more than S 0y, then 
after the waves have traversed a certain length, we almost have only S 0y, resulting in 
linearly polarized light.

Since dichroism is the result of a difference in absorption coefficients and is depen
dent on the frequency of the electromagnetic wave, a substance will exhibit the 
phenomenon at certain frequencies to a greater degree than at other frequencies. In 
some substances then, the colors of the two waves appear different: hence the name 
dichroic or “two-colored." In the visible region there are two especially important 
dichroic substances. One is tourmaline (aluminum borosilicate), which preferentially 
absorbs the ordinary ray. The other is herapathite (sulfate of iodoquinine). which has 
the inconvenience that its crystals are very brittle and therefore difficult to preserve in 
appropriate sizes. However, this substance is manufactured in a form called P o l a r o i d , 
which consists of many small crystals oriented parallel to one another. This a l i g n m e n t  

is accomplished by having the herapathite crystals adhere themselves to substances 
composed of very long molecules, such as stretched, polyvinyl alcohol sheets. I 
resultant combination yields a material having optical properties that are very 
different in the longitudinal and in the transverse directions. Dichroism provides one 
of the simplest and cheapest ways of producing and analyzing polarized light.
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14.5 Double Refraction

We shall now discuss how an electromagnetic wave behaves when it passes into an 
anisotropic medium. Our discussion will be limited to uniaxial crystals; the reflected 
wave will not be considered since it does not involve any aspect essentially different 
from those discussed earlier in the chapter. Consider the case of normal incidence 
of an unpolarized wave on a plane surface. The optical axis is in the plane of the page 
(Fig. 14-12). From the definition of a wavefront, both the ordinary and the extra
ordinary refracted wave surfaces remain parallel to the interface as they propagate 
through the anisotropic medium. To determine the directions of the ordinary and the 
extraordinary rays, draw the Fresnel velocity surfaces (as discussed in connection

Unpolarized
beam -

Surface/ i n / / »  /
- U - X j L ' - ' ' L

Optical 
axis

(a)

1S- 14-12. The separation of the ordinary and. extraordinary rays as light passes through a 
'Jiibly refractive material. All rays are in the plane of the page; the optical axis is also in the plane 

ul the page.
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U npolarized
incidenl

beam

Fig. 14-13. A narrow beam of unpolarizcd light can be split into two beams by a doubly refracting 
crystal. If the crystal is rotated, the extraordinary beam rotates around the ordinary ray. The 
two beams are linearly polarized at right angles with respect to each other.

with Fig. 14-9) at the points of incidence for the incoming rays as shown in Fig. 14-12a. 
In Fig. 14-12a the surfaces appear as circles (for the ordinary rays) and ellipses (for 
the extraordinary rays) with their semiaxes parallel to the optical axis. The common 
tangents of the two sheets of the Fresnel velocity surface give the ordinary and the

>

T H F

C O L L E G E  r

rJ *
'ER

D  S C I F N C E

hxtraordinary

( 'ry s ta l

Screen

Fig. 14-14. Photograph of the double image produced by a calcite crystal. (Photograph courtesy 
of W. L. Hyde, Director, Institute of Optics. University of Rochester.)
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extraordinary wave fronts. The points of tangency determine the directions of the 
ordinary and the extraordinary rays. Therefore the ordinary wave will propagate in 
the direction of incidence and will be linearly polarized perpendicular to the plane of 
the paper (as indicated by the dots in Fig. 14-12b). However, although remaining 
parallel to the interface, the extraordinary wave will suffer a sidewise displacement 
so that the energy flow is along the extraordinary ray at an angle β with respect to the 
direction of propagation. The extraordinary wave will be polarized in the plane of 
the paper (as indicated by the bars in Fig. 14-12c).

When two refracted rays correspond to a single incident ray, the result is called 
d o u b l e  refraction', and for that reason anisotropic substances are called birefringent. 
When the substance is bounded by two parallel surfaces (Fig. 14-13), the ordinary and 
the extraordinary rays emerge parallel but separated, and result in a double image 
as shown in the photograph of a calcite crystal in Fig. 14-14.

When the incidence is oblique, the situation is somewhat more complicated geo
metrically. but the physical result is the same. That is. for a given incident wave there 
are two different refracted waves propagating in different directions and polarized at 
right angles to each other.

Double refraction is a useful research tool in the study of crystal structure, and has 
many other interesting applications. One practical application consists in producing a 
beam of plane polarized light by means of a Nicol prism. To make a Nicol prism, a 
calcite crystal whose length is four times its width is cut at the end faces as shown by 
the dashed lines ab' and cd' in Fig. 14-15a. The crystal is then cut diagonally along 
line b'd' and the two halves are glued together with Canada balsam. The balsam’s 
index of refraction {n cz 1.55) has a value between that of the calcite crystal for the 
ordinary and the extraordinary rays (see Table 14-2). Because of this value and also 
because of the geometry of the crystal, the ordinary rays are totally reflected at the 
surface of separation and are deviated out of the prism while the extraordinary rays

b ' c

Fig. 14-15. (a) N atural calcite crystal, called Iceland spar, (b) A Nicol prism.
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proceed into the other half of the crystal and emerge at the far end (Fig. 14-15b) 
Therefore the transmitted light is linearly polarized. Nicol prisms are used in many 
optical instruments, such as polarimeters.

Example 14.5. A ray of light falls on a calcite crystal cut with its surface parallel to the optical 
axis. When the plane of incidence is perpendicular to the optical axis, and the angle of incidence 
is 50", find the angular separation between the ordinary and the extraordinary rays.

▼ According to Fig. 14-8b, when the propagation of the wave is in a direction perpendicular to 
the optical axis, the ordinary rays propagate with velocity v2 corresponding to the refractive index 
Ii2, and the extraordinary waves propagate with velocity r, corresponding to the refractive index 
n,. Therefore using Snell’s law and the principal indexes of refraction from Table 14-2 gives 
sin 11 (/sin Ba = It2 = 1.6583 and sin fi./sin ( ^ = ^  =  1.4864. Given Ih ate i =  SO11 Ihenfill=S? 3Γ and 
Oc= S l' Γ, The angular separation of the two rays is thus O1,-O 0=3" 30. A

Example 14.6. Fluctuation in the intensity of the transmitted wave when a linearly polarized 
wave passes through an analyzer and the analyzer is rotated.

▼ An analyzer is a device that transmits only that wave component whose electric field is parallel 
to the axis AA'  (Fig. 14-161. When the axis AA'  of the analyzer makes an angle Θ with the electric 
field of an incident linearly polarized wave, only the component ^ a - S  c o s  0 is transmitted. 
Therefore since the intensity of the wave is proportional to the square of the electric field, we have 
the relation

I = I 0 cos2 0 (14.13)

where I 0 is the intensity of the incident wave and I  is that of the transmitted wave. This result is 
known as Malus's law. When 0 = 0  or π, the intensity of the transmitted light is maximum: when 
θ = π /2  or 3π/2, it is zero. Therefore when the analyzer is rotated, the intensity of the transmitted 
wave fluctuates between 0 and I 0. This fluctuation affords a means of determining whether a 
wave, such as light, is polarized or not. For unpolarized or circularly polarized waves, no fluctua
tion in intensity is observed. For elliptically polarized waves, the transmitted wave fluc tuates 
between a maximum and a minimum value. These two extremes are obtained when the analyzer
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!S parallel to either the larger or the smaller axis of the polarization ellipse. The degree of polariza
tion of the incident wave is then given by the expression

P =  ■**—jg ; .  (14.14)
inAx T  Anin

Note that P =  I for linearly polarized waves and that P -  0 for unpolarized waves, A 

Example 14.7. Chromatic polarization.

Y When linearly polarized white light falls on a plate similar to that considered in Example 14.4, 
jind is analyzed by means of another polarizing device, colored light is observed, the color being 
dependent on the orientation of the analyzer. Consider the arrangement of Fig. 14-17 Suppose 
for simplicity that the incident white light is linearly polarized and that the electric field rm:kes an 
angle of 45' with the optical axis of the plate. According to the results of Example 14.4, the trans
mitted light will be linearly polarized as either S 1 (parallel to the original polarization) or S 2 
(normal to the original polarization vector), depending on whether the wavelength is such that

(n, —n2)d=
I even integer x 2/2 (polarization <£,).
I odd integer x 2/2 (polarization S 2).

For all other wavelengths the transmitted wave is elliptically polarized. If the transmitted light is 
passed through an analyzer, the light is colored instead of white, and the color changes when the 
analyzei axis AA' is rotated. This change occurs because according to Example 14.6, when the 
axis of the analyzer is parallel to S 1, the corresponding wavelengths are transmitted with maxi
mum intensity while those corresponding to S 2 are blocked. With reversed conditions, when the 
axis of the analyzer is parallel to S 2, the complementary color appears. Therefore as the analyzer 
is rotated, the shades vary with complementary colors separated by 90 

This phenomenon has been applied to the stress analysis of structural pieces used in buildings 
and machines, and has given rise to a branch of applied physics called photoelasticity. As men
tioned at the end of Section 14.3, when a plastic material is subject to stresses, it becomes bire-
Tringent because of the anisotropy resulting from the strains. Therefore if a model made of plastic
is siihiectcd to the same stresses as the actual structural piece, the model behaves optically as an

and an analyzer.

Plane 
polariz ed 
light

—I I—d
Z

Optical 
axis

P la te

Analyzer

* 14-17. Crystal plate placed between a source of linearly polarized light
Se resulting phenomenon is called chromatic polarization.
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Fig. 14-18. Birefringence induced in a substance by the stresses applied to it. (Photographs 
courtesy of Klinger Scientific Apparatus Company,)

inhomogeneous birefringent plate. The inhomogeneity is due to the nonuniform distribution of 
strains in the plastic. When the stressed piece replaces the plate of Fig. 14-17, a (colored) pattern 
such as those in Fig, 14-18 results. From the pattern the strains can be estimated by the use of 
special techniques. A

14.6 O p tica IA ctiv ity

When a polarized electromagnetic wave passes through certain materials, the plane 
of polarization is rotated. The rotation of the plane of polarization is called optical 
activity. Thus if a beam of linearly polarized light passes through an optically active 
substance (Fig. 14-19), the transmitted wave is also linearly polarized but in anotbet 
plane, making an angle Θ with the incident plane. The value of Θ is proportional to 
the length I that the beam traverses through the substance, and depends also on the 
nature of the substance. From the point of view of an observer receiving the trans
mitted light, the substances are called dextrorotatory (from dextro, right) or levorota- 
tory (from levo, left), depending on whether the rotation of the plane of polarization 
is clockwise or counterclockwise as seen by the observer.
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Incident

Certain substances exhibit optical activity only in their solid states. Many inorganic 
crystals, especially quartz, and some organic crystals, such as benzil, are of this type. 
Upon fusion, solution, or vaporization, these substances lose their optical activity. 
This loss demonstrates that the optical activity of these substances depends on the 
special arrangements of atoms or molecules in the crystal; these arrangements disap
pear when the molecules are oriented at random in the liquid or the gaseous states. 
Other substances, such as turpentine, sugar, camphor, and tartaric acid, remain 
optically active in all physical states even when they are in solution. In this latter type 
of substance, optical activity is associated with the individual molecules and not 
with their relative arrangement.

Optical activity is a result of a certain twisting of the orbits of the electrons in the 
molecules or crystals under the action of an external oscillatory electromagneiic 
field. When the polarization of matter was discussed (Section 2.5), we assumed that 
the electrons oscillated in a straight line, parallel to the electric field in isotropic 
substances, and that the electrons oscillated at an angle with the electric field in 
anisotropic substances (Section 14.3). In certain molecules and crystals, however, 
the electron motion is along a twisted path, assumed for simplicity to be a helix 
(Fig. 14-20). Suppose that the molecule (or crystal) is so oriented that the helical 
electron paths are as shown in Fig. 14-20; i.e., with the helix axis perpendicular to the 
direction of propagation and parallel to either the electric or the magnetic field of 
the incoming wave.

Consider first orientation (a) of Fig. 14-20. The oscillating electric field of the wave 
produces an oscillatory motion of the electrons up and down along the helix; this 
motion results in an effective oscillating electric dipole moment p parallel to the 
helix axis. So far the situation is similar to that of ordinary polarization; but because 
of the twisting of the electronic path, the electronic current along each turn of the 
helix is equivalent to a magnetic dipole, and the molecule acquires an eflective oscil
lating magnetic dipole moment m also oriented along the helix axis. For orientation 
(h), the oscillating magnetic field of the wave produces a variable Pux through each 
turn of the helix; by the Faraday-Henry law this Ilux results in an oscillating elec
tronic current along the helix. This current again produces an oscillating magnetic 
moment m along the helix axis. However, the electron's back-and-forth motion
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Y

Fig. 14-20. Electric and magnetic dipole moments induced by an electromagnetic wave in a 
helical molecule.

produces alternate positive and negative charges at the ends of the molecule, and 
results in an effective oscillatory electric dipole moment p along the helix axis. There
fore for both orientations of the molecule, both an oscillating electric dipole moment 
p  and an oscillating magnetic dipole moment m, parallel to the molecular axis, are 
produced. These dipoles radiate scattered electromagnetic waves in the fashion 
discussed in Section 12.3, in which only electric dipole scattering was taken Intol 
account because the electron’s motion was assumed to be in a straight line.

A detailed mathematical analysis of the scattered wave, an analysis here omitted, 
shows that along the direction of propagation of the incident wave the fields S  and 
38' of the scattered wave are in phase with those of the incident wave, but they oscillate 
in a different direction because of the differing relative orientation of the $  and 3S 
fields of an electric and a magnetic dipole (Figs. 11-8 and 11-12). An Observc along

Fig. 14-21. Resultant electric and magnetic fields due to the superposition of incident and scat
tered waves.
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Mirror

(a)

Right-handed
helix

Right
hand

Fig. 14-22. Right-left symmetry, (a) The mirror image of a right-handed helix is left-handed,
(b) The mirror image of the right hand is a left hand.

the direction of propagation receives the incident and the scattered waves that 
interfere and result in linear polarization but in a direction making an angle U with 
the original plane of the electric vector (Fig. 14-21). Thus a rotation of the plane of 
polarization of the wave results. For randomly oriented molecules it can be proved 
that the effect is always in the same sense although its magnitude depends on the 
molecular orientation. Thus molecular optical activity persists in any physical state 
or in solution. In some crystals, however, the effect depends on the molecular arrange
ment rather than on the individual molecular structure; and therefore the effect 
disappears when the molecules are disarranged.

The student may realize that there are two kinds of helices, right-handed and left- 
handed (Fig. 14-22), One helix is the mirror image o f the other as the left hand is the 
mirror image of the right hand. This kind of symmetry is called enantiomorphism. 
Some molecules act like right-handed helixes and others act like left-handed ones. 
In one case the rotation of the plane of polarization by an optically active substance 
is in one direction, and in the other case the rotation is in the opposite direction. 
This fact explains the existence of dextrorotatory and levorotatory substances.

Some substances contain both classes of mirror-image molecules, a property called 
stereoisomerism. For example lactic-acid molecules (CH 3— CHOH— C O 1Hl may 
exist in either one of two mirror-image forms as illustrated in Fig. 14-23. A sample of 
lactic acid that contains equal amounts of isomers is optically inactive: but if there is 
more of one kind than of the other, a net rotation for polarized light results.

In the case of quartz (SiO2), the molecules are all identical; but their <pace arrange
ment in the crystal has either a left-handed or a right-handed symmetry as is apparent

Mirror

hand
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Fig. 14-23. Mirror-image

Fig. 14-24. Mirror-image forms of quartz 
crystal.

from the external appearance of the two kinds of quartz crystals shown in Fig. 14-24. 
One kind is Ievo and the other is dextro. When the crystal is melted, the molecular 
arrangement is destroyed and the optical activity disappears.

When a substance, such as lactic acid, levulose, dextrose, etc., whose molecules are 
optically active is dissolved in water, the rotation of the plane of polarization dt pcnds 
on the concentration. This result is widely used to determine quantitatively the 
amount of substance in the solution, such as the concentration of sugar iu a syrup 
or in urine.

Problems

14.1 Linearly polarized light falls on a glass 
plate (n =  1.5) with an angle of incidence of 451. 
Find the coefficients of reflection and refraction 
if the electric field of the incident wave is (a) in 
the plane of incidence, and (b) normal to the 
plane of incidence.

14.2 A plane electromagnetic wave falls pel- 
pendicularly on a plane surface separating a 
medium of index H1 from a medium of index >'■!■
(a) Using Eq. (14.1) or (14.2). show that the «co
efficients of reflection and refraction are in this 
case
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 ί«ι - J h )
( n , + n 2)

and

t= 2n‘ .
('Ii + Na)

Note th a t in th is case we do  no t have to  dis
tinguish betw een π- an d  π -com ponents, (b) 
Draw the electric a n d  m agnetic  fields in the 
incident, the  reflected, and  the refracted waves 
when Hi <«2  an d  when ;j, > « 2.
14.3 (a) Light falls perpendicularly on a glass 
plate (« =  1.5). Find the coefficients of reflection 
and transmission, (b) Repeat the calculation if 
the light is passing from the glass into the air.
(c) Discuss in each case the changes of phase. 
(Hint: Use the results of Problem 14.2.)
14.4 Referring to the situation described in 
Problem 14.2, and using Eq, (11.16), compute 
the intensities of the reflected and the refracted 
waves and show that their sum is equal to the 
intensity of the incident wave. (Hint: Note that 
in Eq. (11.16) we must now replace c by the 
velocity v =  ct n in the medium, and that E =  eS 1. 
Also n
14.5 The index of refraction of glass is 1.50. 
Compute the angles of incidence and of refrac
tion when the light reflected from a glass inter
face is completely polarized.
14.6 The critical angle of light in a certain sub
stance is 45°. What is the polarizing angle?
14.7 |a) At what angle above the horizontal 
must the sun be in order that sunlight reflected 
from the surface of a calm lake shall be com
pletely polarized? (b) What is the plane of the 
4 vector in the reflected light?
14.8 A plane linearly polarized light wave in air 
•s incident on a medium of index n at the 
Polarizing angle. The electric vector of the inci
dent wave lies in the plane of incidence; its 
amplitude of oscillation is ^ 0- Compute (a) the 
oitensity of the incident wave, (b) the amplitude 
®o of the refracted wave, and (c) the intensity 
°f the refracted wave, (d) Compare (a) with (c) 
and explain your result.
*49 (a) Show that rx is positive for an electro

magnetic wave if M2I <  I and negative if n21 >  I.
(b) Similarly, show that r, is negative (positive) 
for angles of incidence smaller (larger) than the 
polarizing angle when n2i <  I and positive (neg
ative) when «21 >  I·
14.10 If a plane wave is polarized with its elec
tric field making an angle a-, with the plane of 
incidence, show that the angles the electric field 
makes with the same plane in the refracted and 
in the reflected wave are

tan O r = ( T i Z t n ) Ia n  Otj

and

tan Kr= Ir1/ r|,)tan a„

respectively.
14.11 A plane linearly polarized light wave in 
air («= 1 ) is incident on a water surface In =  
1.33). Determine the amplitudes and phases of 
the refracted and the reflected waves relative to 
those of the incident wave for the following 
cases.

Angle of 
incidence

Angle between plane 
of incidence and 

plane of electric field

(a) 20° 0=
(b) 20= 90=
(c) 75f Cf
(d)75: 90=

14.12 A plane linearly polarized light wave 
originating under water («=1.33) is refracted 
al the boundary surface between water and air 
(n =  l). For the following cases determine the 
amplitudes and the phases of the refracted and 
the reflected waves relative to those of the inci
dent wave.

Angle between plane
Angle of of incidence and

incidence plane of electric field

la) 20" 0=
(b) 2 0 901
(c) 40= O1
(d)40= 90
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14.13 A beam of circularly polarized light in air 
(m =  I) is incident on a glass surface In = 1.52) at 
an angle of 45°, Describe in detail the state of 
polarization of the reflected beam and of the 
refracted beam.
14.14 A polarizer and an analyzer are so 
oriented that the maximum amount of light is 
transmitted. To what fraction of its maximum 
value is the intensity of the transmitted light 
reduced when the analyzer is rotated through
(a) 30u. (b) 45', (c) 60", (d) 90°. (e) 12ff.(f) 135°. 
(g) 150°. and (h) 180 ? (i) Plot //Jrnax f°r 4 com
plete turn of the analyzer.
14.15 A parallel beam of linearly polarized light 
of wavelength 5.90 x IO-7 m (in vacuum) is inci
dent on a calcite crystal as in Fig. 14-10. (a) Find 
the wavelengths of the ordinary and the extra
ordinary waves in the crystal, (b) Also find the 
frequency of each ray.
14.16 A beam of plane polarized light falls per
pendicularly on a calcite plate (with sides cut 
parallel to the optical axis as in Fig. 14-10) with 
the electric vector making an angle of 60' with 
the optical axis. Find the ratio of (a) the ampli
tudes and (b) the intensities of the ordinary and 
the extraordinary beams.
1417 Find the thickness of a calcite plate 
needed to produce a phase difference of (a) π/2 
(̂  wave), (b) π (4 wave), and (c) In  (full wave) 
between the ordinary and the extraordinary 
rays for a wavelength of 6 x 1 0 '7 m.
14.18 In Fig. 14-25 A  and C are sheets of 
Polaroid whose transmission directions are as 
indicated. B is a sheet of doubly refractive

Figure 14-25

material whose optical axis is vertical. AU three 
sheets are parallel. Unpolarized light enters 
from the left. Discuss the state of polarization 
of the light at points (2), (3), and (4).
14.19 The wave described in Problem 11.5 is 
perpendicularly incident on a polarizer, which 
is rotated in its plane until the transmitted in
tensity is a maximum, (a) In which direction 
does the transmission axis of the polarizer Iietl
(b) In which direction does the transmission 
axis lie for minimum transmission? (c) C om- 
pute the ratio of the transmitted intensities Ior 
the positions found in (a) and (b).
14.20 A beam of white linearly polarized light is 
perpendicularly incident on a plate of quartz 
0.865 mm thick, cut parallel to the optic axis, 
as in Fig. 14-10. The plane of the electric field 
is at an angle of 45  to the axis o f the plate. The 
principal indexes of refraction of quartz for so
dium light are listed in Table 14-2. Disregard 
the variation of n , —n2 with wavelength, ia) 
Which wavelengths between 6.0 x IO-7 m and 
7.0 x IO"7 m emerge from the plate linearly 
polarized? (b) Which wavelengths emerge 
circularly polarized? (c) Suppose that the beam 
emerging from the plate passes through an 
analyzer whose transmission axis is perpen
dicular to the plane of vibration of the incident 
light. Which wavelengths are missing in the 
transmitted beam?
14.21 It is known experimentally that for each 
kg of sugar dissolved in one m3 of water, the 
rotation of the plane of polarization of a 
linearly polarized electromagnetic wave is 
+ 6.65° per m of path. A tube 0.3 m long con
tains a sugar solution with 150 kg of sugar per 
m 3 of solution. Find the angle of rotation of 
polarized light.
14.22 Find the amount of sugar in a cylindrical 
tube 0.3 m long and 2 x IO '4 m2 in cross sec
tion if the plane of polarization is rotated 
39.7°. {Hint: See preceding problem.)
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CHALLENGING PROBLEMS

14.23 A glass plate (index nq) is coated with a 
thin plastic AlmiindexnrK Fig. 14-26). (a) Desig
nating the index of air by n0, show that at 
normal incidence the reflection coefficients at 
the interface between air and coating and be
tween coating and glass are equal if Hc= ^ n j i q.
(b) Find the ratio of the reflection coefficients 
when the angle of incidence is KL and ng is 1.52.

(Hint: Assume that rays tS  and t<? are reversed 
in direction as shown in Fig. 14-27(c), and rec
ognize that in this case the Anal ray in medium
(I) must be S  and that no Anal ray must exist in 
medium (2).)
14.25 What is the state of polarization of the 
light transmitted by a quarter-wave plate when 
the electric vector of the incident linearly pol
arized light makes an angle of 3(L with the 
optic axis?
14.26 A Babinet compensator (Fig. 14-28) con
sists of two quartz wedges that can slide over 
each other, The wedges are so cut that their 
optical axes are perpendicular. Therefore the 
ordinary ray in one of them is the extraordinary 
ray in the other. Show that for any ray the phase 
difference is

Figure 14-26 <5 —(2π/ζ.)(ϊΐι — ri2X/ — Π

14.24 Consider two transparent media, (I) and
(2). separated by a plane surface (Fig. 14-27). If 
r and t are the coefficients of reflection and 
refraction for a ray incident in medium (I), and 
r' and t' the same coefficients when the ray is 
incident in medium (2), show that t ' t = l - r 2 
and r =  — r'. These are called Stokes' relations. 
The second relation indicates that the reflection 
coefficients are of opposite sign: and if for one 
of the reflections there is no phase change, for 
the other there must be a phase change of n.

( I ) (2) ^  (I) (2)
/ I

t ' t y /

(a) (b)

Figure 14-27

where l —AB  and /'= B C . Therefore, if one 
slides one wedge along the other, the phase 
difference can be varied continuously.

Figure 14-28

14.27 In a Babinet compensator, the effective 
width I of one wedge is 2 mm. Find the width 
the other m ust have in order to produce a phase 
difference οΓ 2π/3 in either direction when using 
light with wavelength 5.7 x 10 m
14.28 Figure 14-29 represents a Wollaston prism 
made of two prisms of quartz cemented to
gether. The optic axis of the right-hand prism 
is perpendicular to the page whereas that of the 
left-hand prism is parallel. The incident light is
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Figure 14-29

normal to the surface and gives rise Io ordinary 
and extraordinary rays ihat travel in the left 
hand prism along the same path but with dif
ferent speeos. Copy Fig. 14-29 and show on 
your diagram how the ordinary and the extra

ordinary rays are bent in going into the right, 
hand prism and thence into the air.
14 29 A beam of light, after passing through a 
Nicol prism N 1, traverses a cell containing a 
scattering medium. The cell is observed at right 
angles through another Nicol prism. N 2 ■ Origi
nally, the Ntcol prisms arc oriented until the 
brightness of the field seen by the observer is a 
maximum, la) Prism N 1 is rotated through 90 
Is extinction produced? (b) Prism N i is now 
rotated through 90'. Is the field through N 2 
bright or dark? (c) Prism N 2 is then restored 
to its original position. Is the field through N 1 
bright or dark ?
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15.1 Introduction

In previous chapters we discussed some phenomena that occur when a wave passes 
from one medium to another in which the propagation is different. We not only  
analyzed what happens to the wave front, but also introduced the concept of a Ctjv 
as one that is very useful for geometrical constructions. In this chapter we are going 
to elaborate more fully on the phenomena of reflection and refraction from the 
geometrical point of view, using the ray concept as the tool for describing the processes 
that occur at the surfaces of discontinuity. We shall also assume that the processes 
are only reflections and iefractions and that no other changes occur at the wave 
surfaces. (We shall defer consideration of diffraction and scattering until Chapter 17.)

This way of looking at the subject is called wave geometry, or ray tracing. In 
particular for electromagnetic waves in the visible and near-visible regions, this 
viewpoint constitutes geometrical optics, a very important branch of applied physics.

The geometrical treatment developed in this chapter is adequate so long as the 
surface irregularities and other discontinuities encountered by the wave during its 
propagation have dimensions very large compared with the wavelength As long as 
this condition is fulfilled, our treatment applies equally well to light waves, acoustical 
waves (especially ultrasonic), earthquake waves, etc However, in our discussions 
we shall consider light waves, except when otherwise stated

A characteristic example of the use of rays is the image produced by a pinhole 
camera (Fig 15-1). Such a camera consists of a box with a very small hole in one side. 
Ifan object TBem itlinglight waves is placed in lfont of it, the rays Bband Aa will form 
an image ah on the opposite side. This image is well defined when the hole is very small 
so that only a small fraction of the wave fronts pass through it, and therefore, for 
each point of the object, there is a corresponding point of the image. If the hole is too 
large, the image appears blurred because to each point ot the object there corresponds 
a spot in the image. Further, the hole must not be so small that its radius is com
parable with the wavelength of light because then diffraction eifects begin to appear 
and the image ab again appears blurred (as will be discussed in Chapter 17).

15.2 Reflection  at a Sp herical Surface

We begin by considering the reflection of waves at a spherical surface. We nius· 
first establish certain definitions and sign conventions. The center of curvature f 
is the center of the spherical surface (Fig. 15-21 and the vertex O is the pole of the 
spherical cap. The line passing through O and C is called the principal axis. If vv'e 
take our origin of coordinates at 0 . all quantities measured to the righr&FO are 
positive and all those to the left are negative.
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Reflection at a Spherical Surface

Fig. 15-1. (al Image formation by a pinhole 
camera. The line drawing illustrates the ray 
paths, (b) The series of photographs shows the 
change in the clarity of the image as the 
diameter of the hole is decreased. Note that 
there is an optimum diameler for image clarity. 
I Photograph courtesy ol Dr. N J o e i. UNESCO  
Pilot Project for the teaching of physics.)

VI 0.07 mm

Fig. 15-2. Path of a ray reflected at a spherical surface.
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Suppose that point P  is a source of spherical waves. The ray PA  is reflected as the 
ray AQ, and since the angles of incidence and reflection are equal, we have

β = θ ,  +  α1 and Oi2 =  0  +  0 ;,

resulting in

a ,+ Ot2 = 20, (15.1)

Assuming that the angles a lt a2, and β  are very small (i.e., the rays are paraxial) 
and that the distance OB is therefore very small relative to the distances OQ, OC, and 
OF. we may write with good approximation

AB h 
X1 ^rtan a, = —  '

1 1 BP p '

AB Ii
a , ^tan χ-, -  , ΐ  ,

- BQ Ϊ
o AR  I

β ~tan β = —
BC r

Substituting these approximate values for a ,, x 3, and β  in Eq. (IS.I), and canceling 
the common factor h, we get

I I 2

P ‘I r
( 1 5 . 2 )

which is Descartes' formula Jor reflection at. a spherical surface. In Eq. (15.2), p is 
called the object distance, q is called the image distance, and r is the radius of the 
surface. This formula implies that under the approximation used in its derivation, all 
mcident rays passing through P will go through Q after reflection at the surface. We 
say then that Q is the image o f the object P.

(a)

Fig. 15-3. Principal rays in spherical mirrois. (a) Concave and (b) convex.
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.1

H

Fig. 15-4. Image construction in spnerical mirrors, (a) Concave and (bi convex.

For the special case in which the incident ray is parallel to the principal axis, a 
situation which is equivalent to placing the object at a very large distance from the 
mirror, the object distance is infinite; that is, p =  oc. Then Eq. (15.2) becomes 1/y =  2/r 
and the image falls at the point F, at a distance from the mirror given by q ~ r j l .  
Point t  is called the/ocus of the spherical mirror, and its distance OF from the mirror 
is called the focal Ιζηψη, designated by/, so that/  =  r/2. Then Eq. (15.2) can be written 
in the form

Since f  can be determined experimentally by observing the point of convergence 
of rays that are parallel to the principal axis, it is not necessary to know the radius r 
in order to apply Eq. (15.3). Note that when the object is placed at the focal point so 
that p —f, then =  That is, all incident rays that pass through the focus F are 
reflected parallel to the principal axis. Although the derivation has been made for 
concave mirrors, the Descartes formula is equally valid for convex m inors as long as 
the sign conventions for p. q, and r are taken into account According to our sign 
convention, concave surfaces have a positive value for r, and convex surfaces have a 
negative value for r. Therefore, the signs of the corresponding focal lengths are 
positive and negative, respectively.

Figure 15-3 shows those three rays called principal rays for both a concave and a 
convex surface:

Ray I is a parallel ray that passes through the focal point after reflection or seems 
to have come from the tocus after reflection;
Ray 2 is a focal ray that is parallel to the principal axis after reflection;
Ray 3 is a central ray that passes through the center of curvature on its way to the 
surface and alter reflection as well. This ray strikes the surface at normal incidence
P , *  Sr.

In  F ig . 15-4 th e se  ray s  a re  u sed  to  il lu s tra te  th e  fo rm a tio n  o f  a n  im ag e  by a  sp h e rica l
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Table 15-1. Sign Conventions in Spherical Mirrors

+ -

Radius r Concave Convex
Focus / Convergent Divergent
Object p Real Virtual
Image q Real Virtual

reflecting surface. The object is AB  and the image is a'b'. In Fig. 15-4(a) the image is 
real (since the reflected rays do cross), and in Fig. 15-4(b) the image is virtual (because 
the rays only seem to have crossed behind the mirror). Table 15-1 lists the sign con
ventions for mirrors that are used in this text According to our convention, when the 
object or the image is real its respective distance to the mirror is positive because 
the image or the object is in front of the mirror; when e'ther image or object is virtual, 
the distance is negative because it is behind the mirror.

When the-aperture of the mirror is large, so that tt accepts rays of large inclination, 
Eq. (15.3J is no longer a good approximation. In such a case, there is not a well- 
defined point image corresponding to a point object, but an infinite number of 
images; hence the image of an extended object appears blurred. Figure 15-5 shows 
the rays coming from the point P and reflected at the mirror. We see that the rays 
intersect not at the same point, but on a segment QO' along the axis, an effect called 
spherical aberration. The point Q, wh:cn corresponds to the rays that make a very 
small angle with the axis, is determined by Eq. (15.3); Q corresponds to an image of 
P from the rays that make a large inclination with the axis. The reflected rays also 
intersect along a surface, a section of which is indicated by the heavy line QS. This 
surlace is called the reflection caustic

Fig. 15-5. Spherical aberration in a concave mirror.
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15-6. Rcllection of parallel rajs from a parabolic mirror.

Spherical aberration cannot be completely eliminated. However, by ptoper design 
of the surface, it can be suppressed for certain positions, called anasttgmaiic. For a 
point obiect at the center of a spherical mirror, the image is exactly a point talso at the 
center), and it has no spherical aberration. Theretore the center of a spherical mirror 
is an masufKmtic  position. Anastigmatic positions can be modified by changing the 
shape of the surface. For example, uecauseofthe property of the parabola, a parabolic 
mirror produces no aberration for rays that are parallel to the principal axis; they 
must all pass through the focus of the parabola (Fig. 15-6). Theretore parabolic 
miTors are used in telescopes, not only foL receiving rays in the visible region of the 
electromagnetic spectrum but also ior receiving rays in the radiolrequency region, 
as in radiotelescopes (Fig. 15-7).

Other defects beside spherical aberration appear in the images produced by 
reflection Ior refraction) at spherical surtaces. However, we shall not discuss these 
defects since they belong to rather specialized branches of optics.

Example 15.1. Image formation for a nnrror whose aperture is large.

T When a spherical mirror has a large aperture and can accept rays of large inclination, the 
'Approximation made in obtaining Eq. (15.21 is no longer valid since the replacement of a by 
tan a would then not be a very good approximation. It is not difficult to obtain another expression 
tnore precise than Eq. (15.2). W hen we apply the law of sines to triangles ACP and AQCiFig. 15-8). 
we obtain

CP sin Oi OC sin Oi

AP  sin (π — β) ’ AQ sin β
i Iten since sin(ji — £) = sinβ. we can combine the two expressions as

CP QC p —r r —ij
AP AO °Γ AP \ 4 Q

implying and dividing the left-hand side by pr and multiplying and dividing the right-hand 
side by r t j give
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^  Fig. 15-7. Reflecting radiotelescope at Parkes, New South Wales, Australia. The reflector is 
τIO (64 m) in diameter The reflector can rotate about the vertical as well as change in zenith 
angle. and is stcerable over most of the visible sky. Tlie telescope is designed for optimum per
fo rm a n c e  at the 21-cm hydrogen-line wavelength, although it is still sensitive down to wave
lengths of a few centimeters. The location, 340 km from Sydney, was chosen so that there would be 
minimum electrical interference. Λ radiotelescope consists of a metallic mirror formed by a wire 
:nesh A dipole receiving antenna is placed at the focus of the mirror The signals received by the 
antenna correspond to electromagnetic waves propagating in a direction parallel to the axis of 
the mirror, and are transmitted to the laboratory for analysis.
(Photograph courtesy of the Australian News and Information Bureau.)

This relation involves no approximation. If Ot1 and St2 are very small, we can make the approxima
tion ps.4P and q~AQ. recovering Eq. (15.2). However, we can go one step further before making 
such an approximation: that is, we will require only that h<£r. From the triangle .4ΓΡ and use 
of the law of cosines we get

which may be written in the form

(15.4)

AP1 =  r2 + (p -  r)2 +  2rip -  r) cos β 

- P 2 — 2 r(p  — / Xl -C O S  β )

—p2 —4r(p — r) sin2 \β

\
Figure 15-8
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where in the last line the approximation sin i/1 s i/f =/i/2r has been made. Then

P
4 P

l/l
=  1 +

-p Vr pJ
(15.51

(15.6)

where the approximation (I — x) 112 =  I + §1 has ueen made. In the same way, using the triangle 
,4QC, we ha\e

AQ 2 q \r  q)

Then substituting Eqs. (15.5) and (15.6) in the exact Eq. (15.4), we gei.HKHKi *K(H):
Multiplying and grouping terms, we obtain

' I i 1
I I 2 Ir
-  + - = - +  — 
p q r 2 -P Vr p)

Since the second term on the nght-hanu side is a corrective one, we may use Eq. (15.2) to eliminate 
q in that term. This results in

I \ 2
(15.7)I I 2 h2 i I I V-J t— j  J

p q I- r \r  p i

The distance h is determined by the inclination of the rays coming from P: and for a given p. 
the larger It. the smaller q. Therefore, all rays emanating from a point P (Fig. 15-5) on the principal 
axis intersect not at the same point, but on a segment QS as previously indicated. We obtain the 
point Q by using Eq. (15.2) or by setting Ii=O in bq. (15.7). The point Q1 of Fig. 15-5 is found by 
making h =  H where H is the radius of the base of the spherical surface, k

Example 15.2. A concave mirror has a radius ot U.600 m. An object is placed 1.000 m from the 
mirror. Assuming that its aperture is 20 . find the closest and farthest images produced by the 
mirror.

▼ In this case we have r — +0.600 m and p= + 1.000 m. Therefore, for paraxial rays, we have, 
using Eq. (15.2), that

I 1 2 or q =  + 0.429 m.1.000 q 0.600

The rays with maximum inclination produce an image obtained by using Eq. (15.7), with 
1=1 sin β and β=4(20 )= 10'. Theretorc. /i = 0.600 sin 10 =0.104 m and /?2 = 0.011. Thus

I 1 2  0 . 011 /  I I Y
1.000 ~q  “ 0.600 ’ 0.600 V0.600 1.000 7

or q =  +0.427 m, Therefore the images occupy a small segment, of length about 0.002 m = 2 nm1· 
along the principal axis, k
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+

f.xamplc 15.3. Magnification produced by a spherical mirror.

T The magnification M of an optical system is defined as the ratio of the size of the image to that 
ofthe object. That is, M=ab/AB. From Fig. 15-9 we see that

. AB ABtan 0, = ——=· — .
O A  p

ab ahtan 0·=— = — .
Oa q

Thus, considering that Ol=O1r. we have
tan β’Γ_ j ( ab\ p 
tan 0, I q I AB

M = <fh= -  k ,l58)AB p

Example 15.4. Use of Fermat's principle to discuss reflection at a spherical surface.

* In order that a point source P (T ig. 15-101 in front of a reflecting surface will produce an image 
at Q- the shape of the surface must be such that according to Fermat’s principle, all rays require

Y
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the same amount of time to travel From P to Q. The time necessary for a ray to travel along the 
principal axis is

t= - {P O  +  OQ).
c

For a ray incident on the surface at A, we have that

f' = ̂  {PA + AQ),

and we require that i =  t'. at least in the first order of approximation. Note that this would be 
impossible if the surface were plane (such as OY) because if A were on OY, then PA>PO  and 
AQ> OQ always, resulting in t'>r. But by curving the surface, both PA and AQ may be adjusted
so that r = i' holds. For this to be possible with a spherical surface, the requirement is that

PA +  AQ =  PO +  OQ. (15.9)

From triangle A BP, we have

=  p a 2 - B P 1 M P A -  BPMPA + BPX (15.10)

But if A is sufficiently close to 0, we have that PA is slightly larger than PO and BP slightly smaller. 
Therefore we may write as a good approximation PA +  BP =2PO = 2p. Substituting this value 
in Eq. 115.10) and solving for PA give

111
PA z B P + — .

I  p

Similarly, from triangle ABQ we obtain
112

A Q zB Q +

Substituting these equations into Eq. (15.9), we find that the requirement t — t’ is equivalent to{Br4̂{Be+li)-P0+0<1
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ot
h“ h~
— + — = ( P 0 - B P )  + \0Q -BQ ) =  20B, (15.11)
2  P 2 t/

gut irom triangle ABC. we have that OB — h2,'2r, if we neglect OB2 compared with r2. This is 
acceptable so long as A is close to O {i.e.. if rays are paraxial). Therefore if we substitute in Eq. 
(15 11) and eliminate the common factor {h1. we obtain Descartes’ formula:

I  L :
F q ~ r '

A further step would be to see if. by means of a suitable surface, we could satisfy Eq. {15,9) 
rigorously, at least for a pair οΓ points P and Q. We note that in this case Eq, (15.9) would be 
equivalent to PA +  AQ — const. This is the equation of an ellipsoid of revolution whose foci are 
at P and Q, as indicated in Fig. 15-11, and is the shape of the reflecting surface for which the 
image of P is rigorously at Q (that is, there is no spherical aberration for this pair of points). For 
all other points there will be aberration, the amount depending on the distance of the object 
point from one of these two chosen points. A

15.3 Refraction  at a Sp herical Surface

We shall now consider the refraction of waves at a spherical surface separating two 
media whose absolute indexes of refraction are n s and Ji2 1 Fig. 15-12). The fundamental 
geometric elements are the same as those defined in the previous section for spherical 
mirrors The sign conventions are essentially the same as those used for spherical 
mirrors.

1. The radius of the refracting surface is positive if the surface is concave toward the 
object, and negative if it is convex.

2. T he distance p of the object is positive if the object is real (that is, the object is to 
the right of the surface), and negative if the object is virtual (that is, the object is 
to the left of the surface).

Fig. 15-12. Image formation by refraction at a
convergent spherical surface.
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3. The distance q of the image is positive if the image is real (that is, the image fal[s 
to the left of the surface), and negative if the image is virtual (that is, the image Talls 
to the right of the surface).

These sign conventions are summarized in Table 15-2.
Let us consider a concave refracting surface. An incident ray such as PA  is refracted 

along AD  and intersects the principal axis at Q. From Fig. 15-12 we observe that in 
this case p. q. and r are all positive quantities. Also from the figure we have that 
β — OiAoti and f = O r — a2*. From Snell’s law, n, sin Oi =  It2 sin Or. Assume, as we did 
in the preceding section, that the rays have a very small inclination. Then the angles 
Oi, On K1. K2, and β are all very small, and we may use sin Oi ^Oi and sin ΘΓ ^Or so that 
Snell’s law becomes H1 Oi =  H2Or or

η ι( β - χ ί ) =  η2(β +  ιχ2). (15.12)

From Fig. 15-12 we make the approximations

h h h
tan Ot1 =  Ot1 t t - , tan a 2 ^ o t 2 , tan p ^ β  v -  

P O 1 r

so that when we substitute in Eq. (15.12), cancel common factors, and rearrange terms, 
we get

^ n 2J U - U 2 (1513)
P 0 r

which is Descartes’ formula for refraction at a spherical surface. Although we have 
derived Eq. (15.13) for a concave refracting surface, this formula is valid also for 
convex refracting surfaces except that for convex surfaces, r is a negative number.

The object focus F0, also called thefirst focal point of a spherical refracting surface, 
is the position of a point object on the principal axis such that the refracted rays are 
parallel to the principal axis. Thus the image of the point will be formed at infinity, 
or q =  co (Fig. 15-13a). The distance of the first focal point from the spherical surface 
is called the object focal length, designated by /„. Setting p= /„  and q =  oo in Eq. (15.13). 
we have I tJ f0= In i - n 2)/r, or

/o =  (    ) '·Xni - I t 2J
(15.14)

The focal length/ 0 is positive when the object focus is real and is in front of the spherical 
surface. Then the system is called convergent; when the object focus is virtual the focal 
length J0 is negative and the system is called divergent. Table 15-2 lists the sign con
ventions used in this book.

Similarly, when the incident rays are parallel to the principal axis, a situation which 
is equivalent to having the object at a very large distance from the spherical surface

*Note that y., is negative to reflect the fact that g is negative according to our sign convention
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Table 15-2. Sign Conventions for a 
Spherical Refracting Surface

+

Radius r Concave Convex
Focus/„ Convergent Divergent
Object p Real Virtual
Image q Real Virtual

(p = x ) ,  the refracted rays pass through a point F1 on the principal axis called the 
image focus or second focal point. In this case the distance of the second focal point 
from the spherical surface is called the image focal length, designated by/,·. Making 
p = cc  and q = f  in Eq. (15.13), we, have H2/ / r = ( » i  — n2 )/r, or

and is positive when the image focus is real and is to the left of the surface (Fig. 15-13b). 
Note that f0—f j = r  and that the two focal points are always on opposite sides of the 
refracting surface.

The construction of the image of an object for a case in which r > 0  and nx > n 2 is 
shown in Fig. 15-14, in which the three principal rays for a single refracting surface

(15.15)

So

(a)

Si

c

Figure 15-13
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( " i )

B

[«2 < ηι,] -( Fig. 15-14. Image formation by refraction at a
convergent spherical surface using principal 
rays.

have been shown. The student should draw similar figures for the three remaining 
cases; that is, r > 0  and H1 < n 2, r < 0 , H1 ^ n 2.

Equation (15.13) also indicates that for each point object there is a unique point 
image. This is acceptable so long as the spherical surface is of sm all aperture, admitting 
only rays of very small inclination so that our approximations are valid. For refracting 
spherical surfaces of large aperture, the situation is similar to that encountered in 
Fig. 15-5 for a spherical mirror, and results in the same phenomenon of spherical 
aberration discussed previously for spherical mirrors.

