

Khemis Miliana University – Djilali BOUNAAMA Faculty of Science and Technology Department of Physics

Electromagnetism L2 Fundamental Physics

By: Dr. S.E. BENTRIDI

2023 / 2024

Content

1. Chapter 01: Useful Maths

- 1. Vectors
- 2. Systems of coordinates
- 3. Elementary measures
- 4. Operators

2. Chapter 02: Maxwell Equations

1. Electric and Magnetic Fields 2. Scalar and Vectorial Potentials 3. Maxwell equations

3. Propagation of EM Waves

1. Wave's equation 2. Planar waves 3. Reflection and Refraction 4. Guided waves

Khemis Miliana University – Djilali BOUNAAMA Faculty of Science and Technology Department of Physics

Electromagnetism L2 Fundamental Physics

Chapter 02 Maxwell Equations

$$
\vec{\nabla} \cdot \vec{D} = \rho
$$
\n
$$
\vec{\nabla} \cdot \vec{B} = 0
$$
\n
$$
\vec{\nabla} \times \vec{H} = \vec{j} + \frac{\partial \vec{D}}{\partial t}
$$
\n
$$
\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}
$$
\n
$$
\oint \mathcal{C} \cdot \mathcal{L} \cdot \mathcal{L}
$$

<u>-</u>
र

- - - -

-

-

-

+

+ + +

 $\overline{}$

+

 $+$

 $\bm{q}_{e} = -\bm{e} = -\bm{1}$. $\bm{6} \times \bm{10^{-19}}$ [C

 $\bm{q}_p = + \bm{e} = +\bm{1}$. $\bm{6} \times \bm{10^{-19}} [\bm{\mathcal{C}}]$

 x^{α}

 α

-

 $Q^{-} = N. qe = -N.e$ $Q^+ = M \cdot qp = M \cdot e$

Neutral system: N=M

2. Distribution of electrical charge:

Electric and magnetic fields

Electrical permittivity: $k = \frac{1}{4\pi k}$ $\frac{1}{4\pi\epsilon_0}$; $\varepsilon_0 \cong 1/(36\pi\times10^9) = 8.85\times10^{-12}\bigl[\mathcal{C}^2.\,N^{-1}.\,m^{-2}\bigr]$

Electric and magnetic fields

Electric and magnetic fields

• **Example 01**

1. Calculate the electrical field in the point M, created by the group of charges as shown in the figure below.

• **Solution of the Example 01:**

$$
\vec{E}_1 = \frac{1}{4\pi\varepsilon_0} \frac{q_1}{r^2} \vec{u}_{q1M} = \frac{9 \times 10^9 \times (-10^{-9})}{1^2} \vec{u}_x = -9[V/m] \vec{u}_x
$$
\n
$$
\vec{E}_2 = \frac{1}{4\pi\varepsilon_0} \frac{q_2}{r^2} \vec{u}_{q2M} = 27(-\vec{u}_y) = -27[V/m] \vec{u}_y
$$
\n
$$
\vec{E}_3 = \frac{1}{4\pi\varepsilon_0} \frac{q_3}{r^2} \vec{u}_{q3M} = 18[V/m] \vec{u}_x
$$
\n
$$
\vec{E}_4 = \frac{1}{4\pi\varepsilon_0} \frac{q_4}{r^2} \vec{u}_{q4M} = 9[V/m] \vec{u}_y
$$
\n
$$
\vec{E}_{TOT} = \vec{E}_1 + \vec{E}_2 + \vec{E}_3 + \vec{E}_4
$$
\n
$$
\vec{E}_{TOT} = -9\vec{u}_x + -27\vec{u}_y + 18\vec{u}_x + 9\vec{u}_y
$$
\n
$$
\vec{E}_{TOT} = 9\vec{u}_x - 18\vec{u}_y
$$

