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II. Maxwell E quations Electric and magnetic fields

1. Electrical charge:
q,= —e=-1.6 x 10719[(]
q,=+e=+1.6 x10"°[(C]

Neutral system: N=M



II. Maxwell E quati OIS Electric and magnetic fields

2. Distribution of electrical charge:

dq=p.dV
=, dg=c.dS
< i
<
<
/1=d—C/m] J—Q[C/mz] dq
~ds p=—[C/m°]

dv



II. Maxwell E quati OIS Electric and magnetic fields

3. Coulomb Law (Electrical force):

Electrical permittivity: k = ﬁ; g0 = 1/(36m x 10%) = 8.85 x 107 12|C2. N~1.m™2|
0



1. Maxwell Equations

Electric and magnetic fields

4. Electric Field:

FM,=k
FM,:k
? FM,=k :

qu,g, ﬁMrM \

q.q9"_

Upmim
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ﬁquM)-qn

The electric field

—

= (qn- E



II. Maxwell E quati OIS Electric and magnetic fields

5 A

5. Electric l%_‘\ield‘ of ﬂoinﬁcharge: - .f

\ ¥ \ . I K , . \ . ] 7




« Example 01

1. Calculate the electrical field in the point M, created by the group of charges as

shown in the figure below.

= —2nC
q: = —1nC M | 13
@ - Wenoemnaenea =2
"\ Ji !
: N ! !
r=100cm!:
\ . qq =InC



e Solution of the Example 01:

., 1 q_, 9% 10° x (—=1079) _

L LT Sy P —27[V/mli
2_47T€0T2uq2M_ ( uy)— /m uy
3 = Jre, 2 asM = [V/m]u,
= 1 q4—> — e
E, = FEOT—ZUQLLM = 9[V/m]uy
q1 I —1nC
e =

ETOT =E)1+E)2 +E)3 +E)4
ETOT — _9ﬁx + _27ﬁy + 18ﬁx + 91_13,

ETOT — 91736 - 18173,




II. Maxwell E quati OIS Electric and magnetic fields

6. Electric Field of a charge distribution

5 d1

61 — K_Z ﬁl
&1

£ d2 _

B Jeg .

83 — K_Z ’LL3
I3

TH :
i di2 _
812 — K_ ulz
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II. Maxwell E quati OIS Electric and magnetic fields

6. Electric Field of a charge distribution
12

E=¢;+&+..+6 Z* ; dQ
=e e R e = € — =l —
TR Y= E=jdE=K.f—2.u
12 r
1 A Q
i) =i
i=1 \l/ W,
N': trés grand we need to know:
- The charge distribution: ), o or p;
q; : trés petit 2 q, = dQ - The geometry of the system;
- And exploit the symmetry if it exists
3 aQ _, . (rectangular, cylindrical, spherical)
; .

U
T



« Example 02:

Let’s calculate the resultant field created in the point M by the linear distribution

of charge on the wire of length 2A, as shown in the figure.

4 +
: S PM E r —
. dyf L Uy ‘
: N OM = x
i E + \\\ —_
| T — Uy
' - cos 0 =x/r
S 0
N t

+
* d
= q._,
< |+ dE.(M) = _
> X p(M) e 12 Upm
! =
: I+ . .
< Em) = [ dEp(m)
v -



« Example 02:

1. Write the expression of the unit vector tip), as a function of i, u, et 6.

2. By using a convenient choice of symmetry, show that the total field will have

only one component on the axis ox.

3. Find the expression of the non-null
elementary field as a function of x and 6.
Define the angle 6,,,, (hint: use the

value sin 6,,,,,)

4. Find the total electrical field created
by this wire in the point M. Deduce the

result fora —» o



e Solution of Example 02:
1. Write the expression of the unit vector tip), as a function of i, u, et 6.