Example 15.5. Image formation by a refracting surface of large aperture.

T  The procedure in this case is similar to that for a mirror. From triangles ACP and ACQ (Fig. 
15-12), the law of sines allows us to write

CP sin Θ, sin Oi CQ sin (π — (ir) SiniJr
AP sin (π — β) sin β 4Q sin β sin β

Solving these equations for sin Bi and sin Bt and substituting their values in Snell’s law, M1 sin Oj =
n2 sin 0,, we get

CP CQ p —r q + r
n ,— =n2----  or n ,  =n2------ .

' AP AQ AP AQ

This may be written in the form

„ ( i - h - L _ „  d + h _ L  ,15.1«
1 Kr pJ  AP '  Vr q j  AQ

which should be compared with Eq. (15.4). Ifa1 and a2 are very smalL we can make the approxima
tion p ^ A P  and q = AQ, recovering Eq. (15.13). However, we can go a step further by making use 
of the approximations equivalent to Eqs. (15.5) and (15.6) which are valid when h φ·. These yield

P . A V 1 1 l̂
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and

AQ Iq \r q} 

by substituting these two equations into F:q. (15.16), we get

Vr p JL 2 p \ r  pj_ Kr qA. 2q\r  q/_
Nfultiplying and grouping terms, we obtain

n. IJ1 n. —«I Zi
— (— = —------ + —
p q r 2

"I
■ P Ar

I - lALn(Ui)
PJ 9 r + q j  .

Using Eq (15.13) to eliminate q in the last corrective term, we finally obtain
i n2-+  — I Hl-H5 Zti Al1 -H 2V

“ M ' H2 J

n f  ΐ!, (η,  + H 2) G-:)' (15.17)

As m the case of a spherical mirror, the position of the image depends on the value of Zi or on the 
slope ol the incident ray. Therefore the linage of a point originally on the principal axis is not 
necessarily another point on the principal axis, k

Example 15.6. Magnification produced by a spherical refracting surface.

T This problem is similar to that of Example 15.3. Considering Fig. 15-15a. in which A B  is an 
object and ah  is its (virtual) image, we ha\e that M  = i ib,AB.  We also have (Fig. 15-15b)

AB A B  „ ab  abtan Oi= - = — , tand,= — =— ,
OA p Oa q
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M = ab q tan Or  ̂q sin Or
AB p tan Oi ^p sin Oi

where the last approximation is valid whenever the angles are small, and we can replace the 
tangents by sines Then, using Snell’s law, M1 sin O1-=M2 s’n we have

.  -  n ■ (I-M = (15.18)Il1P
We remind the reader that in using this relation, the distances q and p are used only with their 
absolute values. A

Exgmple 15.7. A concave surface whose radius is +0.50 m separates a medium whose index of
refraction is 1.20 from another whose index is 1.60. An object is placed in the first medium, 0.80 m
from the surface. Determine the focal lengths of the system as well as the position of the image and 
its magnification.

T  In this case r= +0.50 m. M1 =  1.20 and n ,-  1.60. Therefore, using Eqs. (15.14) and (15.15), we 
obtain

/„=- ”— = -1.50 m, /■ =  — J -2.00 m.
«I— «2 'h ~ ni

The system is therefore divergent. Using Eq. (15.13), we find that 
1.20 1.60 1.20-1.60
0.80+ T  = ~ 0 ^ ~ ~  ° r ^ - a70m ·

The negative sign indicates that the image is virtual and the construction shown in Fig. 15-15a 
is approximately correct for this example. For the magnification we use the result of Example 
15.6, using only absolute values for p and q.

1.20 x 0.70 m 
J 1.60 v 0.80 m

and therefore

15.4  Le n ses

A lens is a transparent medium bounded by two curved (usually spherical) surfaces, 
although one of the faces of the lens may be plane. An incident wave therefore suffers 
two refractions in going through the lens. For simplicity assume that the medium on 
both sides of the lens is the same and has an index of refraction of one (such as air) 
and the index of refraction of the lens is n. We shall also consider only thin lenses, i.e.. 
lenses in which the thickness is very small compared with the radii.

The principal axis of a lens is the line determined by the two centers C j and Ci 
'Fig. 15-16). Consider the incident ray PA. At the first surface the incident ray is 
efracted along ray AB. If extended, the ray AB  would pass through Q', which is
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Fij;. 15-16. Path of a ray through a lens.

therefore the image of P produced by the first refracting surface. The distances of the 
obiect and the image should be measured from either O 1 or O2; but if the lens is very 
thin, we can neglect the thickness O 1O2 and measure all distances from the common 
center point, 0 . The distance q of Q' from O is obtained by applying Eq. (15.13); that is,

I η 1 —n
- + - = ------- . (15.19)
P U  r i

At B the ray suffers a second refraction anfl becomes ray BQ. We say that Q is the 
hnal image of P  produced by the system of the two refracting surfaces that con
stitute the lens. Regarding the refraction at B, the object is the first image Q' and thus 
is a virtual object at a distance — q' from the lens; and the image is Q , at a distance q 
from 0 . Therefore again applying Eq. (15.13) with p replaced by — q1, we have

π I n — I
:----T t+ -= --------■ 15.20)
( - 9 )  9 r i

Note that the order of the indexes of refraction has been reversed because in the 
second refraction the ray goes from the lens into the air. Combining Eqs. (15.19) 
and (15.20) to eliminate q', we find

- +  -  =  ( H - I ) I -  - -  I. (15.21)
P

which is Descartetf formula for a thin lens. In writing this equation we must use for 
the radii rj and r2 the same convention given in Table 15-2; that is, the radii are 
Pusitive if the surface is concave and negative if it is convex when viewed from the 
side from which fight reaches the lens.

I fie point O in Fig. 15-16 is chosen so that it coincides with the optical center of the 
ens. I  he optical center is a point defined such that any ray passing through it emerges 

ln a direction parallel to the incident ray. To see that such a point exists, consider 
two parallel radii C 1A 1 and C 2A 2 in the lens of Fig. 15-17. Draw the corresponding 
tangents T 1 and T 1. For ray R, + ], whose direction is such that the refracted ray is 
-4l /42, ihe emergent ray A 2R 2 is parallel to ^ 1 R 1. From the similarity of triangles
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C

Fig. 15-17. Optical center of a lens.

C l A i O and C1A 1O, we see that the point 0  is positioned so that

C 1Q C 1A 1 R 1
O C 2 A 2C 2 R 2 ’

and therefore its position is independent of the particular ray chosen. Therefore all 
incident rays that pass through point O emerge without angular deviation; they will, 
however, have suffered some lateral displacement.

As in the case of a single refracting surface, the object focus Fa, or first focal point, 
of a lens is the position of the object for which the rays emerge parallel to the principal 
axis (q =  cc) after traversing the lens. The distance of F0 from the lens is called the 
object focal length, designated by /  Then setting p = f  and q =  co in Eq. (15.21), we 
obtain the object focal length as

which is sometimes called the lensmaker's equation. Substituting Eq. (15.22) for the 
right-hand side of Eq. (15.21) we have

This expression gives us a certain advantage in that if we determine f  experi
mentally, we may use a lens without necessarily knowing its index of refraction or 
its radii.

For an incident ray parallel to the principal axis (p =  x  ), the emergent ray passes 
through a point Fi having q —f  and called the image focus, or second focal point. 
Therefore, in a thin lens, the two foci are symmetrically located on both sides. If ./ 
is positive the lens is called convergent, and if it is negative, divergent. In the first 
case the object focus is real, and in the second case it is virtual. The sign conventions 
are the same as those given in Table 15-2 for a spherical refracting surface.

(15.22)

I I I
— 1— = ~rP i f

(15.23)
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(a) (b)

Fig. 15-18. Principal rays for (a) convergent and (b) divergent lenses.

For purposes of ray tracing, we may represent a thin lens by a plane perpendicular 
to the principal axis passing through 0.  Figure 15-18 shows the construction of the 
principal rays for a convergent and for a divergent lens.

The theory we have developed is correct only as long as the rays have a very small 
inclination so that spherical aberration is negligible. For lenses having a large dia
meter the image of a point is not a point but a line segment of the principal axis. In 
particular, incident rays that are parallel to the principal axis intersect at different 
points, depending on their distance from that axis. Spherical aberration is measured 
by the difference/' - /b e tw e e n  the focal distance for a marginal ray and for an axial 
ray (Fig. 15-19). The refracted rays intersect over a conical surface called the refraction 
caustic.

Fig. 15-19. Spherical aberration of a lens.
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(I) A ( I )

B

I-

Fig. 15-20. Magnification produced by a lens.

Example 15.8. Magnification produced by a lens.

T  As before, the magnification is defined as M =  ab/ A B. But from Fig. 15-20, if O is the optical 
center of the lens, we have that tan a = AB1OA and tan a.=ab/Oa. Therefore ab, AB =  OatO 4. or

This relation could have been obtained by using the result of Example 15.6 for a spherical refracting 
surface since referring to Fig. 15-16. the magnification produced by the refraction at the first 
surface is M 1 = q '  np while the magnification produced by the refraction at the second surface is 
M2 =  Hql q'. Therefore the total magnification is

Example 15.9. A spherical lens has two convex surfaces οΓ radii 0.80 m and 1.20 m. Its index of 
refraction is n= 1.50. Find its focal length and the position of the image of a point 2.00 m from the 
lens.

second concave as seen from the side οΓ the object that is placed on the right (see Fig. 15-16}, we 
must write r, = O1C1 = -0.80 m, r2 =  4 1.20 m. Therefore, using Eq. 115 221. we have

T According to the sign conventions of Table 15-2, since the first surface looks convex and the

Tlie Tact that / is positive indicates that this lens is convergent. To obtain the position ol the 
image, we use Eq. (15.23) with p = 2.00 m and the above value of/ which yields

I I I
TAo + -=602 or 4= + 1.85 m.

The positive sign of q indicates that the image falls on the left side of the lens and is thus real-
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Since M is less th an  one, the im age is sm aller than  the object, k

Finally the magnification is
M = q/p~0.92.

Esam ple 15.10. Positions of the  foci of a  system of two th in  lenses separated a distance L.

T The system of thin lenses illustrated in Fig. 15-21 shows in (a) the path of a ray passing through 
point P The image of P produced by the first lens is Q'. Let p be the distance of the object from 
the first lens. Then the position of Q' is determined by

I I  1
P

where in this case q is negative because Q' is a virtual image. Point Q1 acts as a real object with 
respec( to the second lens, producing a final image at Q. Since the distance of Q  from the second 
lens is L+ \q'\ = L—q (recall q is negative in this easel, we have that

1 1
L ~ q  q J1

where q is the distance of the final image from the second lens. The set of equations above allows 
us to obtain the position of the image corresponding to any position of the object.
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The onject focus F0 (Fig. 15-21 b) of lhe lens system is the position of the object for which Ihe 
image Q is at infinity (q =  x). Designating the distance from F a to the first lens by p(FJ, we have 
from the second relation that q'=  L - J j , which when substituted in the first relation gives

Similarly, for the position of the image focus F1 (Fig. 15-21c), designated by tfF j , we make 
p =  x, resulting in q =  J 1 and having a positive value since now Q' is real:

■ il525I

An important situation occurs when the two lenses are in contact so that L can be neglected. Then 
the equation relating / and q becomes

I I _  I
( - < 0 %  Tl'

which, combined with the first equation, becomes

I l l l
-H— — y  + -z ■

p q .ft f i

This shows that a set of thin lenses in contact is equivalent to a single lens of focal length F given by

(two lenses in contact) (15.26)
t  ft f i

The same result can be obtained by making L=O in the expression for p{F,). A

15.5 The  M icroscope

A microscope is a lens system producing an enlarged virtual image of a small object. 
The simplest microscope is a single convergent lens, commonly called a magnifying 
glass. The object AB (Fig. 15-22) is placed between the lens and the focus F0, so that 
the image is virtual and falls at a distance q equal to the minimal distance of distinct 
vision, δ. which for a normal person is about 0.25 m. Since p is almost equal to J- 
particularly if /  is very small, we may write for the magnification

M =  2 4 -  (15.27)
P /

The compound microscope is more elaborate (Fig. 15-23). It consists of two con
vergent lenses, called the objective and the eyepiece, each of a small focal length- 
The focal length /  of the objective is much smaller than the focal length / ' o f  the 
eyepiece. Both /  and / '  are much smaller than the distance between the objective 
and the eyepiece. The object AB  is placed at a distance from the objective slightly 
greater than /  The objective forms a real image a b ’, that acts as the object for the 
eyepiece. The image ab' must be at a distance from the eyepiece slightly less than
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Fig. 15-22. Ray tracing in a magnifying glass.

f .  The final image, ab, is virtual, inverted, and much larger than the object. The 
object AB is so placed that ab is at a distance from the eyepiece equal to the minimal 
distance of distinct vision, δ (about 0.25 mj. This condition is attained by the operation 
calledJocusing, which consists in moving the whole microscope relative to the object. 
The magnification of the objective is

and that of the eyepiece is

M e  =

a'b' L 
Λ Β *  / ’

ab δ 
a'b ~~f

Fig. 15-23. Ray tracing in a com pound microscope.
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R etina

Fig. 15-24. Resolving power of the eye.

Therefore the total magnification is

. .  . .  ub  6 L  M =  M 0 Me =  - - - - .  ( 1 5 . 2 8)

in an actual microscope, L is practically the same as the distance between the objective 
and the eyepiece.

The useful magnification in a microscope is limited by its resolving power; that 
is, the minimum distance between two points in the object that can be seen as distinct 
in the image. This resolving power is in turn determined by diffraction at the objective 
lens (see Chapter 17). A detailed calculation that is not reproduced here gives the 
resolving power as

R=-.
2n sin Θ

(15.29)

where λ is the wavelength; n. the index of refraction of the medium in which the object 
is immersed; and 0 , the angle a marginal ray makes with the axis of the microscope. 
In general 2n sin Θ is about three so that R s^ /.. On the other hand, the resolving 
power of the eye is about 10 4 m for an object at about 0.25 m (Fig. 15-24). Therefore 
the maximum useful magnification is

M =
IO" 4 m 3 x 10- rn

A

For example, for light with 2 =  5 x 1 0  ' m. which is about the center of the visible 
spectrum. M  is about 600.

15.6 The  T e lesco p e

Another important optical instrument is the telescope, used to observe very distant 
objects. In the refracting telescope, the objective (Fig. 15-25) is a convergent lens 
having a very large focal length f  sometimes of several meters. Since the object 
AB is very distant, its image ah', produced by the objective, falls at its focus F0- 
have indicated only the central rays Bh' and Aa' since they are all that is necessaO 
because we know the position of the image. The eyepiece, also a convergent lens, but
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of d much smaller focal len g th /' is placed so that the intermediate image ab'  falls 
between O' and F0, and the final (virtual) image ab is formed at the minimum distance 
lor distinct vision. Focusing is performed by moving the eyepiece lens only since 
nothing is gained in this case by moving the objective lens.

The lmear magnification produced by this instrument is not a useful concept 
hecause the image is usually much smaller than the object. Instead an angular mag
nification is defined as the ratio between the angle β subtended at the eye by the 
image when the telescope is used and the angle a subtended at the eye by the object 
when no instrument is used. This is written as

β
M = - .  (15.30)

a

As shown in Fig. 15-25, the angle β  is much larger than a, producing the sensation of 
roagnihcation. From Fig. 15-25, considering that angles a and β  are small, we may 
write

a'b' _ „ a'b‘
a stance =  — , /i =  t a n p ^ —

because tfie distance from a'b' to O' is practically/'. Substituting into Eq. (15.30).
get

M = L .  (15.31)

^herefore, to obtain a large magnification, the focal length of the objective should
e very large compared to that of the eyepiece. Practically, the length of the instru-

BleF1C is delerm.ned by the focal length /  of the objective.
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The magnification of an astronomical telescope is limited by the resolving power of 
the objective and of the eye of the observer. For an objective lens whose diameter Js 
D, the resolving power (i.e., the minimum angle subtended by two points of the object 
AB  that appear as distinct or different in the image a'b') is, as will be shown in 
Chapter 17,

f l ' 1 .2 2 ^ .  (15.32)

On the other hand, the resolving power of the eye (Fig. 15-24), expressed in terms of 
an angle, is equal to

-  H T 4 m 
=  — = 4 x  10 4 rad =1.38".0.25 m

Therefore the maximum useful magnification of a telescope is

A larger magnification means either a smaller value of a, which implies less detail 
in the image, or a larger value of β , which essentially does not reveal any new detail 
in the final image ab since the detail was not present in the intermediate image ab'. 
For example, for light of A= 5 x 10“ 7 m. we have M  ^ 660ΰ  where D is in meters. By 
increasing the diameter D of the objective, we can therefore increase the magnification. 
The Yerkes telescope, which is the largest existing refracting telescope, has a diameter 
of about I m. resulting in a magnification of about 660 and a resolving power of 1 0 “ 1 

second of arc.
In the reflecting telescope, the objective is a concave parabolic mirror. Thus an 

image free from spherical aberration is formed at the focus. The second largest reflect
ing telescope is at Mount Palomar. This telescope has a diameter of about 5 m and a 
magnification of the order of 3300.

15.7 T h e  Prism

A prism is a medium bounded by two plane surfaces making an angle A (Fig. 15-26). 
We assume that the medium has an index of refraction n and that it is surrounded by a 
medium such as air, having unity index. The incident ray (Fig. !5-26) PQ suffers two 
refractions and emerges deviated an angle δ relative to the incident direction. From 
the figure the following relations may be seen to hold:

sin i =  π sin r, (15.34)

sin i' =  n sin r ,  (15.35)

r +  r' =  A, (15.36)

δ =  ΐ +  ϊ '~ Α .  (15.37)
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Fig. 15-26. Path of a ray  through a  prism.

The first and second equations are simply Sneli’s law applied to the refractions at 
Q and R. The third follows when we use triangle Q T R, and the fourth when we use 
triangle Q R U . The first three equations serve to trace the path of the ray, and the last 
allows us to find the deviation.

There is one particular path for which the deviation has a minimum value. This is 
obtained by making άδ/άί =  0. From F,q. (15.37), we have

and lor dd/di — 0  we must have

άδ , di' 
T i Ύ ϊ'

-J-=  - I .  (15.38)
ί/l

(15.39)

From Fqs (15.35) and (15.36), since dA we have

cos i di =  n cos r dr, cos i' di’ — n cos r' dr', and d r— —dr'.

Therefore

di' cos i cos r'
di cos i' cos r

Since the four angles i, r, Γ, and r are smaller than 5  π and satisfy the symmetric con
ditions (15.34) and (15.35), Eqs. (15.38) and (15.39) can be satisfied simultaneously 
only if i =  f  and r =  r \  which requires that

ΐ =  Μ η + Λ )  and r — \A  (15.40)

flrTiere 4„in is the value of the minimum deviation. Note that in this case the path 
Pf the ray is symmetric with respect to the two faces of the prism. Introducing Eq. 
(15.40) in Eq. (15.34), we obtain

„ _ . i n f e  + A )  (1J41)
sin jA

Equation (15.41) is a convenient formula for measuring the index of refraction of a 
sObstauce by finding <5mln experimentally in a prism of known angle A.
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15.8 D ispersion

When a wave is refracted into a dispersive medium whose index of refraction depends 
on the frequency (or wavelength), the angle of refraction will also depend on the 
fiequency or wavelength. If the incident wave, instead of being composed of a single 
frequency (or monochromatic), is composed of several frequencies or wavelengths 
superposed, each component wavelength will be refracted through a different angle, a 
phenomenon called dispersion, (We introduced the subject of dispersion of electro
magnetic waves in matter in Section 1 2.7.1

We remind the student that colors are associated with wavelength in a small 
interval of the electromagnetic spectrum. Therefore white light is decomposed into 
colors when refracted from air into another substance such as water or glass. If a 
piece of glass is in the form of a plate with parallel sides, the rays that emerge are 
parallel and the different colors are superposed again (Fig. 15-27), and no dispersion 
is observed except at the very edges of the image. Even so, this effect is not normally 
noticeable.

If the light passes through a prism (Fig. 15-28), the emerging rays are not parallel 
for the different colors and the dispersion is noticeable, especially at the edges. For 
that reason prisms are widely used for analyzing light in instruments called spectro
scopes. A simple type of spectroscope is illustrated in Fig. 15-29. Light emitted by a 
source S is limited by a slit. The light is transformed into parallel rays by the lens I . 
set at a distance equal to its focal length from the slit. After being dispersed by the 
prism, the rays of different colors pass through another lens L'. Since all rays of the 
same color (or wavelength) are parallel, they are focused on the same point of the 
screen, set at a distance equal to the focal length of L'. But rays that differ in color (or 
wavelength) are not parallel; therefore different colors are focused on different points 
of the screen. The different colors or wavelengths emitted by the source S appear 
displayed on the screen in what is called the spectrum of the light coming from S, 
If the deviation <5 varies rapidly with the wavelength the colors appear widely 
spaced on the screen. For each wavelength of the source, a line on the screen appears 
that is the image of the slit. If the source emits the full spectrum of visible light, a 
continuous spectrum will appear on the screen.

The dispersion of a prism is defined by

D j l 0 J 6 d n  (1543)
dtI dn dk

The factor ddUin depends primarily on the geometry of the system: the factor dn/df· 
depends on the material composing the prism. By differentiating Eq. (15.41). 
find that when the prism is arranged for average minimum deviation, we have

dd 2 sin f.4 
dn cos M lin +  A)'
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F'g. 15-29. Principle of the prism spectroscope.

Fig. 15-27. Dispersion when light passes Fig. 15-28. Dispersion when light passes 
thro igh a plate with parallel sides. through a prism.

The second factor dn,dX in Eq. (15.42) depends on the nature of the waves and the 
medium. For electromagnetic waves in general and for light in particular, a satis
factory approximate expression for the index of refraction as a function of the wave
length is given by Cauchys formula,

n =  A0 +  -t t  (15.44)

where A0 and B 0 are constants characteristic of each substance. The variation of n 
with λ for various materials transparent in the optical region is shown in Fig. 15-30. 
Frotn Eq. (15.44) we obtain

dn 2 Bn
dX A3

The dispersion in a prism is then

D J A =  2 s i n ^  ( - 2J 1O) (15 45)
dX C o s f a in jTA) "  '·
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Fig. 15-30. Variation of refractive index wiih 
wavelength, in the visible region, for some 
materials.

The negative sign means that the deviation decreases when the wavelength increases 
so that the red is deviated less than the violet.

ΝΟτίΐ: Jnstification of Cauchy’s formula.

In Eq. (12.17) we obtained an expression that relates the index of refraction as a function of the 
frequency of the electromagnetic waves and the characteristic frequencies of the substance. 
Assuming for simplicity that there is only one atomic frequency αι0 and that ω <ίω0, we obiain

z=   Ne^ _
11 + e0m(w5 - ω 2)

so that using the binomial expansion, we get
JVe2/  N e 2 Y ' 2

H =  1 + ----------   r l =
\  i - α π /

1 +-
e t)m (W 0 - O J 2 I /  2 e 0 fn ( w 5  -  ω 2 )

Ne1 ί  ω Λ“ι
=S1+  -.I I - - T

Ze0HKUu V (O J /

JVe2 (  ω 
+ - 1 '

2

And since oj= litcj k, we have

where

n= / ! 0 + vy

N e 2 , „ 2 K2C2N e 2
A n — I “f” “  j  iiCtfl U n — ‘ λ

2 e0moj„ (T0mcoQ
[The student should estimate the order of m agnitude of A„ and B0.]
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15.9 Chrom atic  A berration

When light (such as white light) composed of several wavelengths passes through a 
lens, the light suffers dispersion, and the edges of the image produced by the lens 
a p p e a t colored. This effect is called chromatic aberration. It is easy to understand the 
reason for this effect when we recognize that a lens is equivalent to two prisms attached 
at them bases (for a convergent lens) or their vertexes (for a divergent lens).

A lens has a focus for each color or wavelength as is seen from Eq. (15.22) since f  
is determined by the index of refraction n, and n depends on the wavelength. For 
transparent substances whose index of refraction decreases with increasing wave
length in the visible region (see Fig. 15-30), violet has a shorter focal length than red. 
In Fig. 15-31 the chromatic aberration of a convergent and a divergent lens is shown 
for such a material.

The longitudinal chromatic aberration, A, in a lens is defined by the difference 
/c  -ft- between the focal distances corresponding to the wavelengths 6.563 x 10 m 
and 4.862 x 10 7 m, emitted by hydrogen and designated as the C- and F-Fraunhofer 
lines Using Eq. (15.22), we have

The D Fraunhofer line, with wavelength 5.890 x 10" m, corresponds approximately 
io the average index of refraction, designated by nD where

and

and thus

(15.46)

(15.47)

I Ig. 15-31. C hrom atic aberration in lenses, (a) Convergent and (b) divergent lens.
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Fraunhofer line C D F
Dispersive 
power, toWavelength x 10" m 6.563 5.890 4.862

Crown glass 1.514 1.517 1.523 0.0174
Flint glass 1.622 1.627 1.639 0.0271
Alcohol 1.361 1.363 1.367 0.0165
Benzene 1.497 1.503 1.514 0.0338
Water 1.332 1.334 1.338 0.0180

l Tsing Eq. (15.47) we can eliminate the dependence of Eq. (15.46) on the radii of the 
lens and write

I 1 _ / n F ~ » c \  I

/ f  / c  V — I j  /d

Also the left-hand side of this equation can be written as

/c  - J f  / c  - J f  

/ c / f  "  / 5

since to good approximation Jc f T j . Therefore the longitudinal chromatic aberra
tion of the lens is

The quantity
A - f c ~ f r fo · 

f c ~ j r  Wf- Hc

(15.48)

(15.49)
ft> '1D — I

is called the dispersive power of the material. Table 15-3 gives the indexes of refraction 
of some transparent materials at the C-, D-, and F-Fraunhofer lines.

L ongitudinal 
*■ chrom atic  

ab erra tion

Fig. 15-32. Longitudinal and transverse chromatic aberration in a 
lens.
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The kind of chromatic aberration we have discussed so far for lenses is called 
lotigifydiiml because it is measured along the principal axis. There is also a iransverse 
Ehroiiatic aberration. Consider an object A B  in front of a lens L  (Fig. 15-32). Unless 
tne light from the object is monochromatic, the light will be dispersed as it goes 
ihrough the lens; and instead of one image, a series of images differing in size will be 
formed, one for each wavelength or color. The figure shows only the extreme images 
corresponding to red and violet, and their separation has been greatly exaggerated. 
Because of this lateral dispersion, the edges of the images will appear colored. Trans
verse chromatic aberration can be expressed in terms of the different magnification 
[or the C- and F-lines.

Txampir 15.11. Discussion of achromatic lenses.

Chromatic aberration can be reduced or even eliminated by combining lenses of different 
Lflatenak resulting in an achromatic system. To see how this can be done, suppose we have the 
lens system :n Fig 15-13. in which, for example, lens L is made of crown glass and lens L' of Hint 
glass. Call/ and f '  their respective focal lengths and co and ω their respective dispersive powers. 
Lens L would have the chromatic aberration indicated by the segment VR. But if the divergent 
lens L is properly designed, rays of all wavelengths should focus at F To see how, we recall from 
Fxample 15.10 and Eq. (15.26) that for each wavelength

where F i and Ff are the corresponding focal lengths of the lens combination. Therefore, sub
tracting these two equations and remembering that F cF f =Fp, etc., we have

I I Fc - F f _ / c - J f I c - J f m . 01 

F f Fc FrS f b  / d  / d  / d

v hen theie is no longitudinal chromatic aberration, we must have Fc = F f so that

(15.50)

S1Ucc ω and ω are positive, we conclude that /j-, and ft\ are of opposite signs. Therefore one lens of 
an achnmuit is convergent and the other is divergent. A

U  F

F'K- 15-33. Achro
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Example 15.11 Design an achromatic converging lens system having a focal length of 0.350 m 
and made of two lenses, one of crown glass and the other of Hint glass.

▼ Front the data of Table 15-3, we have that the dispersive power ω of crown glass is 0.0193 an[j 
that of flint glass is 0.0271, Therefore the requirement of achromaticity imposed by Eq, 115.50) 
is expressed by

0.0193 0.0271— τ— -F . — = 0  or j ? =  — 1.402 .
J t  h  J i

Λ second requirement, using the result of Example 15.10 with E= -rti.35 m. is that

-  - -  1
/i h  0.350’

Combining the two equations, we then gel

Z1= +  0.1007 m, / j= -0.1414 m.

Thus the crown lens is convergent and the flint lens is divergent. Assuming that the system is 
plano-convex, with the plane face corresponding to the flint lens, we have, using Eq. 115.221 
with the value Iia for the index of refraction, that the radius of the face common to the two lenses 
is 0.089 m and the radius of the other face of the crown lens is 0.126 m. k

Problem s

15.1 A concave mirror has a radius of 1.00 m. 
Find the position and the magnification of the 
image of an object if the object is at a distance 
from the mirror equal to (a) 1.40 m. (b) 1.00 m, 
(Cf 0.80 m. (d) 0.50 ni. and (e) 0,30 m. (f) Consider 
also a virtual object at a distance of 0,60 m,
15.2 A convex mirror has a radius of 1.00 m. 
Find (a) the position of the image of an object 
and (b) the magnification if the distance from 
the object to the mirror is 0.60 m. Also consider 
a virtual object at a distance of (c) 0.30 m, and 
(d) 0.80 m.
15.3 Determine the focal length and the nature 
of a spherical mirror if an object placed 1.20 m 
from the mirror produces an image that is (a) 
real and situated 0.80 m from the mirror, (b) 
virtual and situated 3.20 m from the mirror, (c) 
virtual and situated 0.60 m from the mirror, 
(d) real and twice as large, (e) virtual and twice 
as large, (f) real and one-third as large and (g) 
virtual and one-third as large.

15.4 A concave spherical mirror has a radius of
1.60 m. Find the position of the object if the 
image is (a) real and three times larger, (b) real 
and one-third as large, and (c) virtual and three 
times larger.
15.5 Repeat Problem 15.4 for a mirror that is 
convex.
15.6 A concave shaving mirror has a focal 
length of 0,15 m. Find the optimum distance of
a person from the mirror if the distance of
distinct vision is 0.25 m. What is the magnifies 
tion?
15.7 A concave mirror produces a real, invert 
image three times larger than the object at a 
distance of 0.28 m from the object. Find the 
focal length of the mirror.
15.8 When an object that is initially 0.60 m 
from a concave mirror moves 0,10 m closer to 
it, the separation between the object and lts 
image becomes five-halves larger. Deterniioe 
the focal length of the mirror.
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15 9 ia! I f jc , and X1 are the distances of the ob
ject and its image, measured from the focus of a 
Npheriual mirror, show that Eq. (15,3) gives

X 1X 2 = / 2 .

This is called Nfvi1 ion’s equation, (b) Can you 
then conclude th a t the object and its im age are  
always on the  sam e side o f  the focus? {Hint: 
N ote th a t x , - F P  =  OP -O F .  and sim ilarly  for
*z-1
15 10 A transparent substance is limited by a 
concave spherical surface with a radius equal 
to U.60 m. Its index of refraction is 1,5, (a) Deter
mine the focal lengths, (b) Determine the posi
tion and the magnification of the image of an 
object placed at a distance from the surface 
equal to (i) 2.40 m, (ii) 1.60 m, and (iii) 0.60 m. 
15.11 Repeat Problem 15.10 for a surface that 
is convex,
15 12 A cylindrical glass rod whose index of 
refraction is 1.5 is terminated by two convex 
sphetical surfaces, with radii of curvature of 
0.10 and 0,20 m. respectively (Fig. 15-34). The 
length of the rod between vertexes is 0.50 m. 
An arrow I mm long lies in front of the first 
spherical surface, at right angles to the axis of 
the cylinder and 0.25 m from the vertex. Com
pute (al the position and (b) the length of the 
image of the arrow formed by the first surface, 
and (cl the position and [d) the length οΓ the 
image of tne arrow formed by both surfaces. 
Specify whethei the images are real or virtual.

0.10 m 0.20 m/ I

-0 .2 5  m
€

0 5 0  I

Figure 15-34

1 13 ta) Determine the focal points of the 
s3stem described in Problem 15.12. (b) Solve 
tl̂ s problem graphically, 
f' 14 A transoarent rod 0.40 m long is cut fiat 
at one end and rounded to a hemispherical 
surface of 0 12 m radius at the other end. An

object is placed on the axis of the rod, 0,10 m 
from the hemispherical end. (a) What is the 
position of the final image? (b) What is its 
magnification? Assume the refractive index is
1.50
15.15 The rod in Probleni 15.14 is shortened 
until there is a distance of 0 <0 m between its 
vertexes; the curvatures of its ends remain the 
same, (a) What is the object distance for the 
second surface? (b) Is the object real or virtual?
(c) Is it upright or inverted, with respect to the 
original object? (d) What is the height of the 
final image?
15.16 A glass rod of refractive index 1.50 is 
ground and polished at both ends to convex 
hemispherical surfaces of 0.05 m radius. When 
an object is placed on the axis of the rod and 
0.20 m from one end, the final real image is 
formed 0.40 m from the opposite end. What is 
the length of the rod?
15.17 (a) Sketch the various possi ble thin lenses 
obtainable by combining two surfaces whose 
radii of curvature, in absolute magnitude, are 
0.10 m and 0.20 m. (bl Which are converging 
and which are diverging? (c) Find the focal 
length of each lens if each is made of glass with 
refractive index 1.50.
15.18 A double convex lens has an index of 
refraction of 1.5 and its radii are 0.20 m and 
0.30 m. (a) Find the focal length. Determine (b) 
the position of the image and (c) the magnifica
tion of an object located at a distance from the 
lens equal to (I) 0.80 m, (ii) 0.48 m. (iii) 0.40 m. 
(iv)0.24 in. and (v)0.20 m. Id) Consider also the 
case of a virtual object located 0.20 m behind 
the lens.
15.19 A double concave lens has an index of 
refraction of 1.5 and its radii are 0.20 m and 
0,30 m. (a) Find the focal length. Determine (b) 
the position of the image and (c) the magnifica
tion of an object located 0.20 m from the lens. 
Consider also a virtual object at a distance of
(d) 0.40 m, and (e| 0.20 m.
15.20 A lens casts an image of an object on a 
screen placed 0.12 m from the lens. When the 
lens is moved 2xI0- i  m farther from the 
object, the screen must be moved 2x10 2 m



500 Wave Geometry

closer to the object in order to bring it into 
focus. What is the focal length of the lens?
15.21 An object is placed 0.18 m from a screen.
(a) At what points between object and screen 
may a lens whose focal length is4xl0"2mbe 
placed to obtain an image on the screen? (b) 
What is the magnification of the image for these 
positions of the lens?
15.22 A convergent lens has a focal length equal 
to 0.40 m. Determine the position of an object 
and the nature of the image if the magnification 
is (a) -0.6, (b) - 1.5, (c) - 1, (d) 3, and (e) 0.8. 
The minus signs imply inversion of the image.
15.23 A convergent lens has a focal length of 
0.60 m. Find the position of the object that will 
produce an image (a) real and three times larger,
(b) real and one-third as large, (c) virtual and 
three times larger.
15.24 Determine the focal length and the nature 
of a lens that produces an image of an object 
located 1.20 m from the lens that is (a) real and 
0.80 m from the lens, (b) virtual and 3.20 m 
from the lens, (c) virtual and 0.60 m from the 
lens (d) real and twice as large, (e) virtual and 
twice as large, (f) real and one-third as large, 
and (g) virtual and one-third as large.
15.25 Show that for a thin spherical lens

*1*2= ~ f 2<

where X1 is the distance of the object from the 
first focus and X1 is the distance of the image 
from the second focus. [See Problem 15.9,]
15.26 Rays from a lens converge at a point 
image P, as in Fig. 15-35. What thickness t of 
glass with a refractive index of 1.50 must be 
interposed, as shown in the figure, in order that 
the image be formed at Ρ'Ί

Figure 15-35

15.27 A lens system is composed of two con
vergent lenses, with focal lengths of 0.3 m and 
0.60 m. Find the image focus of the system for 
the cases in which the separation is (a) 0.20 m
(b) 0.50 m, (c) 0.90 m. and (dl 1.20 m.
15.28 Repeat Problem 15.27 assuming the first 
lens is divergent.
15.29 The ocular (or eyepiece) of an optical 
instrument is composed of two identical con
vergent lenses, with focal lengths of 5 x 10“2 m 
each, that are separated 2.5 x IO-2 m. Find the 
position of the foci of the system as measured 
from the lens closer to the object.
15.30 The objective of a microscope has a focal 
length of 4 mm. The image formed by this 
objective is 180 mm from its second focal point. 
The eyepiece has a focal length of 31.25 mm. 
(ai What is the magnification of the micro
scope? The unaided eye can distinguish two 
points as being separate if they are about 
IO"4 m apart, (b) What is the minimum separa
tion that can be perceived with the aid of this 
microscope?
15.31 The diameter of the moon is 3.5 x IO6 m 
and its distance from the earth is 3.8 x IO8 m. 
Find the angular diameter of the image of the 
moon formed by a telescope if the focal length 
of the objective is 4.0 m and that ot the eyepiece 
0 . 1 0  m.
15.32 A prism has an index of refraction of 1.5 
and an angle of 60r.(a) Determine the deviation 
of a ray incident at an angle of 40°. Find (b) the 
minimum deviation and (c) the corresponding 
angle of incidence.
15.33 The minimum deviation of a prism is 3ff ■ 
The angle ol the prism is 50‘. Find (a) its index 
of refraction and (b) the angle of incidence for 
minimum deviation.
15.34 From the data of Table 15-3, obtain the 
coefficients A0 and B0 appearing in Cauchys 
formula for the index of refraction in the case 
of crown glass.
15.35 Using the result of the preceding problent’ 
determine the angular separation correspon 
ingtothe C- and F-Fraunhoferlines in a crown 
glass prism having an angle of 50 in the casE 
of a ray whose angle of incidence is 30

I

P f  -  -

3 x 10 3 m-
\ (

-0.15 m -----H iH
[·---------0.15 m---- -
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15.36  A lens system is composed of two lenses 
in contact, one plano-concave and made of 
flint glass and another double convex and made 
Lffciown glass. The radius of the common face

is 0.20 m and the radius of the other face of the 
crown lens is 0.12 m. Find (a) the focal length of 
the system and (b) the chromatic aberration.

CHALLENGING PROBLEMS

15.3"? A lighted object is placed 0.15 m from a 
thin converging lens that has a focal length of 
0.10 m. Find the position of the image and trace 
two light rays from the object through the lens. 
[AP-B; 1970]
15.38 An object I cm high is placed 4 cm away 
Irom a converging lens having a focal length of 
3 cm. ta) Sketch a principal ray diagram for this 
situation, (b) Find the location of the image by 
a numerical calculation, (c) Determine the size 
of the image. [AP-B; 1974]
15 39 An object I cm high is placed 6 cm to the 
left of a converging lens whose focal length is 
8 cm, as shown in Fig. 15-36. (a) Calculate the 
position of the image. Is it to the left or right 
of the Iens9 Is it real or virtual? (b) Calculate 
the size of the image. Is it upright or inverted?
(c) Locate the image by ray tracing, (d) What

plBure 15-26

simple optical instrument uses this sort of 
object-image relationship? [AP-B; 1976]
15.40 An object 6 Cm high is placed 30 cm from 
a concave mirror of focal length 10 cm, as 
shown in Fig. 15-37, (a I On a diagram drawn to 
scale, locate the image hy tracing two rays that 
begin at point P and pass thiough the focal 
point F. Is the image real or virtual ? Is it located 
to the left or to the right of the mirror? (b) 
Calculate the position of the image, (c) Calcu
late the size of the image, (d) Indicate on a 
diagram how the ray from point P to point Q 
is reflected, if aberrations are negligible. [AP-B; 
1978]
15.41 An object O is placed 0.18 m from the 
center of a converging lens of focal length 
6 x IO-2 m as illustrated m Fig. 15-38a. (a)

(a)
I

0.06 m 0.06 m

(b)
I________ I

0.06 m 0.06 m 0.06 m
Figure 15-38
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Sketch a ray diagram to locate the image, (b) Is 
the image real or virtual? Explain your choice,
(c) Using the lens equation, compute the dis
tance of the image from the lens. A second 
coverging lens, also of focal length 6 x 10“ 1 m, 
is placed 6 x IO-2 m to the right of the original 
lens as illustrated in Fig. 15-38b. (d) Sketch a 
ray diagram to locate the final image that now 
will be formed. Clearly indicate the final image. 
[AP-B; 1981]
15.42 Show that when a plane mirror is rotated 
an angle a, the reflected ray rotates through an 
angle twice as large; that is, β = 2α in Fig. 15-39, 
15 43 Show that if a plane mirror is displaced 
parallel to itself a distance x along the normal, 
the image moves a distance 2x.
15.44 The spherical aberration of a (spherical) 
mirror is defined as the difference between the 
focal length / for a ray close to the mirror's 
axis and the focal length f  for a ray close to 
the edge. Show that

where H is the radius of the mirror’s base.
15.45 A concave mirror has a radius of 0.10 m. 
The base of the mirror has a radius of 0.08 m. 
Find the spherical aberration of the mirror and 
compare with its focal length.
15.46 An object moves toward a spherical 
mirror with a constant velocity v. (a) Find the 
velocity of the image as a function of the dis
tance p. (b) Plot the velocity of the image versus 
p. (c) Repeat the problem for a spherical lens.
15.47 (a) Show that if U1 andu2 are the distances 
of an object and its image from the center of a

Figure 15-40

spherical mirror, the relation

I I _  _  2

U1 U2 r

holds, (b) Show that in this case the magnifica
tion is given by

15.48 Given the focal length / of a spherical 
mirror and the magnification M. show that the 
positions of the object and the image are

and

q = _ /( M - l) .

15.49 Prove that all rays parallel to the axis of a 
parabolic mirror (Fig. 15-40) pass through the 
focus after the reflection, irrespective of their 
distances from the axis.
15.50 A glass sphere 2 x l O - 2  m i n  diameter 
contains a small air bubble at a distance o 
5 x 10 3 m from the center. Find (a) the post 
tion and (b) the magnification of the image o 
the bubble, as seen by a person looking fr°n3 
one or the other of the two opposite direction5 
along the line connecting the center of the 
sphere with the bubble. The index of r e f r a c t i o n  

of the glass is 1.50.
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15.51 A transparent sphere with a refraction 
index of » relative to air has a radius r. An 
object is placed at a distance 4r from the center 
of the sphere, (a) Find the position of its final 
image (b) Plot the path of a ray through the 
sphere
15.52 Both ends of a glass rod 0.10 m in diam
eter, with a refraction index of 1.50, are ground 
arid polished to convex hemispherical surfaces 
of radius 5 x 10 2 m at the right end and radius 
0,10 m at the left end. The length of the rod 
between vertexes is 0.60 m. An arrow I mm 
long, at right angles to the axis and 0.20 m to 
the right of the first vertex, constitutes the 
object tor the first surface, (a) What constitutes 
the object for the second surface? (b) What is 
the object distance for the second surface? (c) Is 
this object real or virtual? (d) What is the 
position of the image formed by the second 
surlacef1 te) What is the height of the final 
image?
15 53 A solid glass sphere of radius R and re
fraction index 1.50 is silvered over one hemi
sphere, as in Fig. 15-41. A small object is 
located on the line passing through the center 
of the sphere and the pole of the hemisphere, 
at a distance of 2R from the pole of the un
silvered hemisphere, hind the position of the 
fiual image after all refractions and refections 
have taken place.

Consider a glass sphere of radius K and
""Jex of retraction n, cut by a plane through a
P°int S at a distance x from the center O and
Perpendicular to OS (Fig. 15-42). Show that if

fr n. all rays entering the glass sphere from
' P ‘*nt source at S will emerge from the sphere

,ng lines diverging from a point S', collinear
K h U and S at a distance x’ =  nR from O.
I l-t ■11 Show that the refracted ray, when ex

tended backward, passes through S' for all 
values of φ and the given values of x and x'.)
15.55 Show that for a spherical refracting sur
face separating two substances of indexes of 
refraction rt, and n2. the relation

XiXi=Joft
holds, where x, is the distance of the object 
from the first focus and X 1 the distance of the 
image from the second focus.
15.56 Show that for refraction at a spherical 
surface the following relation holds:

iiil'i sin a, =  Iijy1  sin
where a, and a2 are as shown in Fig. 15-12 and 
V1 and Vi  are the sizes of the object and its 
image. Therefore, for a ray passing through 
several refracting surfaces, all having their 
centers on the same fine, the relation

n y  sin Tt =  Const

holds. This relation is called the Helmholtz law. 
{Hint: Referring to Fig. 15-12, apply the law of 
sines combined with SnellT law and the relation 
obtained from the similarity of lriangle Cab 
and CAB in Fig. 15-15.)
15.57 A thin lens with a refraction index of n2 
is surrounded by two media, with refraction 
indexes of iii and ii3, respectively. Show that 
the equation relating the position of the object 
and of the image is

I i 1  _  » 3  _ ( H i - U i l i ( n z - » a )  

p q r I r2
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15.58 A tank filled with water has an opening 
in one wall covered by a double convex lens 
with a refraction index of 1.5 and radius equal 
to 0.30 m. (a) Find the focal length of a ray 
that approaches the lens parallel to the axis 
from inside the tank and from outside the tank, 
(bl Determine the position of the image of a 
light source located inside the tank at (i) 0.30 m, 
and (ii) 0.45 m from the lens. The index of re
daction for water is 1.33.
15.5y An equiconvex thin lens made of glass 
with a refraction index of 1.50 has a focal length 
in air of0.30 m. The lens is sealed into an open
ing in one end of a tank filled with water 
(index = 1.33). At the end of the tank opposite 
the lens is a plane mirror, 0.80 m distant from 
the lens. Find the position of the image formed 
by the lens-water-tank for an object placed on 
the lens axis 0.90 m from the lens and outside 
the tank.
15.60 (a) Using expression (15.17) for computing 
the refraction at each surface of a spherical lens, 
show that the focal length is given by

I , / I  1 \ ii2n - l
— = ( n - l ) ----------- + ^ r ^ -
./ \r i  rA  2  "

/I n+l\/l IV  1
U+TrA^+/) '?_

where/ is given by Eq. (15.22). (b) Estimate from 
this result the value of the spherica/ aberration 
of the lens, defined as the difference in focal 
length for a ray close to the axis and a ray close 
to the edge of the lens.
15.61 A double-convex lens has a refraction 
index of 1.5. The two surfaces have the same 
radius, equal to 0.10 m. The lens has a radius of 
0.08 m. Find (a) the focal length and (b) the 
spherical aberration
15.62 Plot q as a function of p for (a) (i) a 
spherical mirror satisfying Eq. (15.3), and (ii) a 
spherical lens satisfying Eq. (15.23). (b) Verify 
that in each case an equilateral hyperbola 
results, (c) Also plot the magnification as a 
function of p in each case.
15.63 (a) Show that for refraction due to a 
prism.

s in ^  + 4)=,, S in ^ c0 sI rU !1 1 cos 7(1 — i )

(b) Show also that coSj(r — r') is never smaller 
than cos j(i — i'). (c) Conclude then that the con
dition for minimum deviation is 1 = 1'.
15.64 Show that if the angle of a prism is very 
small and the incident rays fall almost per
pendicular to one of the faces, the deviation is 
<5=(n — I )A.

