

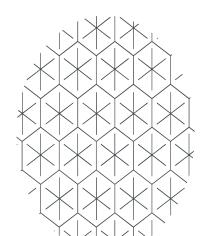
Operations Research (OR)

course08- Modeling 5- Routing Problems Traveling Salesman Problem (TSP)

Imène AIT ABDERRAHIM <u>i.aitabderrahim@univ-dbkm.dz</u> Khemis Miliana University

Outline

- Routing problem definition
- Traveling Salesman Problem (TSP)
 - Overview
 - Formulation
 - Example
- Summary



What is a Routing Problem?

A routing problem refers to a class of optimization problems that involve finding the most efficient way to allocate and schedule resources, usually vehicles, to perform a set of tasks or visit a set of locations. The primary objective is to minimize or optimize a certain criterion, such as the total distance traveled, time taken, cost incurred, or a <u>combination</u> of these factors.

There are various types of routing problems, each with its own set of constraints and characteristics:

- Travel salesman problem (TSP)
- Vehicle routing problem (VRP)
- Capacitated vehicle routing problem (CVRP)
- Traveling Salesman Problem with Time Windows (TSPTW)
- Vehicle Routing Problem with Time Windows (VRPTW)

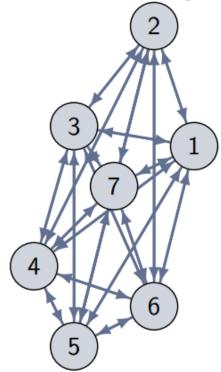
Traveling Salesman Problem (TSP) : Overview

Given: Graph G = (N; E), distance matrix d **Goal:** Find the minimal distance **tour** that visits every node exactly once and returns to the starting node of the tour.

Number of potential routes?

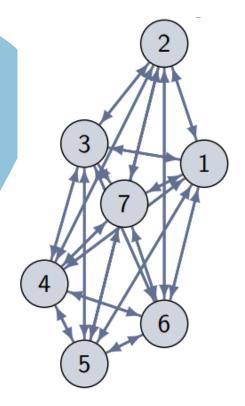
- All permutations of *n* nodes: *n*!
- Many symmetries: Position of a city in the route is irrelevant
- If the distances are symmetric, we need to check only one direction

$$|S| = \frac{n!}{2n} = \frac{(n-1)!}{2}, n \ge 3$$



Traveling Salesman Problem (TSP) : Overview

Combinatorics



$$|S| = \frac{n!}{2n} = \frac{(n-1)!}{2}, n \ge 3$$

Growth of S in terms of the input size n.

n	S
7	360
10	181,000
20	$\sim 10,000,000,000,000,000$
50	$\sim1x10^{62}$

TSP: Mathematical Formulation

Parameters:

Objective Function: Min total distance

- N Set of nodes
- **E** Set of edges $(N \times N)$
- **d**_{ij} Distance from node **i** to **j** Constraints:

Decision Variables:

> x_{ij} : 1 iff $(i, j) \in E$ is part of the solution

$$Min\sum_{i=1}^n\sum_{j=1}^n d_{ij}x_{ij}$$

S.t.
(exactly one incoming edge)

$$\sum_{\substack{\{i \mid (i,j) \in E\}}} x_{ij} = 1, \quad \forall j \in N$$
(exactly one outgoing edge)

$$\sum_{\substack{n \\ \{k \mid (j,k) \in E\}}} x_{jk} = 1, \quad \forall j \in N$$

$$x_{ij} \in \{0, 1\}$$
 $\forall i, j \in N$

TSP: Example

Problem descritption

- Joe owns business in cities 1 through 5
- At the end of each year he must take a tour , i.e. visit each of these cities exactly once and come back to the city he starts
- What order of visiting will minimize the total distance traveled?

TSP: Example

Distance (or cost) matrix

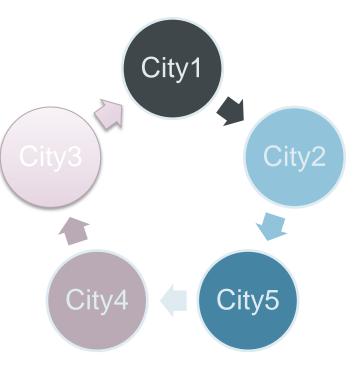
•

	City 1	City 2	City 3	City 4	City 5
City 1	∞	132	217	164	58
City 2	132	∞	290	201	79
City 3	217	290	∞	113	303
City 4	164	201	113	∞	196
City 5	58	79	303	196	∞

- **c**_{ii}: distance from city i to city j
- c_{ii} = ∞, a large positive number
- Symmetric: $c_{ij} = c_{ji}$, for all $i,j = \{1,...,5\}$
- Otherwise, the problem is asymmetric

TSP: Example

- Solution: 1-2-5-4-3-1
- Minimal Total distance = 1134

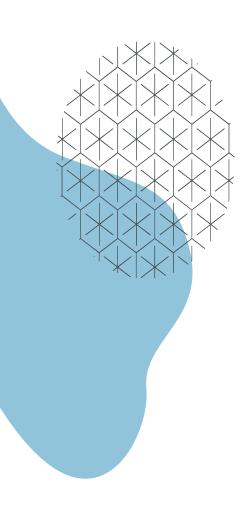


Check video: Branch and bound Method to solve the problem

Summary

Today we learned:

- What is an routing problem
- What is the travel salesman problem(TSP)
- How to model TSP problem into a linear programming problem (LPP)



Questions?