University of DJilaly Bounaama – khmis meliana - University Faculty of Economic, Commercial and Management Sciences First Year Bachelor's Degree - Joint Trunk - Year: 2024/2023 Scale: Mathematics 1 Branch: 2

Series No. 02: Numerical Sequences

Exercise 01:

- (u_n) sequential defined by $u_0 = 1$ and for each natural number n, $u_{n+1} = \frac{u_n}{u_n + 1}$
 - 1- Calculate the $u_1 \, \cdot \, u_2 \, \cdot \, u_3$, and then conclude the u_n phrase in n.
 - 2- Prove the decline that for every natural number $n u_n = \frac{1}{n+1}$.
 - **3-** Study the direction of cascading change (u_n) and calculate its end.

Exercise 02:

We consider the numerical succession $(u_n)_{n \in \mathbb{N}}$ Knowledge of : $\begin{cases} u_0 = 3\\ u_{n+1} = \frac{5u_n - 4}{u_n + 1} \end{cases}$

- 1– Between the following: $\forall n \in \mathbb{N} : u_n > 2$.
- 2– Study monotony $(u_n)_{n \in \mathbb{N}}$.
- 3- Infer convergence $(u_n)_{n \in \mathbb{N}}$.

Exercise 03:

 (u_n) Numerical cascade defined as the first $u_0 = 6$ The regressive relationship $u_{n+1} = \frac{1}{3}u_n + 2$.

- 1- Check that for every natural number $n: u_{n+1} 3 = \frac{1}{3}(u_n 3)$.
- **2-** Prove the decline that for every natural number $n : u_n \ge 3$.
- **3-** Between successive (u_n) diminished, and then concluded her affinity.
- 4- We consider the numerical succession (v_n) Defined for each natural number n_r : $v_n = u_n + \alpha$ Where α is a real number.
 - a. Find the real number of α where the cascade is(v_n) Engineering, the basis of which is required to be assigned to the first limit.
 - b. Write v_n in terms of n, and concluded in writing. u_n in terms n, and calcul $\lim_{n \to +\infty} u_n$.