Chapter 2: Differential Equations

1 Differential Equations

1.1 Ordinary differential equations

1.2 Generalities

Definition 1.1 A differential equation is an equation whose unknown is a function, and in which certain derivatives of the unknown function appear.

Example 1.1 Let u be a function, the following equations are differential equations.

1. u' = 2u2. u'' - 3u' + 1 = 03. $u^{(3)} = u$

Definition 1.2 Let u be a The unknown function depends on the variable x. We call a differential equation of order $n \ (n \in \mathbb{N})$ any equation of the form

$$F(x, u, u', u'', \cdots, u^{(n)}) = 0,$$
 (1)

where $u', u'', \dots, u^{(n)}$ are the derivatives of u of respective orders $1, 2, \dots, n$.

Remark 1.1 1. Equation (1) involves (n+2) variables.

- 2. The unknown function can be denoted by: y, t, \cdots
- 3. In a differential equation, when we write $u, u', u'', \ldots, u^{(n)}$, we imply $u(x), u'(x), u''(x), \ldots, u^{(n)}(x)$.

Definition 1.3 A solution to equation (1) on the interval I is a function that is n times differentiable on I and satisfies (1).

Example 1.2 One can easily verify that the function $u(x) = ce^{4x}$, $; c \in \mathbb{R}$ is a solution to the differential equation u' = 4u. Indeed, it is clear that if $u(x) = ce^{4x}$ then $u'(x) = 4ce^{4x} = 4u(x)$.

Definition 1.4 A differential equation of the form u'f(u) = g(x) is called an equation with separated variables

Example 1.3 The equation $u' = \frac{e^{-u}}{x^2}$ can be written in the form $u'e^u = \frac{1}{x^2}$. One can easily find the solutions to this equation. By integrating both sides of the equation, we obtain $e^u = -\frac{1}{x} + k$, $k \in \mathbb{R}$. This gives us

$$u(x) = \ln \left| -\frac{1}{x} + k \right|$$
, such that $k \in \mathbb{R}$.

Definition 1.5 The order of a differential equation is the order of the highest derivative appearing in the equation.

Example 1.4 1. 2xu' + u = 0 is a first-order differential equation.

2. u'' + u' - 3u = ln(x) is a second-order differential equation.

Definition 1.6 1. A differential equation of order n is called linear if it is of the form

$$f_0(x)u + f_1(x)u' + f_2(x)u'' + \dots + f_n(x)u^{(n)} = f(x)$$
(2)

où $f_0, f_1, f_2, \dots, f_n, f$ are real functions that are continuous on an interval $I \subset \mathbb{R}$.

- 2. If f(x) = 0 for all $x \in I$, then the equation (2) is called homogeneous, and it is of the form $f_0(x)u + f_1(x)u' + f_2(x)u'' + \dots + f_n(x)u^{(n)} = 0$
- 3. The equation (2) is said to have constant coefficients if the functions $f_0, f_1, f_2, \dots, f_n$ are constants. on I. In other words, the equation (2) can be written in the form $a_0u + a_1u' + a_2u'' + \dots + a_nu^{(n)} = f(x)$, with $a_0, a_1, a_2, \dots, a_n$ real constants.

Remark 1.2 In a linear differential equation, there are no exponents for the terms $u, u', u'', \dots, u^{(n)}$.

Example 1.5 1. $e^{x}u + x^{\frac{1}{2}}u'' = x^{2} + 1$ it is a linear differential equation, and $e^{x}u + x^{\frac{1}{2}}u'' = 0$ it is the associated homogeneous equation.

- 2. $2u' 3u'' + \frac{1}{5}u^{(3)} = x$ is a linear differential equation with constant coefficients.
- 3. The equation $(u')^2 + u'' + 3u = 0$ is not a linear differential equation.

Proposition 1.7 If u_1, u_2 are two solutions of the homogeneous linear equation

$$f_0(x)u + f_1(x)u' + f_2(x)u'' + \dots + f_n(x)u^{(n)} = 0,$$
(3)

then $\alpha u_1 + \beta u_2$ is also a solution of (3).

We consider the linear differential equation (2) and the associated homogeneous equation (3). The following proposition allows us to find the general solution of the equation (2).

Proposition 1.8 If u_0 is a particular solution of (2) and u_1 is a solution of the homogeneous equation (3) then $u = u_1 + u_0$ is a general solution of the equation (2).

Remark 1.3 Let us recal that a particular solution of the equation (2) is the given function which is n times differentiable and satisfies (2).

