

Ministry of Higher Education and Scientific Research Djilali BOUNAAMA University - Khemis Miliana(UDBKM) Faculty of Science and Technology Department of Mathematics and Computer Science

Chapter 4

Iteration/Repetetive Structures : Loops

MI-L1-UEF121 : Algorithms and Data Structures I

Noureddine AZZOUZA

n.azzouza@univ-dbkm.dz

Course Topics

1. Introduction

2. « for » loop

3. « while » loop

4. « repeat ... until » loop

5. Nested loops

Problem

✓ Write an algorithm that displays the multiplication table of an integer between 1 and 10

Iteration Structures

Definition

- ✓ A repetitive structure is a structure that repeats the same processing as many times as desired depending on an execution condition.
- ✓ A **Repetitive Structure** is also called **Iterative Structure** or a **Loop**.
- $\checkmark\,$ A loop consists of four essential elements :
 - > A **statement block**, which will be executed a certain number of times;
 - > A **condition/test**, which concerns at least one so-called *loop variable*.
 - > An **initialization** of the **loop variable**.
 - > An **update/modification** to the *loop variable* to stop the loop.

Iteration Structures

Definition

- ✓ There are 3 forms of **repetitive structures** (loops)
 - 1. The **FOR** loop
 - 2. The **WHILE** loop
 - 3. The **REPEAT** loop
- ✓ These structures have the same power; but by convention the choice of a loop depends essentially on the nature of the problem to be solved
- Infinite loop: is a loop whose condition never changes, causing an infinite number of repetitions.
- Iteration: it is a complete loop cycle including the loop block, the condition test, and also the modification.

 ✓ the FOR loop is a repetitive structure that iterates the same processing for a *range* of values between a lower bound and an upper bound. the FOR loop is used when the number of repetitions is *known* in advance

Syntax

Noureddine AZZOUZA

Running for loop

1st Stage : Initialization of the Loop Variable with the Initial Value.

2nd Stage : Evaluate the **test/condition** and check whether the Loop Variable value is in range or not.

> If it is in the interval then go to the **3rd Stage**, otherwise go to the **5th Stage**.

3rd Stage : Execution of the loop **statement block**.

4th Stage : Automatic update/modification (Increment) of the value of the Loop
Variable according to the value of the Step (default: Step = 1) and return to the 2nd
Stage.

5th step: Exit from the loop and continue execution of the program starting from the first instruction which comes after *endfor*.

for loop Flow Diagram

Example1: Multiplication table of a number

Multiplication table

Write an algorithm which asks the user for an integer N (1 < N < 10), and which then writes the multiplication table of this number

Analyse :

Algorithm table_multiple;

 Var
$$N, i : integer ;$$

 begin

 read $(N);$

 for $i := 1$ to 10 do

 write $(N, 'x', i, ' = ', N*i)$

 endfor

 end.

Example2: Power

Power

Write an algorithm that calculates **a**^b such that a and b are two positive integers given by the user.

Analyse :

Algorithm puissance; Var a, b : integer;*p*, *i* : *integer*; <u>begin</u> read (a, b);p := 1;for i := 1 to b do p := p * a;endfor write ('la puissance =', p) end.

Declaration

Examples

PASCAL	С
Syntaxe:	Syntaxe:
FOR compt := val_initial TO val_final DO	for (initialisation; condition; modification)
Begin End	{ }
<pre>program Exemple_pour;</pre>	#include <stdio.h></stdio.h>
var	<pre>int main (){</pre>
a, b, p, i : Integer;	int a, b, i; // déclaration
begin	
ReadLn(a, b); // lecture p := 1; // initialisation	<pre>int p = 1; // declaration + initialisation scanf("%d %d", &a, &b);</pre>
For i:= 1 to b do	for (i = 1; i <= b; i++)
begin n := n * a:	{ n = n * a•
end;	}
<pre>WriteLn('La puissance = ', p);</pre>	<pre>printf("La puissance = %d", p);</pre>
end.	return 0; }

the WHILE loop

✓ the WHILE loop executes the body of the loop when the execution *condition* is **met**; we will stop as soon as the condition is no longer verified.

Syntax

loop variable initialization

while execution test/condition do

Statements Block

update loop variable

endwhile

Running While

1st step: Initialization of the Loop Variable before the loop.

Step 2: Evaluate and test the **execution condition**.

If it is verified then go to the **3rd step**, otherwise go to the **5th step**.

3rd step: Execution of the loop **statements block**.