15.65 If a ray reaches the second surface of a 
prism at an angle larger than the critical angle, 
total reflection occurs and the ray is reflected 
back instead of passing out of the prism. This 
principle is used in many optical instruments, 
(a) Show that if n> I, the condition that at least 
one ray emerge is that A ̂  22, where λ is the 
critical angle, (b) Discuss the range of values of 
the angle of incidence 1 if the ray is to emerge 
on the other side. This range is given by the 
angle a shown in Fig. 15-43. (c) Prove that the 
range is given by

cos a = n sin ( A — λ).

(d) Discuss the variation of a with A.
15.66 Apply the discussion of the preceding 
problem to the case of a prism having a refrac
ting angle of 45' and a refraction index of A- 
(a) Obtain the value of a. (b) Discuss the path 
of a ray that falls perpendicular to one of the 
faces, (c) Consider also the case in which the 
prism's angle is 35 .
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16.1 Introduction

A very important characteristic of wave motion is the phenomenon of interference. 
This occurs when two or more wave motions coincide in space and time. The theory 
of superposition of two simple harmonic motions developed earlier in Volume I can 
tie applied directly to our present problem for the case of harmonic or monochro
matic waves. One place in which interference occurs is the spatial region in which 
reflected and incident waves coincide. In fact, this is one of the most common methods 
ol' producing interference. Another important case of interference is found in a 
wave motion confined to a limited region of space; for example, a string with its two 
ends fixed, or a liquid in a channel, or an electromagnetic wave in a metallic cavity. 
The interference then gives rise to standing waves.

In order to apply the formulas previously developed, we shall write for a harmonic 
wave moving in the +X -direction

C =  Co sin (cot—kx), (T6 .I)

and for one moving in the — X-direction

C =  C0 sin (mi + kx), (16.2)

instead of Eqs. (10.5) and (10.9), This involves only a change of sign; and as long as 
we are consistent, it is a correct procedure as was indicated at the end of Section
10.2 in Eq. (10.10) and as used in Example 13.2.

As mentioned in previous chapters, the theory developed here is applicable to any 
kind of wave motion; but in general our examples and applications will refer to 
electromagnetic waves.

16.2  In terference  o f W a v e s  Produced by T w o  Syn ch ro n o u s Sources

Consider two point sources S 1 and S 2 (Fig. 16-1) that oscillate in phase with the same 
angular frequency ω and have amplitudes Coi and ξ 02. Their respective spherical 
waves are

C1 =  CoiSinlmf-Zcr1) (16·31

and

C 2 =  C 02 s i n  (UJi-Zcr2) (16-4)

where r1 and r2 are the distances from any point to S 1 and S2, respectively. Note that
although the two sources are identical, they do not produce the same amplitude at
P if T1 and r2 are different because the amplitude of a spherical wave decreases accord
ing to a 1 /r law.

Suppose that ζ is a scalar property, such as a pressure disturbance. If C corre
sponds to a vector quantity,' we assume that C 1 and C 2 are in the same direction so
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Y

(a) Cb)

Fig. 16-1. ta) Nodal and ventral lines resulting from interference of waves produced by two 
identical sources, (b) Actual interference pattern of waves on the surface of water. (Photograph 
courtesy of Educational Services, Inc.)

that the combination of the two waves can be treated in a scalar manner. When we
compare Eqs. (16.3) and (16.4) with the expression for simple harmonic motion
£=■ A sin (mt+  a) where a is the initial phase, we recognize that the quantities Ztr1 

and kr2 play the same role as initial phases. Then the phase difference between the 
two wave motions at any point P (if we remember that Zt =  2π/λ) is

δ =  Jcr1  —Icr2 =  ̂  Cr1 - r 2). (16.5)

When we use the technique of rotating vectors (which is explained in Chapter 1 2  of 
'olunie I), the two interfering wave motions can be represented by rotating vectors 
ui length ς0 . and ς02, respectively, which make angles a , =  Zcr1 and H2 =  Zcr2 with the 
( axis (Hg. 16-2). The amplitude ς 0 and phase a. of the resulting wave motion are 

Siven by their vector resultant. Therefore we may express the amplitude of the resull- 
lrig disturbance at P by

ίο  =  Λ “ ι +  ίέ 2 +  ̂ o r i o 2 COSi. (16-6)

pIrOiJ Eq (16,6), we see that ξ falls between the values 4' 01  +  ςυ2  when cos 0 — I or 
P N 2  tin and Qt n -S s0i when cos δ — — I or i5 =  (2n 4- I )π where n is either a positive or a
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-A'

Fig. 16-2. Resultant amplitude of two inter
fering waves. The X-axis has been taken as 
the reference line.

Fig. 16-3. Surfaces of constant phase difference 
for spherical waves produced by two coherent 
point sources Si and S2-

negative integer. In the first case we have maximum reinforcement of the two wave 
motions, or constructive interference, and in the second case maximum attenuation, 
or destructive interference. That is,

<5 =
I rnt constructive interference,
(2 ?! +  1 )π destructive interference.

Using Eq. (16.5), we may then write 

In  ί2 «π
~λ~ = f ( 2 n + 1

or

_ Γ Α

constructive interference, 
destructive interference,

constructive interference, 

destructive interference.

(16.7)

(16.8)

or since theBut C1 —r2 =  constant defines a hyperbola whose foci are S 1 and S1, 
problem is actually in space, this equation defines hyperbolic surfaces of r e v o l u t i o n ,  

such as those in Fig. 16-3. Thereforeweconclnde from Eq. (16.8) that at t h e  h y p e r b o l i c  

surfaces whose equations are r j—r2 = + 2 , + 2 2 , + 3 2 , , . . ,  the two wave motions 
interfere constructively. These surfaces are called ventral or antinodal surfaces. At
the hyperbolic surfaces whose equations are — r2 =  +^ 2 , + § 2 ___   the two wave
motions interfere destructively. These surfaces are called nodal surfaces. The overall 
pattern is thus a succession of alternate ventral and nodal surfaces. The intersections 
of these surfaces with a plane passing through the X-axis are the hyperbolas illustrated 
in Fig. 16-1.

The situation described is such that at each point of space the resulting wave 
motion has a characteristic amplitude, given by Eq. (16.6), so that

ζ — ζΌ sin (cut—a)

w h e re  a  is a n  in itia l p h a se  a n g le  a s  in d ic a te d  in  F ig . 16-2. T h e re fo re  th e  re su lt o f t^e
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interference does not have the appearance of a progressive wave motion; rather, 
there is a stationary situation at each point of space where the oscillatory motion 
has 3, fixed amplitude. The reason for this stationary condition is that the two sources 
oscillate with the same frequency, maintain a constant phase difference, and hence 
are said to be coherent. If the sources are not of the same frequency, or if their phase 
difference changes erratically with time, no stationary interference pattern is observed, 
and the sources are said to be incoherent. This is the normal situation for two light 
sources composed of the same kind of atoms, emitting light of the same frequency. 
Since there are many atoms involved in each source and they do not oscillate in phase, 
no definite interference pattern is observed.

To circumvent this difficulty and produce two coherent beams of light, several 
devices have been designed. A common device is Fresnel's biprism, illustrated in 
I ig. 16-4 and named after its developer, the French physicist Augustin Fresnel 
(I-7Sis--IglV). It is composed of two prisms, P 1 and P2 set with their bases joined; 
each prism nas a very small refracting angle Θ. Light coming from the source S is 
refracted in each prism and separated into two beams that apparently proceed from 
lWu coherent sources, S 1 and S2 These are the images of S produced by each prism. 
Coherency is assured in this case because the two beams proceed from the same 
sOurce. The beams interfere in the shaded region. For large phase differences, the 
"Hereηce is destroyed because the interfering beams are produced by the source at 

Iwo rI l t  I ve il widely separated times so that microscopically speaking, the source is 
n°t the same.

n̂ even simpler device is the one used by the Fmglish scientist Thomas Young 
73-1829), who in his early experiments on light interference proved that light 

a wave phenomenon. His arrangement (Fig. 16-5) consists of two small, closely 
1Paced holes or slits, S 1 and S2. in an opaque surface with a light source S placed
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Bright

B righ t

'  B right

Fig. 16-5. Tlie interference of two coherent sources. Young’s double-slit experiment.

behind it. According to Huygens' principle, S 1 and S2 behave as secondary and 
coherent sources whose waves interfere on the far side of the surface.

In the case of light, an interference pattern is observed on a screen placed parallel 
to the two sources S 1 and S 2 as indicated in Fig. 16-6a. A series of alternate bright 
and dark fringes appear on the screen as shown in Fig. 16-6b, and are caused by the 
intersection of the screen with the hyperbolic ventral and nodal surfaces. For other 
regions of the electromagnetic spectrum, different kinds of detectors are used to 
observe the interference pattern.

If the separation a of-the sources S 1 and S 2 is small compared with the distance D, 
we may neglect the small difference between rt and r2 and assume the amplitudes 
ς 01  and ξ02 are practically equal. We may then rewrite Eq. (16.6) as

Now from the geometry of Fig. 16-6, considering that Θ is a small angle so that 
sin Θ :stan θ = χ  D, we have r, - T 2 =  S1B =  U sin θ =  αχ D\ and rewriting Eq. (16.7), 
we get

The intensity of the resulting motion on the points of the screen is proportional to 
Therefore

<o =  £ o i \  2 ( 1  + co s  ’<5)=2£0, cos

c 2 π
0 =-τ- (r, - r 2) (16.9)

where I0 is the intensity for 0 =  0. This cos2 intensity distribution is illustrated if 
Fig. 16-7. The points of maximum intensity correspond to

πα sin 0 π ax
=  ηπ or
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pjyr. 16-6. (a) Schematic diagram for deter- 
jtuning the intensity of the resultant wave 
motion on a screen caused by the inter
ference of two coherent sources, (b) Photo
graph of the interference fringes produced 
0ji a screen by a pair of slits illuminated 
b\ a point monochromatic light source. 
TvJctc that there is a fading of the fringes 
neat the edges, because of the loss of 
oihererce

These two results for maximum intensity may be written as

s in 0  =  n -  or x =  n —  (16.11)
a a

where n can be either a positive or negative integer, and Θ and x are shown in Fig. 
16-6. The separation between two successive bright fringes on the screen is Δχ =  (Dja)/1. 
Therefore measuring Δχ, D, and a serves to determine the wavelength λ. This method 
ts, in fact, one of the standard methods of measuring wavelengths. N ote that if the 
light source is composed of more than one wavelength, each wavelength will sep
arately produce its own interference pattern on the screen.

* J'S-7 Intensity distribution in the interference pattern produced by two coherent sources.
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Example 16.1. Determination of the separation between two successive bright or dark fringes in a 
two slit experiment.

f  Consider an experiment, similar to Young’s, in which two slits are separated a distance of 
0.8 mm. The slits are illuminated with monochromatic light of wavelength 5.9 x 10“ 1 m, and the 
interference pattern is observed on a screen at a distance of 0.50 m from the slits. The quantities 
appearing in Eq. (16.11) are, in this case, a = 0.8 mm = 8 x IO 4 m, D = 5 x 10” 1 m, and A=5.g x 
10 7 m. Therefore the positions of the bright fringes are x=n(DX/a)=U  x 10”4n ni = 0.37» Itlm 
In general the fringes have to be observed with a magnifying glass. The separation between 
successive bright fringes is 0.37 mm and is the same as the separation between two dark fringes, k

Example 16.2. The interference pattern of two incoherent sources of the same frequency,

▼ Incoherence in this case is due to a variable phase difference. Therefore instead of Eqs. (16,3) 
and (16.4), we write

Ci = Co, sin (ωί — Iirl — φ) and ξ 2 = Cfl3 sin (wt—kr2)

where φ is the additional phase difference that varies with time in a random manner. Then the 
phâ e difference is δ ■— Iniri —τ2)ΐλ +  φ, and'the resulting amplitude at any point in the inter
ference pattern is

2 tt
C6 =  £5i +  i 62 +  29oi£o2c°s τ  (r I ~>'2)+ Φ_ Λ

But ζ 0 is not constant in time because of the changes in φ , therefore we must find instead.
Because of the random variations in φ. we have that

cos
2 π

= 0 .
avc

Therefore

K S U = K S iU + «SaU ;
and since the intensity is proportional to the square of the amplitude,

l j v e  =  I l  T f 2-

Therefore the resultant average intensity is the sum of the individual intensities, and no fluctua
tions of intensity with position are observed. For this reason we do not observe interference 
fringes from two electric bulbs, for example, since the phase differences of their respective radiating 
atoms are distributed at random even if both emit monochromatic light of the same wavelength- *

16.3 In terferen ce  of Severa l Syn ch ro n o u s So u rces

Consider now the case of several synchronous and identical monochromatic sources 
arranged linearly as illustrated in Fig. 16-8. To simplify our discussion, assume I ® 
we observe the resulting wave motion at a distance very large compared with t
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Fig. 16-8- Linear series of equally spaced 
coherent sources.

Fig. 16-9. Resultant amplitude at an arbitrary1 
point due to the interference of waves generated 
by equally spaced linear coherent sources.

separation of the sources so that effectively the interfering rays are parallel. From the 
figure it may be seen that between successive rays there is a constant phase difference 
given by

2 π . „ 
ο =  . a sin 0

/
(16.12)

where a is the distance between the sources, λ is the wavelength, and 0  is the angle a 
particular set of rays makes with the normal to the plane of the sources. To obtain 
the resulting amplitude for the direction of observation, given by the angle 0 , we 
must evaluate the vector sum of the corresponding rotating vectors for each source. 
If all the sources are alike, their rotating vectors ail have the same amplitude, ξ01; 
and successive vectors are deviated from the previous vector by the same angle δ as 
indicated in Fig. 16-9. Designating the number of sources by N, we then have an 

1-sided polygon having a center C and a “radius” p where the angle OCP  is Νδ. 
"I he amplitude of the resultant vector is given by the tine OP  that closes the polygon. 
Fr°m ihe figure we see that

ξ 0 =  O P = 2 ζ ) Ρ = 2p sin 

l Iso from triangle COR  we have

ξ 01  = 2 p  sin \δ. 

dividing the two relations to eliminate p, we obtain

£ o  — "=0!
sin

sin \δ
(16.13)
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Fig. 16-10. Resultant amplitude of interference 
of equally spaced linear sources at a point of 
zero phase difference.

Z s in jM Y
0 V Sm &  J 0

(16.14)

For N =  2, we get ξ0 =  2ξ01 cos in agreement with the previous result for two equal
sources derived in Section 16.2.

The intensity of the resulting wave, since it is proportional to ξ0, is then

sin (Nita sin Θ/λ) 
sin (πα sin θ/λ)

where I0 is the intensity of each source, proportional to £5 ,. Expression (16.14) has 
very pronounced maxima, equal to N 2I0 when <5 =  2im because sin Na/sm  a =  ± N
for a =  ηπ, and in our case oi=jt5. That is, there is constructive interference when

a sin θ =  ηλ (16.15)

where n is any integer, including zero. The value of I is then I =  N 1I0 whenever 
Eq. (16.15) is satisfied. This result is understandable because when <5 =  2ηπ, all source 
vectors ξ οι are parallel as indicated in Fig. 16-10; and the resulting amplitude is 
ξ0 =  Ν ξ 0\ as given by Eq. (16.13). Expression (16.15) agrees with Eq. (16.11) derived 
for two sources under similar assumptions. The intensity of the resulting wave is zero 
whenever ^Νδ =  η'π. That is, we have destructive interference when

asin O  =  —  ( 1 6 . 1 6 )
N

where n is any integer excluding 0, N , 2N ,  because then Eq. (16.16) would trans
form into Eq. (16.15) in which we have shown that all sources are in phase. Between two 
minima there must always be a maximum. Therefore we conclude that there are also 
N  — 2 additional maxima between the principal maxima given by Eq. (16.15). Their 
amplitudes are, however, relatively much smaller, especially if N  is large. The principal 
maxima, however, do correspond to the directions for which the waves emitted by 
adjacent sources are in phase.

The graph of 1 10 in terms of <5 is shown in Fig. 16-11 for N  =  2, 4 ,8 , and very large· 
We see that as JV increases, the system becomes highly directional, since the resulting 
wave motion is important only for narrow bands of values of δ, or for narrow bands 
of values of the angle Θ.
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jV very 
large

— 2 — I 0 I 2 a  sin B / \

Fî . 16-11. Intensity of the interference pattern for 2, 4, 8, and very many sources. The source 
spacing a is kept constant.

T hese results are widely used in broadcasting or receiving stations when a direc
tional eftecT is desired. In this case several antennas are arranged in such a form 
tIiat the intensity of the radiation emitted (or received) is maximum only for certain 
directions, given by Eq. (16.15). For example, given four antennas in a straight line and 
seParated by a —a/2, Eq. (16.15) gives sin 9 —2n. Then only « — O is possible for the 
PTineipal maxima, giving f) =  0 and π. For the zeros, or nodal planes, Eq. (16.16) gives 
sin Θ , allowing for n'— ±  I and + 2  or θ — + π /3  and + π /2 . The situation is illus
trated in the polar diagram of Fig. 16-12, in which the intensity is plotted in terms of 
the angle. The antenna arrangement of Fig. 16-12 then transmits and receives prefer- 
eHtially in a direction perpendicular to the line joining the sources, and is therefore 
called a broadside array. The same directional effect is used in radio telescopes. 
lieSeral parabolic antennas are placed at equal distances along a straight line and 
Juh their axes parallel. For a given spacing and orientation of the axes, the wavelength 

l,t the radio waves received is determined by Eq. (16.15). (See Problem 16.12.)
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Fig. 16-12. Angular distribution of intensity in the Interference pattern for waves generated by 
four coherent linear sources spaced a half wavelength apart.

Example 16.3. Interference by reflection from or transmission through thin films.

T  The discussion of the previous section can be applied to the case of light reflected or transmitted 
by thin films. Consider (Fig. 16-13) a thin film of thickness a with plane waves falling on it at an 
angle of incidence Oi. Part of a ray such as AB is reflected along SG, and part is redacted along 
BC. Ray BC' in turn is partly reflected at C along CD and partly transmitted along CM. Ray 
CD again is partly reflected at D along DK. being superposed on the refracted ray of FD and 
partly transmitted along DE, superposed with the reflected ray of FD. Similarly the reflected ray 
BG also contains contributions from several rays to the left. Therefore interference phenomena 
occur along the reflected and refracted rays. The situation is then similar to the case illustrated in 
Section 16.3, with N  very large, but with an important difference: the interfering rays do not all 
have the same intensity because each successive reflection or refraction decreases the intensity.

If we neglect this change in intensity, the maxima for interference by reflection or refraction 
occur when the phase difference δ between successive rays satisfies the equation δ =Im n  where m 
is an integer. To compute 6 for interference by reflection, consider rays AB and FD. If we draw 
the wave front BB', the phase difference along DE is due to the difference in times required for

Fig. 16-13. Interference by reflection or 011 
refraction through a thin film.
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following paths B'D and BCD. Now from the figure we see that B'D =  BD sin Oi and BD =  Ia tan Br. 
Jherefore

2an sin2 Θ,
B D =  2a tan Or sin O1 = cos Or

because b> Snell's law sin Oi= n sin Or Also BCD = IBC  = 2o/cos Or. Then the times tx = B1Dic 
2an sin2 OJc cos Or and I1 =  BCDfv =  Iim c cos Or because v=c/n. The time difference is

2απ cos Θ, 
I1- I 1=    -

and the ohasc difference is

„ , , 2αωη cos Or 4nan cos Or---------------
C A

where the relation A=IkcIto has been used. This may not be the entire phase difference because 
as we saw in Section 14.2, sometimes on reflection there is an additional phase difference of π 
radians. For example in the case of electromagnetic waves, when light polarized perpendicular to 
the plane of incidence goes from a medium in which the velocity is larger to another in which it is 
smaller, the phase changes by it radians. So in this case if n> I, there is a phase shift of π for ray 
FD when it is reflected at D. but not for ray BC when it is reflected at C : the reverse occurs when 
i x l  Thus in either case we must write

_ 4παη cos Or
d =  j------- in;A

and setting δ =  2mn where in is an integer, we get

2an cos Or= ',(Im- 1)2 (maximum reflection, minimum transmission), (16.17)

as the condition for interference by reinforcement in the reflected waves. The student may verify 
by similar calculations that for the transmitted wave along DK the condition for maximum 
intensity is

2an cos Or =  m/. (maximum transmission, minimum reflection). (16.18)

The phase shift of π radians does not occur in this case because the ray has undergone two internal 
reflections. Fquation (16.17) also gives the condition for minimum transmission and Eq. (16.18) 
fhves the condition for minimum reflection. It is interesting to note, then, that the color we observe 
because by Snell’s law sin Oi =  Ii sin Or. Also BCD =  2BC =  2a/cos Or Then the time I x =  B Dic =  

sin2 OJc cos Or and I1 =  BCDiv =  2an/c cos Or because v=c/n. The time difference is 
If the incident light is not monochromatic. Eqs. (16,17) and (16.18) give different values of Or, 

aUd then Oh for each / The different values explain the colors we observe in thin oil films on water 
'uriaces. Also if the film is of variable thickness, conditions (16.17) and (16.18) are not fulfilled at 
al1 points for a given wavelength; the result in the case of monochromatic light is a succession of 

a r k  and bright bands, and in the case of white light a succession of colored bands. This effect 
carI easily be seen by placing a plano-convex lens on a plane glass plate as shown in Fig. 16-14a. 
The space between the lens and the glass plate is an air layer of varying thickness. The resulting
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L ayer of uir of 
variab le  th ickness

Plano-ran vex 
lens

(a) (b)

Fig. 16-14. Newton's rings, formed by interference in the air film between a convex and a plane 
surface, (a) Schematic diagram, (b) Photograph of rings. (Courtesy Bausch and Lomb Optical Co.)

interference pattern consists of a series of concentric colored rings, known as Newtons rings, 
shown in Fig. 16-14b. k

Example 16.4. A given film has an index of refraction of 1.42. Determine its minimum thickness 
if it is to appear black by (a) reflection and (b) transmission when illuminated with sodium light 
(wavelength 5.9 x iO-7 m).

T  From Eqs. (16.17) and (16.18) we see that the minimum value of a occurs at the maximum value 
of cos Or: that is, for Sr=Of1 and thus also O1=O1. This situation corresponds to normal incidence. 
In this case (with in — I), the conditions become α=λ/4η for no transmission and a — 2/2a for no 
reflection. So the corresponding values are u=1.04x 10“7 m and a = 2.08xl0“7 m. Since the 
separation between atoms is of the order of 10 11 m, the minimum film thickness in each case is 
only a few hundred atomic layers, k

16.4  Standing W a v e s  in One Dim ension

In Example 13.2 we discussed transmitted and reflected waves on a string when the 
string had a discontinuity at a certain point, such as a change in diameter or m 
material. Now consider the situation when one end of the string is fixed at point 0  
as indicated in Fig. 16-15, An incident transverse wave moving to the left and having 
the equation ξ = ς0 sin (ωί + kxj is reflected at O, and produces a new wave propagating 
to the right and having as its equation ξ — ζ’0 sin (ωί — kx). The displacement at an)'



lb.4) Standing Waves in One Dimension 519
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point of the string is the result of the interference or superposition of the two waves; 
that is,

ξ =  ξ0 sin (ωί +  ίίχ) +  ξ '0 sin (ωί -  tv). (16.19)

At O, x =  0  so that
£(*=o] =  (£o +  ii<j) sin ωί·

Bul that O is fixed means that £(J.=O) =  0 at all times. Therefore £'0=  —ξ 0. In other 
Words the wave undergoes a phase change of π radians when it is reflected at the fixed 
end. We have encountered this phase change many times before (Examples 13.2 and 
‘4 11). The phase change may be seen in the series of photographs of Fig. 16-15, which 
show an incident and a reflected pulse. Then Eq. (16.19) becomes

c =  £0[sin (mt +  t x j - s in  (ωί —kx)].

I sing the trigonometric relation sin x —sin /S =  2  sin '(α — β) cos[-](a +  /i)], we obtain

ξ =  2ξ0 sin kx cos ωί. (16.20)

^he expressions ωί +  kx no longer appear and Eq. (16.20) does not represent a travel- 
Ι11ί> wave but rather a simple harmonic motion of angular frequency ω whose ampli- 
'ude varies front point to point and is given by

A  — 2ξ0 sin kx. (16.21)
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This amplitude has been indicated by the dashed lines in Fig. 16-15. The amplitude is 
zero for kx =  nn where n is an integer. This result may also be written as

x  =  -§rU. (16.22)

These points of zero amplitude are called nodes. Successive nodes are separated by 
a distance of \λ. When we remember expression (10.37), V =  J T jc r, for the velocity of
propagation of waves along a string subject to a tension T  and having a mass per
unit length σ, the wavelength is determined by

, 2 πΐ' 2π IT
A= =  - I , (16.23)

ω a  ^  a

and is completely arbitrary as long as the angular frequency ω is also arbitrary.
Suppose now that we impose a second condition: that the point x  =  L, which 

may be the other end of the string, is also fixed. That condition means that x =  L 
must be a node and must satisfy the condition kL — im. If we use Eq. (16.22), we have

IL  2L 2 L
n 2 3

L =  ̂ nA or K = —  =  2L, —  t — , ___ (16.24)

This second condition automatically limits the wavelengths of the waves that can 
travel on this string to the values given by Eq. (16.24). In view of Eq. (16.23), the

Fig. 16-16. Standing transverse wave on » 
string with both ends fixed.
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frequencies of oscillations are also limited to the values

(16.25)

where

1 2  L y j  σ
I IT

is called the fundamental frequency. Thus the possible frequencies of oscillation 
galled harmonics) are all multiples of the fundamental. We may say that the fre
quencies and wavelengths are quantized, and that the quantization is the result of 
the boundary conditions imposed at both ends of the string. This situation appears in 
many physical problems as we shall frequently have occasion to see later on.

Figure 16-16 indicates the amplitude distribution for the first three modes of 
vibration ( n = l ,  2, 3). The nodes or points of zero amplitude are determined by 
means of Eq. (16.22). The points of maximum amplitude are the antinodes. The 
distance between successive antinodes is also j/l. O f course the separation between a 
noJe and an antinode is XjA. Observe that while £ =  0 at the nodes, ν ξ /Ρ χ -Ο  at the 
antinodes since the amplitude is maximum there.

Example 16.5. Tension in a musical string.

▼ A steel string has a length of 0.40 m and a diameter οΓ I mm. Given that its fundamental vibra
tion is 440 s ' 1, corresponding to the musical tone A (or Lal in the diatonic scale, key οΓC, find its 
tension (Assume that the mass density of the string is p = 7.86 x IOi kg ni 3.) Since the mass per 
unit length is σ = πrzp, using

we get σ = 6.17 x 10"3 kg m ’. Solving Eq. (16.25) for the tension T, setting n= I since we want 
the fundamental tone, we obtain T - 4Lrav\. Setting L = 0.40 m, v, =440 s and introducing 
'He value of σ that we calculated, we finally obtain

r=5xl0 4m and p = 7.86 x IO3 kg m 3,

T =  764.9 N.

Stringed musical instruments are usually tuned by adjusting the tensions or lengths οΓ their 
strings, k

16.5  Standing W av e s  and the W a v e  Equation

In Chapter 1 0  we discussed the wave equation for the propagation of a wave; that is,

( 1 6 .2 6 )
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When we discuss a wave propagating in only one direction, we use either f i (x ~ v t)
or f 2{x +  vt), but not both. However, we have seen that when a wave is reflected at
one point, the result is two waves traveling in opposite directions, and Eq. (16.27) 
must be used. This use of both forms is what we did in Eq. (16.J9) for the case oTa 
string with one end fixed; we then obtained Eq. (16.20) for the resultant wave motion. 
The important feature of Eq. (16,20) (that is, ξ =  2ξ0 sin kx cos ωί) is that the x and r 
variables are separated, resulting in a variable amplitude along the string, but a 
fixed amplitude for each point. This separation of time and space variables is the
characteristic of standing waves. We must then explore the possibility of a more
general formulation of a harmonic standing wave. Our requirement can be met by 
an expression of the form

£ = /(x )  sin cut (16.28)

where f ix )  is the amplitude of the wave at point x. Since c must be a solution of 
Eq. (16.26), we must substitute ξ as given in Eq. (16.28) into Eq. (16.26) to determine 
the requirements on the am plitude/(x) for standing waves. Now by differentiation, 
we find that

?2ζ d2f  . ΐ'2ξ
— , = — Vsm ωί and -  — ω~1(χ) sin ωί.
cx dx C r

Therefore, substituting these values in Eq. (16.26) and canceling the common factor 
sin rof, we obtain

d2f  o}2
d ^ =  ~  7 2 j '

or since k — o)/v,

P + k 2f = 0 .  (16.29)
dx

This is the differential equation that must be satisfied by the amplitude / (x) if the 
standing wave given by Eq. (16.28) is to be a solution of the wave equation. The general 
solution of Eq. (16.29), as the student may verify by direct substitution, is

/ ( x )= A sin kx +  B cos kx (16.30)

where A and B are arbitrary constants. Therefore Eq. (16.28) becomes

i, =  {A sin kx +  B cos kx) sin ωί. (16.31)

Of course, we could have used cos cot instead of sin cut, with the same result. In other
words, the phase of the time factor is irrelevant for our discussion.

The constants in Eq. (16.31) are determined by the conditions imposed at the 
boundaries. Let us illustrate this determination with the problem of the string with 
fixed ends discussed in the preceding section. The conditions are that ξ =  0 for both

and proved that its general solution is of the form

ξ = / ι( χ - ν ί ) + / 2(χ+νί) .  (16.27)
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and x =  L. Setting x =  0 in Eq. (16.31), we have

ξ !χ=0) =  Β sin ωί =  0 .

Therefore B =  0, and Eq. (16.31) reduces to

ξ =  A sin kx sin ωί. (16.32)

(sow if we set x =  L, Eq. (16.32) yields

£{X = L)= A  sin kL sin cor =  0.

But now we cannot set /1 =  0 because that would make ξ =  0 everywhere; i.e., we 
would not have any wave at all. Thus our only choice is to set sin kL =  0, which 
requites that

k L = tm  or λ = —  (16.33)
n

where n is an integer, in agreement with Eq. (16.24).
If, instead of imposing the condition that c =  0  at the ends, we impose other con

ditions because the physical situation at the ends is different as in the strings illustrated 
in Fig. 16-17, we would end up with a solution different from Eqs. (16.32) and (16.33).

It is instructive to investigate two other simple examples, related to standing 
waves in the air inside a pipe, such as an organ pipe. Consider first a tube open at 
both ends (Fig. 16-18). Air is blown in at one end through the mouthpiece, and 
standing waves are produced because of the reflection occurring at the other end. 
The fundamental difference between this case and the previous one is that both ends 
are free, and therefore ζ has a maximum value at these ends because there cannot 
he a pressure difference between outside and inside; in other words, there is an anti
node at each end. Our boundary conditions, corresponding to antinodes at both 
ends, are now ξ =  maximum, or δξ/δχ  =  0 at x =  0 and x =  L. From Eq. (16.31), we have

~  =k(A  cos kx — B sin kx) sin ωί. (16.34)
cx

Getting x =  0 , we obtain

=  kA sin ωί =  0
X = O

I
i * o I 1 * 0 1 * 0

- | j *  - /I/I Ii Iia  4 I  I  I  I  I  I  . -

x  =  () X  =  L

i
#

J iJ V J  ·  
x  =  0

•  TvJ
X  =  L

(a) il.)

Figure 16-17
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l f =odr ; r = 0d r 2 = » ί = 0

Fig. 16-18. Standing pressure wave in an air Fig. 16-19. Standing pressure wave in an air 
column with both ends open. column with one end closed.

so that /4 =  0. Then Eq. (16.34) becomes

δξ
— =  —kB sin kx sin ωί.
( x

If we now set x =  L, we have

( δ ξ \
— =  — kB sin kL sin ωί =  0.

V X jx  = I
Now, just as in the case of the string, we cannot make B =  O because then we would 
have no wave at all, and our only choice is sin kL =  0, which again gives us

2 L
kL — tm or /. =  —  . (16.35)

This equation is identical to Eq. (16.33). The frequencies of the standing waves aN
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with n =  I, 2, 3 , ,  and therefore the allowed frequencies comprise all the harmonics 
corresponding to a fundamental tone of frequency Vl =V jlL .  From Eq. (16.31) we 
see that in this case with ,4 =  0, ξ =  Β cos kx sin ωί. In Fig. 16-18 the dashed lines 
indicate the amplitude distribution for the cases n =  l , 2, and 3. We conclude then 
that the oscillations of an air column open at both ends are equivalent to those of a 
string with both ends fixed, but the positions of the nodes and antinodes are inter
changed.

As our second example, consider a tube closed at the end opposite to the mouth
piece (Fig. 16-19). The physical conditions at that end have changed while at the 
mouthpiece they remain the same as in the preceding case. Therefore at the mouth
piece we must again have an antinode, or Β ξ/βχ=0  at x  =  0 ; but at the closed end 
(x =  L) we must have a node, or ξ =  0 at x =  L. The first condition, at x =  0, requires, 
as in the previous example, that A=O so that Eq. (16.31) becomes

ξ =  B cos kx sin cot.

Applying the boundary condition at the closed end, x =  L, we obtain

cos kL sin ωί =  0.

This equation requires that cos ZrL=O. In other words,

π 4/„
kL =  (In' +  I) — or 2 = — ----- (16.37)

2 I n  +  I

with n' =  0, I, 2, 3 . . .  and with the corresponding frequencies

v =  " =  (2n' +  I) ^7 = V 1, 3v„ 5vl t . . . .  (16.38)
λ 4L

The modes of vibration are now different from those given by Eqs. (16.35) and (16.36), 
corresponding to a tube open at both ends. Figure 16-19 shows the nodes and anti
nodes for the open-closed case for n' =  0, I, and 2. The most important feature is that a 
tube closed at one end can vibrate only with odd harmonics of the fundamental
I l =  J4L . For equal lengths, the fundamental frequency of a closed tube is one-half
that of an open tube.

A solution of the wave equation of type (16.23) corresponds to a standing harmonic 
wave of angular frequency ω. In general, however, the disturbance set up initially 
does not correspond to a particular frequency. In order to determine the wave
lengths and frequencies involved, a Fourier analysis o f the initial disturbance must 
he made. The disturbance at any later time is

s =  X  (A sin kx +  B cos kx) sin cot (16.39)
ω

where k =  co/c and the coefficients A and B are determined from the Fourier analysis, 
^ut Eq. (16.39) does not represent a standing wave in the sense defined before (i.e.. a 
Wave whose amplitude depends on the position) because as a result of the summation 
sign the time and position variables are not completely separated.
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Example 16.6. Determination of the frequency of oscillation of a mass suspended from a spring

▼ Consider a spring of mass m0, length L. and elastic constant κ. The spring is suspended from a 
fixed point and has a bob of mass JVf attached to the free end. The bob is displaced vertically 
ftotn its equilibrium position and then released.

We would be tempted to say that the angular frequency is ω —^ κ ,Μ  as we did in Volume I 
when first studying simple harmonic motion (here the elastic constant of the spring is given as κ 
to avoid confusion with the wave number, designated by k). However, now we shall find that this 
frequency is correct only when the mass of the spring is negligible compared with the mass of the 
bob. From Fig. 16-20, we see that when we hang the bob M, the spring stretches until the upward 
force it produces on JVi balances the weight of JVL If JVf is now set into oscillation, waves are pro
duced in the spring, traveling up and down, resulting in standing waves. The frequency of oscilla
tion of JVf is determined by the frequency of the standing waves produced in the spring. Let us 
designate the displacement of each section of the spring by ξ. The boundary condition at the 
fixed end, x=0, is ξ-= 0. This requires that B = O in Eq. (16.31) so that the displacement of every 
section of the spring is given by

Q =  A sin kx sin Mt. (16.40)

At the free end of the spring. JVf is accelerated by the force of the stretched spring, which, according 
to Example 10.6. is — Κ{δζ/όχ)χ, L where K = kL is the elastic modulus of the spring as defined 
in that example. The negative sign appears because the positive direction for i is downward and 
the force is upward (or negative) when δξ/dx is positive. Therefore the equation of motion of M is

This equation gives the boundary condition at the free end of the spring. The equation above 
may be written (using the expression for f given before) as

-JVfw2 sin LL = - K k  cos kL.

Setting k=w/v  and recalling that a = m a/L is the mass of the spring per unit length and v = J  L 
according to the result obtained in Example 10.6, we have

U)L wL i? JVff2 Vf ~
- tan T = M ? - f = M

(16.41)

_____________ _
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fhis is an equation of the type Θ tan Θ — const where B = U i L j v .  The solution of this equation gives 
the possible values of the angular Frequency ω. It is a transcendental equation and cannot be 
solved by ordinary algebraic methods. However when the spring is very light so that v is very
large and thus Θ is very small, we may use the approximation tan O = ATjtl3 H . Then the left-
hand side of the equation becomes

cuL
Lt

o)L I (  wLV
- + =  — I +·_ c 3 \  r / (vj'+mi

Recalling that K =  k L  and thus V = - J K  a  =  L j K l m 0 , we have w L / e  =  so that Eq. (16.411
niay be written as

(u2mn Λ OJ2Jttn
κ \ 3ic

JA1 +- 3k- - + ·  = Af'

Asafirst approximation, iftnn is very small, we may neglect the second term inside the parentheses; 
the result is ω2 = κ/Μ ornt= J  KjM, which is the value we obtained in our original study of simple 
harmonic motion. As a second approximation, we introduce this value of ω in the second term in 
the parentheses; the result is

i°YU2 ( l  + 3 M J M
or

(16.42)
M+3»i0 '

Therefore for small oscillations the effect of the spring on the angular frequency ω is equivalent to 
increasing the mass of the body by one-third the mass of the spring. This expression gives the 
fendameiital frequency; but in addition, there are overtones that are not integral multiples of the 
fundamental, k

16.6 Standing  Electrom ag netic  W aves

lnterlerence and diffraction phenomena are so characteristic of waves that their 
Presence has always been accepted by physicists as proof that a process can be 
uAerpreted as a wave motion. For that reason, when in the seventeenth century the 

dian scientist Francesco Grimaldi (1618-1663) observed interference and diffrac- 
ign m his research on light, the wave theory of light could no longer be ignored. 
tjWever, it was not until early in the nineteenth century, when Young, Fresnel, 

atld others performed the experiments mentioned earlier in this chapter and sup- 
l tea their experimentation with a strong mathematical foundation, that the wave 

nCory of light became generally accepted. At that time electromagnetic waves
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(a) (b)

Fig. 16-21. Standing electromagnetic waves produced by reflection from a conducting surface.

were not known, and light was assumed to be an elastic wave in a subtle medium, 
called ether, that pervaded all matter. It was not until the end of the nineteenth 
century that the Scottish physicist James Clerk Maxwell (1831-1879) predicted the 
existence of electromagnetic waves, and the German scientist Heinrich R. Hertz 
(1857-1894), by means of interference experiments that gave rise to standing electro
magnetic waves, experimentally verified the existence of electromagnetic waves in the 
radiofrequency range. Later their velocity was measured and found to be equal to 
that of light. The reflection, refraction, and polarization of electromagnetic waves 
were also found to be similar to those of light. The obvious conclusion was to identify 
light with electromagnetic waves of certain frequencies. At that time optics, to all 
intents and purposes, ceased to be an independent branch of physics and became 
simply a chapter of electromagnetic theory.

To understand the formation of standing electromagnetic waves, assume that the 
waves produced by an oscillating electric dipole are falling with perpendicular 
incidence on the plane surface of a perfect conductor (Fig. 16-21). Taking the X- 
axis as the direction of propagation and the Y- and 2 -axes parallel to the electric and 
the magnetic fields, respectively, we have a wave that is plane polarized with the 
electric field oscillating in the XT-plane. The electric field of the incident wave is 
parallel to the surface of the conductor. But at the surface of a perfect conductor the 
electric field must be perpendicular to the conductor; that is, the electric field cannot 
have a tangential component (see Section 4.5 and Example 14.1). The only way to 
make this condition compatible with the orientation of the electric field in the incident 
wave is to require that the resultant electric field S  be zero at the surface of the con
ductor. This requirement means that the electric field of the reflected wave at the 
surface must be equal and opposite to that of the incident wave so that <f =  0 for 
x  =  0. This condition is mathematically equivalent to the condition for the reflection
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ol waves in a string with one end fixed, a condition discussed in Section 16.5. Since the 
mathematics is the same, we may use an equation of the same form as Eq. (16.20) 
for the resultant electric field:

S  — 2 S 0 sin kx  sin cot.

The magnetic field oscillates in the Λ'Ζ-plane. Using Eq. (11.4), we find that the mag
netic field is expressed by

2 Jf0 cos kx cos ωί,

with 3$0 =  £ 0k/o) =  S 0/c. Therefore there is a phase difference of Â in the space 
variations and of \ P  in the time variations of the two fields. From the mathematical 
expression for ^  given above, we see that the magnetic field has maximum amplitude 
at the surface. This can also be seen from the boundary condition at the surface: 
referring to Fig. 16-21 b, we see that if the electric field of the incident wave is along 
the - I-  T-axis, the magnetic field must be along the -Z -a x is , according to the relative 
orientation of the two fields with respect to the direction of propagation of the 
incident waves, which is along the —X-axis. For a zero resultant electric field to 
exist at the surface, the electric field of the reflected wave must be along the — T-axis: 
and since the reflected wave propagates along the X-axis, the magnetic field must be 
along the —Z-axis. Thus, although the electric fields interfere destructively at the 
surface, the magnetic fields interfere constructively there.

The amplitudes of the electric and magnetic fields of the resulting wave at a distance 
x from the surface are 2 S 0 sin kx  and 2 cos kx. They are denoted by the shaded 
lines in Fig. 16-2la. At the points where kx =  nJi or χ  =  \ηλ ,  the electric field is zero 
and the magnetic field is maximum. At the points where kx =  (n +  j)jt  o rx  =  (2n+ l)A/4, 
the electric field has a maximum value but the magnetic field is zero.

It is instructive to see how Hertz, in 1888 with his primitive equipment, verified 
these theoretical predictions. Hertz’s oscillator is shown on the left in Fig. 16-22. 
The transformer T  charges the metallic plates C and C'. These plates discharge 
through the gap G, which becomes the dipole oscillator. The directions of the S-  
and aS-tields relative to the direction of propagation are also shown. To observe the 
waves, Hertz used a short wire, bent in circular shape, but with a small gap. This 
device is called a resonator.  The diameter of the resonator used in this kind of experi
ment must be very small compared with the wavelength of the waves. If the resonator 
•s placed with its plane perpendicular to the magnetic field of the wave (that is, in 
the X y -plane), the varying magnetic field induces an emf in the resonator, resulting 
ln sparks at its gap when the induced emf is large enough. On the other hand, if the 
Plane of the resonator is parallel to the magnetic field (so that the normal to the plane 
ls perpendicular to the Z-axis), no emf is induced and no sparks are observed at the 
(tap.

To produce standing electromagnetic waves, Hertz placed a. reflecting surface 
(made ol a good conductor) at Q. In such a case, when the resonator is at a node of 
Ihe magnetic field, no matter what its orientation, it will show no induced emf (or
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sparks). At an antinode of the magnetic field, however, the sparking is greatest when 
the resonator is oriented perpendicular to the magnetic field. By moving the resonator 
along the line GQ, Hertz found the position of the nodes and antinodes and the 
direction of the magnetic field. The results obtained by Hertz coincided with the 
theoretical analysis we have given. By measuring the distance between two successive 
nodes, Hertz could calculate the wavelength λ\  and since he knew the frequency v 
of the oscillator, he could calculate the velocity of the electromagnetic waves by 
using the equation c =  /iv. By this means Hertz obtained the first experimental value 
for the velocity of propagation of electromagnetic waves.

