University Djilali Bounaâma of Khemis-Miliana Department of Computer Science 3rd year Bachelor's Degree – Computer Systems (S6) - 2023/2024 Subject: IT Security and Cryptography

Series of exercises N° 01

Exercise 01: Match each of the following concepts with the appropriate definition. 1)

А	Integrity	А	Ensures that the content of a communication or file is not accessible to third parties				
В	Confidentiality	В	Guarantees the identity of a given entity or the origin of a communication or file				
С	Authenticity	С	Ensures that the content of a communication or file has not been modified				
2)							
А	Cryptosystem	А	Encryption algorithm				
В	Cipher program	В	Encrypted text				
С	Cryptogram	С	Ciphergram				
3)							
А	Cryptanalysis	А	To transform plaintext messages into unreadable text				
В	Ciphering	В	To analyze the encrypted messages in order to decrypt them				
С	Decryption	С	To decode the encoded messages				
4)	4)						
А	To encode	А	Letter-level substitution				
В	To cipher	В	Word-level substitution				
С	To Transpose	С	Sentence-level substitution				
5)							
А	Symmetric cryptography	А	It uses the same key to encrypt/decrypt				
В	Secret-key cryptography	В	It uses two different keys to encrypt/decrypt				
С	Asymmetric cryptography	С	It does not use secret conventions before exchanging secret messages				
6)			<u>.</u>				
А	Worm	А	Self-Replicate by inserting into hosts				
В	Virus	В	Spread through the network				
С	Trojan horse	С	Activity that appears legitimate but is malicious				
7)							
А	Detection	А	Create virtual disks				
В	Prevention	В	Create a restore point				
С	Recovery	С	Block/Delete suspicious connections/files				
D	Filtering	D	Restore the last known good configuration				
8)							
А	Confidentiality breach	А	Log in with someone else's username and password				
В	Integrity breach	В	Intercepting a secret communication				
С	Authenticity breach	С	Modify the amount of a monetary transaction				
D	Repudiation	D	Bombarding a server with TCP-SYN requests				
Е	Availability breach	Е	Deny sending or receiving a message				

Exercise n° 02: Use Polybius square to decrypt the following:

3532444413443532444413441341151225522134345212133214151225424425151532251415133115122535213434 Key = "GHOST"

Exercise n° 03: The following message was encrypted with CAESAR Cipher: "NYRN WNPGN RFG"

- Decrypt mathematically this message knowing that the shift is: $\mathsf{A}\to\mathsf{N}$
- The encryption with the previous shift is associated with a particular type of CAESAR, give its name.
- If we do not know the number of shifts, how many times must we try to be able to decrypt a message encrypted with CAESAR?

Exercise n° 04: Encrypt the message "SHOW ME THE MONEY" using Playfair cipher.

Key = "SMART"

- What type of encryption system does this cipher belong to?

Exercise n° 05:

- 1) Encrypt the word **ALGERIAN** using Hill cryptosystem Key = $\begin{pmatrix} 3 & 5\\ 1 & 2 \end{pmatrix}$
- 2) Decrypt with Hill the message C = MWHEFHWXMA Key = $\begin{pmatrix} 3 & 6 \\ 2 & 5 \end{pmatrix}$

Exercise n° 06: Encrypt mathematically the following message using Vigenère:

"SHOW ME THE MONEY"

 $\mathsf{Key} = \textbf{SMART}$

- Decrypt with the same key the message: CQEGVSXMRGVETRRHASZMAHE

Encrypt: «Beat around the bush»	Decrypt:		
1. Simple Transposition: Key = 3.1.2	«NIOGNRCASEBISLSI» Key = 3.1.4.2		
2. ZigZag of three levels	«SMEEHWEHMNYOTO» ZigZag = 3		
3. Matrix-Based Transposition : $Key = (4*4)$	«HEBEVOLEDLRYOY!» Key = (3*5)		
4. ADFGVX : Key = DEMAIN	FFAGFXGDADGADGFXGADDAXFXDF		
Fill the encryption matrix in the following order:	Key = CIPHER		
09,AZ	Fill the encryption matrix in the following order:		
	ZA,90		
5. Bazeries Cipher : Key = 22			
6. Nihilists Cipher :			
Key 1 = DIFFICULT Key 2 = EASY			

Exercise	n°	07:	
EXCI0130	••		