Electric and magnetic fields

 $\frac{1}{r_1^2}$. \vec{u}_1

 $\frac{r_2}{r_2^2}$. \vec{u}_2

 $\frac{75}{r_3^2}$. \vec{u}_3

 q_{12}

 $\frac{1}{r_{12}^2}$. \vec{u}_{12}

 q_1

 \dot{q}_2

 \tilde{q}_3

6. Electric Field of a charge distribution

6. Electric Field of a charge distribution

$$
\vec{E} = \vec{e}_1 + \vec{e}_2 + \dots + \vec{e}_{12} = \sum_{i=1}^{12} \vec{e}_i
$$
\n
$$
\vec{E} = k. q \sum_{i=1}^{12} \frac{1}{r_i^2} \cdot \vec{u}_i
$$
\nN : *très grand*\n
$$
q_i : très petit \rightarrow q_i = dQ
$$
\n
$$
\vec{e}_i = d\vec{E} = K. \frac{dQ}{r_i^2} \cdot \vec{u}_i
$$

$$
\vec{E} = \int\limits_A^B d\vec{E} = K. \int\limits_Q \frac{dQ}{r^2} \cdot \vec{u}
$$

we need to know:

- *- The charge distribution:* λ *,* σ *or* ρ *;*
- *The geometry of the system;*

- *And exploit the symmetry if it exists (rectangular, cylindrical, spherical)*

• **Example 02:**

Let's calculate the resultant field created in the point M by the linear distribution of charge on the wire of length 2A, as shown in the figure.

• **Example 02:**

1. Write the expression of the unit vector \vec{u}_{PM} as a function of \vec{u}_x , \vec{u}_v et θ .

2. By using a convenient choice of symmetry, show that the total field will have only one component on the axis ox.

3. Find the expression of the non-null elementary field as a function of x and θ . Define the angle θ_{max} (*hint: use the value* $\sin \theta_{max}$

4. Find the total electrical field created by this wire in the point M. Deduce the result for $a \to \infty$

1. Write the expression of the unit vector \vec{u}_{PM} as a function of \vec{u}_x , \vec{u}_v et θ .

2. By using a convenient choice of symmetry, show that the total field will have only one component on the axis ox.

3. Find the expression of the non-null elementary field as a function of x and θ . Define the angle θ_{max} (*hint: use the value* sin θ_{max})

4. Find the total electrical field created by this wire in the point M. Deduce the result for $a \to \infty$ $cos \theta.d\theta$ $cos \theta.d\theta$

II. Maxwell Equations *Elec*

7. Magnets and magnetism

Chinese Compass (~2500 years ealier)

 $25m_f$

Anatoly (Actual Türkiye)

Bursa

The magnetite ($Fe₃O₄$ *)*

Bandirma

Kutanya

Uşak

ahisar

7. Magnets and magnetism

Magnetic field lines

Magnetic field lines

N

8. Induced magnet

- **Once the paper clip is pulled by the permanent magnet, it becames a scondary non-permanent magnet.**
- **This magnetized clip could pull another paper clip, and so on … each touched clip will become a new magnet by magnetic induction but with weaker intensity**

A permanent magnetized piece (compass needle) could be processed by using high quality hot steel, cooled near a strong magnet.

Nowadays, strong permanent magnets are obtained by using alloy of Iron, Rare Earth Element (Neodymium) and Boron, in similar way but magnetized using a powerful electromagnet.

8. ØRSTED EXPERIMENT (1819)

N **B**_{fil} \overrightarrow{B} terre **Hans Christian Ørsted (1777-1852), Danemark**

9. The Ørsted's law

Ørsted found that, for a straight wire traversed by a steady direct current (DC):

- The magnetic field lines encircle the currentcarrying wire and they lie in a plane perpendicular to the wire;

- If the direction of the current is reversed, the direction of the magnetic field reverses;

- **- The** strength of the field: $B \propto I$
- **-** The strength of the field $:\bm{B}\propto \frac{1}{2}$ r^2
- **- the direction of the field lines: thumb rule**

Phenomenology: Electricity ↔ *Magnetism*

Phenomenology: Electricity ↔ *Magnetism*

9. Biot-Savart law:

All the cited observations allowed Both two French scientists to deduce the mathematical formulation of an elementary magnetic field induced in a point by an element Ԧ **(located at O) of the wire crossed by the electrical current intensity :**

$$
d\vec{B}(M) = \frac{\mu_0}{4\pi} I d\vec{l} \wedge \frac{\overline{PM}}{\left\| \overline{PM} \right\|^3} = \frac{\mu_0}{4\pi} \frac{I}{r^2} d\vec{l} \wedge \vec{u}
$$

The magnetic field, could be then obtained via the integral form:

$$
\vec{B}(M) = \int_{M \in (C)} d\vec{B}_P(M) = \int_{M \in (C)} \frac{\mu_0}{4\pi} \cdot \frac{I \cdot d\vec{l} \wedge \vec{u}_{PM}}{r^2}
$$

"which is not an easy calculation to do!!!"