16.7 Standing W a v e s  in T w o  D im ensions

Consider a rectangular membrane stretched over a frame so that the membrane 
edges are fixed. If the surface of the membrane is disturbed, waves are propagated m 
all directions, are reflected at the edges, and result in interference. Assume the sp ec ia l 
case in which plane waves of only one frequency are generated in the membrane- 
Assume further that these waves propagate parallel to either side as indicated in 
Fig. 16-23. Instead of nodes and antinodes we get nodal lines and antinodal lines- 
designated by N  and A in Fig. 16-23. In Fig. I6-23a, the membrane is fixed at th® 
left (x =  0) and the right (x =  a), but the other two sides are free. The waves propaga*1- 
along the A-axis, both to the left and to the right, and result in a system of nodal an
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Fig. 16-23. Standing waves on a membrane.

antinodal lines parallel to the Y-axis. At x =  0 and x = a w e  must have nodal lines. 
Therefore the condition for standing waves is similar to Eq. (16.33); that is,

2 a
ka — ηπ or A = — . (16.43)

/I

The corresponding frequencies are

v - H  ( £ )  (16.44)

where v is the velocity of propagation of the waves along the surface of the membrane 
as given in Example 10.15. These waves are described by an expression similar to 
%  (16.32),

ζ =  A sin kx  sin ωί, ( 16.45)

stnce the pioblem is mathematically the same. The addition of the second dimension 
has not changed our boundary conditions, which are still ξ =  0 for x = 0  and x  =  a. 
Symmetry suggests that the coordinate y  plays no role so long as the membrane is 
n° i fixed along the sides parallel to the direction of propagation.

In I ig. 16-23b the membrane is fixed at the bottom (y = 0 ) and at the top (y =  b). 
For waves propagating parallel to the Y-axis the nodal and antinodal lines are parallel
0 the X -axis. The condition for standing waves is similar to Eq. (16.43), with a

f iPlaced by b, yielding

kb =  nn or /  =  — (16.46)
n
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Fig. 16-24. Successive reflections of a wave in a rec
tangular membrane.

a

with frequencies

I’
(16.47)

which are different from those given in Eq. (16.44) for waves parallel to the X-axis. 
The equation of the standing waves is

Next consider a membrane with all four sides fixed and plane waves traveling in an 
arbitrary direction along its surface. Recall that a plane wave in two dimensions 
[setting z —0 in Eq. (10.63)] is expressed by

where we have followed our present convention of writing the time factor first. The 
quantities Zci and Zc2 are the components of a vector k  parallel to the direction of 
propagation in the XT-plane and of length Ζί =  2π/Α =  ω/ι\ Then

For an initial ray PQ  (Fig. 16-24), characterized by the components Zc1, k 2, there is a 
reflected ray QR  characterized by Jt1, - I c 1- From R to S the ray is characterized by 
-Zc1, -Ze2. And from S on, the ray is characterized by the components -Ze1, Ze2. In 
the successive reflections of this ray, no new combinations of Ze1 and Ze2 appear. We 
conclude then that along the membrane there is a system of four waves, caused by 
reflection at the four sides. (This situation is different from one-dimensional problems, 
in which only two waves appear.) These four waves must interfere in such a way that 
at x =  0 and a, and y = 0  and 6, the resultant value of ξ is zero. A direct algebraic 
procedure shows (as we shall see in Example 16.7) that the values of Zi1 and Zc2 satisfy 
the conditions

ξ =  Α sin Zcy sin ωί. (16.48)

ξ =  ζ0 sin [ωί -(Zc1x +  fe2y)]

k — ^ k ]  +  k.I (16.49)

/ / n ' n  KlCi =  HxTi or k x= -----
a
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Fig. 16-25. First few modes of vibration of a  rectangular membrane. N odal lines are indicated by 
arrows. The frequency of each mode is given in terms of the fundam ental frequency w 0 = m/b.

and

— '«2'l — -J.

where n, and n2 are integers. Then, by Eq. (16.49), we have

I In I n 2

^he possible wavelengths are given by A =  2njk or

I  I  In \ n\ 

A ~ 2  ^ /α ϊ "l·' h ϊ ■

l 1 or the possible frequencies we use v =  ν/λ  so that

(16.50)

(16.51)

( 1 6 . 5 2 )
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/

/

Fig. 16-26. Some possible modes of vibralion of a circular membrane. Nodal lines are indicated 
by arrows. The frequency of each mode is given in terms of the fundam ental frequency ω0. (Vibra
tion and Sound, by Philip M, Morse, M cGraw-Hill Book Co., 1948.)

v In j  n j
>=— I— +  —  

2 S l a 2 b 2
(16.53)

Notice that the possible frequencies are no longer integers of a fundamental frequency, 
but Tollow a more irregular sequence.

The pattern of nodal lines obtained by use of Eq. (16.50) is given by Ii1X=^fhn 
and k2y  =  η’2π where n\ and n'2 are integers equal to or smaller than U1 and n2, respec* 
tively, and form the rectangular patterns shown in Fig. 16-25.

The problem of a circular membrane is more complex mathematically; however, 
once more we find that only certain frequencies are possible. Symmetry Suggests 
that the nodal lines are now circles and radii as indicated in Fig. 16-26 for some of 
possible modes.

Example 16.7. Derivation of conditions (16.50).

T  We have indicated that on the mem brane of Fig. 16-24 there is a superposition of four w a '6“ 
corresponding to  the four possible combinations of ± k ,  and ± k 2. The system of four wav
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s ves a resultant ξ,

ξ =  ς0 sin [cut-(Ai1-V + /c2y)]

+ Co sin [ t u t — ( Z i 1X - Z i j y ) ]

+ C0 sin [tut - ( - Z q x  -Z t2y)] 

+  C0 sin [cot - ( -  Jt1X +  Ic2Ji)], (16.54)

which is the equivalent of Eq. (16 19) for one dimension. Now at all points where x = 0 ,  we must 
have C =  O- Setting x = 0  in Eq. (16.54) and grouping equivalent terms, we may write

ς - ( ς 0 + ξ'ό') sin(a>t-ic2>’)+(ib +  io) sin (mr +  /t2y )= 0,

which requires that

which gives the appropriate phase changes at each reflection, in agreement with the similar result 
in the case of a string. Therefore Eq. (16.54) becomes

C =  C0[sin [coi-(/c,JC +  /c2y ) ] - s in  [ ω ί -(Z q x -Z q y )]

+  sin [cut—( - I c 1X - Z c 2.v)]— sin [aw — ( —/qx  +  Z q y ) ] } .

Translorming each line of the formula above into a product, using Eq. (M . 12), we have

i  =  2 i0[ - s i n  Zqycos (cur—Zt1X) +  sin Zqy cos (cot +  Zqx)]

- 2 ξ 0 sin Z q y [-co s  (w f-Z q x l+ co s  (ω ί+Zqx)].

Again transiorm ing the difference of the two cosines into a  product, we obtain

(16.56)

(16.55)

ς =  — 4ξ0 sin Ic1X  sin Zqy sin cut, (16.57)

which is the two-dimensional equivalent of Eq. (16.20). The m inus sign in front is irrelevant and 
his no special meaning. W e may check our first boundary condition by setting x =  0 or y =  0, 
and observing tha t we get c = 0 . which was our requirement.

We rrmst now verify the second set of boundary conditions; that is, ί  = 0 for x = t t  or y  = b. 
 ̂^ese conditions require that either sin Zc1U =  O or sin k2b = 0, resulting in Zi1U =  M1 π and Zc2Zi =  H2Jt.

These are the conditions (16.50). k
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1 3 .8  S ta n d in g  W a v e s  in T h re e  D im e n s io n s ; R e s o n a tin g  C a vitie s

The problem of standing waves in three dimensions is a simple extension of the 
case for two dimensions. Consider a rectangular cavity of sides a, b. and c with 
perfectly reflecting walls (Fig. 16-27) so that £ =  0 at all six faces. A plane wave in 
space is characterized by a vector k,  perpendicular to the plane of the wave, with three 
components, Zcl, k 2, and Zc3, along the three axes. When a wave is produced inside the 
cavity, the wave is reflected successively at all faces, and a set of eight waves, resulting 
from all the different combinations possible among ± k u ± k 2. and ± k 3, is established. 
The interference or superposition of these eight waves gives rise to standing waves 
if the Zc1, Zc2, and Zc3 components of k  have the appropriate values. By analogy with 
Eq. (16.50), these values are

With v = v j / . = v k / 2π, the possible frequencies of the standing waves in the cavity are

A cavity such as the one shown in Fig. 16-27 will therefore resonate, sustaining 
standing waves for the frequencies given by Eq. (16.60).

In the case of a spherical or cylindrical cavity, the mathematical treatment is more 
complex, but again we find that only certain frequencies are allowed.

The results we have obtained for standing waves in cavities find many applications. 
In acoustics, for example, resonating cavities are used for sound analysis, Resonating 
cavities for electromagnetic waves have walls made of materials that are good electrical 
conductors so that the walls are the best possible reflectors. These cavities can sustain  
standing electromagnetic waves of definite frequencies with very little attenuation of 
the waves through energy loss by reflection. Thus the cavities serve as storage spaces 
for electromagnetic energy. The detailed theory of electromagnetic standing waves 
in cavities is slightly more complicated than our discussion here indicates because 
of the transverse character of the waves. But results such as Eq. (16.60) remain the 
same. Such cavities are used for frequency measurement or analysis (in the same 
manner as acoustical resonators), for frequency control in oscillating circuits, and for 
measuring the properties of the material filling the cavity.

(16.58)

where nu n2, and n3 are integers. Since k =  J k \  +  k l  +  kl ,  we may write

(16.59)

(16.60)



16.8) Standing Waves in Three Dimensions; Resonating Cavities 537

Z

Example 16.8. Number of different modes of oscillation with a frequency equal to o r smaller 
than v in a cubical cavity of side a.

T If the cavity is cubical, a —b —c in Eq. ( 16.60), and the possible frequencies are

I ν={τ ^ η' + ηί+η*
or

47TV-V
ηΤ + π; + μ, = — — . (16.61)3tr

In a coordinate system in which the coordinates are H1. H 2 . and H j  (Fig. 16-28), Eq, (16.61) represents 
a sphere of radius 2va/i. O ur problem is to find all the possible com binations of integers H 1, n 2.

Figure 16-28
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, 4 v V
μΪ +  ̂  +  ιτ3<  —j ~ .

W hen the radius is very large, this num ber of possible com binations is equal to the volume of 
the octant of the sphere shown in Fig. 16-28a since to each set of integers n ,, n2, and n3. we may 
associate a cell of unit volume as indicated by the dots in Fig. 16-28b. Then the num ber of modes 
of oscillation of frequency equal to or smaller than v is

and H3 that satisfy

=  I 4π /2 v a V  = 4irv-V 
,= ,8 3 \  r /  3(.'3

N .

Since a 3 is the volume of the cavity, the num ber of modes per unit volume is

4πν3
n , , L = 7 7 ·  (16.62)

3 r

The subscript L  is added because this result is valid only for longitudinal waves. If the waves 
are transverse, we have for each mode two independent and different states of polarization so 
that instead of Eq. (16.62) we m ust write

8πν
H,,  T  =  — r - . (16.63)I j r

Sometimes it is convenient to  know the num ber of modes in a frequency range dv. This quantity 
may be w ritten in the form d n„= 3(v) dv. Differentiating Eq. (16.62), we have

ώΐν-.L= .9 l ( v )  dv =  ^ - 3 -  dv ; 116 641
V

for transverse waves, from Eq. (16.63) we get

S j i v 2
dny f  = y j{v)dv—— — dv. (16.65)

t r

These results are very useful in several calculations, as, for example, in analyzing the modes of
oscillation of radiation trapped in a cavity or in discussing atom ic oscillations in solids. A

16.9 W ave  G uides

T h e  cav itie s  d iscu ssed  a b o v e  a llo w  o n ly  s ta n d in g  w aves. T h e re  is a lso  th e  possib ility  
o f  p ro d u c in g  tra v e lin g  w av es in  c e r ta in  e n c lo su re s  ca lled  wave guides,  w h ich  a re  long  
cav itie s  o p e n  a t  b o th  en d s . W av es  a re  fed in  a t  o n e  e n d  a n d  rece iv ed  a t  th e  o th e r . W e 
sh a ll d iscu ss  in  d e ta il  o n e  s im p le  ty p e  o f g u id e  fo r lo n g itu d in a l w aves: it c o n sis ts  o f 
tw o  p a ra lle l p la n e s  s e p a ra te d  th e  d is ta n c e  a (F ig . 16-29). T fa  w ave is se t u p  in s id e  the 
ca v ity  a t  a n  a n g le  w ith  th e  p la n e s  a s  d e te rm in e d  by  th e  c o m p o n e n ts  Zt1 a n d  k 2 o f t Iie 
v e c to r  fc, p a ra l le l a n d  p e rp e n d ic u la r , re sp ec tiv e ly , to  th e  p lan es , it  w ill suffer successive 
re f le c tio n s  a t  b o th  lim itin g  su rfaces  a n d  b o u n c e  b a c k  a n d  fo r th  b e tw een  th em . S ince
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I'

Fig. 16-29. Ray propagating between two 
parallel reflecting planes.

the space is not limited in the direction parallel to the planes (as happened with the
cavities), the wave will keep progressing to the right. Let us choose the X-axis parallel
to the reflecting planes and the Y-axis perpendicular to the planes so that the vector 
k is in the XT-plane. In Fig. 16-29 we have indicated the path of a particular ray. 
Along PO  the ray is characterized by the components Zc1, Zi2; from Q to R it is charac
terized by the components Zc1, -Zc1. From R on, it is again characterized by Zc1 and 
Ii2, and so on. We conclude then that in the space between the reflecting planes we 
have two sets of traveling waves, corresponding to Ic1, k 2 and X1, —k2, respectively. 
(Remember that in the case of two-dimensional standing waves, such as those in a 
membrane, we had four waves because of the additional waves generated by reflections 
at the right and left ends.) These two waves interfere, giving rise to the resultant wave 
motion (as will be shown in Example 16.9) described by the expression

ξ =  —2ξ0 sin k2y  cos (cot — Zc1X) (16.66)

where

Zc2= -  (16.67)
a

to satisfy the boundary condition i  =  0 at y —a.
Equation (16.66) differs profoundly from our previous results with other kinds of 

standing waves in that the x-coordinate has not been separated from the time, but 
still appears in a term of the form cos (Mt-Zc1X). This term corresponds to a wave 
traveling along the X-axis with a phase velocity

<i6,681
Since Ze1SgZc because Ze1 is a component of #c, Eq. (16.68) indicates that the phase 
velocity of the wave traveling along the cavity is larger than the phase velocity 
ν - ω /k of the waves in free space. So for electromagnetic waves, the phase velocity 
would be greater than c, N ow  from Zi2 =  Zq+  Zî  and Eq. (16.67), we have that

Ze2 =  Zc2 +
n 1K1
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71= I Fig. 16-30. First three modes of propagation
m rnM m rnm m ym m m m m m m m  of a wave between two parallel reflectlng

planes.

Direction 
of propagation

v m  ' ^ r n tm m m m M m ,
n — 'i.vmmmmmmmmmm/̂ mmmmmm/m/rn

Nodal ( 3  *- Direction
plane V w /  of propagation

n 3

or

I, 1 , 2  K 2 r 2  l o r  Vi1I l 1 I v. A O l

‘ ' " 7 *  1166,1

since k — ojjv. The group velocity associated with the phase velocity given by Eq- 
(16.68) is. using Eqs. (10.55) and (16.69).

v . - ^ = ^ v 2 J ^ - ) v .  (16.70)
* d k ! ω  V A /

which is smaller than v since A1 =SA. Multiplying Eq. (16.68) by Eq. (16.70), we get 
Ci Cfl =  C2; or for electromagnetic waves in vacuum (t— c), vpvg—c 2, a result found 
previously in Example 12.3 for a different situation. We see then that even if it ts
empty, an electromagnetic wave guide acts as a dispersive medium with an index of
refraction less than one. and thus a phase velocity larger than c, but a group velocity 
smaller than c.

Equation (16.69) also indicates another important property of wave guides. Since 
A1 must be a real number, in order for a wave to propagate along the wave guide, i t lS 
necessary that oj2/ v2^ n 2Ti1/ a 2, which yields

7ΓΓ nu
co3mj—  or v 5 s— .

a 2 a
( 1 6 . 7 1 )
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In oiher words, only those waves with frequencies satisfying Eq. (16.71) are propagated 
along the guide. Each mode is determined by the value o f n, and for each mode there 
is a LUlojj frequency,  equal to nv 2a. below which propagation is impossible. These 
wave guides act as frequency filters.

Although the wave propagates within the wave guide along the X-axis, the ampli
tude is modulated transversely in the Y -direction by the factor sin k2y  in Eq. (16.66). 
The transverse variation of the amplitude is indicated in Fig. 16-30 for « = 1 .2 , and 3. 
In practice, wave guides have either a rectangular or a circular cross section. The 
two shapes yield similar results with respect to phase velocity along the axis of the 
gmdt and cutoff frequency.

Mthoagh our discussion is valid for wave guides used for any kind of waves, the 
situation for electromagnetic waves has some peculiarities. Because of the transverse 
character of electromagnetic waves, for each k there are two possible modes, depend
ing on the relative orientation of the electric field S  with respect to the sides of the 
wave guide. Electromagnetic wave guides are extensively used in the microwave 
tegion for the purpose of transmitting signals. These guides are made from materials 
that are excellent conductors.

It ;s interesting to note that the region between the earth’s surface and the iono
sphere, which is approximately 80 km above the earth, forms a wave guide that allows 
the propagation of radio waves around the curve of the earth, as shown in Fig. 16-31.

A simple example of parallel plane wave guides in the optical region is a pair 
ot parallel mirrors, such as those found in some barber shops. Another type of optical 
wave guide consists of transparent fibers, called optical fibers, with a diameter of a 
"W microns. These fibers are made of glass or quartz although other materials, such 

as n>lon, are being tested. A ray entering at one end follows the axis of the fiber as a 
‘C:>iilt of several reflections and emerges at the other end (Fig, 16-32). When the 

ers are arranged in bundles, an image can be transmitted from one point to another. 
^cousiical wave guides are also very common. The air ducts in the heating system 
a house, fot example, act as acoustical wave guides that are capable of transmitting
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the noises from the furnace or sounds from one room to another. The inner ear is 
essentially an acoustical wave guide.

Example 16.9. D erivation of Eqs. (16.66) and (16.67).

T  The two waves that propagate along the guide of Fig. 16-29 give rise to a resultant wave 
described by the expression

C =  C 0 sin [ r o t - ( Z c 1 JC+  ί ί , ν ) ]  + Co sin [ω ί—(Zc1 X - fc2 y ) ] .  ( 1 6 . 7 2 )

that must be compared with Eq. (16.54). To determine ς 0, we impose the condition that £ = 0 at 
all points of the lower surface; that is. y = 0 . Setting y =  0 in  Eq. (16.72) yields

ί  =  ( ί ο +  ίό) sin (CJi-Zt1X)=O

so that C0 +  Cu =  O or £0=  - C 0. a result to  be expected from our experience with previous similar 
situations. Then Eq. 116.72) becomes

4'=C0fsin [ ω ί—(A, x +  fc2y )] — sin [rof- (A 1X -A 2)')^ ,

T ransforming the difference between the two sines into a product, we may write

C= — I i 0 sin k2y  cos (ωί — A|X). (16.73)

By setting y = 0. we verify that our boundary condition at the lower plane is satisfied. The boundary 
condition at the upper plane ( v = a )  is  also £ =  0. This requires that sin Zi1A =  O. resulting in A2U = '111 
or k 2 — nn/a. However, there is no boundary condition for the X-coordinate. k

Example 16.10. Electromagnetic waves in a plane parallel wave guide.

▼ Electromagnetic waves in guides have certain peculiarities of their own that are due to (he! 
transverse character and to the boundary conditions at the surface of the conductor. Tlie*̂  
boundarv conditions are (I) the electric field is norm al, and (2) the magnetic field is tangent 
the surface of a conductor. O ne possible solution of Maxwell’s equations satisfying these con
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Fig. 16-33. (a) Electric lines of force (vertical lines) and magnetic lines of force (dots and crosses) 
in the A' h-plane for an electromagnetic wave propagating parallel to two reflecting planes parallel 
to the X Z -  plane, (b) Electric and magnetic fields in the wave depicted in part (a).

!ions f0l a piane wave guide is that given by Eq. (11.12); that is, S y= S 0 sin (o>t — feoc), Mz = JSq sin 
(wr - k x )  with JS0 -  S J c .  The lines of force of the electric field are indicated by lines in Fig. 16-33 
and those of the magnetic field by dots and crosses. In this case the wave guide does not change 
ll,e chase velocity of the wave, which propagates with the same phase velocity c= w /k ,  corre
sponding to  propagation in free space; the wave guide limits only the wave front.

Bat Maxwell's equations adm it o ther solutions that also satisfy our boundary conditions. One 
P”ssiHe solution is

= ^ j= O .

S .  = S 0 sin lt3y co s  (tot —/t,x),

k
JS1= — S 0 cos k zy  sin (cot — k 1x), (16.74)

Ii
JSy= — 1 S 0 sin k 2y  cos (cut — fcj.x),

JSz =  0.
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(a)
Fig. 16-34. Wave guides for electromagnetic waves, (a) Electric field perpendicular to tlic page, 
or TE mode, fb) M agnetic field perpendicular to  the page, or TM  mode.

This solution can be verified by direct substitution in Maxwell’s equations. This solution is called 
the TE Uransterse electric) solution because the electric field is transverse to the direction of 
propagation but the magnetic field has a com ponent along the effective direction of propagation, 
or X-axis. The electric and magnetic fields are, however, perpendicular to  each other. T o satisfy the 
boundary conditions at both conducting planes, we must set <f. =  0 and ^ v=O for y = 0  and v=a, 
The first is autom atically satisfied; the second requires that sin k2a = 0  or k 2a = tm so that the 
condition given by Eq. (16.67) is obtained. Figure 16 34a shows the lines of force for the lowest 
TE mode, n =  I. The lines of force of the electric field are straight lines parallel to the planes 
(perpendicular to  the page) and thus are indicated by dots or crosses; the lines of force of the 
magnetic field are the closed curves. Each pattern occupies one-half of the effective wavelength 
I n f k i, and successive patterns have a phase difference of n. The patterns travel along the guidt 
with the phase velocity Vp= W fk1.

Another possible solution of Maxwell’s equations is

S x = - ^ S 0 sin k , v sin (ω ί— Α',χ), 
κ ι

S y= S 0 cos Ic1VCos (ωί —k ix),

S .  =U, (16.75)

Mx= ^ 1 =  O,

. — ——y S 0 cos T y  cos (ωί — k , x).
K1C"

This solution again can be verified by direct substitution in Maxwell’s equations. This sccon 
solution, denoted TM  (for transverse magnetic), is so called because the magnetic field is t r a n s v e r s e  

to  the direction of propagation. The electric field, however, has a  com ponent along the effecto 
direction of propagation. Both fields remain perpendicular to each other. To satisfy the b oundary  
conditions at the conducting planes, we m ust m ake S x =O at y = 0  and  y — a. The first is aul°” 
matically satisfied, and the second once m ore requires that sin k 2a = 0  or k2a = nn so that a 
the condition given by Eq. (16.67) is obtained. Therefore both modes have the same cutoff r 
quency.
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Figure Ib-34b shows the lines of force for the lowest TM mode, n =  I, However, the lines of 
force of the magnetic field are now straight lines parallel to the planes (perpendicular to the 
page! arid are indicated by dots or crosses: the lines of force of the electric field correspond to the 
patterns shown. As in the TE case, each pattern occupies one-half of the effective wavelength 
2n,'kv  and the patterns travel along the guide with the phase velocity Vr =Ujjkv  A

Problem s

16 I Two slits, separated a distance of 10 3 m, 
are illuminated with red light of wavelength 
h5 x 10 7 m. The interference Tringes are o b 
served on a screen placed I m from the slits, 
(a) Fmd the distance between two bright fringes 
and between two dark fringes, (b) Determine 
the distance of the third dark fringe and the 
fifth bright Tringe from the central fringe.
16.2 By means of a Fresnel biprism (Fig. 16-4), 
interference fringes are produced on a screen
0.80 m away from the biprism, using light of 
wavelength equal to 6.0 x 10 m. Find the 
distance between the two images produced by 
the biprism if 21 fringes cover a distance of
2.4 x 1 0 '3 m on the screen.
16 3 Figure 16-35 shows an arrangement, called 
Llovds mirror, which produces interference 
patterns. The coherent light sources are the 
source Si and its image, S2- which is due to 
reflection on the upper surface of the glass plate. 
Therefore the interfering rays are those coming 
directly from the source and those reflected 
ir°in the glass a) W hat would you conclude 
about the phase change by reflection if the 
' inge corresponding to  zero path difference 
Ke.]ό = 0 ) is (i) bright, and (ii) dark? (b) In the 
aCiuaI experiment, result (ii) is obtained. Ex- 
"llJin why this result was to  be expected in view 
" the discussion of Section 14.2.

^2 · ----- 7 /F y j j  / ''''/ / / '/ S i
Glass plate

Figure 16-35

16.4 In Lloyd’s mirror, the source slit S i and 
its virtual image S2 lie in a plane 0.20 m behind 
the left edge of the m irror (see Fig. 16-351. The 
m irror is 0.3 m long, and a screen is placed at 
the right edge Calculate the distance from this 
edge to the first light maximum if the per
pendicular distance from S1 to the m irror’s 
plane is 2 x 10 3 m and if A = 7.2 x 10 7 nv
16.5 Discuss the interference pattern on a screen 
when the sources Si and S2, separated the 
small distance a, are placed along a line per
pendicular to  the screen (Fig. 16-36a). Experi
mentally the two sources could be the two 
images of a light source produced by reflection 
in the two faces of a thin mica sheet (Fig. 16- 
36b I. This arrangem ent is called PohLs inter- 
jeromeler,
16.6 Two synchronized sources of sound waves 
send out waves of equal intensity at a frequency 
of 680 Hz. The sources are 0.75 m apart. The 
velocity of sound is 340 m s _1. Find the posi-

Sereen
M

(a) s r  S2;-

T h in

(b )

I
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Fig. 16-37. Radio interferometer arrangement.

tions of minimum intensity: (a) on a line that 
passes through the sources, (b) in a plane that 
is the perpendicular bisector of the line between 
the sources, and (cl in a plane that contains the 
two sources, (d) Is the intensity zero at any of 
the minima?
16.7 An interferometric arrangem ent used in 
radio astronom y consists of two radio tele
scopes separated a certain distance. The anten
nas of these telescopes can be oriented in 
different directions but are always kept parallel. 
The signals received by the antennas are trans
mitted to a receiving station where they are 
mixed (Fig. 16-37). (a) Show that the directions 
of incidence for which the resultant signal is 
maximum are given by Eq. (16.11). (Hint: N ote 
that the situation is just the reverse of that for 
two sources, illustrated in Fig. 16-3.) (b) Make 
a polar plot of the intensity of the signal as a 
function of the angle 0.
16.8 Figure 16-38 shows a radio interferometer 
at Green Bank, West Virginia that operates at a 
wavelength of 0.11 m. The distance a between 
the two radio telescopes can be adjusted up to
2.7 x IO3 m. Find the angle subtended by the 
central intensity maximum at maximum sep
aration of the two telescopes.
16.9 Suppose that we have, instead of two paral
lel slits as in a Young’s experiment, three 
parallel slits equally spaced a distance a. Dis
cuss the intensity distribution of the inter
ference pattern observed on a distant screen.

Fig. 16-38. Two-element radio interferometer 
at Green Bank, West Virginia. (Photograph 
courtesy N ational Radio Astronomy Observa
tory.)

16.10 Find the intensities of the secondary 
maxima in the source arrangement of Fig.
16-12 relative to the principal maxima. (Him, 
The first secondary maximum may be shown 
to occur at 0 ~ 4 8 u.)
16.11 (a) Find the spacing between the sources 
in the array of Fig. 16-12 to  produce an “end- 
fire” pattern; i.e., one with principal maxima 
at (?= ±71/2, (b) Determine the position of the 
secondary maxima, (c) Make a plot of the 
angular distribution of Lhe intensity.
16.12 The first multiple radio interferometer, 
built in 1951 in Australia by P rof W. N. 
Christiansen and shown in Fig, 16-39, c o n s i s t s  

of 32 antennas. 7 m apart, with their corre
sponding parabolic reflectors. The system |S 
tuned to a wavelength of 0.21 m. The signals 
received by the antennas are superposed at the 
observing station to give a resultant signal 
system I s  thus equivalent to  32 equally spaced 
sources. Find (a) the angular width of the 
central maximum, and (b) the angular s e p a r a  

tion between successive principal maxima.
16.13 Two rectangular pieces of plane glass are 
laid one upon the other. A thin strip of papcr 1 
placed between them at one edge so that a 
thin wedge of air is formed. The plates are 
illuminated by a beam of sodium light U
5.9 x IO-7 m) at norm al incidence. Ten Inter
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Fig. 16-39. G rating radio interferometer at 
the University of Sydney. Australia. (Photo- 
giaph courtesy Prof. W. N. Christiansen.)

ference fringes are formed per centimeter length 
ol wedge. Find the angle of the wedge.
Io 14 A square piece of cellophane film with 
index of relraction 1.5 has a wedge-shaped sec
tion so that its thickness at two opposite sides 
is J 1 ana U2 (Fig, 16-40). Ifthefilm isillum inated  
with m onochrom atic light of wavelength 6.0 
* 10 fn at norm al incidence, the num ber of 
Iringes appearing by reflection on the film is 
10 What is the difference U2-C ii ?
16.15 Light of wavelength 5.0 x IO-7 m is inci
dent perpendicularly on a film that has an 
index of relraction equal to  1.4 and is 10 6 m 
thick. Part of the light enters the film and is 
reflected hack at the second face, (a) How many 
wavelengths are contained along the path of 
lhis light m the film from the point of incidence 
to the point of emergence? (b) W hat is the 
Phase diffeicnce between these waves as they 
leave the film and as they enter it? (c) Repeat 
Ihe problem for light whose angle of incidence 
is 30 .
fi'·16 tw o  glass plates having a length of 
 ̂* IO-2 m are placed in contact at one end and 

separated at the other by a thin paper sheet, 
fius forming an air prism. When the prism is 
lIiUnnnated by light of wavelength 5.9 x IO-7 m 
7 normai incidence, 42 dark  fringes are ob 
served, F ind the thickness of the paper sheet.

Figure 16-40

16.17 Newton's rings are observed with a plano
convex lens resting on a plane glass surface 
(see Fig. 16-14). The radius of curvature of the 
lens is 10 m. (a) Find the radii of the dark inter
ference rings of the various orders observed by 
reflection under nearly perpendicular inci
dence, using light of wavelength 4.8 x 10 7 m.
(b) How many rings are seen if the diam eter of 
the lens is 4 x 10“1 m.
16.18 The radius of curvature of the convex 
surface ol a plano-convex lens is 1.20 m. The 
lens is placed on a plane glass piale with the 
convex side down, and illuminated from above 
with red light of wavelength 6.5 x 10 ”7 m. Find 
the diam eter of the third bright ring of the 
interference pattern.
16.19 A copper wire having a radius of IO-5 m 
and a length of I m is fixed at both ends and is 
subject to  a tension of IOi  N. Find (a) the 
fundamental frequency and the first two over
tones. and (b) the corresponding wavelengths.
(c) Plot the vibrational state of the wire in each 
case, (d) Write the equation describing the 
standing waves for each frequency. (The density 
of copper is 8.92 x IO3 k g /m ' 3.)
16.20 (a) How is the fundam ental frequency of a 
string changed if one doubles (i) its tension, 
(ii) its mass per unit length, (iii) its radius, and 
(iv) its length? (b) Repeat the problem for a 
case in which the quantities listed are halved.
16.21 A tube whose length is 0.60 m is (a) open 
at both ends, and (b) closed at one end and 
open at the other. Find its fundamental fre
quency and the first overtone if the tem per
ature of the air is 300 K. Plot the amplitude 
distribution along the tube corresponding to 
(c) the fundamental frequency and (d) the first 
overtone.
16.22 Estimate the percentage change in the 
fundamental frequency of an air column per 
degree change in tem perature at a tem perature
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of 300 K. (See Example 10.7.)
16.23 A string vibrating with a frequency of 
256 Hz is in resonance with a tuning fork. 
Determine the frequency of the beats produced 
if the tension of the string is increased by 20 per
cent.
16.24 A tuning fork with a frequency of 256 Hz 
is placed in front of the open end of a tube as 
shown in Fig. 16-41. The length of the air 
column can be changed by displacing the level 
of the water surface, moving container A up 
or down, (a) Find the lengths, L, of the first 
three air columns that are in resonance with 
the tuning fork, (b) Make a sketch in each case

showing the amplitude distribution along the 
tube and the position of the nodes and anti
nodes. Assume a tem perature of 300 K.
16.25 Two surface waves, A sin kix — vt) and 
A sin Ji(y-ui), propagate along a membrane,
(a) Discuss the resulting m otion; show that 
these waves are equivalent to  a modulated wave 
propagating in a direction making an angle of 
45' with the X-axis and with a phase velocity 
equal to v '2t>. (b) Verify that the wavelength is 
reduced by the factor J2 .  tc) Show that the 
amplitude is zero over the lines

x — y = (2fi+ l)tr/fi.

16.26 (a) Show that for a square membrane of 
side a, if v0 =  u/2a is the fundam ental frequency, 
the successive frequencies are v =  v 2v0, 2v0, 
ν/S v ,,,I sjlI v n,3v0, ^IO v0, v 13V0 |b!D eter
mine the num ber of different combinations of 
H1 and H2 needed to  obtain the fundamental 
and successive modes of vibration. The number 
of different com binations gives the degeneracy 
of the vibrating mode.
16.27 Repeat the preceding problem for a 
cubical cavity o i side a.
16.28 Estimate the num ber of transverse vibra
tional modes per unit volume, in the frequency 
range between EO x IOli  Hz and 1.2 x IO1 Hz, 
for electromagnetic radiation trapped in a 
cavity.

CHALLENGING PROBLEM S

16.29 The lowest frequency standing wave that 
can be set up in a certain piano string has a 
frequency of 512 Hz. The string is 0.80 m long,
(a) W hat is the speed of propagation of waves 
in the string? (b) Sketch the standing wave 
patterns of the next two possible higher fre
quency standing waves and specify their fre
quencies. [AP-B: 1969]
16.30 Two speakers S 1 and S2 are transmitting 
sound waves in phase and of the same fre
quency / ,  A microphone is used to  delect the

resultant sound by moving it along the line PF 
An intensity pattern for the sound is shown in 
Fig. 16-42. The speed of the sound is 340 m Pcr 
second, (a) How m uch farther from point . 
is speaker Si than speaker S2? (b) Find the 
wavelength and frequency of the sound Waves- 
(c) The frequency of the sound waves is gradu 
ally lowered until a minimum of intensity <s 
observed at point M. W hat is the frequency u 
the sound waves now? [A P-B; 1969]
16.31 Two glass plates are in contact at Ofs
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edge and are separated by a piece of aluminum 
[oil at the opposite edge as shown in Fig. 16-43a. 
Light of wavelength 6,000 A is approximately 
normally incident from above, illuminates the 
entire plate area, and is refleeted from surfaces 
A and B As an observer moves from left to 
right across the plates, the observer counts a 
total of 30 bright interference bands. The center 
of bright band 30 coincides with the edge of the 
foil, ta) W hat is the thickness of the foil? (b) Is 
the region near the line of contact of the plates 
a dark band or a bright band? Explain. The 
top plate is broken and the remaining piece is 
only two-thirds as long as before as shown in 
Fig 16-43b. T hesam e piece of foil is used again,
(c) Uescribc any change in the num ber and 
posiuon of the interference bands now ob- 
liOrvcd. [A P-B; 1970]
16.32 A rectangular, transparent glass plate 
having an index of refraction of 1.5 is coaled 
Wrth a thin film of transparent material 
designed lo reduce the intensity of the reflected 
•*?ht Y ell ow light of a single frequency is direc- 
<f,d at norma! incidence onto the film as shown

Figure 16-43

in Fig. 16-44. (a) ff the index of refraction of the 
film is 1.3, determine the speed of light in the 
film, (b) ff the frequency of yellow light in air is 
5.0 x IO14 Hz, what is the frequency of yellow 
light in the film? (c) Determine the wavelength 
of yellow light in the film, (d) Determine the 
smallest film thickness that will reduce the 
intensity of the reflected yellow light lo  a mini
mum. Explain your reasoning. [AP-B; 1971]
16.33 Consider an organ pipe 8 ft long that is 
open at both ends. Assume the speed of sound 
is 1.200 ft per second, (a) Determine the lowest 
two frequencies of sound produced by the pipe,
(b) If the tem perature drops, what will be the 
effect on the frequencies? Explain the reason 
lor your answer. [AP-B; 1973]
16.34 Two loudspeakers, S 1 and S 2, a distance 
d apart as shown in Fig. 16-45, vibrate in phase 
and emit sound waves of equal amplitude and

y

-L

Figure 16^45
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wavelength λ. Assume c/<L. (a) Describe how 
sound intensity I varies as a function of position 
.v along the line segment OA. Sketch a  graph of 
this function on a set of axes, (b) Assume λ <id. 
O n a set of axes, sketch a graph of the sound 
intensity I as a function of position y  along the 
y-axis. (c) Assume that t/ =  2 m and that the 
speed of sound is 360 m per second. Find the 
lowest speaker frequency that will yield the 
minimum sound intensity along the line BB'. 
[AP-B; 1977]
16.35 (a) Show that if a  source is placed at a 
distance d from a Fresnel biprism having an 
index n and a very small angle A, the distance 
between the two images is

a - 2 ( n - l ) A d

where A  is expressed in radians, (b) Calculate 
the spacing of the fringes of green light of wave
length 5 x IO-7 m produced by a source placed 
5 x IO-2 m from a biprism, having an index 
equal to 1.5 and an angle of 2' . The screen is 
I m from the biprism.
16.36 O ne technique for observing an inter
ference pattern produced by two slits is to 
illuminate them with parallel rays of light, place 
a convergent lens behind the plane of the slits, 
and observe the interference pattern on a  
screen placed at the focal plane of the lens (Fig.
16-46). Show that the position of the bright 
fringes relative to the central fringe is given by

and the dark fringes correspond to

where n is an integer, /  the focal length of the 
lens, and a is the separation of the slits.
16.37 Two parallel beams o f monochromatic 
light of the same wavelength, which form a 
small angle Θ with each other, fall on two slits 
separated the distance a, in front of a con
vergent lens (Fig. 16-47). Because of the angular 
displacement of the beam, the two sets of 
fringes observed on a screen placed at the focal 
plane of the lens (see the preceding problem) 
are not coincident, (a) Show that if

the bright fringes of one beam fall on the dark 
fringes of the other beam, and the interference 
pattern disappears. (In 1868 Fizeau proposed 
this method for measuring the angular separa
tion of two distant objects by varying the dis
tance a until the interference pattern disap
pears. Il has been used, for example, to measure 
the angular separation of stars by placing 3 
screen with two slits in front of the objective o 
a telescope and varying the separation ofthe 
slits until the diffraction pattern disappears·1 
Ibl Find the minimum angular separation that 
can be detected with the M ount Wilson refrae 
ting telescope, whose objective has a diameter
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O l  2.54 ni. Assume that the wavelength is
5.7 x IO-7 m.
16.38 To increase the resolving power of a 
telescope, Michelson in 1921 built an inter- 
ferometric arrangem ent (such as that shown in 
Fig. 16-48) in which the M's  are four mirrors 
piacea ip front of the objective of a telescope. 
Therefore what is observed through the tele
scope is the interference pattern of rays received 
by mirrors M i and M 2 This arrangem ent is 
essentially the Fizeau arrangem ent described 
In the previous problem. It can be shown that 
when one observes an extended circular source 
of light, the interference pattern disappears if 
the angle subtended by the source is related to 
the separation of the m irrors by the relation

O =
1.22;.

ISee Section 17.3 ) By using a — 3.073 m and a 
wavelength of 5.75 x IO-7 m, Michelson Tound 
that the fringes corresponding to the star a- 
Flnonis (Betelgeuse) disappeared- (a) Show that 
the angular diam eter of this star is 0.047". This 
rOethod provided the first measurement of a 
itaFs iiameter. (b) W hat would the diam eter 

'he objective of a  telescope have to be to 
I'tnduce the same resolving power? (c) If the 
fl|stance tc the star is 1.80 x IO18 m, find the 
l"iear diam eter of a-Orionis. (d) Com pare this 

htc with the diam eter of the sun and of the 
fc<trth’s orbit.
' h 3y Discuss the angular distribution of in- 
en'it> for (a) three and (b) five identical sources

of waves equally spaced the distance a along a 
straight line. Assume that a =A,1'2.
16.40 Considering the interference of wave 
motions produced by N  sources as discussed 
in Section 16,3, show that the initial phase of 
the resulting m otion is given by

^ ■ = t ( iV - l^

where ό is given by Eq. (16.12). N ote that <5* 
is the angle that the vector OP makes with the 
X-axis in Fig. 16-9.
16.41 Using the result of the preceding problem 
and the law of vector addition, prove the fol
lowing trigonom etric relations:

(a) I + cos d +  cos 2<5+· ■ · +  cos (N — I V5

sin \Ν δ  . .............
=  —. 2. . cos U N  — lp .  

sin ‘Λ 2

(b) sin t>+sin 2<5 +  · · + s in  (N -  10

sin ^Nd
sm wg sin 2(N- I kV

(Winf: N ote that in Fig. 16-9 the components of 
the resultant vector along the X -  and Y-axes 
are equal to the sum of the com ponents of the 
individual vectors.)
16.42 A thin film having a thickness of 2.4 
x IO-6 m and an index of refraction of 1.4 is 

illuminated with monochrom atic light of wave
length 6.2 x IO-7 m. Find the smallest angles of 
incidence for which there is maximum (a) con
structive and (b) destructive interference by 
reflection. Repeat the problem for light that is 
transmitted.
16.43 Show that if a glass plate (index nfl) is 
covered by a thin film having an index na = 
v ng (see Problem 14.23) and having a thickness 
equal to one-quarter of the wavelength of light 
in the film, complete destructive interference 
between light reflected at both surfaces results, 
for norm al incidence. This method is effective 
for decreasing the intensity of reflection from 
lenses and plates in optical instruments. Such a 
thin film is called an antireflection coating.
16.44 Show that if the thin film of the previous 
problem has an index much larger than that of
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A B

glass and a thickness of one-quarter of the 
wavelength of light (in the film), the intensity of 
reflected light for that particular wavelength is 
increased.
16.45 Prove that if R is the radius of the convex 
side of a plano-convex lens used to produce 
Newton’s rings, the radii of the bright rings are 
given by

T1 = Ni-R 

and the radii of the dark rings by

r 2= ( 2 N + l ) ^ y )

where N  is a positive integer. The index of re
fraction of air has been taken as one.
16.46 A T-tube has one of the branches closed 
by a movable piston, as shown in Fig. 16-49. A 
tuning fork is placed at one of the open ends, 
A. Show that the separation between successive 
positions of the piston for which maximum 
intensity of sound is received at the other open 
end, B, is x —^x.
16.47 A wave guide consists of a long tube of 
rectangular cross section with sides a and b. 
Show that the resultant wave is described by

ξ = 4 ί ·0 sin k 2y sin k±z cos (w t- k ;x)

and that the only frequencies transmitted 
along the wave guide are those satisfying 
v ^ jV y fn i /a '  + niJb2 where H1 and n2 are in
tegers. Discuss the nodal planes in the wave 
guide for n, = 2  and «2 = 3 .
16.48 Given the wave equation in two 
dimensions

1 V 2i
S x i Sy2 \ v 2J  dt1 '

(a) Try a solution corresponding to standing 
waves of the form Q = f{x ,y )  sin tot. (bl Show 
that j ( x ,  y) satisfies the differential equation

where k = (o/v. (c) Determine the constants k , 
and  k2 in order that

/( x ,  y) = A  sin Ic1X sin

be a solution of the preceding equation, (d) 
C om pare your results with those of Section 
16.7.
16.49 Extend the discussion of the preceding 
problem to the case of the three-dimensional 
wave equation. In this case the trial solution is

/ ( x ,  y, z}= A  sin Ii1X  sin k 2y  sin

16.50 Discuss graphically the solutions οΓ the 
transcendental equation x tan x  = C where C 
is a constant. You can proceed in either one of 
two ways. Draw the curves y = ta n  x and y ~  
C/x  and determine their intersections, or draw 
the curves y = x  and >’= C  cot x and determine 
their intersections. In any case, with the ex
ception of the first intersection, all the other 
intersections fall closely after χ  =  ιιπ where n is 
an integer. Apply your results lo the discussion 
of Example 16.6.
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17.1 Introduction

Another phenomenon characteristic of wave motion is known by the generic name of 
diffraction. Diffraction is noticeable when a wave is distorted by an obstacle that has 
dimensions comparable to the wavelength of the wave. The obstacle may be a screen 
with a small opening or slit that allows a small portion of the incident wave front to 
pass. The obstacle may also be a small object, such as a wire or a disk, that blocks the 
passage of a small portion of the wave front. Whereas interference is the result of 
individual sources interacting with each other, diffraction is the interference of a 
finite wave with itself.

If a stream of particles falls on a screen with a small opening, only those particles 
falling on the opening will be transmitted and allowed to continue their motion 
undisturbed (Fig. 17-1). The other particles either will be stopped or will bounce 
back. Conversely, if an object is placed in a stream of particles, the object will block 
those particles falling on it, but the remaining particles will continue their motion 
undisturbed. However, we know from common experience, especially for the case of 
sound waves and surface waves in water, that waves behave in a different way, and 
that they extend around the obstacles interposed in their path as illustrated in Fig. 
17-2. This effect becomes more and more noticeable as the dimensions of the slits or 
the size of the obstacles approach the wavelength of the waves. One cannot usually 
observe diffraction of light with the naked eye since most of the objects interposed in 
a beam of light are much larger than the wavelength of light waves, whose magnitude 
is of the order of 5 x 10“ 7 m.

