Homework

Exercise 1: Let $G = \mathbb{R}$. We define on G the internal composition law denoted by * as follows :

$$\forall a, b \in G, \ a * b = a + b + \frac{1}{6}$$

- 1. Prove that * is commutative.
- 2. Prove that (G, *) is a group.
- 3. Let f the map defined by :

$$\begin{array}{ccc} f:(G,*) & \longrightarrow (\mathbb{R},+) \\ x & \longmapsto 3x + \frac{1}{2} \end{array}$$

Demonstrate that f is an isomorphism of groups.

Exercise 2 : I) Let $n \ge 2$, we consider :

$$U_n = \{z \in \mathbb{Z}^*; z^n = 1\}$$

Prove that U_n is a sub-group of (\mathbb{C}^*, \times) .

Let $\varphi_n: U_n \longrightarrow U_n$ the map defined by $\varphi_n(z) = z^2$.

(a) Prove that φ_n is an endomorphism of groups.

(b) Determine $ker(\varphi_3)$. φ_3 is-it injective?

II) We set :

$$\mathbb{Z}[i] = \{a + ib \ /a, b \in \mathbb{Z}\},\$$

where *i* is the complex number verifying $i^2 = -1$.

1. Prove that $(\mathbb{Z}[i], +, \times)$ is a sub-ring of $(\mathbb{C}, +, \times)$.

2. For $z = a + ib \in \mathbb{Z}[i]$, we set $N(z) = a^2 + b^2$.

- (a) Check that : $N(z) = z\overline{z}$, where $\overline{z} = a ib$.
 - (b) Prove that : $\forall z, z' \in \mathbb{Z}[i], \quad N(zz') = N(z)N(z').$
 - (c) Prove that : $\forall z \in \mathbb{Z}[i], z \text{ invertible } \Leftrightarrow N(z) = 1.$
 - (d) Deduce all the invertible elements of $\mathbb{Z}[i]$.