4th step: Changing (**updating**) the value of the Loop Variable and returning to the *2nd step*.

5th step: Exit from the loop and continue execution of the program starting from the first instruction which comes after *endwhile*.

while loop Flow Diagram

Example1: Multiplication table of a number

Multiplication table

Write an algorithm which asks the user for an integer N (1 < N < 10), and which then writes the multiplication table of this number

Analyse :

Algorithm table_multiple;

 Var
$$N, i, p: integer ;$$

 begin

 read $(N);$
 $i := 1;$

 while $i <= 10$ do

 $p := N * i$

 write $(N, 'x', i, ' = ', p)$
 $i := i + 1$

 endwhile

Exemple2 : GCD calculation

GCD calculation

Write an algorithm that calculates the GCD of two integers a and b by applying the recurrence relation GCD(a,b) = GCD(b, a MOD b) until the remainder of the division of a by b is zero .

Analyze : PGCD(18,12) = PGCD(12, 6) = PGCD(6, 0) = 6

```
Algorithm calcul_pgcd;
Var a, b, r: integer ;
begin
  read (a,b);
    while b \ll 0 do
       r := a MOD b
        a := b
        b := r
   endwhile
    write ('Le PCGD de a et b = ', a)
end.
```

the WHILE loop

ion	PASCAL	С
Déclarati	Syntaxe: WHILE condition DO Begin End	Syntaxe: while (condition) { }
Exemples	<pre>program Exemple_tq; var</pre>	<pre>#include <stdio.h> int main (){ int a, b, r; // déclaration scanf("%d %d",&a, &b); while (b != 0) { r = a%b; a = b; b = r; } printf("Le PGCD de a et b = %d", a); return 0; }</stdio.h></pre>

 La boucle Répéter permet de rentrer dans la boucle quelque soit la condition et réitère l'exécution jusqu'à ce que la condition soit vérifiée.

Noureddine AZZOUZA

Running REPEAT

Step 1: Go inside the "Repeat" loop and execute the associated **block**.

Step 2: Update the variables involved in the **stopping condition**.

Step 3: Evaluate and test the **stopping condition**.

> If it is checked then go to the *4th step*, otherwise go back to the *1st step*.

Step 4 : Changing (**updating**) the value of the Loop Variable and returning to the **2nd step**.

Step 5 : the stopping condition having been reached, we exit the Repeat loop and continue the execution of the program from the first instruction which comes after Until.

REPEAT loop Flow Diagram

Example1 : Multiplication Table

Multiplication table

Write an algorithm which asks the user for an integer N (1 < N < 10), and which then writes the multiplication table of this number

Analyse :

Algorithm table_multiple;
Var N, i, p: integer ;

$$\begin{array}{c|c} \underline{begin} \\ \hline read (N); \\ i := 1; \\ \underline{Repeat} \\ \hline p := N * i \\ write (N, `x`, i, ` = `, p) \\ i := i + 1 \\ \hline Until (i > 10) \\ \hline end. \end{array}$$

Example2 : GCD calculation

GCD calculation

Write an algorithm that calculates the GCD of two integers a and b by applying the recurrence relation GCD(a,b) = GCD(b, a MOD b) until the remainder of the division of a by b is zero .

Analyse : PGCD(18,12) = PGCD(12, 6) = PGCD(6, 0) = 6

```
Algorithm calcul_pgcd;
Var a, b, r: integer ;
begin
  read (a,b);
   Repeat
        r := a MOD b
        a := b
        b := r
    Until (b = 0)
    write ('Le PCGD de a et b = ', a)
end.
```

ion	PASCAL	С
Déclarat	Syntaxe: REPEAT bloc UNTIL (condition)	Syntaxe: do { } while (condition)
	program Exemple_repeter;	<pre>#include <stdio.h></stdio.h></pre>
Exemples	<pre>var</pre>	<pre>int main (){ int a, b, r; // déclaration scanf("%d %d",&a, &b); do { r = a%b; a = b; b = r; } while (b != 0); printf("Le PGCD de a et b = %d", a); return 0; }</pre>

Ministry of Higher Education and Scientific Research Djilali BOUNAAMA University - Khemis Miliana(UDBKM) Faculty of Science and Technology Department of Mathematics and Computer Science

Chapter 4

Iteration/Repetetive Structures : Loops

MI-L1-UEF121 : Algorithms and Data Structures I

Noureddine AZZOUZA

n.azzouza@univ-dbkm.dz