Fig. 17-1. Behavior of a stream of particles Fig. 17-2. Behavior of a wave impinging on a
impinging on n screen with a small opening. screen with a small opening. [Ripple Ta»

Siudies o f  Wave Motion, by permission O1 
W. Liowarch. The C larendon Press, O x l o r d -  

England. I
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In this chapter we shall discuss diffraction produced by certain apertures and 
screens of simple geometry under two special circumstances. In Fraunhofer diffraction 
we assume that the incident rays are parallel, and that we observe the diffraction 
pattern at a distance sufficiently large so that we effectively receive only diffracted 
rays that are parallel. This condition can also be accomplished by using a lens that 
focuses rays diffracted in the same direction to the same position on a screen. In 
Fresnel diffraction, either the incident rays originate from a point source, or the 
diffracted rays are observed at a particular point of space, or both.

Closely related to diffraction is scattering, which takes place when the obstacles 
interposed in the wave may be considered as sources of new waves. We discussed 
the scattering of electromagnetic waves by individual electrons in Chapter 12 when 
we described the Compton effect. In this chapter we shall briefly consider scattering 
from a more general point of view.

17.2  Fraunhofer D iffraction by a R ectangular A perture

As our first example, consider diffraction of a plane wave by a rectangular aperture 
or slit, very narrow and very long, so that at the beginning we may ignore the effects 
at the ends (Fig. 17-3a). We also assume that the incident waves are normal to the 
plane of the slit. This simplifies the mathematics without changing the physical 
situation. According to Huygens’s principle, when the incident wave falls on the slit, 
all points of the plane of the slit become secondary sources of waves, emitting new 
waves, called, in our case, diffracted waves, whose resultant amplitude is computed 
bv using Eq. (13.2). The diffracted waves may be observed on a screen placed at a 
very large distance from the slit. At different angles Θ with respect to the direction of 
incidence (Fig. 17-3b>, we find that their intensity is zero. These angles are given by 
the relation

h s in 0 = n 2 , ηψ Ο  (17.1)

(a)

Fig. 17-3. D iffraction  by a lon g  narrow  slit.
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/

Fig. 17-4. Intensity distribution of the diffraction pattern of a long narrow slit.

Fig. 17-5. Fraunhofer diffraction pattern produced by a long narrow  slit

where n is a positive or negative integer, b is the width of the slit, and λ  the wave
length of the incident waves The value n =  O is excluded because it corresponds to 
observation along the direction of incidence, which obviously implies a maximum 
of illumination.

From Eq. (17.1), we have

sin Θ =  η/'  (17.2)
b

so that the intensity is zero for sin Θ=  ± λ /b, ±  2T 6, + 3 Xjb........
Tojustify Eq. (17.1), we recall from Eq. (16.8) that when the difference in path length 

for two rays is T 1 - I 12 =  Odd integer x (Λ./2), destructive interference results. From 
Fig. 17-3b we see that for rays coming from A and the midpoint C we have T 1 - T 1-  
C F =^h sin θ=η{λ/2) .  Thus for n =  I. 3. 5 , . . . ,  these two rays, as well as all other pairs 
of rays originating at points separated by kb. interfere destructively; and no intensity 
is observed at the angle 0. For even n, consider points A and B separated by b/ 4. Then

T1 - T 2 =  BG = { b  sin Θ =  ( 5^ 5 ) ·

So when nj2 is an odd integer, or 11 =  2, 6. 1 0 , . . . ,  these two rays, as well as all other 
pairs of rays originating at points separated by b/4, interfere destructively; an 
again no intensity is observed in the direction corresponding to the angle Θ. I 
procedure can be extended until all integers are included. For 0 =  0, however, there
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Figure 17-6

is no phase difference for the rays coining from different points; and the interference 
is constructive, resulting in a pronounced maximum.

Between each zero of intensity given by Eq. (17.1) there is a maximum; but these 
maxima gradually decrease in intensity, a situation different from that for inter
ference. The intensity of the diffracted waves as a function of O is represented in Fig. 
17-4. N ote that the central maximum has twice the width of the others. Figure 17-5 
shows the actual diffraction pattern of a long narrow slit.

ft is easy, as well as instructive, to compute the intensity distribution shown in 
Fig. 17-4. If we divide the slit into very narrow strips of width dx  as shown in Fig. 
l7-6a, we may consider each strip as a secondary source of waves of very small (and 
identical) amplitude άξ0. When we consider the rays emitted in the direction corre
sponding to the angle Θ (Fig. 17-6b), the phase difference between rays C C  and AA',  
taken as reference, is

2π „ 2πχ  sin O 
ό =  —  C D = -----  — - . (17.3)

A  A

and therefore increases gradually with x. To obtain the amplitude in the direction 
corresponding to the angle Θ, we must plot the rotating vectors corresponding to 
the waves from all the strips from A to B. (Recall this technique was used in Section 
th.3.) Since all the waves are of infinitesimal amplitude and since the phase angle 
rl increases proportionately with x, the vectors fall on an arc of circle OP  whose 
center is at C and whose radius is p  (Fig. 17-7). The resultant amplitude A is the 

■ord OP.  The slope at any point of the arc from O to P  is just the angled given by 
(17.3). At P. which corresponds to x  =  b. the inclination of the tangent is the angle
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Figure 17-7

This is also the angle formed by the two radii CO  and CP.  Therefore the resultant 
amplitude is

,4 =  chord 0 P  — 2QP  

— 2p  sin j<x =  2p sin
nb sin Θ

T ( 17 .5 )

For observation in a direction perpendicular to the slit (i.e., 0 =  0  ), all vectors dc0 
are parallel; and their resultant is just the sum of their lengths, which is equal to the 
length of the arc from O to P. Designating the resultant amplitude for normal observa
tion by A 0, we then have

( 2 n b s \ n B
A 0 =  arc O P = pa — p  ( ------ :------

Dividing Eq. (17.5) by Eq. (17.6), we get

t sin (nb sin θ/λ)
0 nb sin θ/λ  :

and since the intensities are proportional to the squares of the amplitudes, we obtain

(17.6)

(17.7)

/  =  / .
sin (nb sin θ/λ) 

nb sin θ/λ
sin ii (178)

where u =  nb sin θ/λ. We verify then that the zeros of the intensity occur when u = l,n' 
or b sin θ =  ηλ, in agreement with Eq. (17.1), except for n =  O because then (sin u/u)„. o
I. To obtain the maxima of intensity, we find the values of u satisfying dl jdu =  0  (s®e 
Example 17.1). But because these maxima of intensity correspond to successive) 
larger values of u, they grow smaller and smaller, resulting in the pattern that was 
shown in Fig. 17-4. For /  very small compared with b, the first zeros of intensity ° n
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Fig. 17-8. Angle subtended by the central intensity peak of the diffraclion pattern of a single 
slit (Λ <ib).

either side of the central m a x im u m  (Fig. 17-8) correspond to an angle

Θ 5;sin Q— ± - , (17.9)
b

obtained by setting n =  ±  I in Eq. (17.1).
A useful concept is the resolving power  of a slit, defined by the English physicist 

Lord Rayleigh (1842-1919) as the minimum angle subtended by two incident waves 
coming from two distant point sources that permit their respective diffraction patterns 
to be distinguished. When waves coming from two distant sources S 1 and S2 pass 
through the same slit in two directions, making an angle Θ (Fig. l 7-9), the diffraction

Fig. 17-9. R ayleigh’s rule for the reso lv ing  pow er o f  a slit.
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Fig. 17-10. Rectangular slit. Fig. 17-11. Fraunhofer diffraction pattern of a
rectangular slit whose height is twice its width.

patterns of the two sets of waves are superposed. They begin to be distinguishable 
when the central maximum of one falls on the first zero on cither side of the central 
maximum of the other as indicated on the right in Fig. 17-9. But then, in view of 
Eq. (17.9) and Fig. 17-8, the angle 0 must be

0 = ' u , (17.10)
o

which gives the resolving power of the slit according to Rayleigh’s definition. Assuming 
that S 1 and S 2 are two points on a distant object. Eq. (17.10) gives the minimum 
angular separation between them in order for the two points to be recognizable as 
different when the object is observed through the slit. If the light passing through the 
slit forms an image on a screen, and that image is observed with a microscope, for 
example, it is not possible, no matter what the magnification of the microscope, to 
observe more detail in the image than that allowed by the resolving power of the 
slit. These considerations must be taken into account in the design of optical instru
ments.

If the slit is rectangular with sides a and b that are of comparable size (Fig. 17-10). 
the diffraction pattern is the combination of the two patterns due to each pair of sides. 
Instead of the series of bands shown in Fig. 17-5, we get a series of rectangles arranged 
in a crosswise form as in the photograph of Fig. 17-11.

In our calculation we have not taken into account the directionality factor. 
3 =  2(1 + co s  A), mentioned in Section 13.2 when we were discussing Huygenss 
principle. This factor tends to decrease further the amplitude of the maxima ofhighei 
order.

Example 17.1. Estimation of the m agnitude of the successive maxima in the diffraction pattern 
of a slit.
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T Successive maxima occur at the maxima of the fraction sin u u, according to Eq. 117.8). Therefore 
we must find

This is a transcendental equation o fa  kind similar to that of Example 16.6. Its solutions are found 
by plotting y =  tan u and >-=u and finding the points of intersection of the curves; it is left to the 
student to  verify that these intersections occur at u '4 .4 9 , 7 .73 ,10.9 . . .  and correspond to  relative
intensities of 0.047, 0.017. Q.OQKij These points are estimated by assuming that the maxima
of sin u/u occur very close to the m axima of sin u; that is, when t i= ( t i+ |) a  when « =  I, 2, 3 ___
The actual values of u are always slightly less than the estimate. Neglecting this small difference, 
we find that the values of sin u/u at the maxima are l/[(n-b^-)rr]; and the corresponding intensities 
are

The diffraction pattern produced by a circular aperture exhibits many of the features 
already seen in the case of the rectangular slit. But instead of a rectangular pattern 
like the one shown in Fig. 17-11, the diffraction pattern consists of a bright disk 
surrounded by alternate dark and bright rings as shown in Fig. 17-12. The radii of 
the central disk and successive rings do not follow a simple sequence as in the case 
of the square slit. We shall omit the mathematical analysis of the problem, which is 
much more involved than in the case of the rectangular slit because of the geometrical 
arrangement. Assuming that R  is the radius of the aperture (Fig. 17-13), the angle cor-

or tan u =  u.

17.3  Fraunhofer D iffraction by a C ircu lar Aperture

F*g. 17-12. Fraunhofer diffraction pattern  of a 
c*tcular slit.

Figure 17-13
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Fig. 17-14. (a) Rayleigh’s rule for the resolving power of a circular slit. Part (b) shows two disiam 
point sources imaged through a lens and just resolved.

responding to the first dark ring is given by the condition

where D =  2R is the diameter of the aperture and 0 is expressed in radians. This 
expression also gives the resolving power for a circular aperture, defined again 
according to Rayleigh as the minimum angle between the directions of incidence of 
two plane waves coming from two distant point sources such that their respective 
diffraction patterns may be distinguished. This situation occurs when the center of 
the bright disk of the diffraction pattern of one source falls on the first dark ring of 
the diffraction pattern of the second (Fig. 17-14). The angular separation is given by 
Eq. (17.12); that is, 0=1.22a/D . This expression appeared in Section 15.5 when we 
were discussing the magnification of a telescope.

A lens is actually a circular aperture; and therefore the image of a point, which 
in Chapter 15 was assumed to be another point, is in fact a diffraction pattern. How
ever, the radius of a lens is in general so large compared with the wavelength of light 
that for most practical purposes, diffraction effects may be ignored.

Example 17.2. A lens with a diam eter of 2 x 10“ 2 m has a  focal length of 0.40 m. It is illum ing 
with a beam of parallel m onochrom atic light of wavelength 5 9 x 1 0 " 'm. Find the radius of Ihe 
central disk of the diffraction pattern observed in a plane at the focus. Also determine the resolving 
power of the lens for this wavelength.

(17.11)

or

Θ ^ s i n  0 =  1 .2 2 — =  1.22 — 
2 R  D

(17.12)
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f  When we use Eq. (17.12), the angle subtended by the central disk in the diffraction pattern is

5,Q x 10 7 m 
O= 1.22 x .—  =3.611x10 ' r a d  =7.42"

2 x 1 0  z m

This is also the resolving power of the lens. The radius of the central disk is 

(■= β  =  0.40 ni x 3,60 x 1 0 '5 rad =  1.44 x I lT 5 m, 

and thus for practical purposes we may say that the image at the focal plane is a point, A.

17.4  Fraunhofer D iffraction by T w o  Equal, Parallel S lits

Consider two slits, each of width b , displaced the distance a (Fig. 17- 15 a). For a 
direction corresponding to the angle (I, we now have two sets of diffracted waves, 
and wha.t we observe is the result of the interference of these waves at the screen. 
In other words, we now have a combination of diffraction and interference. To 
determine the intensity of the resultant waves in terms of the angle Θ, we must compute 
the resultant amplitude from each slit and combine the two amplitudes to obtain a 
final resultant. This determination is shown in Fig. 17-16, in which the different 
rotating vectors are drawn. The angle a has the value given by Eq, (17.4). The magni
tude of the vector OP  gives the resultant amplitude A 1 from slit I. The value of this 
amplitude as given by Eq. (17.71 is

( l 7 m
nb sin U j A

Since the two slits have the same width, the resultant amplitude for slit 2 has the 
same value, A 1, but its phase is different. From Fig. 17-15b we note that between

S lit  I Slit .

-— b- -b—-

(a)

Fig. 17-15. F ront view  and cross section  o f  tw o parallel lon g  narrow  slits.
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Figure 17-16

corresponding rays from slits I and 2 such as AA'  and CC', there is a constant phase 
difference given by

„ 2π „ 2πα sin Θ
β =  ~τ C E =  -  .----- . (17.14)

/  /

The corresponding amplitudes or vectors from the two slits thus make an angle
equal to β. Accordingly, in Fig. 17-16 the line OQ - A 2 for slit 2 is obtained by rotating
line O P - A i for slit I through the angle β. Their resultant amplitude A is then

A =  J A f  +  A i2 jC l A xA 1 cos β.

Setting A 1 =  A 2, and using standard trigonometric identities, we may write,

A =  A X̂ 2 { \  +  cos β ) = 2 Α χ cos \β.

Therefore, using Eqs. (17.13) and (17.14), we obtain

_ J sin {nb sin θ/λ) πα sin Θ
A  =  2 A 0 ------- , ■ a n  C O S------- :-------- .nb sin θ/λ λ

The intensity distribution, which we know is proportional to the square of the 
amplitude, is then

I =  I 0
sin {nb sin θ/λ) 2 n asin fi ,cos2  ; . (17.17)

nb sin θ/λ

When we compare this equation with Eq. (17.8) for a single slit, we realize that we 
now have the additional factor cos2 [(π« sin Θ)/Α]. But if we recall Eq. (16.10), which 
gives the intensity distribution for the interference pattern of two synchronous 
sources, we see that Eq. (16.10) and Eq. (17.15) coincide insofar as the interference 
factor is concerned since in Eq. (17.15) a is the separation of the two slits and in 
Eq. (16.10) a is the separation of the two sources. Therefore the equation that describes 
the overall diffraction pattern for two slits is the equation for the interference pattern
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Fig. 17-17. Intensity distribution (along a  plane set norm al to the incident light) resulting f ro m  
two parallel long narrow slits, (ajb =  3.5.)

Fig. 17-18. Fraunhofer diffraction pattern caused by two parallel long narrow  slits.

of two synchronous sources modulated by the expression for the diffraction pattern 
of a single slit as is shown in Fig. 17-17 and in the photograph of Fig. 17-18.

Note that the maxima of the interference pattern occur for πα sin θ/λ =  ηπ, or 
sin B =  n{Xja)\ the zeros of the diffraction pattern are given by Eq. (17.2), or sin Θ — 
n'U/b). Since a >  b, the zeros of the diffraction pattern are more widely spaced than the 
maxima of the interference pattern. Therefore, when there are two slits, the bright 
fringes are much narrower and more closely spaced than those produced by a single 
slit

17.5 D iffraction G ratings

The next step is to consider the diffraction pattern produced by several parallel slits 
of equal width 6, equally spaced the distance a. Let N  be the number of slits. From
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I I
I I
I I

I I I

I I

I I I I
I I

(a)

Fig. 17-19. Fronl view and cross section of a diffraction grating.

Fig. 17-19 we see. by similarity with the problem of the double slit, that in the direction 
corresponding to the angle Θ we will observe the interference caused by N  syn
chronous sources (one per slit) modulated by the diffraction pattern of one slit. 
Since the separation between successive sources is a, the interference factor for the 
intensity is the same as that found in Eq. (16.14); that is,

[ sin (Λί na sin Ο/λ)
[_ sin (πα sin θ/λ)

the intensity is modified by the diffraction factor, which according to Eq. (17,8) is

sin (nb sin Ο/λ)
Ttb sin θ/λ

The intensity distribution is then

sin (nb sin θ/λ) 2Psin (N na sin Ο/λ)
I = Ie

nb sin θ/λ sin (πα sin θ/λ)
117 16'

If the number of slits N  is large, the pattern will consist of a series of narrow bright 
fringes corresponding to the main maxima of the interference pattern that are given by

a sin θ — ηλ or sin  O =  n I — 
Ui

(17,171

w here n =  0, + 1 ,  ± 2 , . . .  ; but their in tensities are m od u la ted  by th e  diffracti0” 
pattern. F igure 17-20 sh ow s the case for eigh t slits  (JV =  8). A ccord in g  to  the vaU'e 0 
n, th e principal m axim a are called  the first, second , third, etc., order o f  diffraction  

A system  such as the o n e  w e have ju st d iscussed  is called  a transmission 
grating. F or purposes o f ana lyzin g  near-infrared, visib le, or u ltrav io let light, trafs 
m ission  diffraction  gratings con sist o f  several th ou san d s o f  slits per Centimeter' 
ob ta in ed  by etch ing  a series o f  parallel lines on  a transparent film . T h e lines then
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n ' « -  I

\ΛΛΛ/λΛ η _ _ώ \Ι ι'ΛΛΛΑΛΛιίΙΛΛΛΛΑ .Ά λλλλλλΙ
- 5  -4

Λ Λ ΛΛΛΛ

Interference
* V»-Diffraction 

\
\
\
\
\

Λ Λ Λ Λ Λ Λ

η ' -  I

Λ Λ Λ Λ Λ Λ ^ .

η ' - 2  I " 8in«]

\ /] λ
λ λ ΙΚ .  ^λ ?\λ λ ΙιΙ λ λ λ λ λ λ ] I / V  ^ t i /ίΛΛΛ/

- I (I I “ α · 
λ 8ΙΠ

Hg. 17-20. Intensity distribution produced by a  diffraction grating on a plane placed norm al to 
the incident light and parallel to the grating. Ui'h i 2.33).

as the opaque spaces between the slits. A diffraction grating can also work by reflec
tion: a series of parallel lines is etched on a metallic surface. The narrow strips between 
the etchings reflect light and produce a diffraction pattern (see Problem 17.36). 
Sometimes the surface is made concave to improve focusing (see Problem 17.37).

When light of several wavelengths falls on a grating, the different wavelengths 
produce diffraction maxima at different angles except for the zero order, which is 
the same for all. The set of maxima of a given order for all wavelengths constitutes 
a spectrum. So we have spectra of first, second, third, etc., orders. Note that the longer 
the wavelength, the larger the deviation for a given order of spectrum. Therefore 
ted is deviated more than violet; this effect is the opposite of what happens when 
light is dispersed by a prism. The dispersion of a grating is defined by D =  dO/dA; 
that is, the rate of charge of the angle of deviation with respect to wavelength. From 
Fq. (17.17) we have cos Θ(ά0 ι}λ) =  η/α and thus

D = ' 10. -
d/. a cos 0

(17.18)

'ndicatiug that the higher the order of diffraction, the greater the dispersion.
Diffraction gratings are very important in spectrum analysis in a wide range of 

'vgions of the electromagnetic spectrum, and have several distinct advantages over 
I'risms. One advantage is that diffraction gratings do not depend on the dispersive 
'rr*perties of the material, but only on the geometry of the grating. F igure 17-21 shows 
1 basic elements of a grating spectroscope.

1 vaWipie 17.3. Angular separation of the whole visible spectrum for (irst-order and second-order 
faction spectra.

 ̂ Wsume that the wavelength of visible light extends from 3.90 x 10 ’ m up to 7.70 x 10 m. 
0r a grating containing 20,000 lines and a length of 4 cm. we have that a = 4 x 10 2 m/20,000 =
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becond order ] , -,t order
\  /

• ^

Source

Fig. 17-21. G rating spectroscope. The source is placed in front of the slit on the collimator. The 
diffraction grating is placed perpendicular to  the collim ator’s axis, and the spectra of different 
orders are investigated by moving the telescope,

2 x 1 0 '6 m. Therefore, using Eq. (17.17), we have for n =  l

Therefore the first-order spectrum covers an angle of 11 24'. Similarly, for the second-order 
spectrum, the angle is 27  24' as the student may calculate. Is a full third-order spectrum possible? *

Example 17.4. Position of the principal maxima of a diffraction grating when the angle of incidence 
of plane monochrom atic waves is not zero.

is the angle of incidence and 0 is an angle of diffraction, shows that such a phase difference is given

sin Sred

sin Ovlull,

or

or Olinlet =  IP lS '.

T  The principal maxima are determined by the interference pattern, and this in  turn is determined 
by the phase difference between corresponding rays in successive slits. Figure 17-22, in which I

by

„  2π
d = —  [AB+ B C ) -

2na(sin i +  sin 0) (17.19)
/ A

In order that Eq. (17.19) have general validity, the signs indicated 
otherwise, Eq. (17.19) must be rewritten for each of the possible 
to the norm al. The condition for a maximum then becomes

in the figure must be observed- 
orientations of / and 0 re la te6

olsin i-i-sin θ)=ηλ. (17,20)

For n —0, we have sin 0 =  sin i o r 0 =  - i .  corresponding to the continuation of the in c id e n t  ray ·
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Fig. 17-22. Diffraction grating with oblique 
incidence.

Il we Tansfom r this condition for a maximum into a product by means of trigonom etric formulas, 
we have

2a sin T(i +  i?) cos ^(j— 0)=n/„.

Therefore the deviation D = i +  (? for the maximum of order n m ay be found from

and thus the deviation is a minimum when θ — i: and the angle of incidence for the minimum 
deviation for order n is found from

Example 17.5. Resolving power of a diffraction grating.

▼ When two plane waves of slightly different wavelength fall on a diffraction grating, the principal 
maxima of the same order for each wavelength may fall so close to each other that it is impossible 
to distinguish whether the original beam was m onochrom atic or not. In order that the two wave
lengths may be distinguished (or resolved) in a given order, it is necessary that the principal maxi
mum Γοι one of the wavelengths fall on the first zero on either side of the principal maximum of 
Ihe other wavelength. Given that Δ/. is the minimum wavelength difference for which the con
dition above is met at a wavelength the resolving power of the grating is

Consider, as an  example, a wavelength λ such that Eq. (17.17) holds. The m axima of intensity 
cOrrespond to  the angle given by sin θ = ηλ/α. Then by differentiating.

sin TD = - - s e c  Tb' —0); 
2 a

(17.21)

. id  
s i n i = - .  A 

2a

(17.22)

cos ti Αθ =  n — 
a

accordance with Eq. (17.16), the zeros on either side of a maximum of order n are given by
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tVJta sm ϋ . (Vri +  IA
5------ =  (AmTI)Tr or s i n t ) = — —
2 N  a

Calling 0' and ff' the two minimum angles given by this equation such that 0' — 0" = IALK we can 
write

■ o' ■ n« 22 sin ft —sm O =
Na

or using the trigonom etric identity.

sin ΐ(0' —fl") cos j{O' + O")=—
Na

Since 0' is almost equal to Θ". we may replace sin ^O 1 — 0") by MO'- D “) and cos fyO' + O") by cos 0 
and write yO' — Q") cos O =  AO cos O =  A .'Na. But from the equation above, cos β ΑΘ=ηΑλ a. 
Therefore we finally have /./N = ιιΔλ or

R = *  =Nti.  (17.23)
A/.

This equation means that the greater the total num ber of lines of the grating and the higher the 
order of the spectrum, the smaller Δλ, and so the greater the resolving power of the grating. 
O n the other hand. Eq, (17.23) shows that the resolving power is independent of the size and 
spacing of the ruling in the grating. A

Example 17.6. Resolution of the yellow doublet of sodium.

T  We wish to determine whether the grating of Example 17.3 can resolve the two yellow' lines of 
sodium, whose wavelengths are 5,890 x 10"1 ni and 5.896 x IO-7 m. The average wavelength of 
the two lines is 5.893 x 10" 7 m. and their separation is 6 x 10 10 in. From  the results of Fxample 
17.6. we have that the resolving power of the grating is R = Nn = 2 x 10 V  At the given wavelength, 
the minimum wavelength separation in the first-order spectrum (n =  l |  is

, , λ  5.893 x 10 7 ..
A/. = —= - — —j — -— =  2.947 x 10 ' 11 m„

R 2 x IO4 x I m

which is one-twentieth of the separation of the two sodium lines. Hence the two D-Iines in the 
first-order spectrum produced by this grating could be easily separated (or seen distinctly! »

17.6  Fresn e l D iffraction

A s m e n tio n e d  in  S e c tio n  17.1. F resn e l  d if fraction  ta k e s  p lace  w h en  e ith e r  th e  point 
so u rc e  o f  in c id en t w av es o r  th e  o b se rv a tio n  p o in t  from  w h ic h  th e y  a rc  seen  (o r bo t 
a re  a t  a  fin ite  d is ta n c e  from  th e  a p e r tu re  o r  o b s ta c le  re sp o n s ib le  fo r th e  diffraction· 
T h e  m a th e m a tic a l c a lc u la tio n s  for F re sn e l d if fra c tio n  a re  m o re  in v o lv ed  th a n  t c 
c a lc u la tio n s  fo r F ra u n h o fe r  d iffra c tio n , b u t th e  p h y sica l id eas re m a in  th e  sam®· 
T h e re fo re  w e sha ll d iscu ss  o n ly  th e - fu n d a m e n ta l a sp ec ts , a n d  fo r  s im p lic ity  we sn
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assume that the source of the waves is so far away from the screen that the incident 
waves are plane, and that they are perpendicular to the aperture or obstacle.

Suppose that we want to compute the wave motion to be expected at point P 
when we know the wave motion at a certain plane wave front S (Fig. 17-23). According 
to the Huygens-K.irchhoff principle as formulated in Section 13.2, we may divide the 
wave front into surface elements. Symmetry suggests that they be chosen as circular 
rings concentric at the projection, Q . of P on the plane S. Then the contribution of the 
surface clement of area dS to the wave motion at P, according to Eq. (13.2), has an 
amplitude proportional to

y g t O ) (17.24)

where d S is the area of the ring. The phase at P  of the wave produced by dS  will be
, Znr
3 = Ί Γ · (17.25)

addmg the rotating vectors of successive rings whose amplitudes are charac
terized by Eqs. (17.24) and whose phases are given by Eq. (17,25), we can obtain the 
Iesultant amplitude and phase at P  for all points of the plane S. Because of the 1/r 
and gU)) factors, the vectors become smaller and smaller in size as we go to greater 
ii*dij β , and they result in a spiral instead of a circle as shown in Fig. 17-24.

To simplify the calculation, assuming that λ  is much smaller than r0 and P  is 
reasonably close to the plane S, we divide the surface into rings called P resn e l  zones  
Hfg- 17-25), whose outer edge distances to P differ successively by That is, T1 =  
J t - 2λ, r M j ' i + H  r3- r 2+^A, etc. This arrangement has the property that corre- 

sPonmWg rays from successive zones arriving at P have a phase difference of π and 
11Iterfere destructively; that is.

Zn Zn / /.
0 H + 1 =  - J  f o  + , - r J  =  - j I 2  J =  π.
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If t 0„ is the amplitude produced at P by the nth zone, which is proportional to the 
value given in Eq. (17.24), the resultant amplitude at P  is

ίο  =  £ ο ο —^oi + £ o 2 —£0 3 ··----- ■ (17.26)

We may also write this in the form

ί θ = ^ 0 0  +  ( ϊ ί 0 0 - ί θ 1 + ^ 0 2 )  +  ( | ί θ 2 - ί θ 3 + Κ θ 4 )  +  · · · ·

The amplitudes from neighboring zones are almost equal in magnitude although
they decrease as n increases; that is, ς00> ς 01 > ξ 02>  So we may assume as a
good approximation that K 00- f  01 +  K 02 ' 0· and in general Ko (n- + 
Ko<n+i) '0 ·  Therefore the summation in Eq. (17.26) for an infinite plane effectively 
reduces to

f  - .L f  (17.27)’ 0 ’ 2^00* v

and the wave motion at P  results from the part of the wave front directly in line with 
P, and is equal in amplitude to one-half the contribution of the first Fresnel zone only- 

Note that each Fresnel zone is composed of many of the circular surface elements 
illustrated in Fig. 17-23. To understand the situation in terms of an amplitude vector 
diagram such as that of Fig, 17-24, note that for the first zone the distance goes from 
Jo to r0+ \ λ ,  or the phase from InrJX  to {2nrJX) +  n. This fact means that when we 
draw all the amplitude vectors from all secondary sources within this zone, Eheif 
phase difference changes gradually from zero to π. These vectors constitute the arc 
from O to A in Fig. 17-24, and the amplitude C0 0  of the first zone is the vector OA-
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For the second zone, the distances go from rQ +  \X  to r0 +  A, or the phases from 
(2nr0j X ) + n  to {2nrJX) +  2n, and again result in a phase difference o f π between 
extremes so that the second zone corresponds to the arc from A to B  with its amplitude 
^01 equal to vector Afc. This procedure is repeated until all zones are covered. The 
spiral converges at a point O' so that the resultant amplitude is θ 5 ', which is approxi
mately \O A  as in Eq. (17.27).

Since r„ =  r0 +  jiiA, the radius of zone n, from Fig. 17-25, is P 2 =  r2 — r0 =  (r0 +  ̂ nA)2 
|-ro  =  H r̂0 -F^n2A2. If n is not very large, the last term can be neglected (since λ < r 0) 
so that

R 2n =  Ukr0. (17.28)

Incidentally, this equation shows that all Fresnel zones have the same area, equal 
to TtAr0.

When the wave front is blocked by a screen, the situation is different from Eq. 
(17.27) because some zones now contribute only partially (or not at all) to the wave 
motion at P  since they are blocked by the screen. Suppose that an incident wave falls 
at normal incidence on a screen having a circular aperture of radius a. The observa
tion point is on a line perpendicular to the screen through the center of the aperture so 
that the Fresnel zones are concentric with the aperture. When the point of observation 
is a distance r0 such that a2 — Ar0, only one zone passes through the aperture and 
produces at P  an amplitude ς 00. The amplitude at P is twice the value obtained in 
Eq (17.27) for the whole wave front; the result is that the illumination at P is four 
times as great as when no screen is present and the whole wave front is exposed! 
If the aperture is larger or the point closer so that n2 =  2Ar0, the first two zones pass 
through the aperture and result in an amplitude of C00-  ̂ oi- which is practically 
zero and results in darkness at P ! In general, as long as our approximation remains 
valid, we shall have maximum brightness or darkness at the center of the diffraction 
pattern, depending on whether n is odd or even, where n is the number of Fresnel 
zones falling within the aperture relative to the point at which the diffraction is 
observed. The situation for a few different values of n is shown in Fig. 17-26.

n = I it =  2 η. =  3 n =  4
O2=Xr0 n2 = 2Xr0 a 2 =  3Xr0 a 2 =  -iXr0

Fig. J 7-26. Change in Fresnel zones for a  fixed point resulting from a change in the size of the 
aperture.

One zone, 
bright center

3’wo zones, 
dark center

Three zones, 
bright center

Four zones, 
dark center
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Fig. 17-27. Fresnel dilTracUon patterns of circular apertures of different radii.

Using the diagram of Fig. 17-24, we see that when only one zone is exposed, the 
resultant amplitude is OA =  ζ00. When two zones are exposed, the resultant ampli
tude is Ofe =  OA +  A h  =  ς00 — C01. For three zones, it is

Ο € — ΟΑ +  ΑΊ}  +  ΒΟ =  ξ(ι0- ξ 0λ + ς 02 'ί<ζοο + £oz)·
and so on, In general when a certain number of complete Fresnel zones plus a fraction 
are exposed, one can obtain the resultant amplitude by drawing, on a diagram such 
as Fig. 17-24, the vector ϋ ΐ  that goes from O to the point E. which corresponds to 
the exact number of zones plus the fraction of the last. In the case shown in Fig. 17-24, 
E corresponds to six zones plus a fraction of a seventh.

Fig. 17-28. Intensity distribution of Fresnel 
diffraction by a circular aperture.

Fig. 17-29. Fresnel diffraction by a 
circular disk supported by a thin rod.

sniai'
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14 1·'1·Λ! -f*. ' .

Iii (b)

t
Fig. 17-30. (a) Intensity distribution for Fresnel diffraction by a straight edge, (b) Photograph 
of the F resnel diffraction by a straight edge.

When the size of the aperture is changed but the distance to the screen is held fixed, 
the different active zones contribute differently to the resulting wave motion and 
give rise to a diffraction pattern composed of a series of rings concentric with P. 
These rings alternate in brightness as shown in Fig. 17-27. Figure 17-28 shows the 
intensity distribution as a function of the distance from the axis of the aperture for a 
circular aperture of radius a, comprising several zones.

U instead of a circular aperture we have a circular disk, the diffraction pattern 
■s similar except that at the center there is always brightness (Fig. 17-29). The cause 
°< this brightness is that the first unexposed Fresnel zone always gives a positive 
contribution at the center, for the same reason that a completely exposed plane wave 
ftIAt always results in a bright spot.

For a rectangular slit the situation is very similar to that for the circular aperture 
cxcept Ihat instead of rings the Fresnel zones are strips parallel to the slit.

At an edge the diffraction pattern has the intensity distribution shown in Fig. 
i 30 with the intensity falling off gradually to zero within the geometrical shadow 
and fluctuating during the first few wavelengths within the geometrical region of 
■dummation.
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Example 17.7. A screen with a small hole I mm in diam eter is illuminated with light οΓ wave
length 5.9 x 10' 1 m. Calculate the distance along the perpendicular from the screen to the farthest 
point of darkness.

T In this case the radius of the hole is a =0.5  mm =  5 x IO-4  m and the wavelength is A= 5.9 x 
10 " m. The farthest point of darkness is that point at which only two Fresnel zones are Withjn 
the aperture. Thus according to Eq. (17.28) with n =  2 and R„ replaced by a, we have a 2 = 2Ar„ 
or ι·0= α ζΙ2λ — 0.212 m, which means that the farthest point of darkness is about 21.2 cm from 
the screen. At about .42 m from the screen, there should be a very bright point corresponding to 
the case in which only the first Fresnel zone is within the aperture. In general, successive closer 
points of darkness are at distances of a2,‘2k/. (where k is an integer greater than one) from the 
screen. A

17.7 Scattering

So far in our discussion of diffraction we have implicitly assumed that the objects 
interposed in the path of a wave play a passive role. That is, we have assumed that 
their only role is to interrupt a part of the wave front without themselves adding any 
new wave. With such an assumption, the diffraction effects observed are exclusively 
due to the distorted incident wave motion.

However, in many instances this is not a realistic picture. Suppose, for example, 
that a sphere of elastic material is suspended in the air and that an acoustic or com- 
pressional wave is produced nearby. When the wave passes around the sphere, 
the wave first of all suffers a diffraction of the type discussed previously. But in addition 
the elastic sphere undergoes oscillatory deformations caused by the pressure fluctua
tions accompanying the wave. The oscillations of the surface of the sphere in turn 
produce new perturbations or waves in the surrounding air; these are superposed on 
the initial wave. The new waves produced by the oscillating sphere are the scattered 
waves, and the process is called scattering.

Similarly if a conducting sphere is placed in the path of an electromagnetic wave, 
the electric and magnetic fields of the wave induce oscillations in the free charges on 
the sphere. These oscillating charges emit electromagnetic radiation, thus producing 
a new or scattered electromagnetic wave.

In Chapter 12 we discussed scattering by a single electron, a purely dynamical 
problem at the atomic order of magnitude. The scattering we are describing here has 
a more macroscopic nature since this scattering involves bodies composed of many 
atoms or containing many electrons. We can compute the magnitude of this macro
scopic scattering by applying certain boundary conditions at the surface of the body· 
These conditions determine the nature of the scattered wave. For example in the 
case of a perfectly conducting sphere, we must require that at the surface of the sphere 
the tangential component of the resultant electric field (i.e., the sum of the field of the 
incident wave and the scattered wave) be zero.
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Scattering processes are extremely important to all wave phenomena. However, a 
more thorough discussion of scattering requires a mathematical treatment beyond 
the scope of this text.

17.8 X -R a y  Scattering  by C rysta ls

Electromagnetic waves, such as X-rays and 7-rays, with wavelengths shorter than the 
ultraviolet are not noticeably affected by objects of the dimensions used for the 
optical region. However, a crystal lattice with atoms or molecules regularly spaced at 
distances of the order of 10 10 m provides an excellent medium for producing 
diffraction of X-rays. This problem is somewhat more complicated than those 
discussed previously in this chapter, for two reasons. In the first place, since such a 
crystal is a three-dimensional array, the diffraction centers are distributed in space 
rather than in one direction as indicated in Fig. 17-31 for a NaCl crystal. (The dark 
and light spheres correspond to the N a + and Cl” ions.) Second, under the action of 
the electric field of an electromagnetic wave, the atoms or molecules in a crystal 
become secondary sources of radiation as previously explained. Therefore we actually 
have more a scattering than a diffraction phenomenon.

Fig. 17-31. Simplified representation o fa  sodium 
chloride crystal shows the regular arrangem ent 
of atom s forming a cubic lattice.

When X-i ays pass through the crystal, the intensity of the scattered rays is the 
result of the interference (along the direction of observation) of the waves emitted 

each atom or molecule. When the crystal is composed of more than one class ol 
atoms, each kind of atom contributes in a different way to the scattering of the X-rays. 
1 hus. to simplify our calculation, we shall assume that we have only one class of 
tTtorns and only one atom per unit cell in the crystal.

Consider two atoms A  and B, separated the distance r (Fig. 17-32). Let Wj be a 
unit vector along the direction of propagation of the incident waves, and us a similar 
l(nit vector along the direction of the scattered waves. The path length difference for 
lhe incident and scattered waves for those two atoms is A D - B C ,  and the phase shift 
ls ifiver by

δ =  — (AD -  BC).
λ



578 Diffraction (I7.g

F i g .  17-32. X-ray scattering by two atoms 
A  and B.

But A D  =  Us -r and B C  =  u,-r.  Therefore

. 2π 2π
I S = - ( M s - H 1) T  =  - I f f -  (1 7 .2 9 )

A Λ

where O =  Ms -U i. Designating the angle between Hs and u, by 20, we see front the 
insert in Fig. 17-32 that

V =  2 sin Θ. (17.30)

The condition for constructive interference in the direction u s  is δ =  2ηπ or. in view 
of Eq. (17.29),

BT =  HA (17.31)

where as before, u is a positive or a negative integer. Equation (17.31) is the equation of 
a plane perpendicular to the vector d. Therefore for a given wavelength λ  and a given 
direction of incidence, F.q. (17.31) gives a series of parallel planes, one for each value 
of n. Figure 17-32 shows two such planes, P 1 and P 2. For all atoms located on these 
planes, condition (17.31) holds and they all contribute to a maximum of intensity m 
the direction us. In Eq. (17.31), n =  0 corresponds to the plane passing through A. 
n =  +  I to the next closest plane on either side, n =  +  2 for the next pair of planes, and 
so on.

From Fig. 17-32 and using Eq. (17.30), we see that uT =  ur cos a =  2d sin Θ where 
d =  A E  =  r cos a is the distance between planes P 1 and P 2 Then Eq. (17.31) becomes

2d sin 0 =  ηλ, (I?-321

an expression known as Bragg's equation  after the English physicists W. H. Bragg 
(1862-1942) and his son W. L. Bragg (1 8 9 0 -1971). who first obtained it. The values of" 
are limited by the condition that sin Θ is always smaller than one. The geometry m 
volved in this equation is shown in Fig. 17-33. For rays such as I and 2 that are
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Fig. 17-33. Parallel scattering planes in a 
crystal.

scattered by atoms in the same plane, the phase difference is zero (n =  0) and they 
interfere constructively. This situation however, holds for any angle of incidence. 
The important point of Bragg’s condition is that rays such as 3, 4, 5 , . . . ,  coming 
from successive planes also interfere constructively, giving rise to a very intense 
maximum. Therefore Bragg’s condition expresses a sort of collective effect, in which 
the rays scattered by all atoms in certain parallel planes interfere constructively. For 
fixed planes (or fixed cl) and wavelength λ, changing the angle 0 alternately produces 
positions of maximum and minimum intensity, corresponding to constructive (as 
given by Eq. 17.32), or destructive interference. N ote that Eq. (17.32) can be used to 
measure the plane separation d  if the wavelength λ  is known, and conversely.

A schematic drawing of the experimental arrangement Tor observing Bragg’s 
scattering of X-rays, a device called a crystal spectrometer,  is shown in Fig. 17-34. 
For a given direction of incidence Ui, Eq. (17.31) defines a series of possible families 
of parallel planes, producing a maximum for scattering in the directions h, charac
teristic of each family. The intensity depends on the number of atoms in each family

X - r a y  t  ube Detector

Slit

Fig. 17-34.Crystal spectrometer for X-ray diffraction. X-rays generated by the tube at left and 
Collimated by a slit in a lead block are diffracted by the crystal. The d iITracled X-rays are observed 
b> a movable detector, usually an ion chamber.
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b b b c C C
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b b

Fig. 17-35. Several possible parallel scattering planes in a crystal

of planes. Some of the possible families of planes are shown in Fig. 17-35. Each plane 
corresponds to a difference density of scattering centers and a different spacing. Ifa  
screen is interposed in the path of the rays scattered by a single crystal (see Fig. 17-36), 
a regular pattern, which is characteristic of the crystal structure, appears. The pattern 
is called the Laue pattern after the German physicist Max von Laue {1879 I960). 
Each dot in the pattern corresponds to the direction of Hs related to the different 
families of planes illustrated in Fig. 17-35, The photograph of Fig. 17-37 shows one 
such Laue pattern.

If the scatterer. instead of being a single crystal, is a powder containing a large 
number of small crystals, all randomly oriented, the corresponding Hs vectors are 
distributed on conical surfaces about the direction of incidence as shown in Fig. 
17-38. On a photographic film, each conical surface produces a bright ring as shown 
in Fig. 17-39, and the result is the so-called Debye-Scherrer patterns,  named after the 
Dutch physicist Peter Debye (1884-1966) and his student, the Swiss Paul Scherrer 
(1890-1979). By analysis of patterns such as those of Figs. 17-37 and 17-39, the 
internal structure of a crystal may be deduced, or conversely the wavelength of the 
X-rays may be found.

It is interesting to note that when Roentgen observed X-rays for the first time at 
the end of the nineteenth century, a great argument arose about their nature. Were

Screen

m

crystal.
Fig. 17-36. Laue X-ray diffraction by a S in g lc
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Pig. 17-37. Laue diffraction pattern for a quartz crystal. An attem pt has been m ade to mask the 
efiect of the undeviated incident beam.

Powdered
crystal

17-38. Powder X-ray diffraction. Fig. 17-39. X-ray diffraction pattern 
for powdered aluminum.
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they waves or particles? To answer this question, physicists performed interference 
and scattering experiments with equipment similar to that used for experiments 
dealing with light. However, the results were either negative or unconvincing. The 
trend was to discard any wave interpretation until von Laue, the Braggs, and others 
studied the passage of X-rays through crystals, and obtained the results we have 
discussed. These results offered proof of the wave character of X-radiation,

Example 17.8. A beam of X-rays is dit[Yacted by a rock-salt crystal. The first-order spectrum 
corresponds to an angle of 6 50' and the distance between the planes is 2.81 x 10 10 m. Determine 
the wavelength of the X-rays and the position of the second-order spectrum.

▼ Using Bragg’s relation (17.321 with d = 2.81 x 10 10 ηι, Θ — 6 '50'. and M =  I, we find that

λ —2d sin 0=6 .69  x 10“ 11 m.

To find the position of the second-order spectrum, we set n =  2. Thus sin 6 — n/J2ti = 0.238 or 
Θ= 13 46'. Note that the maximum diffraction order is limited by the condition ma/2<(< I. which 
in our case am ounts to  a <8.4  o r Mmal= 8. k

ProbIemB

17.1 Parallel rays of green mercury light of 
wavelength 5.6 x IO "7 m pass through a slit of 
width 4 x 1 0  i  m covering a lens of Tocal length 
0.40 m. W hat is the distance from the central 
maximum lo the first minimum on a screen at 
the focal plane of the lens?
17.2 The Fraunhofer diffraction pattern of a 
single slit, reproduced at twice its size in Fig.
17-5, was formed on a photographic film in the 
focal plane of a lens of focal length 0.60 m. The 
wavelength ol the light used was 5.9 x 10_1 m. 
C om pute the width of the slit. (Hint: Measure 
(on the photograph) the distance between cor
responding minima on the right and the left of 
the central maximum.)
17.3 A telescope is used to observe two distant 
point sources 0.30 m apart The objective of the 
telescope is covered with a screen in which 
there is a slit ol width I O '3 m. W hatis the maxi
mum distance at which the two sources will be 
distinguishable? Assume 2 =  5.0 x 10“ 7 tn.