Upy = cos O U, —sinfu,

A

ISP
4
+ + + +F0 +)

y-«:\/\\ ) .\'\.
K o .| Uy cosO
_______ | RRLRELEE —
0, NG
=
wn
I

\@@/

‘5 l
dq/dl
FE+ + + + + +




e Solution of Example 02:
2. By using a convenient choice of symmetry, show that the total field will have

only one component on the axis ox.

- -
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e Solution of Example 02:

3. Find the expression of the non-null elementary field as a function of x and 6.

Define the angle 6,,,,, (hint: use the value sin 8,,,,,)

[ ——

+.

F+ + + + +

+ + + +E0 +)

_H

dq A dy

dEp,(M) = dmeq 12 cos0.u, = deq 172 c0s0.u,
y y x.do
tan@ == - x = dy =
an X X tan 0 -y cosZ0
0 X X 1 cos?0
= — > = - =
€os r " cosO 1?2 x2
dy x.d0 cos?*0 cos 6.d0
—co0s0 = . .cos 6 =
r? cos?0 x2 X
JE (M) = A cos0.dO _,
P = e, x
a

0<0< 0,4 > SIN0O,,, =

\J a? + x?



e Solution of Example 02:

4. Find the total electrical field created by this wire in the point M. Deduce the

result fora —» o

= A cos0.dO = Omax A cos0.dO —
= . - = ]
B dEPx(M) 4meg X Uy EPx(M) 2 fO 4meg X X
T
----- 0
dv-- \P max
y{ I }\ — — . Bmax
BN Ep,(M) = cos 0.d0.u., = u,[sin 0]
. . Px X X 0
+ 2TTXE 2TTXE
T 0
y N N
N ( B — —
=. o M Ep, (M) = SinG,, U, = U,
_______ = = DR W ARV S 2TCXE 2TCXE 2 2
ol T % 0 0va*+x
\‘,’ &
-
- x % IOO(,(V‘ a — ©o
-~ I 1 dq_,
y = 1M Epy = ux 1m
‘ L= T a— oo 2nxgy ~a-wo [ 2 2
u |+ N a” +x°
X < 4 =1
lim Ep, (M) = u
00 Px( ) 21TX80 X



II. Maxwell Equations Electric and magnetic fields
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I1. Maxwell Equations ie a8
7. Magnets and magnetism | Bang'rma;_:, — \

Bursa
O

Canaklkale

Anatoly (Actual Tiirkiye)

~ The magnetite (Fe30,)

AULldilyd
o

Afyziffahisar
Usak o




II. Maxwell Equations Electric and magnetic fields

7. Magnets and magnetism _
Attraction

Magnetic dipole Magnetic dipole



I1. Maxwell Equations Electric and magnetic fields

7. Magnets and magnetism
(S Magnetic field lines
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II. Maxwell E quations Electric and magnetic fields

8. Induced magnet A permanent magnetized piece (compass

needle) could be processed by using high quality

hot steel, cooled near a strong magnet.

0 th lip i lled by th
B D e T S Nowadays, strong permanent magnets are

ermanent magnet, it becames a
P 5 obtained by using alloy of Iron, Rare Earth

scondary non-permanent magnet.
y P 5 Element (Neodymium) and Boron, in similar way

but magnetized using a powerful electromagnet.

 This magnetized clip could pull
another paper clip, and so on .. \\
each touched clip will become a
new magnet by magnetic induction (K'}

but with weaker intensity




1. Maxwell Equations

Electric and magnetic fields

8. ORSTED EXPERIMENT (1819)

Hans Christian Orsted
(1777-1852), Danemark




1. Maxwell Equations

Electric and magnetic fields

9. The @rsted’s law

@rsted found that, for a straight wire traversed by

a steady direct current (DC):

- The magnetic field lines encircle the current-
carrying wire and they lie in a plane perpendicular

to the wire;