2 First-order differentials equations

2.1 Linear differential equation of the first order without second member

We consider the equation

$$a_1(x)u' + a_0(x)u = 0$$
 tel-que $a_1(x) \neq 0,$ (4)

which is equivalent to the equation with separate variables,

$$u' + a(x)u = 0$$
 tel-que $a(x) = \frac{a_0(x)}{a_1(x)}$. (5)

To solve the equation (5), we follow the following method:

$$\begin{aligned} u' + a(x)u &= 0 \iff u' = -a(x)u, \\ \iff \frac{du}{dx} &= -a(x)u, \\ \iff \frac{du}{u} &= -a(x) \, dx \\ \iff \int \frac{du}{u} \, dx &= -\int a(x) \, dx \\ \iff \ln |u| &= -A(x) + k \\ \iff |u| &= e^{(-A(x)+k)} \\ \iff u &= Ke^{-A(x)}, \end{aligned}$$

where A(x) is a primitive of a(x) and $K = \pm e^k$, $k \in \mathbb{R}$.

Example 2.1 The solution of the equation

$$u' - \sqrt{x}u = 0, \quad x > 0$$

is given by

with
$$K = \pm e^k$$
 and $-A(x) = \int \sqrt{x} \, dx = \frac{2}{3}\sqrt{x^3}$

2.2 Linear differential equation of the first order with second member

We consider the equation

$$a_1(x)u' + a_0(x)u = f_1(x)$$
 such that $a_1(x) \neq 0$, (6)

which is equivalent to the equation

$$u' + a(x)u = f(x)$$
 such that $a(x) = \frac{a_0(x)}{a_1(x)}$ and $f(x) = \frac{f_1(x)}{a_1(x)}$. (7)

According to Proposition 1.8, the solution of the equation (7) is of the form $u(x) = u_0(x) + u_1(x)$, where $u_1(x) = Ke^{-A(x)}$ is the solution of the associated homogeneous equation(7), and u_0 is the particular solution of the equation (7).

Example 2.2 Let us consider the equation

$$u' - \sqrt{x}u = 1 - x\sqrt{x}, \quad x > 0.$$
 (8)

According to the previous example $u_1(x) = Ke^{\frac{2}{3}\sqrt{x^3}}$, is a solution of the associated homogeneous equation to the equation (8). On the other hand, we can easily check that $u_0(x) = x$ is a particular solution of the equation (8). So the general solution of the equation (8) est

$$u(x) = x + Ke^{\frac{2}{3}\sqrt{x^3}} = x + Ke^{\frac{2}{3}x\sqrt{x}}, \quad K \in \mathbb{R}.$$

The question we ask ourselves is: how to find a particular solution?

2.3 Search for a particular solution: Method of variation of parameters

We know that the solution of the associated homogeneous equation to (7) is of the form $u_1(x) = Ke^{-A(x)}$, $K \in \mathbb{R}$. The method of variation of parameters consists of seeking a particular solution of the equation (7) in the form $u_0(x) = K(x)e^{-A(x)}$, where K(x) is a function of the variable x instead a constante. Stating that $u_0(x) = K(x)e^{-A(x)}$ is a solution of (7) means that

$$u'_{0}(x) + a(x)u_{0}(x) = f(x), \text{ with } A'(x) = a(x).$$
 (9)

$$\begin{split} u_{0}'(x) + a(x)u_{0}(x) &= f(x) \iff \left(K(x)e^{-A(x)}\right)' + a(x)K(x)e^{-A(x)} = f(x) \\ \iff K'(x)e^{-A(x)} - K(x)A'(x)e^{-A(x)} + a(x)K(x)e^{-A(x)} = f(x) \\ \iff K'(x)e^{-A(x)} - K(x)a(x)e^{-A(x)} + a(x)K(x)e^{-A(x)} = f(x) \\ \iff K'(x)e^{-A(x)} = f(x) \\ \iff K'(x) = f(x)e^{A(x)} \\ \iff K(x) = \int f(x)e^{A(x)} \, dx. \end{split}$$

So the particular solution of (7) is written in the form

$$u_0(x) = \left(\int f(x)e^{A(x)} \, dx\right)e^{-A(x)}$$

Exercise 2.1 Find the solutions of the equation

$$u' - 2u = e^{3x+1} \tag{10}$$

Proof. The search for the solution of the homogeneous equation:

The solution of the homogeneous equation u' = 2u associated with equation (10) is given by

$$\begin{aligned} u' &= 2u & \Longleftrightarrow \quad \frac{du}{dx} = 2u \\ & \Leftrightarrow \quad \frac{du}{u} = 2dx \\ & \Leftrightarrow \quad \ln|u| = 2x + k, \ k \in \mathbb{R} \\ & \Leftrightarrow \quad u = Ke^{2x}, \ K = \pm e^k. \end{aligned}$$