17.4 The Fraunhofer diffraction pattern of a 
single slit is observed in the focal plane of a lens 
of focal length I m. The width of the slit is
4 x 10“ 4 m. The incident light contains two 
wavelengths, A 1 and A 2. The fourth m in im  uni 

corresponding to A 1 and  the fifth m in im u m  

corresponding to A2 occur at the same point.
5 x  10 3 m  from the central maximum C om- 
pute A 1 and A2 .
P .5  A  plane m onochrom atic wave οΓ wave
length 6.0 x 10 " m is incident perpendicularly 
on an opaque screen that has a rectangular 
aperture of 5 x 10 * m x 10 3 m. (a) Describe 
the diffraction pattern observed in the foca 
plane of a converging lens of focal length -  111 
placed directly behind the aperture, lb) Com
pute the sides of the rectangle formed by the 
dark lines surrounding the central m a x im u m -

17.6 C om pute the radius of the central disk ° 
the Fraunhofer diffraction pattern  of the imaS® 
of a star formed by (a) a camera lens 2.5 x 10
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in in diam eter and focal length 7.5 x 10' 1 m, 
jb) a telescope objective 0,15 m in diameter, 
with a 1.5-m focal length. Assume light of 
wavelength 5.f> x 10 “ 7 m.
17.7 The headlights of an approaching auto
mobile are 1.30 m apart. Estimate the distance 
at which the two headlights can be resolved by 
the naked eye if the resolution of the eye is 
determined by d iITraction alone. Assume a 
mean wavelength of 5.5 x IO"1 m and assume 
that the diam eter of the pupil of the eye is 5 
x 10 3 in. C om pare with the result obtained 
by the resolving power of the eye as given in 
Section 15.5,
17 b In Fig. 17-40, two point sources of light. 
S I and Si. 6 x 10 3 m apart and both at a 
distance of 50 m from lens L, produce images 
that are just resolved by Rayleigh's criterion. 
The local length of the lens is 0.20 m. What is 
the diam eter of the first diffraction circles?

17.4 In a double-slit diffraction pattern the 
Uiiid principal maximum is missing because 
>hat interference maximum coincides with the 
first diffraction zero, (a) Find the ratio alb.
(b) Plot the intensity distribution over several 
!t!axima on either side of the central maximum, 
tc) Make a half-tone sketch of the fringes as 
hey would appear on a screen.
17-10 Two pinholes 1.5x10 3 m apart are 
Placed In front of a bright light source and 
Bpwed through a lens covered by a screen that 
has a central circular hole (aperture) with a 
Oiameter of 4 x IO "3 m. W hat is the maximum 
distance at which the pinholes can be resolved? 
WsiBne a wavelength of 5.5 x 10"7 m.

17.11 The Fraunhofer diffraction o r a  double 
slit is observed in the focal plane of a lens of 
focal length 0.50 m. The incident m onochro
matic light has a wavelength οΓ 5.0 x 10 7 m. 
It is found that the distance between the two 
minima adjacent to the maximum of order zero 
is 5 x 10" ‘ m. and the maximum of the fourth 
order is missing. Com pute the width of the 
slits and the distance between their centers.
17.12 Plane monochrom atic waves of wave
length 6.0 x 10 m are incident normally on a 
plane transmission grating having 5 x IO5 lines 
per m. Determine the angles of deviation for 
the (a) first-order, (b) second-order, and (C) 
third-order spectra.
I/MJl A plane transmission grating is ruled with 
A Snoi lines per m. Compute in degrees the 
angular separation in the second-order spec
trum between the λ and β  lines of atom ic hydro
gen, whose wavelengths arc, respectively 6.56 
x I O " 7 m and 4 .10x10  m. Assume normal 
incidence.
17.14 (al W hat is the wavelength of light devi
ated in the first order through an angle of 20 by 
a transmission grating having 6 x IO5 lines per 
m? (bl W hat is the second-order deviation of 
this wavelength? Assume norm al incidence.
17.15 W hat is the longest wavelength that can 
be observed in the fourth order for a trans
mission grating having 5 x  IO5 lines per m? 
Assume norm al incidence.
17.16 Assuming that the limits of the visible 
spectrum are at wavelengths of 4 x 10 7 m and 
7 x 10' ” m, find the angles subtended by the 
first- and second-order spectra produced by a 
plane grating having 6 x 1 0 s lines per m. 
Assume norm al incidence.
17.17 A transmission grating 4 x  IO-2 m long 
has 4 x  IO5 lines per m. (a) Compute the 
resolving power of the grating for a wavelength 
of 5.9 x IO-7 m in the first-order spectrum, (b) 
Will the grating separate the two lines of wave
length 5.890 x 10" m and 5.896 x IO "7 m that 
constitute the sodium yellow1 doublet? Also 
com pute (cl the minimum deviation and (d) the 
corresponding dispersion for the wavelength 
considered.
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17.18 Show that, no m atter what the grating 
spacing, the violet of the third-order spectrum 
overlaps the red of the second-order spectrum. 
Assume normal incidence.
17.19 M onochrom atic light of wavelength 6.0 
x 1.0"7 m, originating at a distant point source, 
passes through a circular opening. The Tresnel 
diffraction pattern is observed on a screen I m 
beyond the opening. Determine the diameter 
οΓ the circular aperture ίΓ it exposes (a) the 
central Fresnel zone only, (b) the first four 
Fresnel zones.
17.20 A point is placed 0.10 m from a circular 
aperture illuminated by light of wavelength 5.0 
x IO "7 m. ΙΓ the aperture corresponds to  10 
Fresnel zones, determine its radius.
17.21 Light οΓ wavelength 5.0 x IO"7 m Tallson 
a circular aperture of IO "5 m radius. At what 
distance Trom the aperture should a point be 
located so that the aperture corresponds to (a) 
three Fresnel 2ones, (b) Tour Fresnel zones? (c) 
Estimate in each case whether there will be 
brightness or darkness at that point.
17.22 Parallel light waves οΓ wavelength 5.6 
x 10“ ’ m pass through a circular aperture 
2.60 x IO"3 m in diameter. The Fresnel diffrac
tion pattern is observed on a screen I m from 
the aperture, (a) Will the center of the diffrac
tion pattern appear bright or dark? (b) What 
minimum distance should the screen be moved 
in order to  reverse the condition found in (a)?
17.23 A plane monochrom atic light wave of 
wavelength 2 =  5 .0x10  7 m is incident per
pendicularly on a screen that has a circular 
aperture 4 x IO "3 m in diameter, (a) Determine 
the positions of the points of minimum and 
maximum intensity along the axis of the screen,
(b) How Tar from the screen does the last mini
mum occur?

17.24 A screen having a circular aperture of 
radius 4 x 1 0  3 m is illuminated with plane 
light waves Tailing perpendicularly. Assume 
that the incident light is a mixture oftwo mono
chrom atic light beams of wavelengths 2, ^ 
6 .0 x 1 0 “ ’ m and 22 =  4 .0 x l0 ” 7 m, respec
tively. Determine the points on the line per
pendicular to the aperture and through its 
center, where only (a) and (b) λ 2 is observed.
17.25 The spacing between the principal planes 
in a NaCl crystal is 2.82 x 10“ ' 0 m. It is found 
that a first-order Bragg reflection of a mono
chrom atic X-ray beam occurs at an angle of 
Iff. (a) Com pute the wavelength οΓ the X-rays. 
Ibl W hat angle corresponds to the second- 
order spectrum?
17.26 Potassium iodide, K l, is a cubic crystal 
having a density of 3.13 x IO3 kg m “ 3. (a) Find 
the smallest interplanar distance; i.e., the length 
of a unit cell, (b) Determine the angles corre
sponding to the first two Bragg reflections for 
X-rays of wavelength 3.0 x 10" 10 m.
17.27 An X-ray tube accelerates electrons 
through a potential difference of IO5 V. The X- 
rays produced are examined by means οΓ the 
crystal described in Problem 17.25. Find the 
angle at which the first-order spectrum of the 
shortest wavelength produced by the tube 
occurs. IHmr: See Example 12.2.)
17.28 A beam οΓ X-rays, of wavelength 5 
x lO " 11 m, falls on a powder composed of 

microscopic crystals of KCI oriented at 
random . The lattice spacing in the crystal is
3.14 x IO "10 m. A photographic film is placed 
0.1 m from the powder target. Find the 
radii of the circles corresponding to  the first- 
and second-order spectra from planes having 
the same spacing as the lattice spacing

CHALLENGING PROBLEM S

17.29 Coherent light passes through two paral- each slit is 7.5 x IO"5 m w i d e ;  t h e  c e n t e r  lines of
Iel slits and then falls on a screen 10 m distant. the slits are 1.5 x 10 4 m apart, (a) First one ol
The light has a wavelength of 6 .0 x 1 0 “ ’ m; the slits is covered, so that the light passes
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through a single slit. Describe as quantitatively 
as you can the appearance of the pattern oflight 
on the screen, lb) Now both slits are uncovered, 
so that the light passes through both Describe 
as quantitatively as you can the appearance of 
the pattern of light on the screen, (c) Suppose 
the wavelength of the light passing through the 
slits is decreased. How will the pattern observed 
in part (b) change? [AP-B; 1972]
17 30 (a) Light of a  single wavelength is incident 
on a single slit of width tv. («' is a few wave
lengths.) Sketch a graph of the intensity as a 
lunction of position for the pattern formed on 
a distant screen, (b) Repeat (a) for the case in 
which there are two slits. The slits are of width 
w and are separated by a distance d(dpw)-  
Sketch a graph of the intensity as a  function of 
position for the pattern formed on a  distant 
screen [AP-B; 1975]
17 31 A plane m onochrom atic wave of wave
length λ is incident, at an angle of 301, on  a 
plane opaque screen that has a long narrow 
slit of width a (Fig. 17-41). Behind the screen 
is a converging lens whose principal axis is 
perpendicular to  the plane of the screen. 
Describe the diffraction pattern observed in the 
focal plane of this lens.
17.32 Discuss the intensity distribution of the 
Fraunhofer diffraction by three identical, 
equally spaced slits. Assume norm al incidence 
on the slits.
17 33 Two equally bright stars subtend an 
angle of one second. Assuming a wavelength of
5.5 x IO-7 m: (a) W hat is the smallest diameter

of a telescope objective lens that will permit 
these stars to be resolved? (b) W hat should be 
the magnifying power of the telescope? (c) 
Com pute the focal length of the eyepiece to  be 
used if the focal length of the objective is 1.80 m.
17.34 It can be shown that, in the case of 
Fraunhofer diffraction, the amplitude of the 
waves diffracted by a circular aperture οΓ radius 
R  is proportional to the Bessel Junction J 1(X) 
(see Chemical Rubber C om pany’s Standard 
M athematical Tables. 25th edition, page 416), 
where for norm al incidence

X = (2f ) S,n9·
and Θ is the angle the diffracted rays make with 
the axis of the aperture (Fig. 17-42). (a) Show 
that the directions for which the diffracted 
waves have zero amplitude correspond to the 
roots of the equation J 1(X )= O . (b) By looking 
at a table of roots of J 1(X )--O  (Ioc. cit., page 
417). obtain the values of sin Θ for the first three 
directions of zero amplitude, checking Eq. 
(17.11). (c) Assuming that the diffracted rays are 
focused by a convergent lens of focal length /  
on a screen at the focal plane of the lens, express 
the radii of the first three dark rings formed. 
(Note that in this problem sin 0 can be replaced 
by Θ.) (d) O btain the values of Θ and of the radii 
of the rings, given that R = IO -4  m, 2 =  5.9 
x lO -·7 m, and /= 0 .2 0  m.
17.35 Show that, in a grating having a large 
number of lines, the intensity of the first sec
ondary maximum on either side of the first
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principal maximum is equal to about 4°0 of 
the intensity of the principal maximum.
17.36 A reflection grating is made by using a 
diam ond point to etch fine lines on a polished 
metal surface (Fig. 17-43). The polished spaces 
left between adjacent rulings are the equivalent 
of the slits in a transmission grating. Show that 
the principal maxima are obtained by the con
dition

a(sin i —sin 0) =  « /.

where a is the separation between consecutive 
lines.
17.37 To assure proper focusing by a diffraction 
grating, the American physicist H. A. Rowland 
constructed concave gratings of large radii. 
Assume that C in Fig. 17-44 is the center of 
curvature of the grating, and that the dashed 
circle has a diam eter equal to  the radius of the 
grating- Show that for any source S placed on 
that circle, (a) all rays fall on the grating with 
the same angle of incidence, (b) all rays diffrac
ted b j the grating through the same angle con
verge on some point O on the dashed circle. 
Thus if a photographic plate is placed at 0 .  
tangent to the circle, the diffraction spectrum 
corresponding to  that diffraction angle can be 
recorded. This arrangem ent is called Rowland’s 
mounting, and is used widely in physics labora
tories for spectroscopic research. (Hint: N ote 
tha t the norm al to  the grating at the point of 
incidence of a ray passes through C. and that 
the grating’s surface departs very little from 
Lhat of the dashed circle.)
17.38 A plane m onochrom atic light wave of

wavelength /.= 5 .0  x IO-7 m is incident per
pendicularly on an opaque screen that has an 
aperture of the shape shown in Fig. 17-45. The 
radius of the inner circle is IO-3  m and that of 
the outer circle is 1.41 x IO-3 m. (a) Compute 
the am plitude and the intensity of the optical 
disturbance at a  point P  on the axis of the 
circles. 2 m from the screen, relative to the 
values one would obtain in the absence of the 
screen, (b) Determine the phase of this distur
bance relative to that of the disturbance one 
would observe at P w ithout the screen.

Figure 17-45

17.39 A crystal lattice may be characterized by 
three fundamental vectors, a , ,  a 2. « j, so that 
the crystal structure is periodic for displace
ments that are linear combinations of integral 
multiples of the three vectors (Fig. 17-46). (a) 
Show that the relative position vectors of tw° 
points occupying similar positions in two dil- 
ferent cells are given by r  =  1/ ^ ,  + y2<i2+  )'je ·»· 
where y2, and are positive or negative 
integers, (b) Show that the atom s participating 
in the X-ray diffraction spectrum of order h are
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given by the integers satisfying the equation 
r ·(/ ifl I +  73fl2 +  73a J) = Ύ , where r is as defined

in Eq. (17.29). (c) Show that the intensity of the 
radiation scattered in the direction associated 
with β is proportional [A1A 2A 3)2. where 4 ,=  
sin ((V i T ti)-U lZ A y s in  πιJ-U jlZA and N i is the num 
ber of cells of the crystal in the direction of Ui. 
(d) From  the result derived in (c). show that the 
principal maxima occur in a direction satisying 
the relations B-U1 =  M1A, »-u , =  h 2A, B-U3 =  
M3A1 where M1, n2, and M3 are integers. These 
relations are called the Laue equations- (e) 
Using the reciprocal vectors u 1, u 2, u 3 (see 
Problem 3.34 in Volume I), show that

Ua =  Ul -MMiU1 + Μ 2α 2 +  Μ3α 3)Α.

This equation determines the position of the 
bright dots in a Laue pattern, as shown in Fig. 
17-37.
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18.1 Introduction

The motion of the bodies we observe around us can be described (independently 0f 
the interactions among them) in terms of general rules based on experimental evidence 
These principles or laws are:

1. the conservation of momentum,
2 . the conservation of angular momentum, and
3. the conservation of energy.

Based on these conservation laws, a formalism, called classical mechanics, was devel
oped for describing the detailed motion of particles under the assumptions that (I) the 
particles are localized in space, and (2 ) we can observe them without appreciably 
disturbing their motion. These assumptions are, in general, made implicitly rather 
than precisely and explicitly. The formalism of classical mechanics has been used to 
describe and analyze the motions of various bodies, ranging in size from planets at 
one extreme down to electrons at the other. However when applied lo the motion 
of the basic constituents of matter, classical mechanics gives only approximate 
results; in some instances classical mechanics is entirely inadequate.

At the end of the first quarter of the twentieth century an important revolution in 
physical concepts radically changed our approach Io the description of the motion 
of atomic and subatomic particles. Although the laws of conservation of momentum, 
angular momentum, and energy remain valid, there is now agreement that a detailed 
description of the motion of atomic particles, in the sense of classical mechanics, is 
not possible. For example, the experimental fact of quanticatioiJ of energy and other 
physical quantities, discussed in Chapter 7. is a novel idea that does not appear in 
classical mechanics. A satisfactory theory must contain information on how to 
calculate allowed energy levels as well as the space distribution of the particles in
volved. The interaction of radiation and matter by means of the absorption or emis
sion of photons (Chapter f2) is yet another concept that must be incorporated into 
this new theory.

For these reasons a new formalism, called quantum mechanics, has been developed. 
Quantum mechanics in its present form is the result of the work of many people. 
Among those who developed the new mechanics in the late 1920s, the Germans 
Max Born (1882 1969), Werner Heisenberg (1901-1976), and Erwin Sclirodinger 
(1897-1961), the Englishman Paul Dirac (1902— ), and the Frenchman Prince
Louis de Broglie (1892- ) stand out as notable contributors. The theoretical irame-
work of quantum mechanics is mathematically elaborate, but its basic ideas are 
relatively simple.

18.2 Particles and Fields

Our sensory experience tells us that the objects we touch and see have well-defined 
shapes and sizes and therefore are localized in space. We thus tend to think of die
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fundamental particles (i.e., electrons, protons, neutrons, etc.) as having shape and 
size, and imagine them as small spheres with a characteristic radius as well as mass and 
charge. This conceptualization, however, is an extrapolation beyond our direct 
sensory experience: and we should analyze this picture carefully before we accept it.

Experimentation shows that our extrapolated picture of the basic constituents of 
matter is erroneous. The dynamical behavior ol elementary particles requires that 
we associate with each particle a field —a matter field in the same way that in the 
reverse manner we associate a photon (which is equivalent to a particle) with an 
electromagnetic field. This matter field describes the dynamical condition of a particle 
in the same sense that the electromagnetic field describes photons that have precise 
momentum and energy. In discussing the connection between the matter field and 
the dynamical properties of the particle (i.e., momentum and energy), we may be 
guided by the relations E--In  and p — Ινλ. previously found for the photon in 
Chapter f2. The quantity Ii is Planck’s constant, equal to 6.626 x lO - 3 4  Js. Writing 
these relations in reverse, we may assume that the wavelength A and the frequency v 
of the monochromatic field associated with a particle of momentum p and energy E 
are gi”en by

h E
A =  -  v = - .  {18.11

p h

These relations were first proposed in 1924 by de Broglie; therefore λ =  hip is some
times called the de Broglie wavelength of a particle. Introducing the wave number 
k — 2π/λ and the angular frequency ω =  2 πν, we may write the relations in the more 
symmetric form

h , hP = — k, £ = — ω:
2π 2π

or recalling that t i—ii 2π =  1.0546 x IO- 3 4  Js, we have

p — fik, E =  tuo. (18.2)

If our assumption as expressed by Eqs. (18.1) or (18.2) is correct, we may expect that 
whenever Lhe motion of a particle is disturbed in such a way that the matter field 
associated with the particle cannot propagate freely, interference, diffraction, and 
scattering of the matter waves should be observed as is the case for elastic and electro
magnetic waves. This expectation is indeed what happens.

Before discussing the experiments that reveal interference and diffraction of the 
matter field, let us estimate the value of the de Broglie wavelength A associated with a
particle in terms of its energy. Electrons accelerated by an electric potential V gain
:in energy e V ; hence their kinetic energy is

p 2 —— -—
- —  — eV  sothat p —.:2meeV.
Ime

I herefore introducing the values of e, and k, we obtain the de Broglie wavelength
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o f  su ch  a c c e le ra te d  e le c tro n s  as

/i 1.23 x i< r 9
—------- = ----- m (18.3)

where V is expressed in volts. Similarly when the kinetic energy of the electron is 
expressed in electron volts, Ek =  p2 I lme or p =  and one may write

Consider electrons with energy of the order of IO4 V (this is in the range of the voltage 
used in TV tubes). Equation (18.3) indicates that the wavelength of the electrons is 
about 10 1 1 m, comparable to the wavelength of X-rays. Thus if we send a beam of 
fast electrons through a crystal, we should obtain patterns that result from scattering 
of the matter field. These patterns corresponding to the interaction of the incoming 
electrons should be similar to those observed for X-rays of the same wavelength as 
discussed in Section 17.8.

In 1927 the British scientist G. P. Thomson (1892-1975) began a series of experi
ments to study the passage of a beam of electrons through a thin film of crystalline 
material. After the electrons passed through the film, they struck a photographic plate 
as shown in Fig. 18-1. If the electrons had behaved as particles in the macroscopic 
sense, a blurred image would have been observed because each electron generally 
would undergo a different scattering by the atoms in the crystal. However, the result 
obtained was identical to the Debye-Scherrer patterns (see Ch. 17) for X-ray scattering 
by a polycrystalline substance as indicated in the photograph of Fig. 18-2. Similarly

, 1.23 x IO' 9
A = ------- j= —  m

where Ei is expressed in electron volts.

18.3 Scattering of Particles by Crystals

Fig. 18-1. Experimental arrangem ent for ob
serving electron scattering through crystalh1*6 
material.
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Fig. 18-2. Scattering of electrons by crystal 
powder. (Courtesy of Dr. Lester Germer)

when an electron beam passes through a single crystal, Laue spot patterns (also 
observed with X-rays) are produced as seen in the photograph of Fig. 18-3. From the 
structure of these patterns we can compute the de Broglie wavelength /  when the 
spacing between the crystal planes is known and if the formulas derived for X-rays 
are applied. The resulting values of λ can be compared with those obtained from 
Eq. (18.3). The result is complete agreement within the limits of experimental error.

In the celebrated experiments (made at about the same time as those of Thomson) 
by the Americans C. Davisson (1881-1958) and L. Germer (1896-1971), a beam of 
electrons was sent at an angle to the face of a crystal. The scattered electrons were

Fig. 18-3. Scattering of electrons by a 
single carbon (graphite) crystal. (Courtesy 
° f  R. Heidenreich. Bell Telephone L ab
oratories)
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X N
Electron / \ \

D ctcctor

Single crystal

Fig. 18-4. Davisson and G erm er arrangement for observing Bragg scattering of electrons

observed by means of a detector symmetrically located as indicated in Fig. 18-4. 
This arrangement is similar to the Braggs’ for observing X-ray scattering (Section 
17.8). Davisson and Germer found that the electron current registered by the detector 
was a maximum every time the Bragg condition, derived for X-rays, was fulfilled. 
The Bragg condition is expressed by Eq. (17.31),

where d is the separation of successive atomic layers in the crystal, and λ is given by

The same phenomenon of Bragg scattering has been observed in experiments with 
protons and neutrons. Neutron scattering is especially useful since it is one of the 
most powerful means of studying crystal structure. Experimenters use monoenergetic 
beams of neutrons and analyze their passage through the crystal. The neutrons 
emerging from a nuclear reactor through a porthole (Fig. 18-5) have a wide spectrum 
of energy (that is, they vary widely in momentum). In other words, the neutron beam 
is not monochromatic; rather it contains a spectrum composed of many de Broglie 
wavelengths. When the neutron beam from the reactor falls on a crystal (LiF. for 
example), the neutrons observed in the symmetric direction correspond only to the 
wavelength /. given by Bragg’s condition (18.4). Therefore they have a well-defined 
energy and momentum. The crystal then acts as an energy filter or m o n o ch ro m a to r-

2 d  sin 0 =  η λ (18.4)

Eq. (18.3).

Reactor
shielding

Fig . 18-5. N eutron crystal sp e c tro m e te r .
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The monoenergetic neutron beam is in turn used to study other materials or to 
analyze nuclear reactions involving neutrons.

Example 18.1. The de Broglie wavelength of thermal neutrons at a tem perature of 300 K.

T R> thermal neutrons we mean neutrons that are in thermal equilibrium with m atter at a given 
tem perature. Thus the neutrons have an average kinetic energy identical to that of the molecules 
of an ideal gas at the same tem perature. Therefore the average kinetic energy of therm al neutrons 
is E |ve =  (3/2)fiTwhere T is the absolute tem perature and k is Boltzm ann's constant. Given that 
the tem perature is 300 K,

£ , « = | aT = 6 .2 I  x IO"21 J =  3.88 x IO"2 eV.

The corresponding momentum is

P  =  v 2»i„£11„l, =  4.56 x  10 ‘ 2i m kg s "  ' .

Then using Eq. (18.1), we find that the average de Broglie wavelength of thermal neutrons is

λ — 1.45 x 10 10 m.

Incidentally, noting that the separation of the planes in a NaCl crystal is J = 2.82 x 10“ 10 m. we 
see that the first Bragg maximum for neutrons of this wavelength occurs at an angle Θ= 14.9 . A.

18.4 Particles and Wave Packets

Using relations (18.1), we may represent the field corresponding to a free particle 
moving with a well-defined momentum p and energy £ = p 2 / 2 m by a harmonic wave 
of constant amplitude as shown in Fig. 18-6. Symmetry demands that the amplitude 
of the wave be the same throughout all space since there are no forces acting on the 
particle to distort the associated matter field more in some regions of space than in 
others. The phase velocity of the field of the free particle is

|= - λ — |
Fig. 18-6. Continuous wave train  corresponding Io an unlocalized packet.
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Fig . 18-7. W ave packet co rrespond ing  to a  particle  localized w ith in  the  d istance Al.

That is, the phase velocity of the matter field is one-half the particle velocity. This 
equation has no experimental consequence, however, since we cannot measure the 
phase velocity of a pure harmonic wave directly. We can measure only the group 
velocity of the waves. The fact that the amplitude of the matter field is the same 
throughout all space suggests that the matter field of a free particle does not give 
information about the localization in space of a free particle of well-defined momen
tum. In other words, this matter field is independent of the position of the particle, 
and an observation of the field by some method would not reveal the position of the 
particle.

From our physical intuition and our knowledge of fields and waves, we know that a 
particle localized within a certain region Ax of space should correspond to a matter 
field whose amplitude or intensity is large in that region and very small outside it. 
A field may be built up in a certain region and attenuated outside that region through 
the process of interference by superposing waves of different frequencies and wave
lengths. The result is a wave packet as shown in Fig. 18-7. Thevelocity with which the 
wave packet propagates is the group velocity Vg, defined by Eq. (10.67) as

^ ά ω
V̂ ~ d k '

Using relations (18.2) and E - p 2/2m, we may rewrite the group velocity of the matter 
field corresponding to a free particle as

dE p 
v =  — = -  =  t\  

ap m

Thus just as our intuition tells us, the group velocity of the matter field (i.e., the 
velocity of propagation of the packet) is equal to the velocity of the particle. We 
conclude then that a particle localized in a certain region of space is associated with a 
field or wave packet whose amplitude is important only in the region occupied by the 
particle; the velocity of the particle Is the group velocity of the field or wave packet-
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18.5 Heisenberg's Uncertainty Principle for Position and
Momentum

Now we encounter a special situation that cannot be explained in terms of classical 
mechanics. For a wave packet to be localized in space, it is necessary to superpose 
several fields of different wavelengths λ (or with different values of the wave number 
k). If the wave packet extends over a region Ax, the values of the wave numbers of the 
interfering waves composing the wave packet and having an appreciable amplitude 
tall within a range Ak such that according to the analysis developed in Example 10.3,

AxAk ~  2 π.

But according to Eqs. (18.1) or (18.2), different wavelengths λ or wave numbers k 
mean that there are several values of p such that

Ap =  hAk.

Therefore when we recall that h =  2nh. the expression above becomes

Δ χΔ ρ~ /ι. (18 5)

The physical meaning of Eq. (18.5) is this: if a particle is within the region x —jA x  
and Χ +  2Δ (that is, Δχ is the uncertainty in the position of the particle), its associated 
field is represented by superposing waves of momenta between p —^Ap and p +  ^Ap 
where Apis related to Axby Eq. (18.5). Wesay that Ap is the uncertainty in the momen
tum of the particle. Equation (18.5) implies that the larger Ax1 the smaller Ap. and 
conversely. In other words, information about the localization of a particle in space 
is obtained at the expense of knowledge about the momentum. The more precise our 
knowledge of the position of the particle, the more imprecise is our information about 
its momentum, and conversely. For this reason a particle of wdll-known momentum 
(Ap^O) is represented by a wave of constant amplitude extending over all space 
)Δχ ) so that our knowledge of the position is nil. We cannot accurately determine 
both the position and the momentum of a particle simultaneously so that Δχ =  0 and 
Ap =  O at the same time. Such knowledge does not conform with Eq. (18.5).

The result expressed by relation (18.5) is called Heisenberg's uncertainty principle. 
which may be stated thus:

If is impossible to know simultaneously and with exactness both the 
position and the momentum of  a particle.

This principle expresses one of the fundamental facts of nature and to a certain extent 
may be considered as more fundamental than Eqs. (18.2) even though we have here 
proceeded in the opposite manner.

The uncertainty principle implies that the path o f a particle can never be defined 
wnh the absolute precision postulated in classical mechanics. Classical mechanics 
still holds true for large bodies, such as those of usual concern to the engineer, because
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the uncertainty implied by Eq. (18.5) is much smaller for a macroscopic body than the 
experimental errors in the measured values of x and p for the body. However, for 
particles of  atomic dimensions, the concept of  trajectory has no meaning since it cannot 
be defined precisely; therefore a picture of the motion different from the picture of 
classical physics is required. For the same reason, concepts such as velocity, accelera
tion, and force are of limited use in quantum mechanics. On the other hand, the 
concept of energy is of primary importance since energy is related more to the “state” 
of the system than to its “path.”

18.6 Illustrations of Heisenberg's Principle

Some simple situations serve to illustrate Heisenberg’s principle. Suppose, for 
example, that we want to determine the x coordinate of a particle by observing 
whether or not the particle passes through a hole (of width b ) in a screen (Fig. 18-8). 
The precision with which we know the position of the particle is limited by the size 
of the hole; that is, Ax ~ b :  but the hole disturbs the matter field associated with the 
particle, and the result is a corresponding change in the motion of the particle as 
shown by the diffraction pattern produced. The uncertainty in the particle’s momen
tum parallel to the X-axis is determined by the angle 0 , corresponding to half of the 
width of the central maximum of the diffraction pattern since the particle, after

Y

F ig . 18-8. M easurement of position and m om entum  of a particle passing through a slit.



18.6) Illu s tra tio n s  o f  H e ise n b e rg 's  P rin c ip le 599

Fig. 18-9. U se of a m icroscope to  m easure 
position  and  m om entum  o f a particle.

traversing the slit, is most probably moving within the angle 20. According to the 
theory of diffraction produced by a rectangular slit (Section 17.3), the angle Θ is 
given by sin Θ =  Xjb. Then

λ  a  h f '  hAp-Psme = J - - J

is the uncertainty in the momentum parallel to the X-axis. Therefore AxAp  ~ /i, in 
agreement with Eq. (18.5). Note that to improve our ability to determine the position 
of the particle, we must use a very narrow slit; but a very narrow slit produces a very 
wide central maximum in the diffraction pattern, and therefore a large uncertainty 
in our knowledge of the X  component of the momentum of the particle. Conversely 
in order to reduce the uncertainty in our knowledge of the X  component of the 
momentum, the central maximum in the diffraction pattern must be very narrow. 
This condition requires a very wide slit which, in turn, results in a large uncertainty 
in the x coordinate of the particle.

Another situation illustrating Heisenberg’s principle is the case in which we try to 
determine the position of an electron by means of a microscope (Fig. 18-9). T o observe 
the electron, we must illuminate it with light of some wavelength λ. The light that 
passes into the microscope has been scattered by the electron under observation. 
The momentum of the scattered photons is Ppholon =  Λ 2.; and to enter the objective 
lens, the photons must move within the cone of angle a so that the X  component of 
their momenta has an uncertainty

, h d
AP^  P ^ sm J Y y

since sin <x~d/2y. This is also the uncertainty in the X  component of the electron 
momentum after the scattering of light since in the scattering process some momentum  
is exchanged between the electron and the photon. On the other.hand, the exact
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position of the electron is uncertain because of the diffraction of light when it passes 
through the objective of the microscope. The uncertainty in lhepositionofthe electron 
is thus equal to the diameter of the central disk in the diffraction pattern. This diameter 
is given by 2y  sin Θ with sm Θ ~  λ/d *  Hence

• 2  v /Ax~2ys in0~
d

Therefore again AxAp ft. Note that to improve the accuracy of our knowledge in 
the position of the electron, we must use a radiation of very small wavelength, but 
the result is a large disturbance in the momentum. Conversely in order to produce a 
small disturbance in the momentum, we must use radiation of very long wavelength, 
which in turn gives rise to a great uncertainty in the position.

These two examples clearly show that the uncertainty principle is a direct conse
quence of the process of measurement. At the atomic level, measurement inevitably 
introduces a significant perturbation in the system because of the interaction between 
the measuring device and the measured quantity.

18.7 The Uncertainty Relation for Time and Energy

In addition to the uncertainty relation A x A p ft between a coordinate and the 
corresponding momentum of a moving particle, there is an uncertainty relation 
between time and energy. Suppose that we want to measure not only the energy of a 
particle but also the time at which the particle has such energy. If At and AE are the 
uncertainties in the values of these quantities, we will show that the relation

A tA E ~ h  (18.6)

holds. We can understand Eq. (18.6) in the following way. If we want to define the 
time at which a particle passes through a given point, we must represent the particle 
by a pulse or wave packet having a very short duration At. However, to build such a 
pulse, tt is necessary to superpose fields of many different frequencies with an ampli
tude appreciable only in a frequency range Δω centered around the frequency ω 
related to the energy of the particle by Eq. (18.2), E =  Λω. The theory of superposition 
of waves as developed in Ex. 10.3 requires that

Δ ίΔ ω ~ 2 π.

Multiplying by ft and recalling that E — ftoj and 2πΛ =  /ι. we obtain Eq. (18.6).
The uncertainty relation (18.6) requires that we revise our concept of stationary 

states. Consider an electron in an excited stationary state of an atom. After a certain 
time the electron will suffer a radiative transition into another stationary state of less 
energy. However, we have no means of predicting with certainty how long the electron

*W e have d isregarded th e  facto r 1.22 th a t ap p ears in the  theory  of d iffraction o f a p lane wave by a 
c ircu lar ap ertu re  (Section 17.3).
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will remain in the stationary state before making the transition. The most we can 
discuss is the probability per unit time that the electron will jump into a lower energy 
state. Therefore the lifetime of the state, the average length of time the electron is in a 
stationary state, is known within an uncertainty At. Hence the energy of the stationary 
state of the electron is not known precisely but has an uncertainty AE such that 
Eq. (18.6) holds. Often AE is designated as the energy width of the state whose energy 
is most probably between the limits E —jAE  and E +  ̂ AE. Thus the shorter the life
time of an excited state, the larger the uncertainty in the energy of the state. For the 
ground state, whose lifetime is infinite because a system that is in its ground state 
cannot suffer a transition to a stationary state of lower energy, we have Δ ι~  oo. 
This yields Δ £  =  0, and the energy of the ground state can be determined accurately.

18.8 Stationarv States and The Matter Field

We are now in a position to give a theoretical justification for the idea of stationary 
states that had been introduced in Section 7.4.

When a particle is in a bound state and confined to move within a limited region of 
space, such as an electron in an atom or a proton in a nucleus, the associated matter 
field must also be confined to that region. The situation is similar to that of waves 
on a string with fixed ends or within a cavity. We know that in such cases only certain 
wavelengths are possible and the allowed waves are called standing waves. Therefore 
we may expect that in the case of a bound particle only the states corresponding to 
the allowed wavelengths of the matter field are possible.

Consider the very simple example of a particle, such as a gas molecule in a box, 
constrained to move in the region from x =  0 to x  =  n. The molecule moves freely 
until it hits the wall, which forces the molecule to bounce back. The situation for a 
free electron in a piece of metal is similar if we neglect the electron’s interactions with 
the positive ions and if the height of the potential barrier at the metal surface is much 
IaTger than the electron’s kinetic energy. The electron can move freely through the 
metal but cannot escape from it.

We may represent each of these physical situations by the rectangular potential 
energy diagram of Fig. 18-10. This is an oversimplification of the potential energies 
that actually occur in nature. The simplified potential-energy diagram is called a 
potential box. We have

Eii(X) =  O for 0 < x < cj (18.7)

since the particle moves in that region. The potential energy increases sharply to 
infinity at x  =  0 and x =  a. This increase means that very strong forces act on the 
particle at those two points and force the particle to reverse its motion. Then no 
matter what the value of the energy £ , the particle cannot be to the left of x =  0  or to 
the right of x — a. The situation is formally identical to that corresponding to standing 
waves on a string with fixed ends. The student may recall that in order to have standing
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Fig. 18-10. One-dimensional potential box of Fig. 18-11. Fnergy levels for a one-dimensional 
width a. potential box.

waves on a string with fixed ends a distance a apart, the wavelength λ  must have the 
values ^λ =  α, χα, (1/3)«,. . . , (l/«)a or

2!■
n =  1 ,2 ,3 ........  (18.8)

n

We may thus assume that the same relation applies to the wavelength of the matter 
field of a particle within a potential box of length a. Hence according to Eq. (18.1), 
the only possible values of the momentum of the particle are

h n h = m h (189)
λ 2a a

The energy of the particle corresponding to the values given by Eq. (18.9) is

, 18. 10)
Im Ima

or if E l =  W n 2l ima 1 is the energy for n =  I, then

E = E1, 4E1, 9 E 1, . . .  Jt2E l .

We conclude then that the particle cannot have any arbitrary energy, but only those 
values given by Eq. (18.10) and shown in Fig. 18-11; that is, the energy of the particle 
is quantized.

It is interesting to note that the minimum energy of a particle in a potential box is 
E 1 =  Ji2K2Ilma2 and not zero as one would suspect. This minimum energy is related 
to the uncertainty principle in the following way. The uncertainty in the position of the 
particle is obviously Δ χ ~ α . The particle is moving back and forth with a momentum
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p , the uncertainty in the momentum is then Δρ ~  2p. The uncertainty principle requires 
that AxAp  ~  h. Therefore

nfi
<j(2 p)~/j or p ~ — , 

a

giving E = p2 2m ~  E1 The existence of a zero-point energy, as E 1 is sometimes called, 
is typical of all problems in which a particle is confined to move in a limited region.

As a second example, consider an electron in a hydrogenlike atom. Suppose that 
the electron describes a circular orbit as shown in Fig. 18-12. The momentum p of 
the electron is constant for a circular orbit. In order that the orbit correspond to a 
stationary state, it seems logical that it must be able to sustain standing waves of 
wavelength 2 =  h/p. We can see from Fig. 18-12 that the length of the orbit required 
must be equal to an integral multiple of that is, 2nr =  n2—nhjp, or

Noting that rp is the angular momentum of the electron, we see that the stationary 
states are those for which the angular momentum is an integral multiple of Λ =  λ /2 π. 
Since p =  mi;, we may also write Eq. (18.11) as

L = m v r  — nti, (18.12)

which expresses the quantization of angular momentum. Equation (18.12) was used 
in Section 7.4 for obtaining the energy of the stationary states of hydrogen. However 
as we pointed out when discussing Heisenberg’s uncertainty principle, it is impossible 
to define clearly the orbit of an electron in a hydrogen atom. Instead we talk of the 
region where it is more likely that the electron will be found. Therefore Eq. (18.12) 
cannot be rigorously valid. Instead, a more detailed analysis shows that the allowed
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values of the orbital angular momentum are given by

L =  νΎ(/+ Γ) Λ (18.13)

where 1—0, I, 2 , . . .  This relation was already introduced in Section 7.5.

18.9 W ave Function and Probability Density

We have argued that we cannot talk about the trajectory of an atomic particle in the 
sense of classical mechanics. We cannot, for example, ask whether or not the electrons 
move in elliptical orbits around the nucleus in an atom. This question would be 
meaningless even if the forces acting on the particles produced such classical orbits. 
If we cannot talk about the trajectory of an electron or of any other atomic particle, 
how may we describe its motion?

The information to answer this question is provided by the matter field. To obtain 
such information, we are guided by our knowledge of waves. We recall that in standing 
waves the amplitude of the wave is fixed at each point of space. At points at which the 
amplitude is larger, the wave motion is more intense.

A similar situation occurs in the case of atomic particles. Consider, for example, 
an electron in an atom. The electron never moves too far away from the nucleus: 
the electron is essentially confined to a small region of space with dimensions of the 
order of IO 9 m. Thus the associated matter field of the electron may be expressed in 
terms of standing waves localized in this region with the amplitude varying from point

F i g .  1 8 - 1 3 .  (a) Wave function of a particle moving between A and B. (b) Probability distribution 
corresponding to the wave function shown in (a|.
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Fig. 18-14. Probability distribution for an electron in an atom.

to point within the region and being practically zero outside this region. Let us 
designate the amplitude of the matter field by φ{χ). For historical reasons, this 
amplitude ψ(χ) is currently called the wave function although the name is misleading. 
Perhaps it would be better just to call it the matter-field amplitude.

We know that the intensity of a wave motion is proportional to the square of the 
amplitude. Therefore the intensity o f  the matter field is given by |i^(x)|2· The wave 
function ψ{χ) is sometimes expressed by a complex function: that is, a function 
containing i =  v' —I, The complex conjugate of a complex function is obtained by 
replacing each i by — i. The complex conjugate of a function φ is designated by φ*. 
Ihen \φ(χ)\2 =ψ*(χ)ψ{χ).  For a real function φ =  ψ*.

Next consider what physical meaning may be ascribed to the intensity of the 
matter field. Since the matter field describes the motion of a particle, we may say that 
the regions of  space in which the particle is more likely to be found are those in which 
M xli2 is large.

For example, the wave function φ{χ) for a particle confined mainly to the region 
hetween A and B is shown in Fig. 18-13. Note that ψ(χ) decreases very rapidly outside
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the region AB, while the wave function is oscillating within such a region. The intensity 
of the matter-field, given by |ψ(χ)|2, is indicated in Fig. 18-13b.

To be more quantitative, we say that

the probability o f  finding the particle described by the wave junction 
φ(χ) in the interval dx around the point x is |ψ(χ)|2 dx.

In other words, the probability per unit length of finding the particle at x is

P(x) =  |ψ(χ)|2. (18,141

We are assuming for simplicity that the motion is in one direction only. In the general 
case of motion in space, the wave function (or matter-field amplitude) depends on 
the three coordinates x, y, z [that is, φ(χ, y, z)\. Then \ψ(χ, y, z)\2dx dy dz is the prob
ability of finding the particle in the volume dx dy dz around the point having co
ordinates x, y, z ; or

P =  \ψ(χ, y, z)\2 (18.15)

is the probability per unit volume, or the probability density, of finding the particle 
at x, y, z. For example, suppose that we compute φ for an electron in an atom, and 
plot \φ\2 as in Fig. 18-14, in which JV is the nucleus and the degree of darkness is 
proportional to the value of IiAI2. Thus the darker zones represent the regions in which 
the probability of finding the electron is greatest. This statement is the most we can
say about the localization of the electron in the atom, and it is impossible to talk
about the precise orbit of the electron.

18.10 The SchrOdinger Equation

The next step in our investigation of the matter-field amplitude must be to find a rule 
by which the field amplitude or wave function φ can be obtained for each dynamical 
problem. Surely the wave function ij/(x) must depend on the dynamical state of the 
particle. This dynamical state is determined by the forces acting on the particle and 
by the particle’s total energy. If the forces are conservative, the motion is determined 
by the potential energy Ef x)  of the particle. Thus we may expect that the wave 
function φ(χ) must depend in some way on the potential energy and therefore on the 
total energy,

E = ^ + E p(x), (18.16)

of the particle. In fact the rule for finding φ(χ) is expressed in the form o f a differential 
equation, called the Schrodinger wave equation, which was formulated in 1926 by 
Erwin Schrodinger. This equation (for one-dimensional problems) is

- f f *  + (18. 171
2m dx
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where m is the mass of the particle. Schrodingefs equation is as fundamental to 
quantum mechanics as Newton’s equation F =  dp/di is to classical mechanics or 
Maxwell’s equations are to electromagnetism. Clearly the solutions φ of Eq. (18.17) 
depend on the form of the potential energy EflU).

When we solve Schrodinger s equation, we obtain not only the wave function φ{χ) 
but also the energy of the stationary states of the system.

Schrodingefs equation for the amplitude of the matter field can be easily under
stood by comparison with the wave equation for the amplitude of standing waves. 
(Recall Section 16.5.) In effect according to Eq. (16.29), the wave equation for waves 
propagating in one dimension is

dx~

whete k — lnj'L· Recalling that p — hjX, we may write k — 2np/h =  p/fi, which when 
substituted in the above equation reduces to

For motion in a region in which the potential energy is Ep and the total energy is £, 
by rearranging Eq. (18.16) we have

which is another way of writing Eq. (18.17).
We shall not make a detailed justification of Schrodinger’s equation since it is 

beyond the scope of this book. However, we may state a practical rule to relate Eq. 
(18.16) to Eq. (18.17). Ifin  Eq. (18.16).

When we “operate” with this expression on ψ{χ), the result is Eq. (18.17).
If the motion is not restricted to one dimension and the particle may move in 

ihree-dimensional space, the Schrodinger equation becomes

(18.18)

P 1 =  2m[E - E pU)]

so that Eq. (18.18) may be written as

(18.19)

we substitute the term —tfi{d/dx) for p,  we obtain

+ x S + i S + S [ * - E.<*· * * > ]* -0
(18.20)



60S Quantum Mechanics (18.11

18.11 The Wave Function of a Free Particle

In the case of a free particle the potential energy is zero [that is. EpUlssO], and 
Schrodinger’s equation becomes

¥  ά2φ 
—  -T^r= Εψ-i/.v“

which may be written in the form

d2\l/ 2mE ,
T i  +  - r ^ ^  =  0 . (18.21)
dx n

However for a free particle. E — p2j2m. Setting p =  fik. according to Eq. (18,2) where 
k is the wave number, we have

E
2m

Then Eq. (18.21) becomes

'ζ + Ιί2ψ = 0, ( 18.22)
CtX

which is identical to the equation for the amplitude of standing waves with a wave
length /  =  Injk =  hip as required by Eq. (18.1). This equation is obeyed, for example, 
by the amplitude of standing waves on a string or in a gas column or electromagnetic 
waves trapped in a cavity.