- If the direction of the current is reversed, the

direction of the magnetic field reverses;
- The strength of the field: B o< I

- The strength of the field: B < 1/ ,

- the direction of the field lines: thumb rule

N Hans Christian @rsted
V| (1777-1852), Danemark

Phenomenology: Electricity < Magnetism



II. Maxwell E quations Electric and magnetic fields

9. The @rsted’s law

O O

G

S

B |
|"'

Electromagnet for a ring doorbell

Phenomenology: Electricity < Magnetism



1. Maxwell Equations

Electric and magnetic fields

9. Biot-Savart law:

All the cited observations allowed Both two French scientists to deduce

the mathematical formulation of an elementary magnetic field induced

in a point P by an element dl (located at O) of the wire crossed by the

| (o
electrical current intensity I: | {
= J.B. Biot F. Savart
= =2 PM I - i 4 o "
dB(M) = Z—Oldl /] 3= ZO -dl /U (1774-1862) (1791-1841)
* Pm|T

The magnetic field, could be then obtained via the integral form:

— Ho I. di/| ﬁ)PM
dBP(M) :j A1’ 2
Me(c) *TC r

B(M) = J

Me(C)

“which is not an easy calculation to do!!!”

Magnetic permeability: uy = 41t x 10”7 |H.m™ 1|




II. Maxwell E quati OIS Electric and magnetic fields

9. Biot-Savartlaw:

If the current density is known, it will be more

convenient to calculate the magnetic field using ’ \\/\ / 7 \

the density instead of the current intensity:

I1=J.dS > 1.dl = J(P).dS.dl = J(P).dV .

Thus, the Biot-Savart law becomes in the case of

volume density: Besides that, the Biot-Savart law becomes in the

case of surface density:

Bon) = [ dBp(on = ﬂf EnlC) i | . ﬂ o Ts(P).dS ATipy

B(M) = j
Pe(C) PM?

ﬂj & ](P)AuPM p | ff Ko ]S(P)/]uPM .ds




Example 03:

In this exercise, we will calculate the magnetic field B(M) induced by a straight wire with a length

[ = 2a, crossed by a steady direct current I. We will examine the case [ - o

* (—
p PM =R U, | u
: dli{ OM=r ~
! . R Ur
Lz OP =z
:{ ..... {/ cosa=r1/R
N N ~l-. a BREN
S ol 1Tl S M dl = dz
; — Ho I dl/\ﬁ)pM
: dBp(M) = 2
| 4wt PM
; _____




Solution of example 03:

Due to the cylindrical symmetry of the problem, the only non-zero component of §(M) is the

azimuthal one B.,.(M) : 5 o
(P( ) I"’O I. dl/\upM . [,l,o I. dl.uz/\upM

dBp(M) =
P(M) = P2 41 R2
f (—
| NP With: Upy = cos a. U, — sin a. U,
E R r r
Loz cosa=—=
~.‘!r~.~ : R R /rz _I_ ZZ
g
S LT N Mo z rda
R IS — =tana - dl = dz = 5
i : s r cos“a
i — o 1. U nu, ol cos a.dz _,
! dBp(M) = >—dz.cosa = > Uy,
i 4 R 4 R
E pol cos’a da _,
v = —cosa u

41T r cosla ?



Solution of example 03:

\

1

2a

e . —— -

dBp(M) =

>

Ho I. ﬁzl\'l_l)r

41 RZ

lim sin a,,,, =1 — lim Ho” [sin a,,4,] —>§P(M) =

a— 0o

cosa =

Amax

—®max

ol cosa.r.dz _
u

41T R%

Bp(M) = f dBp(M) =

. Bl
cosa.da U, =——

41tr

a—oo 2TCT

wol cos’a da _,
—— cosa u

? Ar r cos’a ?

yolj cosa.da _,
u

AT r ¢
. ol _ .
[ZSln amax] — 2_11'T [Sln amax]
i a
Sin a5 =

Vva?z +r?