Then

$$u_1(x) = Ke^{2x}$$

The search for the particular solution:

We look for K(x) such that the particular solution of the equation (10) is of the form $u_0(x) = K(x)e^{2x}$.

$$\begin{split} u_0^{'}(x) - 2u_0(x) &= e^{3x+1} &\iff \left(K(x)e^{2x}\right)^{'} - 2K(x)e^{2x} = e^{3x+1} \\ &\iff K^{'}(x)e^{2x} + 2K(x)e^{2x} - 2K(x)e^{2x} = e^{3x+1} \\ &\iff K^{'}(x)e^{2x} = e^{3x+1} \\ &\iff K^{'}(x) = e^{3x+1}e^{-2x} \\ &\iff K(x) = \int e^{x+1} dx \\ &\implies K(x) = e \int e^x dx \\ &\implies K(x) = e^{x+1}. \end{split}$$

The solution of equation (10) is in the form

$$u(x) = e^{x+1}e^{2x} + Ke^{2x} = (e^{x+1} + K)e^{2x}, \ K \in \mathbb{R}.$$

2.4 Linear first-order differential equation with constant coefficients

We consider equations of the form

$$a_1 u' + a_0 u = f_1(x). (11)$$

This is a particular case of equations (6). We solve equation (11) in the same manner as (6).

2.5 Bernoulli's differential equation

Definition 2.2 Any equation of the form

$$u' + a(x)u + b(x)u^{n} = 0$$
(12)

is called an equation of Bernoulli.

Solving Bernoulli's equation

- 1. if n = 0, the equation (12) becomes of the forme (7).
- 2. if n = 1, equation (12) becomes of the forme (5)
- 3. if $n \neq 0$ and $n \neq 1$, we seek to transform the equation (12) into a first order linear differential equation. To do this, we follow the following method:

we divide by u^n and the equation (12) becomes

$$u^{-n}u' + a(x)u^{1-n} + b(x) = 0$$
(13)

we set, $y = u^{1-n}$ then $\frac{1}{1-n}y' = u^{-n}u'$. Therefore the equation (13) becomes

$$\frac{1}{1-n}y' + a(x)y + b(x) = 0.$$
(14)

The equation (14) is of the form (6).

Example 2.3 Solve the following equation

$$u' + e^x u + e^x u^3 = 0. (15)$$

Proof. We divide by u^3 , we will have

$$u^{-3}u' + e^x u^{-2} = -e^x. (16)$$

By making the change of variable $y = u^{-2}$ and by deriving both sides, we obtain $y' = -2u'u^{-3}$. In other words, $u'u^{-3} = -\frac{1}{2}y$. This change of variable allows us to write the equation (16) in the form

$$-\frac{1}{2}y + e^x y = -e^x.$$
 (17)

It is a first-order linear equation with a second term, the resolution of which proceeds through the previous steps. \blacksquare

2.6 Équation différentielle homogène

Soit H une fonction numérique définie et continue sur un domaine $D \subset \mathbb{R}$.

Definition 2.3 We call a homogeneous differential equation any differential equation of the form F(x, u, u') = 0 and which remains unchanged when replaced x by αx and u by αu and left u' as it is. These equations are of the form:

$$u' = H\left(\frac{u}{x}\right). \tag{18}$$

The resolution of equation (18) generally reduces to solving a simple equation by using the change of variable $t = \frac{u}{x}$, where tx = u and u' = t'x + t. The solutions are in the form (x, u).

Example 2.4 Solve the equation $2xuu' = u^2 - x^2$.

Proof. When remplacing x by αx and u by αu and left u' unchanged, we obtain:

$$2\alpha^2 x u u' = \alpha^2 \left(u^2 - x^2 \right)$$

which is exactly

$$2xuu' = u^2 - x^2.$$

So the equation is homogeneous. We use the change of variable $t = \frac{u}{x}$, with tx = u and u' = t'x + t. The given equation becomes:

$$2xuu' = u^2 - x^2 \iff 2uu' = \frac{u^2}{x} - x$$
$$\iff 2tx\left(t'x+t\right) = \left(\frac{u}{x}\right)u - x$$
$$\iff 2x^2tt' + 2t^2x = t^2x - x$$
$$\iff 2x^2tt' = -(t^2 + 1)$$
$$\iff \frac{2t}{t^2 + 1}dt = -\frac{1}{x}dx$$
$$\iff \ln(t^2 + 1) = -\ln|x| + k, \quad k \in \mathbb{R}$$
$$\iff \ln(t^2 + 1)|x| = k$$
$$\iff x = \frac{K}{t^2 + 1}, \quad u = \frac{Kt}{t^2 + 1}, \quad K = \pm e^k.$$