Remembering that i =  v — I and i1 — — I, we see that by direct substitution the 
differential equation (18.22) admits as solutions the wave functions

φ ( χ } = ε ίΙίΧ and \j /{x)=e~,kx. (18.23)

The wave function φ =  represents a free particle of momentum p =  Hk and energy 
E =  p2/2m =  -fi3 fc2/2m moving in the +  X-direction, and the wave function $ =  e 'ki 
represents a Iree particle of the same momentum and energy but moving in the 
opposite or —X -direction.

Note that either solution in Eq. (18.23) yields

2 =  φ*(χ)ψ(.χ ) =  e ~ ikxe ikx =  I.

The fact that |ψ(χ)|2 = 1 , or a constant, means that the probability of finding the 
particle is the same at all points. In other words, tj/ — e ±ikx describes a situation in 
which we have complete uncertainty about position. This outcome is in agreement 
with the uncertainty principle because φ — β±!ΐα: describes a particle whose momen
tum, p =  fik, we know precisely: that is, Δ ρ--0 . which requires that Δν-^οο.
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18.12 The W ave Function of a Particle in a Potential Box

Since the parlicle is free in the region 0 < x < «  (Fig. 18-10), we have that Schrodinger’s 
equation for a particle in a potential box is

ci2v/
— I +/rt/f =  0, k2 =  ImEfti2 (0 < χ < α ) . (18.24)

Since the particle is moving back and forth between x =  0 and x =  ti, the wave function 
is

ψ(χ}= Aeikx-  B e~ikl, (18.25)

which contains motion in both directions. The boundary conditions require that 
iy(x) = 0  at x =  0  and x =  a since the particle cannot be outside the walls of the box. 
Then the first boundary condition at x =  0 gives

^(χ)ϊ=ϋ =  /1 +  Β =  0 or B = - A .

Therefore we can rewrite F.q. (18.25) as

\j/(x) =  Aieikx - e -  '*') =  I iA  sin kx =  C sin kx (18.26)

where C =I iA .  The boundary condition at x =  a gives

ij/(x)x= 0- C  sin fcct =  0. (18.27)

Since C cannot be zero (because then there would be no wave function), we conclude 
that

sin/;« =  0  or ka =  nn 

where n is an integer. Solving for k, we have

k =  —  or p =  fik =  — , (18.28)
a ci

which gives the possible values of the momentum p =  tik of the particle. This result 
is identical to Eq. (18.8) obtained using a more intuitive method. Substituting the 
quantized value of k found in Eq. (18.28) into the wave function of Eq. (18.26) yields 
fhe general wave function

Ii*(x) =  C sin I (18.29)

and from Eq. (18.24) we may write the quantized energy levels as
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Ijn e  of symmetry Line of sy m m etry

N =  I

J- =  O
(a)

J = O
( I t )

Fig. 18-15. (a) First three wave functions for a particle in a potential box. (b) Corresponding 
probability densities

In Fig. 18-15a the wave functions corresponding to n =  l, 2, and 3 are illustrated: 
and in Fig. 18-15b the corresponding probability densities for a particle in a potential 
box are given.

18.13 The Wave Function of the Simple Harmonic Oscillator

An interesting and important physical system is the simple harmonic oscillator, 
corresponding to the potential energy

Ep( x ) = j k x 2.

A potential-energy diagram for a simple harmonic oscillator is shown in Fig. 18-16. 
The Schrodinger equation is

-  d  +  j k x 2\p(x)= ε Ψ(χ ). (18.31)
2m dx
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A’p(-r)

(a) (l>)
Fig. 1 8 - 1 6 .  (a) Potential energy of a simple harm onic oscillator, (b) Energy levels.

The solution of this differential equation is too elaborate a mathematical problem 
to be discussed here. Nevertheless, it may be shown that the possible values of the 
energy are

Ek =  (i i +  t y w  (18.32)

where n =  0 , 1, 2, 3 , . . . ,  integer, and

CO =  J k / m (18.33)

is the angular frequency of the oscillator.
The zero-point energy of the oscillator is lTicu, again a consequence of the un

certainty principle. The energy levels, represented in Fig. 18-16, are equally spaced
by an amount fiw.

Table 1 8 - 1 . Wave Functions for the Simple Harm onic 
O scillator (a=nw/fi)

Il En Φ„(χ)

0 (I '2)Λω ( a / J n f ^ e

I (3/2)fico (a/2 J π)1 i22axe~ °Jjt 2

2 (5/2)/ιω (a/8v/7r)1'2< 4 a V - 2 ) e - “Ijc2'2

3 (7/2 >Λω (a/48y π)1/2(8ο3.χ3 — 12ax)e~ ^*2'2
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/ \

I-A=I2/A
KJ

n=3

n = 2

H = I

H=II

-A'

F ig . 18-17. Wave functions corresponding to Fig . 18-18. Probability densities corresponding
the first four energy levels of a harm onic to the first four energy levels of a harmonic
oscillator. oscillator

We shall not derive the expression for the wave functions. The wave functions 
corresponding to n =  0, I. 2, and 3 have been given in Table IH-I and represented in 
Fig. 18-17. The corresponding probability densities are shown in Fig. 18-18.

18.14 The Hydrogen Atom

Although the simplest of all atoms are the one-electron atoms, such as hydrogen (H). 
single ionized helium (He + ), double ionized lithium (Li + +), and so on, their mathe
matical treatment is too complicated to be given here in full detail. However, there 
are several features that can be analyzed without great difficulty.

For atoms with one electron the potential energy of the electron relative to the 
nucleus is Ep-  —Z e2/(4ne0r) where Z is the atomic number of the nucleus, and 
Schrodingers equation becomes

p  ξ φ  ΡΦ 2„ ( e + Z C \  (lg34|
d x 2 a y  c z  ft \  4 n € 0r)

The fact that the potential energy depends only on the distance r from the electron
to the nucleus suggests that some solutions of Eq. (18.34) are spherically symmetric;
that is, φ depends only on r, or Ij/{r). To test this idea, we must first find the form 
adopted by Eq. (18.34) for this case. First note that since r2 — x 2 +  y 2 +  z2, then 
2r(dr/dx) =  2x and thus
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with similar results for d r / iy  and dr/cz. Then

itl/(r) _ ά φ  dr χ ά φ  
δχ dr δχ

and

O2 (AIr) _  O
δχ

r dr (18.36)

δχ2
x άφ 
r dr

I άφ x dr άφ x ά2φ dr
r dr r2 dx dr r dr2 ox

Substituting Eq. (18.35) into this equation gives

δ2φ(ι·) I άφ X 2 άφ X 2 ά2φ

δχ2
— —  r —  +  , .

r dr r dr dr
(18.37)

Writing the equivalent expressions for δ2φ/δ}>2 and ΰ2φ'δζ2 and adding the three 
together, we finally obtain Schrodinger’s equation in the form

Z e2ά2φ 2 ά φ  2m 

dr2 +  r dr 4 ne0r
φ =  0. (18.38)

Since the probability of finding the electron at a certain distance from the nucleus 
must decrease as the distance increases, we may assume that the wave function is an 
expression of the form f ( r )e“ ni where a is a constant to be determined. Assume for 
simplicity that φφ) =  ε ~ αΓ. Substituting this function and its derivatives into Eq. 
(18.38) will give

2m (  Z e2 
E +a2e~

fi2r 4 ne0r
r= 0 .

This equation may be rewritten as

n 2 +  ( A t  I  £ + '  2 0 + ( 2 ™ Z e ; V
I

_ W J  . \4π ε0Λ /_ r
The two terms within the square brackets must independently be zero; therefore 
we have

/  Jm
a2 +  | -p - 1 £  =  0  

\ k ~  J

2mZe
and - 2 a +  - j j =®·4n(0t r

From the second relation in Eq. (18.39) we find
mZe2

a =
4π60Λ2 '

(18.39)

(18.40

which when placed in the first relation of Eq. (18.39) gives the energy as

a2ti2 m Z 2eA
E =  — U _ = ------_ . f _ . (18.41)

2m (4π€0)22 fr
Comparing this value of the energy with Eq. (7.26), we see that the result above 
corresponds to ?i= I in Bohr’s energy formula. Thus the wave function φ = e  
corresponds to the ground state of a hydrogenlike atom.
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τη =  O 3p

2s in = O

rn =Il

I-* *
Il

3p m = I 3p m =  ()

4Ν» ♦♦
2p m = I 2μ m = O

□  Π  H
m m m  L J I

m = 2 3d «ί =  I 3d ni = fl

Fig. 18-19. Probability distribution of the electron in the !I 
atom . (Front Introduction to Atomic Spectra, H. W hite . New 
York: McGraw-Hill, 1934.)

By a similar analysis we can easily verify that

t l /= e ~ ar!2( 2 - a r )  

is also a solution of Eq. (18.38) corresponding to an energy

JtiZ2C4
£  =

2fi2(4ne0 )2(22) '

(18.42)

(18.43)

Again comparing with Eq. (7,26), we see that this energy corresponds to n =  2 in 
Bohr’s formula. In this way we recognize that the wave function given in Eq. (18.42) 
corresponds to the first excited state of the atom. Similarly we may find the solutions 
of Eq. (18.38) for Ji =  3, 4, etc.

The question now arises: Are the only solutions of Schrodinger’s equation those 
that are spherically symmetric? The answer is that the spherically symmetric solutions 
correspond to zero angular momentum (/ =  0 ) or s-states, but that states with nonzero 
values of angular momentum are not spherically symmetric. The wave functions for 
such states depend on the angles that r makes with the coordinate axes. For example, 
it can be shown that there are solutions of the form jc/1/Ί. y/(r). and : f (r) where the 
probability of finding the electron is concentrated along the X, Y, and Z  axes: these 
states correspond to an angular momentum /=  I or p-states. The lowest p-state 
corresponds to n =  2 in Bohr’s energy formula.

Thus we see that Schrodinger’s equation not only accounts for the correct energy 
values of the electron motion but also provides relevant information about the 
angular momentum of the electron. In Fig. 18-19 the probability distribution |Ψ| 
for different energy levels and different values of the angular momentum is shown-
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In concluding this brief introduction to quantum mechanics we may state that the 
theory of the matter field based on Schrodingers equation provides an adequate, 
but not complete algorithm for a discussion of the structure of matter.

Problems

18.1 Calculate the de Broglie wavelength of an 
electron when its energy is (a) I eV, (b) 100 eV, 
(c) I keV, and (d) I MeV.
18.2 Calculate which electrons given in P rob
lem 18.1 would be significantly diffracted in a 
nickel crystal, in which the atom ic separation 
is ahout 2.15 A.
18.3 C alculate the energy of electrons that are 
Bragg diffracted at an angle of 30 by the 
crystal in Problem  18.2.
1 8.4 M onochrom atic X-rays (A=0.5  A) are inci
dent on a sample of K.C1 powder. A flat photo
graphic plate is placed perpendicular to the 
incident beam, at a distance of 1.0 m from the 
powder. Determine the first- and second-order 
Bragg raJii, given that the Bragg plane separa
tion is 3.14 A.
18.5 A narrow  beam of thermal neutrons pro
duced by a  nuclear reactor falls on a  crystal 
with lattice spacing of 1.60 A. Determ ine the 
Bragg angle if 2-eV neutrons are strongly dif
fracted
18.n Suppose that a beam of electrons with a de 
Broglie wavelength of IO '5 m passes through a 
sbt 10“4 m wide. W hat angular spread is in tro
duced because of diffraction by the slit? 
i p  A probe must always be smaller (at least 
by a factor of 10) than the object being studied; 
otherwise there will be significant perturbation 
of the position and velocity of the object. Calcu
late the minimum particle energy if (a) photons, 
' bj electrons, and (c) neutrons are used to probe 
a nucleus whose diam eter is 1 0 '14 m.
18 8 Fhe velocity of a proton in the X-direction 
is measured to an accuracy of IO '7 m s ' 1, 
fkeiermine the limit of accuracy with which the 
proton can be located simultaneously (a) along 
Ihe X-axis, (b) along the X-axis.

18.9 Repeat Problem 18.8 for the case in which 
the particle is an electron.
18.10 The position of an electron is determined 
with an  uncertainty of 0.1 A. (a) Find the uncer
tainty in its momentum, (b) If the electron's 
energy is of the order of I keV, estimate the un
certainty in its energy.
18.11 Repeat Problem  18.10 for a proton con
fined to  a nuclear diam eter ( 5:10 14 m) and 
having energy on the order of 2 MeV.
18.12 A particle moves rectilinearly under the 
action of a uniform electric field <? so that its 
potential energy is Ep= - S x .  (a) W rite the 
Schrodinger equation for this motion, (b) Make 
a sketch of the wave functions for an energy E 
larger and  smaller than zero, (c) Is the energy 
quantized?

18.13 Find the frequency spread for a I -nano
second (10~4 s) pulse from a ruby laser 
(A =  6.3 x IO "7 m).
18.14 W hat is the effect on the energy levels of a 
one-dimensional potential box as the size of 
the box (a) decreases? (b) increases?
18.15 Consider an electron in a one-dimen
sional potential box of width 2.0 A. (a) Calcu
late the zero-point energy, (b) Using the un
certainty principle, discuss the effect of incident 
radiation designed to locate the electron with a 
1% accuracy (that is. Ax =  0.02 A).
18.16 (a) Estimate the zero-point energy of an 
electron confined inside a region of size 10 14 
m. the order of magnitude of nuclear dimen
sions. (b) C om pare this energy with both the 
gravitational potential energy and the coulomb 
potential energy of an electron and a proton 
separated the same distance, (c) O n the basis 
of this comparison, discuss the possibility that 
an electron can exist within a nucleus.
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18.17 Calculate the zero-point energy of a 
neutron confined within a nucleus IO-15 m in 
size.
18.18 A particle is represented by the wave 
function

I[i(x)=e~{x~Xoy  2a sin kx,

where a is a constant ^ z A  (a) Plot the wave 
function ψ{χ) and the probability distribution 
IlidxiP from x = x  — 3x0 to x =  x + 3 x (). (b) Esti
m ate the uncertainty in the position and in the 
mom entum  of the particle.
18.19 Show that the energy levels and wave 
functions of a particle moving in the .Y Eplane 
within a two-dimensional potential box of sides 
a and b are

, ^ · Λι.π-Λ . ( ' w \
* = C s,n( ^ ) sinU  )·

Discuss the degeneracy of energy levels when 
a = b.
18.20 Find the energy levels and wave functions 
for a particle moving within a three-dimen
sional box of sides a. b. and c. N ote that this is 
an extension of the previous problem.
18.21 Calculate the zero-point energy and the 
spacing for the energy levels (a) in a I-dimen
sional harm onic oscillator with an oscillatory 
frequency of 400 Hz, (b) in a three-dimensional 
harm onic oscillator with an oscillatory fre
quency of 400 Hz. (c) in the CO molecule, if the 
two atom s oscillate with a frequency of 6.43 
x IOn  Hz.
18.22 A particle moves due to a potential energy

E p( X ) = - E 0C - ^ 2.

(a) Plot Ep(x). (b) M ake a  sketch of the wave 
functions when the total energy is (i) negative 
and (ii) positive, (c) Do you expect to have 
quantized energy levels?

C HA LLENGING PROBLEM S

18.23 W hat is the mom entum of an electron 
whose de Broglie wavelength is 10 ' 10 m ? [AP- 
B ; 1969]
18.24 (a) Describe and interpret an experiment 
in which electromagnetic radiation exhibits 
particle-like behavior, (b) Describe and inter
pret an experiment in which electrons exhibit 
wavelike behavior. [A P-B; 1973]
18.25 A particle of mass m moves back and 
forth between two solid walls separated by a 
distance L. Theory predicts that the only 
allowed values of the particle’s kinetic energy 
are given by the equation

_ H2Ii2
_ 8mL2 ’

where h is Planck’s constant and n — I. 2, 3 , . . . 
(a) Determine the longest wavelength of light, 
Xma.. that this system can absorb when it is in 
its ground state, ; i = l .  (b) Show that the de

Broglie wavelength of the particle for any value 
of n is given by

2 L 
" n

(c) Describe one other physical system for 
which the same relation given in part (b) be
tween a wavelength and a distance L holds 
[AP-B: 1978]
18.26 A helium atom of mass hi moving with 
speed υ zigzags back and forth between two 
parallel walls of length L  separated by distance 
a as shown in Fig. 18-20. (a) In terms of a. e- 
and Θ. calculate the time interval Ar between 
two successive collisions with the right-hand 
wall, (b) In terms of m, u. and Θ, calculate the 
magnitude of the m om entum  Δp im parted to 
the right-hand wall each time the atom  collides 
with it. (c) Calculate the average force that the 
atom  exerts on the right-hand wall, and express
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//
Figure 18-20

the resulting pressure P on the wall in terms of 
Θ, the volume V of the region bounded by the 
walls, and the kinetic energy E  of the atom, (d) 
Suppose, instead, that a photon of energy E is 
following the zigzag path. Calculate the mag
nitude of the m om entum  Δρ it im parts to the 
right-hand wall in each collision, and express 
the resulting pressure P  in terms of E, Θ. and V 
[ΛΡ-Β: 1980],
18.27 Show that the ratio of the de Broglie 
wavelength Io the Com pton wavelength Tor the 
same particle is equal to

V'Tc c)r - l .

18.28 Verify the fact that the group velocity of a 
wave packet is equal to the particie velocity, 
even under relativislic conditions. Also Show 
that the phase velocity οΓ the m atter field at 
relalivistic speeds is equal to c2/v.
18.29 If a source moves with a velocity u relative 
to an observer, the frequency of the radiation 
measured by the observer suffers a shift Δν = 
vii/c. where u is positive (negative) when the 
motion is tow ard (away from) the observer, 
and where v would be the frequency if the 
source were stationary. This is called the elec

tromagnetic Doppler shift. Since the molecules 
in a gas are in random  motion, the Doppler 
shiit is different for each molecule. This 
introduces a line broadening, given by S = 
2(VZc)v- 2kT  in 2/m. where m is the mass of the 
molecule and T  is the absolute tem perature of 
the gas. C om pute the Doppler broadening at 
room tem perature (300 K) for (a) the 4.86-eV 
atom ic transition in mercury and for (b) the
1.33-MeV nuclear transition in 60Ni. Discuss 
in each case the effect on resonance absorption.
18.30 The gamma-ray line emitted by 19lIr has 
a mean energy of 129 keV, and the measured 
width of the line at half-maximum intensity is
4.6 x IO-6 eV. Estimate (a) the mean lifetime 
of the excited state emitting this line, (b] the 
relative velocity of source and observer that is 
required to give a first-order Doppler shift 
equal to  the measured line width.
18.31 (a) From the definition of probability 
density as Ρ=\ψ' 'I], show that

00
PdV=  I

~ OP

where dV=dxdydz. {Hint: N ote that the argu
ment here is logical, not mathematical.) <b) 
From  the result of (a), calculate the value of the 
constant in the simple harm onic oscillator wave 
function.
18.32 The general expression of the solutions of 
Schrodinger's equation Tor the harm onic oscil
lator is

ψα = Ν„Η»{αχ)ϋ-α2*2:2,

where N„ = J a / n , a 2"nl is the normalization 
constant, a = v maijh, and the functions H n{ax) 
are called Hermite polynomials, defined by

Η„{ξ)= ( - l ) v ^ ( e - n

Write the first four wave functions (a= 0 . 1,2, 3) 
and com pare with the expressions given in 
Table 18-1.
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This appendix, in which we present certain mathematical formulas that are 
frequently used in the text, is intended as a quickly available reference for the 
student. In a few  cases we have inserted some mathematical notes in the text 
proper. Proofs and a discussion o f most o f the formulas may be found in any 
standard calculus text; e.g., Calculus and Analyt ic  Geometry,  fifth edition, by G. 
B. Thomas (Addison-W esley, 1979). A short introduction to the basic concepts 
of the calculus, in a programmed format, may be found in Quick Calculus: A 
Short Manual of  Self Instruction,  by D. Kclpner and N. Ramsey (John Wiley & 
Sons, N ew  York, 1963). The student will also have to refer to a number o f tables 
which are in book form. Among these are the C.R.C. Standard Mathematical  
Tables (Chemical Rubber Company, Cleveland, Ohio, 1963), and Tables of  
Integrals and Other Mathematical  Data,  fourth edition, by Η. B. Dwight (Mac
millan Company, N ew  York, 1961). We recommend that the student have at his 
disposal the Handbook o f  Chemistry and Physics,  yearly editions o f which are 
issued by the Chemical Rubber Company, Cleveland, Ohio. This handbook also 
contains a wealth of mathematical, chemical, and physical data.

1. Trigonometric Relations

Referring to Fig. M -I, we can define the following relations:

s in a  = y/r, cos a  = x/r, tan a  =  y/x; (M .l)
esc a  = rjy, sec a =  r/x, cot a  =  x/y; (M.2)
tan a =  sin a /cos a ; (M.3)
sin2 a  + c o s 2 a  =  I, sec2 a  — I =  tan2 a ; (M.4)
sin (a  ±  β)  = sin a  cos β  ±  cos a  sin β ; (M.5)
cos (a  ± )3) =  cos a  cos β  T sin a  sin β ; (M.6 )
sin a ±  sin β  =  2 sin |(β  ±  β)  cos 2(α + β)\  (M.7)
cos a + cos β  = 2 cos |(a  + β )  cos |(a  -  /3); (M.8 )
cos a  -  cos β  =  - 2  sin |(a  + β)  sin |(a  -  β)·, (M.9)
sin a  sin β  = |[ c o s (a  - / 3 ) - c o s  (a  + /3)]; (M.IO)
cos a  cos β  =  ![cos (a  -  β )  + cos (a  + /3)]; (M .l I)
sin a  cos β  =  |[sin (a  -  β )  + sin (a  +  β)]; (M.12)
sin 2a =  2 sin a  cos a , cos 2a = cos2 a  -  sin2 a ; (M .l3)
sin2|a  =  |(1 -  cos a ) , cos2 |a  =  |(1 + cos a ). (M.14)

Referring to Fig. M-2, we can formulate, for any arbitrary triangle:
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Figure M-2

Law o f sines: —sin A  sin B  sin C ’

Law of cosines: a 2 = b 2 + C2 — 2bc  cos A.

(i) Definition of e :

2. Logarithms

e  = I im f l  + - V  = 2 .7 1 8 2 8 1 8 ...
ί.— V n j

The exponential functions y = e 1 and y =  e 1 are plotted in Fig. M-3. 
(itj Natural logarithm, base e (see Fig. M-4):

y =  In x  if x  = e*.

Common logarithm, base 10:

y = log x if x ~  IOi.

The natural and common logarithms are related by

In x  =  2.303 log x, log x  =  0.434 In x.

(M.15) 

(M. 16)

(M.17)

(M.18)

(M.I9)

( M .2 0 )
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3. Power Expansions

(i) The binomial expansion:

( a  +  b y  =  a n +  n a ' ~ ' b  +  n ( "2 , ] )  a " ~ 2b 2

n ( n  -  l ) ( n  -  2 ) 3 . 3H------------— a ο -

+ n tn -  l)(n — 2 ) · ■ ■ (n — p + I) a n-pb p + ,
P'· (M .21)
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When n is a positive integer, the expansion has n +  I terms. In all other cases, 
the expansion has an infinite number o f terms. The case for which a is I and b is 
a quantity x is used numerous times in the text. Therefore the binomial 
expansion o f (I + x)" is written

/ < , ΛΒ . , 11V , n(n -  I) 2 n(n -  l)(n  - 2 )  3(1 + x) = , - r n x - r — —----- x + ------------- - x  +■■■ (M.22)

(ii) Other useful series expansions:

e* = I +  x + X s + X 3 + ■ · ■ (M.23)

X i X 3
ln ( l  + x) = x - y  + j ------- (M.24)

I 3 I j  sin x  =  x -  x + x -  ■ · · (M.25)

, I 2 I 4
COS X  = I - ^ y X  + ^ j X  -  · · · (M.26)

1 , 2 stan x = x + - x  + * + ■·· (M.27)

For x  I, the following approximations are satisfactory:

(I + x )n =  I + nx, (M.28)
eJ =  l +  x, l n ( l + x )  =  x, (M.29)
sinx==jc, C O s x  =  I, ta n x  =  x. (M.30)

Note that in Eqs. (M.25), (M.26), (M.27), and (M.30), x must be expressed in
radians.

(iii) Taylor series expansion:

/(*) -  /(*,) + <* -  *·> ( j J ) o + Ji U  -  *.)! (dp) 0

+ · · · 4 ι1 - ' · » · ( 0 ) „ + · "  , MJ I )

If X - X 0 I, a useful approximation is

/ ( x )  =  /(X 0) +  (x  -  X0) ( ^ ) o- (M.32)
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4. Complex Numbers

With the definition Zs =  - I  or Z = V - 1 ,

e ‘e = cos Θ +  i sin θ, (M.33)
cos Θ = f o ie +  e ' w), (M.34)

s in 0  = J j i e ie ~ e ~ m). (M.35)

S. Hyperbolic Functions

In order to visualize the following relations, see Fig. M-5.

cosh Θ = Re* + e ~ \  (M.36)
sinh Θ =  ^ e e -  e~°), (M.37)
cosh 2 Θ -  sinh2 0 =  1, (M.38)
sinh Θ = - i  sin (if?), cosh Θ -  cos (if?), (M.39)
sin f? = -Z sinh (if?), cos Θ = cosh (if?). (M.40)

6. Basic Derivatives and Integrals

/ ( « ) df idx J f (U )  du

I i " n u dul dx « " * ' / ( « +  I ) + C (n *  - I )
U - ' - ( H u i) duldx In u +  C
In u ( Mu)  du ldx u In u — u +  C
e u e “ duldx e u +  C
sin u cos u duldx — cos u +  C
cos U —sin «  duldx sin i i  +  C
tan u sec2 u duldx -In  cos a +  C
cot II -  e s c2 u duldx In sin u +  C
arcsin u ( d u l d x ) I V  I — i i 2 u sin-1 i i  +  V l  -  U i +  C
sinh u cosh u du ldx cosh u +  C
cosh u sinh u duldx sinh u +  C
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Figure M-5

A useful rule for integration, called i n t e g r a t i o n  b y  p a r t s ,  is

J u  d v  =  u v  -  j v  d u .  (M.41)

This method is most frequently used to evaluate the integral on the left by using 
the integral on the right.

7. Average Value of a Function

The m e a n  or a v e r a g e  v a l u e  of a function y  =  f i x )  in the interval ( a ,  b ) is defined 
by

yavc =  7-^—  f  y d x .  (M.42)
b  -  a  J a

Similarly, the average value of y 2 is defined by

(yX" = b ^ a [ yldx· ( M ' 4 3 )

The quantity V (V 2)ave is called the r o o t  m e a n  s q u a r e  value o f y  = f i x ) in the
interval (a, b  I, and in general is different from yave. It is designated
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Θ. Conic sections

An important family of plane curves are the conic sections.  A conic section is 
defined as a curve generated by a point moving in such a way that the ratio of its 
distance to a point, called the focus,  and to a line, called the directrix, is 
constant. There are three kinds of conic sections, called ellipse, parabola, and 
hyperbola, depending on whether this ratio (called the eccentricity) is smaller 
than, equal to, or larger than one. Designating the eccentricity by e, the focus by 
F, and the directrix by H Q D  (Fig. M-6 ), we have

N ow  P F  — r, and if we say that FD — d, then PQ = FD -  FB = d  — r cos Θ. 
Therefore e = rl(d -  r cos (t). Or, solving for r,

This is the form in which the equation of a conic section has been used in the 
text. The equation for the conic section may also be derived using the angle 
W -  Θ, and thus the equation has the form

In the case of an ellipse, which is a closed curve, point A corresponds to Θ = 0 
and point A'  to Θ = w. Thus, according to the polar equation, we have

Then, since n + n  = 2a, the semimajor axis is given by

e = PFi PQ.

—  = I + e cos Θ. (M.44)
r

—  = l - e  cos Θ.
r

a = Kn + n) = j- ^ 2. (M.45)

The semiminor axis is
D irectrix  Il

and the area of the ellipse is

S = w a b  = w a W \ - e 2. (M.47)

A circle is a special case of an ellipse 
when e = 0 .

Figure M-6. G eom etrical elem ents o f the 
ellipse.
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9. Solid Angles

A sol id angle  is the space included inside a conical (or pyramidal) surface, as in 
Fig. M-7. Its value, expressed in s t eradians  (abbreviated sr), is obtained by 
drawing, with arbitrary radius R and center at the vertex O , a spherical surface 
and applying the relation

Ω =  J 5, (M.47)

where S  is the area o f the spherical cap intercepted by the solid angle. Since the 
surface area o f a sphere is AttR 2, we conclude that the complete solid angle 
around a point is 4 π  steradians. The solid angle formed by the three mutually 
perpendicular coordinate axes OX,  OY.  and O Z  (Fig. M-8), is έ(4π) or v /2  
steradians.

z

Figure M-7. Solid angle Figure M-8

When the solid angle is small (Fig. M-9), the surface area 5  becom es dS ,  and 
is not necessarily a spherical cap. but may be a small plane surface perpendicular 
to O P  so that

d i l  =  . (M.48)
A

In some instances the surface d S  is not perpendicular to OP,  but its normal N  
makes an angle Θ with O P  (Fig. M -10). Then it is necessary to project dS  on a 
plane perpendicular to OP,  which gives us the area dS'  =  dS  cos Θ. Thus
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Figure M-9 Figure M-IO
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NATURAL TRIGONOMETRIC FUNCTIONS

Angle Angie

De
gree

Ra
dian Sine

C o
sine

Tan
gent

De
gree

Ra
dian Sine

Co
sine

Tan
gent

0“
1°

0.000
0.017

0.000
0.017

1.000
1.000

0.000
0.017 46“ 0.803 0.719 0.695 1.036

2“ 0.035 0.035 0.999 0.035 47“ 0.820 0.731 0.682 1.072
3° 0.052 0.052 0.999 0.052 48“ 0.838 0.743 0.669 I .I l l
4“ 0.070 0.070 0.998 0.070 49“ 0.855 0.755 0.656 1.150
5° 0.087 0.087 0.996 0.087 50“ 0.873 0.766 0.643 1.192

6” 0.105 0.104 0.994 0.105 51“ 0.890 0.777 0.629 1.235
7° 0.122 0.122 0.992 0.123 52“ 0.908 0.788 0.616 1.280
8° 0.140 0.139 0.990 0.140 53“ 0.925 0.799 0.602 1.327
9“ 0.157 0.156 0.988 0.158 54“ 0.942 0.809 0.588 1.376

10° 0.174 0.174 0.985 0.176 55“ 0.960 0.819 0.574 1.428

11° 0.192 0.191 0.982 0.194 56“ 0.977 0.829 0.559 1.483
12“ 0.209 0.208 0.978 0.212 57“ 0.995 0.839 0.545 1.540
13° 0.227 0.225 0.974 0.231 58“ 1.012 0.848 0.530 1.600
14° 0.244 0.242 0.970 0.249 59“ 1.030 0.857 0.515 1.664
15° 0.262 0.259 0.966 0.268 60“ 1.047 0.866 0.500 1.732

16° 0.279 0.276 0.961 0.287 61“ 1.065 0.875 0.485 1.804
17“ 0.297 0.292 0.956 0.306 62“ 1.082 0.883 0.470 1.881
18“ 0.314 0.309 0.951 0.325 63“ 1.100 0.891 0.454 1.963
19“ 0.332 0.326 0.946 0.344 64“ 1.117 0.899 0.438 2.050
20“ 0.349 0.342 0.940 0.364 65“ 1.134 0.906 0.423 2.144

21“ 0.366 0.358 0.934 0.384 66“ 1.152 0.914 0.407 2.246
22“ 0.384 0.375 0.927 0.404 67“ 1.169 0.920 0.391 2.356
23“ 0.401 0.391 0.920 0.424 68“ 1.187 0.927 0.375 2,475
24“ 0.419 0.407 0.914 0.445 69“ 1.204 0.934 0.358 2.605
25“ 0.436 0.423 0.906 0.466 70“ 1.222 0.940 0.342 2.748

26“ 0.454 0.438 0.899 0.488 71“ 1.239 0.946 0.326 2.904
27“ 0.471 0.454 0.891 0.510 72“ 1.257 0.951 0.309 3.078
28“ 0.489 0.470 0.883 0.532 73“ 1.274 0.956 0.292 3.271
29“ 0.506 0.485 0.875 0.554 74“ 1.292 0.961 0.276 3.487
30“ 0.524 0.500 0.866 0.577 75“ 1.309 0.966 0.259 3.732

31“ 0.541 0.515 0.857 0.601 76“ 1.326 0.970 0.242 4.011
32“ 0.558 0.530 0.848 0.625 77“ 1.344 0.974 0.225 4.332
33“ 0.576 0.545 0.839 0.649 78“ 1.361 0.978 0.208 4,705
34“ 0.593 0.559 0.829 0.674 79“ 1.379 0.982 0.191 5.145
35“ 0.611 0.574 0.819 0.700 80“ 1.396 0.985 0.174 5.671

36° 0.628 0.588 0.809 0.726 81“ 1.414 0.988 0.156 6.314
37“ 0.646 0.602 0.799 0.754 82“ 1.431 0.990 0.139 7.115
38“ 0.663 0.616 0.788 0.781 83“ 1.449 0.992 0.122 8.144
39“ 0,681 0.629 0.777 0.810 84“ 1.466 0.994 0.104 9.514
40“ 0.698 0.643 0.766 0.839 85“ 1.484 0.996 0.087 11.430

41“ 0.716 0.656 0.755 0.869 86“ 1.501 0.998 0.070 14.301
42“ 0.733 0.669 0.743 0.900 87“ 1.518 0.999 0.052 19.081
43“ 0.750 0.682 0.731 0.933 88“ 1.536 0.999 0.035 28.636
44“ 0.768 0.695 0.719 0.966 89“ 1.553 1.000 0.017 57.290
45“ 0.785 0.707 0.707 1.000 90“ 1.571 1.000 0.000 OC
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COMMON LOGARITHMS

N 0 I 2 3 4 5 6 7 S 9

0 0000 3010 4771 6021 6990 7782 8451 9031 9542
I 0000 11414 0792 1139 1461 1761 2041 2304 2553 2788
2 3010 3222 3424 3617 3802 3979 4150 4314 4472 4624
3 4771 4914 5051 5185 5315 5441 5563 5682 5798 5911

4 6021 6128 6232 6335 6435 6532 6628 6721 6812 6902
S 6990 7076 7160 7243 7324 7404 7482 7559 7634 7709
6 7782 7853 7924 7993 8062 8129 8195 8261 8325 8388

7 8451 8513 8573 8633 8692 8751 8808 8865 8921 8976
8 9031 9085 9138 9191 9243 9294 9345 9395 9445 9494
9 9542 9590 9638 __ 9685 9731 9777 9823 9868 9912 9956

10 0000 0043 0086 0128 0170 0212 0253 0294 0334 0374
Il 0414 0453 0492 0531 0569 0607 0645 0682 0719 0755
12 0792 0828 0864 0899 0934 0969 1004 1038 1072 I 106
13 1139 1173 1206 1239 1271 1303 1335 1367 1399 1430

14 1461 1492 1523 1553 1584 1614 1644 1673 1703 1732
15 1761 1790 1818 1847 1875 1903 1931 1959 1987 2014
16 2041 2068 2095 2122 2148 2175 2201 2227 2253 2279

17 2304 2330 2355 2380 2405 2430 2455 2480 2504 2529
18 2553 2577 2601 2625 2648 2672 2695 2718 2742 2765
19 2788 2810 2833 2856 2878 2900 2923 2945 2967 2989
20 3010 3032 3054 3075 3096 3118 3139 3160 3181 3201
21 3222 3243 3263 3284 3304 3324 3345 3365 3385 3404
22 7424 3444 3464 3483 3502 3522 3541 3560 3579 3598
23 3617 3636 3655 3674 3692 371 I 3729 3747 3766 3784

24 3802 3820 3838 3856 3874 3892 3909 3927 3945 3962
25 3979 3997 4014 4011 4048 4065 4082 4099 4116 4133
26 4150 4166 4183 4200 4216 4232 4249 4265 4281 4298

27 4314 4330 4346 4362 4378 4393 4409 4425 4440 4456
28 4472 4487 4502 4518 4533 4548 4564 4579 4594 4609
29 4624 4639 4654 4669 4683 4698 4713 4728 4742 4757
30 4771 4786 4800 4814 4829 4843 4857 4871 4886 4900
31 4914 4928 4942 4955 4969 4983 4997 5011 5024 5038
32 505! 5065 5079 5092 5105 5119 5132 5145 5159 5172
33 5185 5198 5211 5224 5237 5250 5263 5276 5289 5302

34 5315 5328 5340 5353 5366 5378 5391 5403 5416 5428
35 5441 5453 5465 5478 5490 5502 5514 5527 5539 5551
36 5563 5575 5587 5599 6511 5623 5635 5647 5658 5670

37 5682 5694 5705 5717 5729 5740 5752 5763 5775 5786
38 5798 5809 5821 5832 5843 5855 5S66 5877 5 88 S 5899
39 5911 5922 5933 5944 5955 5966 5977 5988 5999 6010
40 6021 6031 6042 6053 6064 6075 6085 6096 6107 6117
41 6128 6138 6149 6160 6170 6180 6191 6201 6212 6222
42 6232 6243 6253 6263 6274 6284 6294 6304 6314 6325
43 6335 6345 6355 6365 6375 6385 6395 6405 6415 6425

44 6435 6444 6454 6464 6474 6484 6493 6503 6513 6522
45 6532 6542 6551 6561 6571 6580 6590 6599 6609 6618
46 6628 6637 6646 6656 6665 6675 6684 6693 6702 6712

47 6721 6730 6739 6749 6758 6767 6776 6785 6794 6803
48 6812 6821 6830 6839 6848 6857 6866 6875 6884 6893
49 6902 6 9 1 1 6920 6928 6937 6946 6955 6964 6972 6981
50 6990 6998 7007 7016 7024 7033 7042 7050 7059 7067

N 0 I 2 3 4 5 6 7 8 9
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7067
TBr
7235
7316

73%
7474
7551
7627
7701
7774
7846
7917
7987
8055

8122
8189
8254
8319
8382
8445
8506
8567
8627
8686

8745
8802
8859
8915
8971
9025
9079
9133
9186
9238
9289
9340
9390
9440
9489
9538
9586
%33
%80
9727

9773
9818
9863
9908
9952
99%
0039

9
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COM M ON LO G A R ITH M S ( continued )

6998 7007 7016 7024 7033 7042 7050
7084
7168
7251

7332
7412
7490
7566
7642
7716

7093
7177
7259

7340
7419
7497
7574
7649
7723

7101
7185
7267

7348
7427
7505
7582
7657
7731

7110
7193
7275

7356
7435
7513
■>589
7664
7738

7118
7202
7284

7364
7443
7520
7597
7672
7745

7126
7210
7292

7372
7451
7528
7604
7679
7752

7135
7218
7300

7380
7459
7536
7612
7686
7760

7789 77% 7803 7810 7818 7825 7832
7860
7931
8000

8069
8136
8202
8267
8331
8395

7868
7938
8007

8075
8142
8209
8274
8338
8401

7875
7945
8014

8082
8149
8215
8280
8344
8407

7882
7952
8021
8089
8156
8222
8287
8351
8414

7889
7959
8028
80%
8162
8228
8293
8357
8420

78%
7966
8035

8102
8169
8235
8299
8363
8426

7903
7973
8041

8109
8176
8241
8306
8370
8432

8457 8463 8470 8476 8482 8488 8494
8519
8579
8639

8698
8756
8814
8871
8927
8982

8525
8585
8645
8704
8762
8820
8876
8932
8987

8531
8591
8651

8710
8768
8825
8882
8938
8993

8537
8597
8657

8716
8774
8831
8887
8943
8998

8543
8603
8663
8722
8779
8837
8893
8949
9004

8549
8609
8669
8727
8785
8842
8899
8954
9009

8555
8615
8675

8733
8791
8848
8904
8% 0
9015

9036 9042 9047 9053 9058 9063 9069
9090
9143
91%

9248
9299
9350
9400
9450
9499

90%
9149
9201

9253
9304
9355
9405
9455
9504

9101
9154
9206

9258
9309
9360
9410
9460
9509

9106
9159
9212

9263
9315
9365
9415
9465
9513

9112
9165
9217

9269
9320
9370
9420
9469
9518

9117
9170
9222

9274
9325
9375
9425
9474
9523

9122
9175
9227

9279
9330
9380
9430
9479
9528

9547 9552 9557 9562 9566 9571 9576
9595
%43
8689
9736
9782
9827
9872
9917
9961

%00
%47
9694

9741
9786
9832
9877
9921
9%5

%05
%52
%99
9745
9791
9836
9881
9926
9%9

9609
%57
9703
9750
9795
9841
9886
9930
9974

%I4
9661
9708
9754
9800
9845
9890
9934
9978

%19
9666
9713
9759
9805
9850
9894
9939
9983,

%24 
%71 
9717

9763
9809
9854
9899
9943
9987

0004 0009 0013 0017 0022 0026 0030
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EXPONENTIAL FUNCTIONS

X e 1 X e1 e '

0 . 0 0 1 . 0 0 0 0 1 . 0 0 0 0 2.5 12.182 0.0821
0.05 1.0513 0.9512 2 . 6 13.464 0.0743
0 . 1 0 1.1052 0.9048 2.7 14.880 0.0672
0.15 1.1618 0.8607 2 . 8 16.445 0.0608
0 . 2 0 1.2214 0.8187 2.9 18.174 0.0550

0.25 1.2840 0.7788 3.0 20.086 0.0498
0.30 1.3498 0.7408 3.1 22.198 0.0450
0.35 1.4191 0.7047 3.2 24.532 0.0408
0.40 1.4918 0.6703 3.3 27.113 0.0369
0.45 1.5683 0.6376 3.4 29.964 0.0334

0.50 1.6487 0.6065 3.5 33.115 0.0302
0.55 1.7332 0.5769 3.6 36.598 0.0273
0.60 1.8221 0.5488 3.7 40.447 0.0247
0.65 1.9155 0.5220 3.8 44.701 0.0224
0.70 2.0138 0.4966 3.9 49.402 0 . 0 2 0 2

0.75 2.1170 0.4724 4.0 54.598 0.0183
0.80 2.2255 0.4493 4.1 60.340 0.0166
0.85 2.3396 0.4274 4.2 6 6 . 6 8 6 0.0150
0.90 2.4596 0.4066 4.3 73.700 0.0136
0.95 2.5857 0.3867 4.4 81.451 0.0123

1 . 0 2.7183 0.3679 4.5 90.017 0 . 0 1 1 1

LI 3.0042 0.3329 4.6 99.484 0 . 0 1 0 0

1 . 2 3.3201 0.3012 4.7 109.947 0.0091
1.3 3.6693 0.2725 4.8 121.510 0.0082
1.4 4.0552 0.2466 4.9 134.289 0.0074

1.5 4.4817 0.2231 5 148.413 0.0067
1 . 6 4.9530 0.2019 6 403.428 0.0025
1.7 5.4739 0 1827 7 1096.633 0.0009
1 . 8 6.04% 0.1653 8 2980.957 0.0003
1.9 6.6859 0.1496 9 8103.084 0 . 0 0 0 1

2 . 0 7.3891 0.1353 1 0 22026.466 0.00004
2 . 1 8.1662 0.1224
2 . 2 9.0250 0.1108
2.3 9.9742 0 . 1 0 0 2
2.4 11.023 0.0907
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1.24 (a) N A ;Jb) 2K eqUr, (c) NA; (d> NA; (e) V 3 a; ( f ) 2K,qx/(x2 + a 2)3'2.
1.25 (a) 2 V K cCiq1Iam; (b) NA; (c) V l5  a: (d) same as in (a) where q and m are 
the negative charge and its mass.
1.26 (a) NA; (b) there are infinities at y  =  ±  a; (c) yes.
1.27 (a) Mr50 N C 1; (b) kv!0.8 N C
1.28 (a) 1.56 N directly away from c m  ; 0.18 J; (b) 0 N C 4.67 x  IO3 V;
(c) 0.27 J.
1.29 (a) From the c m . outside the triangle, there are 6  radial lines; (b) at a great 
distance, the equipotentials are circles centered at the c m .

1.30 6.455 x IO7 m s ' 1 (6.57 x 10" m s 1 if calculated classically).
1.31 (a) 2.18 x 10 5 m; (b) electron’s velocity is 42.9 times faster; (c) same 
energy, equal to 1600 eV or 2.56 x 10 16 J .
1.32 (a) 6.24 x  IO13 protons/second; (b) 800 W: (c) 1.24 x 10 m s  '; (d) 153
cal s '.
1.33 (a) 3.08 x  10' m s“ ‘, 1.22 x 10' m s 1; (b) 3.32 X 1 0 'm s 1 at 21.6' with 
direction of field; (c) x  x 0.769 m. y  =  0.610 m; (d) 5.02 x  10 J or 3.13 keV.
1.34 (a) 1.30 x  IO7 m s (b) 1.63 x  IO7 m s ' 1; (c) 9.83 x  IO6 m s '; (d) 3.47 x 
1 0 “ 9 s; (e) will not reach the cathode.
1.35 (a) In the general case F =  (—ίτΜττεοΓ'ΗΗ,Ιό cos Θ cos Θ; — 3 sin Θ sin 0;) 
+ ue(2 sin Θ cos Θ; + cos 0 sin Θ;)] where 02 is the angle of the second dipole 
relative to the orientation o f the first, (b) Gravitational attraction is 6  x  IO" 43 N : 
dipole-dipole force has a maximum value o f 4 x  10“ 11 N , about IO12 stronger.
1.36 (a) 0, 3ί/η"; (b) Q/(4π€οΖ3), —3{?/4ir€oj4; (c) -QMireoy3, 3(9/4ττεο.ν4.
1.37 (a) There is no electric dipole; c/α2; (b) (4<7/4ττ€οζ) + (0/4ττεοΖ3).
( - 4 r//4 TTeU2 2) + (c) same as in (b), with y replacing z.

