Khemis Miliana university **Faculty of Science and Technology**

Level : L_1 Specialization : ST + SM Mathématiques 2 Semestre 2

Exercises : Differential equations

Exercise 1

The function f defined on $]0 + \infty[$ by $f(x) = 3x^2 + \ln(x)$ is it a solution of the differential equation $y' = 6x + \frac{1}{x}$?

Exercise 2

Show that the function f defined on \mathbb{R} by $f(x) = \frac{1}{6}e^{3x}$ is a solution of the differential equation $y' + 3y = e^{3x}$.

Exercise 3

Using the variable separation method, provide the solutions to the following equations :

1)
$$y' = \frac{x^2}{1-y^2}$$
; 2) $y' = \frac{3x^2+4x+2}{2y-2}$ and $y(0) = -1$; 3) $y' = \frac{y\cos(x)}{1+2y^2}$ and $y(0) = 1$;
4) $y' = 2e^{x-y}$; 5) $y' = y + y^2$; 6) $y' = e^{\frac{y}{x}} + \frac{y}{x}$; 7) $x^2y' - (2x-1)y = x^2$ and $x > 0$.
Exercise 4

Exercise 4

1) Determine the general solution of the differential equation 2y' - y = 3.

2) Calculate the solution that satisfies y(0) = -1.

Exercise 5

1) Determine the general solution of the differential equation $y' + xy = xe^{-x^2}$.

2) Calculate the solution that satisfies y(1) = -1.

Exercise 6

- 1. Using an integration by subtitution, find the integral $I = \int \frac{e^{\arctan(x)}}{1 + x^2} dx$.
- 2. Using an integration by parts calculate the integral $J = \int \frac{\arctan(x)e^{\arctan(x)}}{1+x^2} dx$.

3. Deduce the value of $\int_0^1 \frac{(\arctan(x) + 1) e^{\arctan(x)}}{1 + x^2} dx$ We aim to solve the differential equation :

$$(x^{2}+1)y' + y = \arctan(x) + 1.$$
 (E)

- 1. Find y_H the general solution of the homogeneous equation associated to (E).
- 2. Find a particular solution y_p of (E).
- 3. Provide the general solution of (E).
- 4. Provide the solution of (*E*) which satisfies y(0) = 1.