3 Exercices corrigés

Exercise 3.1 Solve the following differential equation:

$$u^{2}u' + x^{2} = 0, \ u \neq 0, \ u(0) = 4$$
 (19)

Solution:

It is an homogeneous first order differential equation with separate variables.

$$\begin{split} u^2 u' + x^2 &= 0 \iff u^2 u' = -x^2 \\ \iff u^2 \frac{du}{dx} = -x^2 \\ \iff u^2 du = -x^2 dx \\ \implies \int u^2 du = -\int x^2 dx \\ \implies \frac{1}{3}u^3 = -\frac{1}{3}u^3 + k, \ k \in \mathbb{R}, \\ \implies u = \sqrt[3]{-x^3 + k}, \ k \in \mathbb{R}. \end{split}$$
$$u(0) = 4 \iff \sqrt[3]{-(0)^3 + k} = 4 \\ \sqrt[3]{+k} = 4 \Longrightarrow k = 64. \end{split}$$

Donc $u(x) = \sqrt[3]{-x^3 + 64}$.

Exercise 3.2 Solve the following differential equation:

$$xu'' + 2u' = 0, \ u \neq 0, \ u(1) = 0, u(2) = 1.$$
 (20)

Solution:

This is a second-order homogeneous equation. We transform it into a first-order equation by making the change of variable y = u', and the equation becomes

$$xy' + 2y = 0.$$

$$\begin{aligned} xy' + 2y &= 0 \iff xy' = -2y \\ \iff \frac{y'}{y} = -\frac{2}{x} \\ \iff \frac{1}{y} \frac{dy}{dx} = -\frac{2}{x} \\ \iff \frac{dy}{y} = -2\frac{dx}{x} \\ \implies \ln|y| = -2\ln|x| + k, k \in \mathbb{R} \\ \implies y = \pm e^{\frac{1}{x^2} + k} \\ \implies y = \pm e^{\frac{1}{x^2} + k} \\ \implies y = \frac{K}{x^2}, K = \pm e^k. \end{aligned}$$
$$y = u' \iff u' = \frac{K}{x^2} \\ \implies u = -\frac{K}{x} + \tau, \ K, \tau \in \mathbb{R} \end{aligned}$$

$$\begin{split} Taking into account the initial conditions, we have: u(1) &= 0 & \Longleftrightarrow & -K + \tau = 0 \Longrightarrow K = \tau, \\ u(2) &= 1 & \Longleftrightarrow & \frac{-K}{2} + \tau = 1 \Longrightarrow K = 2. \end{split}$$

So the sought (cherchee) solution is

$$u(x) = 2\left(1 - \frac{1}{x}\right).$$

Exercise 3.3 Solve the following differential equation:

$$u'' + 3u' + 2u = xe^{-x}.$$
 (21)

Solution:

1. We seek the general solution of the homogeneous equation

$$u'' + 3u' + 2u = 0 \tag{22}$$

The characteristic equation associated to(22) is

$$r^2 + 3r + 2 = 0 \tag{23}$$

 $\Delta = 9 - 8 = 1 \Longrightarrow r_1 = -2, r_2 = -1.$ The general solution of (22) est

$$u_1 = \lambda_1 e^{-2x} + \lambda_2 e^{-x}$$

2. We seek a particular solution of the equation (21).

As the second term of equation (21) is in the form $h(x)e^{-x}$ where h(x) is a polynomial of degree n = 1, and since $(-1)^2 + 3(-1) + 2 = 0$ then we seek the particular solution in the form $u_0 = k(x)e^{-x}$ where k(x) is a polynomial of degree m = n + 1 = 2. we set $u_0 = (ax^2 + bx + c)e^{-x}$. A simple calculation gives us

$$u_{0}^{'} = e^{-x} \left(-ax^{2} + (2a - b) + (b - c) \right)$$

and

$$u_0'' = e^{-x} \left(ax^2 + (b - 4a) + (2a - 2b + c) \right).$$

By replacing these results into (21) and by identification, we find $a = \frac{1}{2}, b = -1, c = 0$. Then ,

$$u_0 = \left(\frac{1}{2}x^2 - x\right)e^{-x}$$

3. The general solution of the equation (21) is:

$$u = \left(\frac{1}{2}x^2 - x\right)e^{-x} + \lambda_1 e^{-2x} + \lambda_2 e^{-x} = \left(\frac{1}{2}x^2 - x + \lambda_1\right)e^{-x} + \lambda_2 e^{-x}.$$

Exercise 3.4 Solve the following differential equation:

$$u'' + u' + u = x^2 + 1, \ u(0) = 1, u'(0) = 0.$$
 (24)