Chapter Two

2 . 1  (a) 0. 0; (b) C a \  euC«3.
2 . 2  (a) c f l \  eocfl3, 2 eoCA·; (b) 0 . 0 . 0 .
2.3 NA.
2.4 (a) Inner: —q,  outer: +q:  (b) electric field: outside: K cq / r ,  in sphere: 0. in 
cavity: K eq/r2; electric potential: outside: Kcq/r, in sphere: K eq /R t, in cavity: 
Kcq/r; (c) NA.
2.5 (a) NA: (b) NA.
2.6 1.2 x  10“ ' C on the smaller and 1.8 x  10 7 C on the larger.
2.7 NA.
2.8 (a) 16.5; (b) 15.5.
2.9 (a) 1000 V; (b) 2000 V.
2.10 (a) 0.485 nr; (b) 300 μΓ.
2.11 1.70 m2.
2.12 (a) NA; (b) NA.
2.13 9.58 x 10 11 F.
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2.14 (a) Series: 3 μΡ, parallel: 6.5 pF; (b) series: 13.3 μΓ on each, 9 V. 
6.67 V. 4.44 V; parallel: 30 μΟ, 40 μΟ, 60 μΟ, 20 V on each; (c) series: 1.33 x 
10 4 J, parallel: 1.30 x  10“’ J.
2.15 (a) 10 μΡ: (b) 12 μΡ: 480 μ<Γ, 18 μΡ: 720 μC, 4 μΡ: 320 \xC. 5 μΡ: 400
μΟ, I μΡ: 80 μ€, 2 μΡ: 160 μ(2, 3 μΡ: 240 μ€; (c) 12 μΡ and 18 μΡ: 40 V: all 
others: 80 V.
2.16 Ci: 600 μΟ, 200 V; C2: 200 μΟ, 100 V; C,: 400 pC, 100 V.
2.17 NA.
2.18 NA.
2.19  (a) 380 μ(2; (b) 7600 V; (c) 1.44 X 10“’ J: (d) 1.36 x  10"-’ J.
2.20 (a) 2 χ  IO"2 C; (b) 800 V; (c) 8 J; (d) 2 J.
2.21 (a) 7.7 x  10“10 C and 2.3 x  10 ιυ C ; (b) 4.5 x  10“" J; (c) 3.46 x  10 9 J;
(d) through radiation and Joule heating.

C hap te r Three

3.1 2.06 x IO"'4 s.
3.2 (a) Resistance doubles; (b) resistance halves; (c) resistance quarters.
3.3 (a) 5 Ω; (b) 3 SI: 60 A. 12 Ω: 10 A. 6 Ω: 20 A, 4 Ω: 30 A: (c) 3 Ω: 180 V . 
all others: 120 V.
3.4  (a) 6 Ω; (b) 12 Ω: 12 A. 10 Ω: 12 A. 6 Ω: 4 A. 3 Ω: 8 A; (c) 12 Ω: 144 V.
10 Ω: 120 V. 6 Ω and 3 Ω: 24 V.
3.5 (a) 10 Ω; (b) 4 Ω: 12 A, 9 Ω: 8 A. 16 Ω: 4 A. 6 Ω: 1.33 A, 3 Ω: 2.67 A:
(c) 4 Ω: 48 V. 9 Ω: 72 V. 16 Ω: 64 V. 6 Ω: 8 V, 3 Ω: 8 V.
3.6 (a) 9 Ω: (b) 5 Ω: 60 A, 20 Ω: 12 A, 3 Ω: 48 A, 12 Ω: 8 A, 6 Ω: 16 A. 4 Ω:
24 A; (c) 5 Ω: 300 V, 20 Ω: 240 V1 3 Ω: 144 V, 12 Ω: 96 V, 6 Ω: 96 V, 4 Ω: 
96 V.
3.7 (a) 10 Ω; (b) 7 Ω: 24 A. 12 Ω: 6 A, 10 Ω: 6 A, 3 Ω: 4 A. 6 Ω: 2 A, 18 Ω:
4 A, 9 Ω: 8 A; (c) 7 Ω: 168 V, 12 Ω: 72 V, 10 Ω: 60 V. 3 Ω: 12 V. 6 Ω: 12 V,
18 Ω: 72 V. 9 Ω: 72 V.
3.8 (a) 10 Ω; (b) 10 A in all resistors except the center one, where the current
is zero; (c) 100 V. 0 V.
3.9 (a) 8 Ω: (b) 12 V.
3.10 (a) 32 Ω; (b) 20 V.
3.11 27 W.
3.12 90 W.
3.13 NA.
3.14  Place a 4 Ω resistor in parallel with the instrument.
3.15 Place a 24 Ω resistor in series with the instrument.
3.16 (a) NA; no; (b) 1.10 Ω; (c) 1.24 Ω.
3.17  (a) 350 K: 1050 Ω; 370 K: 39 Ω: 470 K: 11.1 Ω: 570 K: 3.82 Ω; (b) NA:
fc) 0.1.
3.18 NA.
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3.19 NA.
3.20 (a) 2.829 V; (b) 1.33 V.
3.21 (a) 0.5 Ω: (b) 10 V.
3.22 (a) h A; (b> 2.67 V; (c) 22 Ω: i  A, 12 Ω: A A, 6  Ω: A A, 4 Ω: A A, 8 Ω: 
I  A. 5 Ω: A  A, 20 SI: *  A.
3.23 2 Ω: 3 A: 9 Ω: 2 A; 4 Ω: 5 A.
3.24 4 Ω : ϋ Α ; 1 2 Ω : » Α ; 1 0 Ω : & Α .
3.25 4 Ω: 1.137 A; h SI: 0.58 A; 3 SI: 0.558 A; 2 Ω: 0.308 A; I Ω: 0.887 A; 6  Ω: 
0.251 A.
3.26 (a) 0.22 V: (b) Hf A.
3.27 (a) -1 2  V; (b) (c) - 1 2  V; (d) ¥  A; (e) 4.5 Ω; (Γ) 4.2 SI.

Chapter Four

4.1 (a) 5.68 x  I0_s T; (b) IO7 rad s '.
4.2 (a) 7.22 x  IO- 2  m; (b) 9.58 x  IO13 rad s '.
4.3 (a) 3.48 x IO' 2 m; (b) 3.79 x 10“ 1 m; (c) 2.29 x IO7 Hz.
4.4 (a) 2.89 x IO7 m s “ '; (b) 4.34 x  IO- 8  s: (c) 8 . 6 6  x IO6 V.
4.5 (a) 0.528 m; (b) 4.37 x 10 8 s.
4.6 (a) I T; (b) 3 x IO6 rad s '.
4.7 2.13 X 10“ 2 m.
4.8 (a) 5.68 x 10“ 4 T into the page; (b) 3.14 x  I0“B s.
4.9 (a) 6.38 x 10“ 3 m; (b) 1.28 x 10“ 2 m.
4.10 I: U-Aqvm: 2: 0; 3: ut{qvM/Vl)' ,  4 :-H ,(g v » /V 2 ); 5: 
6:-Ka(^v38/V3) -  uz{q vW X  3).
4.11 Since the charge will move in a plane (perpendicular to 2/1) in a circular 
path of radius R. v =  h.,(vo c o s  ω/) + uv(v0 sin ω/) where ω =  (,q!m) and r = u,(R
sin ωί) -  Uy{R cos ωί) [at t = 0 . .v = 0 , v =  -7?].
4.12 τ' =  «,(Vo cos a  cos ωί) + h,(vo co s  a  sin ωί) + h-(vo sin a ) ;  r  =  uAR sin
ωί) -  UyiR cos ωί) + w-(v0[sin a]f) where R = (m/q)(v0 cos aiJ().
4.13 SB = - w :(0.5) T.
4.14 1 .5 x IO5 m s _ l .
4.15 (a) 1.75 x IO7 m s (b) NA.
4.16 3.27 T horizontal and normal to the velocity.
4.17 (a) 1.02/Ϊ; (b) 960 V.
4.18 (a) classical velocities, around IO5 m s -1; (b) 0.245 m.
4.19 (a) 0.656 T; (b) 2.5! x IO7 m s“ ‘; (c) 5.28 x 10 13 J, 3.30 MeV; (d) about
82 full turns.
4.20 For deuteron: (a) 1.31 T; (b) 2.51 x IO7 m s _ l; (c) 1.06 x 10 12 J,
6.59 MeV; (d) about 165 turns. For alpha: (a) 1.30 'Γ: (b) 2.51 x  IO7 m s ';
(c) 2.10 x 10 12 J, 13.1 MeV; (d) 164 turns.
4.21 (a) 4.57 x 10 per second (i.e., a frequency of 2.29 x  IO7 Hz); (b) 5.03 x
IO7 m s (c) 1.32 x IO7 V.
4.22 (a) 1.31 T; (b) 4.22 MeV; (c) 2.01 x  IO7 m s “ '.



Answers to Problems 639

4.23 (a) NA; (b) NA; (c) NA.
4.24 (a) Because o f the “focusing” of off-axis electrons; (b) they are mirror 
images o f  each other.
4.25 1.57 m.
4.26 (a) For O': with </, fixed at O', F J = - F i  =  - u x(q,q2/4^^r');  for 0 : F ,  = 
- F 2 J =  F j ;  (b) For O': F \  =  - F i  =  - U v f i / i ^ ’M i r e o r ') ;  for 0 :  F i -  - F ^  

=  X  I - ( V 1Ic2)F l .
4.27 (a) I; (b) 1.015; (c) 1.54; (d) 12.08.
4.28 (a) I; (b) 1.005; (c) 1.155; (d) 2.294.
4.29 (a) I; (b) 1.005; (c) 1.155; (d) 2.294.
4.30 (a) 2.30997433 x  IO- 2 0  N repulsion; (b) electric force only, equal to 
2.31000000 x  10 211 N repulsion; (c) 1.386 x  10 20 N repulsion measured by 
outside observer, versus 2.31 x IO- 20  N measured by internal observer.

Chapter Five

5.1 3.78 x  IOw Am"2.
5.2 I: -U 1 (OJ) N; 2: 0 N; 3; U1(OJ) N; 4: («, -  «,) 0.3 N; 5: (u, + uv) 0.3 N.
5.3 (a) 6  x IO- 1  N m; (b) 0.04 Am2; (c) 8.07 x IO' 3 N m.
5.4 (a) On vertical sides: 0.16 N in Z-direction; on horizontal sides: 0.06 N in 
F-direction: (b) uy (8.31 x  10 '’) N m; (c) on vertical sides: 0.16 N in A-direction: 
on horizontal sides: 0.104 N in F-direction; (d) - u y (4.8 x  IO-3) N m; (e) same 
for both cases.
5.5 (a) Uy (1.32 x  10 2) T; (b) a magnetic field of - u x (2.29 x  10 2) T will hold
the loop at any angle or even allow it to rotate uniformly about the Z-axis.
5.6 3.6 x  10”6 N m.
5.7 0.30°.
5.8 (a) U1  10 2 N; (b) ~ u z (5 x 10 4) N m.
5.9 (a) - u z 10 2 N; (b) fux ( “ 5 x  IO-4) + Uy (IO '3)] N m.
5.10 (a) iM(2R) where R is the radius o f the circle; (b) NA.
5.11 (a) Yes; (b) no; (c) τ =  [3.6 x  IO- 6  sin Θ] N m; (d) NA; (e) the coil will 
continue to rotate until restoring torque changes direction o f rotation.
5.12 (a) The coil will continue to rotate in one direction; (b) use o f  “split ring 
and “brushes”; (c) could use the device as a motor.
5.13 (a) 4.0 x 10“ 6 T, 2 x  IO' 7 T: (b) O N C ' 1.
5.14 2.40 x  10” 20 N. resulting in an acceleration normal to the motion equal to
2.64 x  IO10 m s 2.
5.15 (a) ux (2 x  IO'6) T; (b) (ux -  u;) IO' 6 T; (c) - u x (3 x  10 6) T.
5.16 (a) μο/Αιτα: (b) μ 0//3—«; (c) 0, 2μ(ι//3ττ«.
5.17 (a) 2 A out of the page; (b) 2.13 x  1 0  6 T; (c) 1.64 x  IO' 6 T in toward the
wires at an angle o f 13° below the horizontal.
5.18 (a) NA; (b) μ ΰΙα!τ:(α2 + x 2): (c) NA; (d) .v = 0.
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5.19 (a) NA; (b) μυ/α/π(α2 -  y2); (c) NA; (d) y = ± a .
5.20 (a) NA; (b) μ^α/ττία2 + .v2); (c) NA; (d) x  =  0.
5.21 (a) NA; (b) μο1}Ίττ(α2 -  y2); (c) NA; (d) y  = ±a.
5.22 (a) 1.92 x ΙΟ- '’ N m" 1 in the + T-direction; (b) 1.92 x IO"4 N m 1 in the
-  Y direction.
5.23 30.
5.24 6.91 x IO-3.
5.25 1.02 x IO"2 m.
5.26 (a) 3.2 X l O 5 N repulsion; (b) 0 . 0.
5.27 46.4 A.

Chapter Six

6.1 (a) 0, 2.5 x IO"5 T , 5 x 10 5T; (b) 5 X IO"5 T, 2.5 x I0‘ 5T, 1.33 x 10"(’ T;
(c) 4 m and 4 x 10 4 m.
6.2 1.7 X l O - 3T.
6.3 4.40 x l 0 " 2T.
6.4 NA.
6.5 (a) r >  A R 3: 0; R 2 <  A r <  R 3: (μο//2ττι·)[(/Ϊ5 -  r2)/(Rl -  /?§)]; R t <  A r <  
R 2: (fi.o//2iir); 0 <  r <  A R ,: (μο/2π)[/Γ/Λϊ]; (b) NA.
6.6 (a) 2.84 x IO3 turns/m eter; (b) 1.79 x IO4 m.
6.7 NA.
6.8 NA.
6.9 (a) 0.24 Wb; (b) 0; (c) 0.24 Wb.
6.10 [μη/ί?/2π] In (I + air).
6 .1 1  0 .

6.12 NA.
6.13 NA.
6.14 NA.

Chapter Seven

7.1 (a) 2.36 x IO"3 kg; (b) 2.24 x IO22.
7.2 (a) 1.12 A; (b) 9.65 x IO4 C.
7.3 (a) 1.139 x IO"13 m; (b) 1.139 x IO"13 m; (c) 1.1478 x IO"13 m; (d) 178°. 
160°.
7.4 (a) 2.88 x IO" 14 m; (b) about 3 nuclear radii away.
7.5 About 14.
7.6 (a) -2 7 .2  eV (-4 .3 6  x I0‘ 18 J); (b) 13.6 eV (2.18 x IO"18 J); (c) -1 3 .6  eV;
(d) 6.57 x 10’4 Hz.
7.7 (a) E av =  i E p„ = - I K cZ e 2Ir; (b) -1 3 .6  eV (same value).
7.8 (a) 8.22 x IO6 orbits; (b) 1.95 x IO4 orbits.
7.9 NA.
7.10 (a) H: -1 3 .6  eV, -3 .4 0  eV, -1 .51  eV , -0 .8 5  eV; He: -5 4 .4  eV.
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-1 3 .6  eV , -6 .0 4  eV , -3 .4 0  eV; (b) H: 10.2 eV , He: 40.8 eV; (c) NA; (d) the 
mth even level o f He coincides with the mth energy level o f H.
7.11 (a) 2.19 x  IOft m s -1 ; (b) NA.
7.12 (a) 8 . 8  x 10'° rad s “ '; (b) 1.34 x  10s rad s” 1.
7.13 (a) 9.284 x IO' 24 A m2; (b) 8.79 x IO5 rad s ‘.
7.14 I.
7.15 (a) 2.45 ft; (b) m, =  0: 90°, m, =  ± I: 67.8°, m, =  ±2: 50.8°.
7.16 (a) 17, if spin is not considered; (b) 2.26 x IO- 4  eV.
7.17 2.17 x  IO4 : I.

Chapter Eight

8.1 (aj 4π; (b) 4-ir; (c) 8 ir; (d) 4 -it ;  (e) 8 π.
8 . 2  (μο/2 ττ)&/οω In [I +  a/r] cos ω/.
8.3 N A .
8.4 (a) Circles (pointing clockwise); (b) 5 x IO- 3  N C - 1  clockw ise, 3.14 x 
IO- 3  V; (c) 1.57 m A; (d) 0; (e) in a time-dependent field, potential difference is 
not a useful concept; ( f ) 3.14 x  10- 3  V.
8.5 NA.
8 . 6  (a) 0.65 V: (b) 0 .21 V; (c) 0; (d) 0.
8.7 (a) V -  6 tt sin (10ωί) -  0 .4π  sin (10ωί) cos (10ωί), I =  V/R; (b) 11.6 V
8 . 8  (a) end a; (b) 45 kV.
8.9 A: 0 V; C: 7.1 x IO- 2  V; D: 0.1 V.
8 . 1 0  (μο//7«ν/2 ττ)[(Γο + vt)(a + r0 + v/)]-1 , where r0 =  r at t =  0 .
8.11 NA.

Chapter Nine

9.1 (a) 0.4 H; (b) 4 V; (c) 4 V; (d) 8  V.
9.2 μ0/ίΑ, where n is the number o f turns per unit length and A  is the cross
sectional area o f  the toroid.
9.3 (a) NA; (b) NA: (c) NA; (d) NA.
9.4 (a) NA; (b) q  = {qJC2 -  C ,) [< V Cl- “ - C u I  = (qo/CiR)
(e«~; -  C1M(CiC1R)̂

9.5 (a) NA; (b) NA; (c) NA.
9.6 (a) NA; (b) NA; (c) NA; (d) NA; (e) N A .
9.7 (a) NA; (b) NA; (c) R.
9.8 (a) I  =  -VCco cos ωί; (b) NA; (c) NA.
9.9 (a) 5 mA: (b) 50 mA; (c) 0.5 A; (d) NA.
9.10 (a) 50 mA; (b) 5 mA; (c) 0.5 mA: (d) NA.
9.11 (a) 0.5 mA; (b) 50 mA; (c) 5 A; (d) NA.
9.12 (a) 5 A; (b) 50 mA; (c) 0.5 mA; (d) NA.
9.13 (a) I — (Vo/ωΖ.) cos ωί; (b) NA: (c) NA.
9.14 N A .
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9.15 (a) [P  + (l/otC)2]1'2. current leads by tan 1 (l/mffC); (b) [o>L -  (1/ω Ο ], 
angle is ± (π /2).
9.16 (a) 4.52 x  IO 4 H; (b) 9.04 x  10 4 V.
9.17 (a) 7.20 x  IO-2 H; (b) 1.44 x  IO-3 Wb in each turn; (c) 0.48 V.
9.18 (a) Li/V2/o/5(Vi/; (b) (ί,ιΝΐΙοω/δΝ\) cos ωί.
9.19 NA.
9.20 NA.

Chapter Ten

10.1 3.33 m.
10.2 (a) 0.10 m; (b) 0.5 m; (c) 100 H z; (d) 50 m s ' 1; (e) NA.
10.3 (a) 10 m; (b) 5 Hz; (c) 0.2 s; (d) 50 m s ' 1; (e) 0.02 m; ( f ) +.A-direction: (g)
ξ =  0.02 sin [2ir(0.1.v + 5f)] m.
10.4 (a) NA; (b) N A ; (c) NA; (d) N A ; (e) tw o waves are the sam e, but move 
in opposite directions.
10.5 NA.
10.6 N A.
10.7 (a) NA; (b) NA.
10.8 (a) 0, 8.87 x  10“ 3 m. 1.69 x  IO-2 m. 2.35 x  IO '2 m; (b) 8.87 x  10' 3 m, 
3.00 x  10 3 m, -3 .0 0  x  10 3 m; (c) v = -0 .0 6  cos (3.v -  2/) m s ' 1; (d) 6 x 
10 2 m s _ l ; (e) I  m s ' 1.
10.9 (a) N A; (b) ξ(χ,ί) =  (8A/Tr2)[sin 0 -  (£ sin 30 + (Js sin 50 -  ...] where 0 = 
kx — ωί.
10.10 (a) N A ; (b) ξ(χ,ί) =  (4A/-7r)[sin Θ + J sin 30 + ί  sin 50 + ...] where 0 = 
kx — ωί.
10.11 (a) F  =  Fii cos (2ττ[.\7Χ -  ι/P]) w here F u = (2irXAp£(>/F2); (b) N A ; (c) NA.
10.12 35.4 m s · ' .
10.13 39.6 m s ' 1.
10.14 (a) 1255.5 m s ' 1 (99%); (b) 336.8 m s ' 1 (99.3%); (c) 351.1 m s ' 1 (99%).
10.15 0.58 m s ' 1 K Λ
10.16 28.9 amu com pared to 28.8 amu for 80% N 2 & 20% O2.
10.17 (a) Increases by V 2; (b) decreases by V 2 ; (c) increases 4 x ; (d) decreases 
to |.
10.18 903.4 m s
10.19 99 m s ' 1.
10.20 (a) 38.3 m s ' 1; (b) 0.16 m.
10.21 (a) 12.8 m s (b) 0.27 m s ' 1; (c) ξ =  10 1 sin (20.9.V -  268f) m.
10.22 (a) 20 m s ' 1; (b) 0.95 Hz; (c) 21 m; (d) ξ = 0.1 sin (6/ -  0.3) m, ξ =
0.1 sin (6/ -  0.9) m; (e) N A ; ( f ) 0.1 m; (g) NA.
10.23 (a) 1.25 x 10 2 m; (b) 6.25 x  10’ 3 m. 9.8 x  IO2 N ; (c) 5.06 x IO3 m s ' 1,
3.19 x IO3 m s ’.
10.24 (a) 3.5 x  IO '3; (b) 0.35; (c) 3.5 x  IO3; (d) 1.68 x IO '2 m.
10.25 (a) 0.24 m s ’; (b) 1.25 m s 1; (c) 3.95 m s ' 1; (d) 6.20 m s ' 1.
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10.26 NA.
10.27 (a) 4.49 x 1 0 ' 13 W m- : , -3 .4 8  db; 0.881 W m " \ 119 db; (b) 1.43 x
10 11 m, 2.00 x  10 5 m.
10.28 (a) i: 10. ii: 100: (b) i: 3.16, ii: 10.
10.29 (a) G oes up by 6  db; (b) 3.16.
10.30 (a) 3 db; (b) 6  db.
10.31 (a) 57.9; (b) 2.98 x 10 4.
10.32 (a) 532.1 Hz; (b) 471.6 Hz.
10.33 (a) 918.9 Hz, 0.37 m; (b) 1096.8 Hz, 0.31 m.
10.34 (a) 911.8 Hz, 0.373 m; 1088.2 Hz, 0.312 m; (b) yes, the difference is
measurable.

Chapter Eleven

11.1 (a) % =  (II, + UzK t 0IV  2) sin Θ, SS =  (uv -  UiK t 0I V l c )  sin Θ; (bj« =  ( - n ,  + 
uz V3)( 1/2) t o  sin Θ, 98 = ( - u v V 3 -  M1 HI/2c) sin Θ: (c) % = uy%a cos 0 + 
uMo sin 0. 98 =  - u yt 0 sin_0 +  UzHt0Ic) cos 0; (d) % =  uv(2<£0/V 5 ) cos Θ + u J l t 0I 
V 5) sin 0, S8 = -UyiItlJVSc)  sin Θ + uATt0! c \ 5) cos Θ, where Θ = Icx -  int.
11.2 (a) I: right-hand circular, II: linearly polarized at -4 5 °  with ΑΎ-plane, III: 
right-hand elliptically polarized at -4 5 ° , IV: left-hand elliptically polarized at 
+45°; (b) in each case S8 T =  —%-jc and Uiz =  %ylc.
11.3 (a) 3 m. linearly polarized, wave travels out +A-axis; (b) 98 =  a:( -0 .5 /e )  
cos [2tt x  10*(/ -  .v/c)] T; (c) 3.3 x IO- 4  W m-2 .
11.4 (a) 15 m, right-hand circularly polarized, wave travels out +,Y-axis;
(b) 98 =  uv{ 0.5/c) sin [4-it x  107(/ — .v/c)] + m;(0.5/c) cos [4vr x  IOtr — .v/c)]; 
(C) 6 . 6  x  H P 1 W m“\
11.5 (a) i: 0 .5 \  6 « 0, 35.3°; 0 .5V 6 %0, 90°; 0.5V 6 « n. 215.3°; 0.5V2't£(). 270u; 
0 .5 V 6 S o, 35.3°; ii: 0.5V 2%0, 270°; 0.5V'6t>0, 35.3°: 0.5V  2‘g0, 90°; 0 .5V 6«„, 215.3°: 
0.5V 2 t 0. 270°; (b)jn each case ,Ji =  t i c  and the angle is 180° greater than given.
11.6 % = M;(V 24tt) cos Θ N C -1 , 98 =  iux — hv)( V 24tt/c) c o s  0 T w here Θ = 
ωί -  kxx -  kyy  =  2 tt x  I0 fi( 6  x 1 0 s/ -  V l x  -  V ly ) .
11.7 % -  mv(V 24tt) cos O N C  \  98 =  B;(V24it/c) cos 0 T where 0  = 4-it x  
I0b(3 x  1 0 s/ -  .v).
11.8 (a) 3.33 x  I0“ " T; (b) 8.85 x  IO" 16 J m-3 ; (c) 8.85 x 1 0  16 N m"2; (d) 
1.77 x  IO" 15 N m"2.
11.9 1050 N C "1, 3.52 X IO- 6  T.
11.10 69.28 N C  ',2 .3 1  x IO- 7  T.
11.11 (a) 3.33 x  10- lu T ;(b) 1.33 X 10 5 W m"2; (c )4.4 x  10 14J m 3;(d )  167 W.
11.12 (a) %z =  '(oo[cos (ωί — Cv) + cos (ωί -  Ay)]: (b) 98 = — Uy(ItJc) COS (ωί — 
kx) + Uz(Jt0Ic) cos (ωί — ky); (c) e.0t", (d) A-component =  c2e0&(Hy, Pcom po- 
nent =  c2e0i98.r.
11.13 N A .
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11.14 NA.
11.15 (a) 795.8 W m 3: (b) 1.55 x IOi N C - ', 5.16 x 10-(> T; (c) 2.65 x
10-fi J m “\  8.83 x 10 15 kg m 2 s '.
11.16 (a) 5.76 x IO-12 W; (b) 1.74 x IOtl molecules (2.8 x IO-13 moles).
11.17 280 W.
11.18 (dEidt) =  [t/4i’2Sft2/67reuc'1m2(l — v2 — c3)2].
11.19 (a) 4.6 x 10“" W (2.9 x 10" eV s- i >, 4.4 x 10“5 eV rev-1 ; (b) !.I x
10 2 eV s ' 1, 5.2 x IO-10 eV rev -1; (c) 1.2 x IO-2 eV s -1, 2.4 x IO-'3 eV rev-1.

Chapter Twelve

12.1 (a) 1.0243 x IO-10 m; (b) 4.72 x 10' 17 J at 44.3° from the incident direction.
12.2 (a) 1.012 x IO-10 m. 58.8°; (b) 2.297 x IO-17 J or 143.4 eV.
12.3 (a) NA; (b) NA.
12.4 (a) -9 6 .9  eV, 2.34 x IO16 Hz, 1.214 x 10 13 m; (b) 96.9 eV. 5.32 x
IO-34 kg m s_l , 59.5°.
12.5 (a) 2.418 x IO17 Hz. 1.24 x 10-9 m: (b) 2.418 x 1014 Hz. 1.24 x IO-6 m: 
(c) 2.418 x IO12 Hz, 1.24 x IO-4 m.
12.6 3.37 x IO- l 9 J or 2.1 eV.
12.7 (a) 2.66 x IO15 Hz; (b) 1.13 x 10 7 or 1127.9 A.
12.8 (a) Electron: 5.40 x 10 23 kg m s -1, proton: -4 .8 6  x IO-23 kg m s ';
(b) electron: 1.60 x IO-19J = 9.98 keV, proton: 7.07 x IO- l 9 J = 4.41 eV.
12.9 (a) 273.6 MeV: (b) 40 MeV.
12.10 (a) 4.01 x IO- "  kg m s-1 (0.75 MeV/c), 0.908 MeV; (b) 0.998 MeV;
(c) yes.
12.11 (a) NA; (b) 4.6 x IO14 Hz; (c) 1.89 eV; (d) 6.59 x IO-34J s.
12.12 (a) 1.45 V; (b) 1.45 eV (=  2.32 x IO- l9J). 7.13 x 10' m s -1.
12.13 (a) 6.04 x IO9 electrons s -i m -2; (b) 3 x 10-9 J s-1 m-2 or 1.21 x
10'° eV s-1 m -2.
12.14 (a) 2.89 x IO15 Hz; (b) i f  =  I + 4.85 x 1025(Σ^/[(2.89 x IO15)2 -  μ1]);
(c) 1.000003, 0.99992.
12.15 NA.
12.16 NA.
12.17 NA.
12.18 NA.

Chapter Thirteen

13.1 (a) NA; (b) NA; (c) NA.
13.2 (a) 2.87 x IO-2 m; (b) NA.
13.3 (a) 26.2°, 22.5°; (b) 2.20 x IO-2 m.
13.4 16.6°.
13.5 1.11,0.11.
13.6 (a) NA; (b) there is no loss of energy.
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1 3 . 7  (a) 8.52 x ΚΓ7 m; (b) 2.70 x IO" 9 m; (c) 3.81 x  10“ " m.
1 3 . 8  (a) ΔΘ =  [2.4 x  10 4 potp'VpoD tan Θ] radians where p0, po and T0 are
atmospheric density, pressure and temperature at STP; (b) 58.7" o f arc.

Chapter Fourteen

1 4 . 1  (a) 9.20 x IO-2 , 0.728; (b) -0 .3 0 3 3 , 0.697.
1 4 . 2  (a) N A ;  ( b )  N A .

1 4 . 3  (a) - 0 .2 ,  0.8; ( b )  0.2, 1.2; (c) in the first case there is a phase change o f π
for the reflected wave.
1 4 . 3  N A .

1 4 . 5  56.3°, 33.7°.
1 4 . 6  35.3°.
1 4 . 7  (a) 36.9°; (b) normal to the plane o f incidence.
1 4 . 8  (a) iceoi§6; (b) l j n \  (c) jvelii; (d) answers (a) and (b) are identical, as they
should be since no energy is reflected.
1 4 . 9  (a) N A ;  ( b )  N A .

1 4 . 1 0  N A .

1 4 . 1 1  (a) 0.848. -0 .1 2 8 ; (b) 0.845, -0 .1 5 5 ; (c) 0.502, -0 .3 3 3 ; (d) 0.441. -0 .5 5 9 ;  
only parallel components, no parallel components in (a) and (c) and the opposite 
case for (b) and (d).
1 4 . 1 2  (a) 1.177, -0 .1 1 5 ; ( b )  1.168, 0.168; (c) 1.399, 0.052; ( d )  1.325, 0.325.
1 4 . 1 3  Reflected beam is elliptically polarized with opposite-handedness from 
the incident beam; the normal component = 0.311, parallel component = 0.097; 
refracted beam is elliptically polarized in the same sense as the incident beam; 
normal component =  0.689, parallel component =  0.722.
1 4 . 1 4  (a) 0.75; (b) 0.50; (c) 0.25; (d) 0: (e) 0.25; ( f ) 0.50; (g) 0.75; (h) I; (i) NA.
1 4 . 1 5  (a) 3.969 x IO ' 7 m. 3.558 x IO- 7  m; (b) 5.085 x IO14 Hz.
1 4 . 1 6  (a) 1.620; (b) 2.35.
1 4 . 1 7  (a) O d d  integer x 8.726 x 10~ m; ( b )  integer x 1.745 x 10 6 m;
(c) integer x 3.49 x 10 m.
1 4 . 1 8  (2) linearly polarized at the 45° angle; (3) elliptically polarized, axis ori
entation dependent on thickness o f plate; (4) linearly polarized at the 60° angle.
1 4 . 1 9  (a) 45° with respect to the y-axis, counterclockwise; (b) perpendicular to 
the answer in (a); (c) 5.83:1.
1 4 . 2 0  (a) 6.05 x IO- 7  m, 6.30 x IO- 7  m, 6.56 x 10 7 m. 6.84 x IO' 7 m;
(b) 6.17 x  IO- 7  m, 6.42 x IO- 7  m, 6.70 x 10 7 m, 7.00 x IO- 7  m; (c) 6.05 x
10' 7 m, 6.56 x 10 7 m.
1 4 . 2 1  299°.
1 4  22 1.19 x IO- 3  kg.

Chapter Fifteen

1 5 . 1  fa) 0.78 m, 0.56; (b) 1.0 m, 1.0; (c) 1.33 m, 1.67; ( d )  oo, o o -; (e) -0 .7 5  m,
2.5 (upright); ( f ) 0.27, 0.45 (upright).
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1 5 . 2  (a) -0 .2 7  m; (b) 0.45 (upright); (c) 0.75 m, 0.25 (upright); ( d )  -1 .3 3  m, 1. 6 6  

(inverted).
1 5 . 3  (a) 0.48 m; (b) 1.92 m; (c) -1 .2 0  m; (d) 0.80 m; (e) 2.40 m; (f) 0.30 m;
(g) -0 .6 0  m [the minus sign indicates a convex mirror],
1 5 . 4  (a) 1.07 m; (b) 3.2 m; (c) 0.53 m.
1 5 . 5  (a) “ 1.07 m; (b) - 3 .2  m; (c) -0 .5 3  m.
15.6 0.08 m, 2.1.
1 5 . 7  0.07 m.
1 5 . 8  0.375 m or 0.40 m.
1 5 . 9  (a) NA; (b) NA.
1 5 . 1 0  (a) ft, — —1.2 m , /  — —1.8 m; (b) i: — 1.2 m, 0.33 (upright); ii: — 1.03 m. 
0.43 (upright); iii: - 0 .6  m, 0.67 (upright).
15.11 ( a ) /„  = 1.2 m. f  = 1.8 m; (b) i: 3.6 m, 1.0 (inverted); ii: 7.2 m, 3.0 
(inverted); iii: —1 . 8  m, 2 . 0  (upright).
1 5 . 1 2  (a) 1.5 m beyond the first surface, real: (b) 4.0 mm; (c) 0.25 m outside 
the rod, real; (d) 1.5 mm.
1 5 . 1 3  (a) /„  = 0.05 m (in the figure 5 cm to the left o f the 10 cm surface), /  = 
- 0 .2  m [i.e., at the center o f curvature o f the 20 cm surface]. N ote that for light 
passing right to left through this system , the focal points are at the same positions; 
h ow ever./) is now at/], and vice versa; (b) NA.
15.14 (a) -0 .4 3 8  m (i.e .. about 3.8 cm outside the rod on the hemisphere side):
(b) 1.71 (upright).
1 5 . 1 5  (a) 0.357 m; (b) real for the second surface; (c) upright; (d) I .7 1 x .
1 5 . 1 6  0.367 m.
1 5 . 1 7  (a) NA (there are four); (b) NA (2 are converging); (c) ±0.133 m. ±0.40  
m.
15.18 (a) 0.24 m: i: (b) 0.343 m, (c) 0.43; ii: (b) 0.48 m, (c) I; iii: (b) 0.60 m.
(c) 1.5; iv: (b) * ,  (c) N A ;  v: (b) -  1.2 m, (c) 6 ; (d) 0 .10 m. 0.5.
1 5 . 1 9  (a) -0 .2 4  m: (b) -0 .1 1  m; (c) 0.545; (d) -0 .6 0  m, 1.5; (e) 1.20 m, 6 .
1 5 . 2 0  0.0545 m.
1 5 . 2 1  (a) 0.12 m and 0.06 m from the screen: (b) 2 and 0.5.
1 5 . 2 2  (a) 1.07 m; (b) 0.67 m; (c) 0.80 m; (d) 0.27 m; (e) -0 .1 0  m. All are real
except (d).
1 5 . 2 3  (a) 0.80 m; (b) 2.4 m; (c) 0.40 m.
15.24 (a) 0.48 m; (b) 1.92 m; (c) —1.2 m; (d) 0.80 m: (e) 2.4 m; (f)  0.3 m; 
(g) -0 .6 0  m.
1 5 . 2 5  N A .

1 5 . 2 6  4.5 x  10 3 m.
1 5 . 2 7  (a) F0 =  0.17 m, Fi =  0.09 m; (b) F0 -  0.08 m, Fi =  -0 .3 0  m; (c) F0 =
F1 =  (d) F0 = 0.60 m, F1 -  1. 8  m. A U  distances are from the 0.6 m lens.
1 5 . 2 8  (a) F11 =  - 1 .2  m, Fi =  - 3 .0  m; (b) F0 =  0.15 m, Fi =  2.4 m: (c) Fil =
—0.15 m, F1 = 1.2 m; (d) Fu — —2.0 m. Fi — 1.0 m. AU the distances are from
the 0 . 6  m lens.
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15.29 Fu — 1.67 x  IO 2 m, F-, = 4.17 x 10 ' m from the first lens.
1 5 . 3 0  (a) 360; (b) 2.8 x  10 7 m.
15.31 0.37 rad or 2IC.
1 5 . 3 2  (a) 38.5°; ( b )  37.2°; (c) 48.6°.
1 5 . 3 3  (a) 1.52; (b) 40°.
1 5 . 3 4  by a least-squares fit: A<> = 1.51322, B0 = 2.155 x  10“ 1 5 .
1 5 . 3 5  0.304ς (0.739c if the n values in Table 15-3 are used).
1 5 . 3 6  (a) Fd = 0.266 m: (b) 3.33 x IO' 3 m.

C h a p t e r  S i x t e e n

1 6 . 1  (a) 6.5 x  IO' 4 m; (b) 1.6 x IO' 3 m, 3.3 x  IO- 3  m.
1 6 . 2  4.2 x  IO' 3 m.
16.3 (a) i: no phase change, ii: phase change o f π  radians; (b) reflection from a 
more dense medium “always” does this.
1 6 . 4  4.5 x  IO' 3 m.
16.5 Rings o f bright and dark will appear.
16.6 (a) On the line between  the sources at the midpoint and 0.25 m from either 
and everywhere  outside; (b) none; (c) for a coordinate system with origin midway 
between the two sources and the A-axis containing the sources, points o f mini
mum intensity will be hyperbolas given by n  -  r2 =  (2n + I )/4, where r] =  (λ- + 
I) 2 + y 2 and r\ =  (.v -  f )2 + y2; (d) the intensity is never zero because the two 
sources are always at different distances from the point in question.
16.7 (a) NA; (b) NA. 
lb .8  4.07 x  IO' 5 rad.
1 6 . 9  Main maxima at angles given by sin ' 1 (nkla) where n is any integer, 
including zero, with intensities o f 9/„; zeros at angles given by sin 1 (n'Xl3«), 
where n' is any integer, excluding 0, 3, 6 , 9 ...; a single lower maximum of 
intensity /„ at angles given by sin 1 <[2 /i" + 1 ]λ/2 «) where n" is any integer.
1 6 . 1 0  1 .18/,,.
1 6 . 1 1  (a) λ; (b) maxima at 0° (16/0), at 21.5° (1.18/0), at 39.4° (1.18/0), at 90° 
(lb /ο) and similarly in each quadrant; (c) NA.
1 6 . 1 2  (a) 0 . ΙΓ  or 1.9 x  10 3 rad; (b) 1.72°.
1 6 . 1 3  2.95 x  10 4 rad.
1 6 . 1 4  1.6 x IO' 6 m.
1 6 . 1 5  (a) 5.6 wavelengths; (b) almost 35 radians; (c) 6  wavelengths or about 38 
radians.
1 6 . 1 6  1.18 x  IO' 3 m.
lb .17 (a) pr = 2.19 x  10“ 3 VTV m. where N  is any positive integer; (b) 83 rings.
1 6 . 1 8  1.4 x  IO' 3 m.
1 6 . 1 9  (a) 298.7 Hz, 597 Hz, 896 Hz; (b) 2 m, I m, 0.67 m: (c) NA; (d) ξ =  ξ0 

sin (k„x) cos (ω,,/). where k„ =  2 ττ/λ„ and ω„ =  2ττν„,
16.20 (a) i: increases by V 2 , ii: decreases by l / \  2 , iii; decreases by I,
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iv: decreases by 5 ; (b) i: decreases by 1/V2, ii: increases by V 2 , iii: increases by 
2 , iv: increases by 2 .
16.21 (a) 289.5 Hz, 578.9 Hz; (b) 144.7 Hz. 434.2 Hz; (c) NA; (d) NA.
16.22  0.17%.
16.23  24.4 Hz.
16.24  (a) 0.339 m, 1.02 m, 1.70 m; (b) NA.
16.25 (a) NA; (b) NA: (c) NA.
16.26  (a) NA; (b) a0: doubly degenerate on I. 0 & 0; Vi: single I & I; v2\ double
on 0 & 2; v.i: double on I & 2; v4: single on 2 & 2; v'5 : double on 0 & 3; Vfi:
double on I & 3; vy, double on 2 & 3.
16.27  (a) v —  (v/2«)VnT + η ΐ +  n|; a(): triply degenerate on I, 0. & 0; V1 =  
V 2 v (): triple on I, I. & 0 ; v2 = V 3 vH: single on I1 I, I; v3 =  2v0: triple on 2, 0 . 
0 ; V4 = V 5 v ti: triple on 2 , I, 0 ; etc.
16.28  2.25 x IO20 modes/volume.

Chapter Seventeen

17.1 5.6 x  10““ m.
17.2  6.75 x  10 - m.
17.3  600 m.
17.4  5 x 10 7 m, 4 x  10“ 7 m. *
17.5  (a) A diffraction pattern o f rectangles similar to Fig. 17-11. (b) 2.4 < 
IO" 3 m x 1.2 x  10“ 3 m.
17.6  (a) 2.05 x  I0“ 6 tn; (b) 6.83 x  10 6 m.
17.7  9.7 km (197 km).
17.8 4.8 x  10“' m.
17.9  (a) 3; (b) NA; (c) NA.
17.10 8 .9  m.
17.11 a = 5 X 10 5 m, b =  1.25 x  10“' m.
17.12  (a) 17.5°; (b) 36.9°; (c) 64.2°.
17.13 12.5°.
17.14 (a) 5.70 x 10“ 7 m; (b) 43.2°.
17.15 5.00 x 10 7 m.
17.16  First order: 13.9° to 24.8°; second order: 28.7° to 57.1°.
17.17  (a) 16,000; (b) yes, they are 0.84' apart (see Fxample 17.6); (c) 13.7°;
(d) 4.1 x  IO5 m Λ
17.18  NA.
17.19  (a) 7.75 x 10 4 m; (b) 1.55 x  10 1 m.
17.20  7.07 x 10 4 m.
17.21 (a) 6.67 x !0_ί m; (b) 5.0 x  10“ ' m; (c) bright for 3 zones, dark for 4 
zones.
17.22  (a) Bright; (b) 0.25 m toward  the aperture.
17.23  (a) Minimum intensity: 8 In m. where n =  2, 4, 6 , ...; maximum intensity: 
8 /« m, where 11 — I, 3, 5, ...; (b) 4 m.
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17.24 (a) λ, only at 20/« m, where n = 1 ,2 ,3 , . . . ;  (bj A: only at 40/3«' m, where
n' =  I, 2, 3, ... except  whenever n' = 2«/3 (e.g.: « = 6 . n' =  4, or 3.33 m).
1 7 . 2 5  ( a )  9.79 x  1 0 "  m; ( b )  20.3°.
1 7 . 2 6  ( a )  6.98 x 1 0 'In m; (b) 12.4°, 25.4°.
1 7 . 2 7  1.25°.
1 7 . 2 8  7.96 x  10 ’ m and 1.59 x  IO- 2  m.

Chapter Eighteen

1 8 . 1  (a) 1.23 x  10“ 9 m; (b) 1.23 X IO' 10 m; (c) 3.89 x  10_ " m; (d) if the total  
energy  o f  the electron is I M eV , the problem is done relativistically and the 
solution is 8.7 x  !O- 1 3  m.
1 8 . 2  100 eV at 16.6° and I keV at 5.2°.
1 8 . 3  32.7 eV.
18.4 7.99 x  10 2 m and 0.161 m.
1 8 . 5  3 . 6 °

1 8 . 6  11.5°.
1 8 . 7  ( a )  1.24 GeV; (b) 1.24 GeV; (c) 616 MeV.
18.8 (a) 3.9 m: (b) complete accuracy.
18.9 (a) 7.3 x  IO3 m; (b) complete accuracy.
1 8 . 1 0  (a) 6 . 6  x 10 23 kg m s ( b )  7.7 keV.
1 8 . 1 1  (a) 6 . 6  x  I O - 2 0  kg m s ( b )  8 . 1  MeV.
1 8 . 1 2  (a) [ — h2l2ni]d:i\>ldx2 — ($Λ)ψ =  £ψ; ( b )  NA; (c) no.
1 8 . 1 3  I O 9  H z .

1 8 . 1 4  (a) Levels get further apart: (b) levels becom e closer together.
1 8 . 1 5  (a) 9.36 eV: (b) the electron’s energy would be raised enough to necessitate 
a relativistic treatment, giving 0.4 MeV.
1 8 . 1 6  (a) 5.36 x  10“ J =  3760 MeV; (b) gravitational energy =  10 14 eV while 
coulomb energy is 0.14 M eV ; (c) no electron can exist within a nucleus.
18.17  204 MeV.
1 8 . 1 8  (a) NA; (b) NA.
1 8 . 1 9  NA.
1 8 . 2 0  E =  [ f t 2 T r 2 / 2 / « ] [ « 2/ i / 2  4 -  n \ t b 2  +  n j l c 2 ] ,  

ψ = C  sin (« iTi.v/rt) sin iniTtytb) sin (tmrz/c).
1 8 . 2 1  ( a )  1.325 x 10' 31 J .  2.65 x 10 31 J; ( b )  3.98 x  I O ' 31 J, 2.65 x  10 31 J ;

(c) 2.01 x  10“ 22 J, 4.02 x 10 22 J .

18.22 (a) NA; (b) NA; (c) yes.
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