Magnetic permeability: $\mu_0 = 4\pi \times 10^{-7} [H, m^{-1}]$

F. Savart $(1791 - 1841)$

J. B. Biot

 $(1774 - 1862)$

9. Biot-Savart law:

If the current density is known, it will be more convenient to calculate the magnetic field using the density instead of the current intensity:

 $I = \vec{j} \cdot \vec{dS} \rightarrow I \cdot d\vec{l} = J(P) \cdot dS \cdot d\vec{l} = \overline{J(P)} \cdot dV$

Thus, the Biot-Savart law becomes in the case of volume density:

$$
\vec{B}(M) = \int_{P \in (C)} d\vec{B}_P(M) = \iiint_V \frac{\mu_0}{4\pi} \cdot \frac{\vec{J}(P)}{PM^2}
$$

$$
= \iiint_V \frac{\mu_0}{4\pi} \cdot \frac{\vec{J}(P)}{PM^2} \cdot dV
$$

Besides that, the Biot-Savart law becomes in the case of surface density:

$$
\vec{B}(M) = \int_{P \in (C)} d\vec{B}_P(M) = \iint_S \frac{\mu_0}{4\pi} \cdot \frac{\overrightarrow{J_S(P)} \cdot dS \wedge \vec{u}_{PM}}{PM^2}
$$

$$
= \iint_S \frac{\mu_0}{4\pi} \cdot \frac{\overrightarrow{J_S(P)} \wedge \vec{u}_{PM}}{PM^2} \cdot dS
$$

Example 03:

In this exercise, we will calculate the magnetic field $\vec{B}(M)$ induced by a straight wire with a length $l = 2a$, crossed by a steady direct current *I*. We will examine the case $l \rightarrow \infty$

Solution of example 03:

Due to the cylindrical symmetry of the problem, the only non-zero component of $\vec{B}(M)$ is the azimuthal one $\overrightarrow{B_{\omega}}(M)$: μ_{0} $\bm{I}.\,\bm{d\vec{l}}$ ^ $\vec{\bm{u}}_{\bm{PM}}$ μ_{0} I. \boldsymbol{dl} . $\boldsymbol{\overrightarrow{u}_z}$ n $\boldsymbol{\overrightarrow{u}_{PM}}$

Solution of example 03:

$$
d\vec{B}_P(M) = \frac{\mu_0}{4\pi} \frac{I \cdot \vec{u}_z \wedge \vec{u}_r}{R^2} \cos \alpha = \frac{\mu_0 I}{4\pi} \frac{\cos \alpha \cdot r \cdot dz}{R^2} \vec{u}_\phi = \frac{\mu_0 I}{4\pi} \cos \alpha \frac{\cos^2 \alpha}{r} \frac{d\alpha}{\cos^2 \alpha} \vec{u}_\phi
$$

$$
\vec{B}_P(M) = \int d\vec{B}_P(M) = \frac{\mu_0 I}{4\pi} \int \frac{\cos \alpha \cdot d\alpha}{r} \vec{u}_\phi
$$

$$
= \frac{\mu_0 I}{4\pi r} \int_{-\alpha_{max}}^{\alpha_{max}} \cos \alpha \cdot d\alpha \vec{u}_\phi = \frac{\mu_0 I}{4\pi r} [2 \sin \alpha_{max}] = \frac{\mu_0 I}{2\pi r} [\sin \alpha_{max}]
$$

$$
\sin \alpha_{max} = \frac{a}{\sqrt{a^2 + r^2}}
$$

$$
\vec{u}_z \left[\begin{array}{ccc}\vec{u}_\varphi & \vec{u}_\varphi\\ \vec{u}_\varphi & \vec{u}_\varphi\end{array}\right]
$$

$$
= \frac{\vec{u}_z}{\sqrt{a^2 + r^2}} \lim_{\alpha \to \infty} \sin \alpha_{max} = 1 \rightarrow \lim_{\alpha \to \infty} \frac{\mu_0 I}{2\pi r} [\sin \alpha_{max}] \rightarrow \vec{B}_P(M) = \frac{\mu_0 I}{2\pi r} \vec{u}_\varphi
$$