Pol -
2nr ¢



10. Laplace force:

Pierre-Simon de Laplace

(1749-1827) France




10. Laplace force:

Pierre-Simon de Laplace

(1749-1827) France




II. Maxwell E quati OIS Electric and magnetic fields

10. Laplace force:

When a conductor carrying a direct current intensity I, is put near a
magnetic field, a mechanical force is applied on the wire and it tends to
displace him in a perpendicular direction on both magnetic field and

current flow. This force known as Laplace force is given by:

dF, = I.diAB - dF, = f 1. diB

Pierre-Simon de Laplace

In the case of uniform magnetic field, it is possible de perform the (1749-1827) France

integration to obtain the force expression:

F,=1INB=L1B.sin01u



II. Maxwell E quations Electric and magnetic fields

11. Ampere Theorem:

The Ampere theorem states that the magnetic field circulation through a

closed path enclosing several currents I, is directly proportional to the

sum of these currents ),; I: \—/
fdc ~ jﬂ B.di = uOZIk
K

André-Marie Ampere
1775-1836 (France)

Contour (C) onienté



II. Maxwell E quati OIS Electric and magnetic fields

11. Ampere Theorem:

In the case of colinear straight currents, we obtain a uniform magnetic field

parallel to the contour given by the Ampere law:

— - — - I
fdczf B.dlzB?Q dl=B.L=uOZIk—>B=”OZk i
k

L

Application: by using this law to calculate again the magnetic field induced André-Marie Ampere
1775-1836 (France)
by the straight wire traversed by steady direct current I, in a given point M

located at the radial distance r from the wire.




|

Solution of example 03:

jﬁpdi:ﬂozlk
k
2T

' — Bpj rd ou,. U, = Bp2mr = pol
) 0

\
'
'
~. '
~ '
'
[E—
I
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\ L
N "~
~
O =
~
~ -
________ | - o~
r




II. Maxwell E quations Electric and magnetic fields

12. Lorentz force:

In the presence of electric field, any charged particle will feel an
applied electrical force given by: 76 = qE

Similarly, if the same charged particle is animated with a celerity v in

presence of a magnetic field, it will feel a magnetic force known as

Lorentz force: f,, = q.DAB

In the case, where both fields are present, we get the general

electromagnetic Lorentz force:

Hendrik LORENTZ
(1853-1928) Netherland

fo=f.+fm=qE+qvrB=q. (E+§AI_3>)



II. Maxwell E quati OIS Electric and magnetic fields

12. Deriving Laplace force from magnetic Lorentz force:

If we consider a density n of charged particles animated with an average

celerity vV crossing a wire section S in presence of a magnetic field B , where

each individual particle will feel the force: 7m = q.‘l_}AE

Over an elementary distance dl, an elementary volume dV = §. dl will represent P-S. Laplace

a number of charges: N = n. §.dl

This will constitute an element of macroscopic force:
dF, = n.S.dl.q.9AB = (q.n.S.v)dIrB = I1dInB

With by definition, we have: I = q.n.S.v

H. LORENTZ



II. Maxwell E quati OIS Electric and magnetic fields

13. Magnetic induction and excitation:

In physics the term magnetic field points ] _ .
Relative and absolute magnetic permeability

usually to the physical value measured in for some media
Tesla: B[T], While the physical value : Medium My p[H.m™']
—, 8 1.00000000 1.25663062 x 107°
H[A/m| = uB|T|] is defined as “magnetic L

Ly Air 1.00000037  1.25663753 x 10
eXCHt e Water ~ 0.999992 1.256627 x 10~°
Where pt = p,pio points to the magnetic permeability Wood  1.00000043 1.25663760 x 1076
of the given media where B is present. Concrete 1.00000000 1.25663062 x 107°

Iron 2 X 10° 2.5x 1071

In engineering, B[T] is called the magnetic

—

induction While : H{A/m] = ul_f[T] is defined

as “magnetic field”.
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