10. Laplace force:

10. Laplace force:

10. Laplace force:

When a conductor carrying a direct current intensity , is put near a magnetic field, a mechanical force is applied on the wire and it tends to displace him in a perpendicular direction on both magnetic field and current flow. This force known as Laplace force is given by:

$$
d\vec{F}_L = I \cdot \overrightarrow{dl} \wedge \overrightarrow{B} \rightarrow d\vec{F}_L = \int I \cdot \overrightarrow{dl} \wedge \overrightarrow{B}
$$

In the case of uniform magnetic field, it is possible de perform the integration to obtain the force expression:

 $\overrightarrow{F}_{L}=I.\,\overrightarrow{l} \wedge \overrightarrow{B}=I.\,l.\,B. \,sin\,\theta\,\overrightarrow{u}$

$$
\left. \vec{F}_L \right|_{max} = I.\vec{l} \wedge \vec{B} = I.\,l.\,B.\,sin\,\frac{\pi}{2}\,\vec{u} = I.\,l.\,B
$$

11. Ampere Theorem:

The Ampere theorem states that the magnetic field circulation through a closed path enclosing several currents I_k is directly proportional to the

 \sup **sum** of these currents $\sum_{\bm{k}} I_{\bm{k}}$:

$$
\oint dC = \oint \vec{B} \cdot d\vec{l} = \mu_0 \sum_k I_k
$$

André-Marie Ampère 1775-1836 (France)

11. Ampere Theorem:

In the case of colinear straight currents, we obtain a uniform magnetic field parallel to the contour given by the Ampere law:

$$
\oint dC = \oint \vec{B} \cdot d\vec{l} = \vec{B} \oint d\vec{l} = B \cdot L = \mu_0 \sum_k I_k \rightarrow B = \frac{\mu_0 \sum_k I_k}{L}
$$

Application: by using this law to calculate again the magnetic field induced

by the straight wire traversed by steady direct current , in a given point

located at the radial distance from the wire.

André-Marie Ampère 1775-1836 (France)

Solution of example 03:

12. Lorentz force:

In the presence of electric field, any charged particle will feel an applied electrical force given by: $\vec{f}_e = q\vec{E}$

Similarly, if the same charged particle is animated with a celerity \vec{v} **in presence of a magnetic field, it will feel a magnetic force known as Lorentz force:** $\vec{f}_m = q \cdot \vec{v} \wedge \vec{B}$

In the case, where both fields are present, we get the general electromagnetic Lorentz force:

$$
\vec{f}_L = \vec{f}_e + \vec{f}_m = q.\vec{E} + q.\vec{v} \wedge \vec{B} = q.(\vec{E} + \vec{v} \wedge \vec{B})
$$

Hendrik LORENTZ (1853-1928) Netherland

12. Deriving Laplace force from magnetic Lorentz force:

If we consider a density of charged particles animated with an average celerity \vec{v} crossing a wire section S in presence of a magnetic field \vec{B} , where **each** individual particle will feel the force: $\vec{f}_m = q \cdot \vec{v} \wedge \vec{B}$

Over an elementary distance dl, an elementary volume $dV = S$. *dl* will represent **a** number of charges: $N = n$. S. dl

This will constitute an element of macroscopic force:

 $d{\vec F}_m = n.$ S. $d l. q. {\vec v} {\scriptstyle\wedge}{\vec B} = (q. n. S. \nu) d{\vec l} {\scriptstyle\wedge}{\vec B} = I d{\vec l} {\scriptstyle\wedge} {\vec B}$

With by definition, we have: $I = q, n, S, \nu$

P-S. Laplace

H. LORENTZ

13. Magnetic induction and excitation: In physics the term magnetic field points usually to the physical value measured in Tesla: $\vec{B}[T]$, **While** the physical value: $\vec{H}[A/m] = \mu \vec{B}[T]$ is defined as "magnetic *excitation".*

Where $\mu = \mu_r \mu_0$ *points to the magnetic permeability of the given media where is present.*

In **engineering,** $\vec{B}[T]$ is called the magnetic **induction** While : $\vec{H} [A/m] = \mu \vec{B} [T]$ is defined **as "magnetic field".**

Relative and absolute magnetic permeability for some media

