2023/2024 Département de Technologie Module : Radiocommunication

TD 2

Exercice 1

Montrons à l'aide de la notation complexe qu'une OPPH est nécessairement transversale dans le vide

Exercice 2

On considère l'équation de propagation, à une coordonnée d'espace, de l'une des composantes de \vec{E} ou \vec{B} : $\frac{\partial^2 \varphi}{\partial z^2} - \frac{1}{c^2} \frac{\partial^2 \varphi}{\partial r^2} = 0$

Quelle est la direction de propagation de cette onde ?

Vérifier qu'une fonction de la forme $\phi = f(t-z/c) + g(t+z/c)$ satisfait à cette équation.

Exercice 3

Une onde plane électromagnétique a comme champ électrique :

$$\vec{E} = E_0 \vec{e}_r e^{i(\vec{k} \cdot \vec{r} - \omega t)}$$
.

Préciser l'orientation du vecteur de l'onde et déterminer le champ magnétique correspondant

Exercice 4

Relativement à un repère orthonormé oxyz de base $(\vec{u}_x, \vec{u}_y, \vec{u}_z)$, le champ électrique d'une onde plane progressive monochromatique de pulsation ω qui se propage dans le vide dans le demi-espace $z \le 0$, dans la direction \overline{oz} , est :

$$\vec{E}(z,t) = E_0 \cos(\omega t - kz) \vec{u}_x + E_0 \sin(\omega t - kz) \vec{u}_y.$$

On donne dans le vide : la célérité de la lumière c = 3. 10^8 m/s et la permittivité absolue $\varepsilon_0 = \frac{1}{36\pi} 10^{-9} F/m$.

- 1. Quel est le type de polarisation de cette onde ?
- 2. Calculer l'induction magnétique associée $\vec{B}(z,t)$.
- 3. Montrer que le vecteur de Poynting de cette onde est constant.

Exercice 5

Soit le champ électrique d'une onde lumineuse (exprimé en unité S.I.) :

$$\vec{E} = 10^3 \cdot \vec{e}_y \cdot \cos \pi \left[9 \cdot 10^{14} t - \frac{3 \cdot 10^6}{2} \left(\sqrt{3} x + z \right) \right]$$

 \vec{e}_y est un vecteur unitaire le long de l'axe Oy.

Déterminer (a) sa direction de propagation, (b) sa vitesse v, (c) sa longueur d'onde λ , ,(d) sa fréquence f et (e) son amplitude E_0 .

- 2) Montrer que \vec{E} est solution de l'équation de propagation.
- 3) Quelle est l'expression du champ magnétique \vec{B} correspondant, calculer B₀?
- 4) Représenter sur un schéma clair les vecteurs \vec{E} , \vec{B} et le vecteur d'onde \vec{k}
- 5) Déduire les propriétés de structure de l'onde plane.

Exercice6

Deux ondes planes électromagnétiques de pulsation ω se propagent selon les vecteurs d'ondes $\vec{k_1}$ et $\vec{k_2}$ tels que $\vec{k_1} = \cos\theta\vec{e_y} + \sin\theta\vec{e_z}$, $\vec{k_2} = \cos\theta\vec{e_y} - \sin\theta\vec{e_z}$.

Les champs électriques de ces deux ondes sont $\vec{E}_1 = E_0 \vec{e}_x \mathrm{e}^{i(\vec{k}_1 \cdot \vec{r} - \omega t)}, \quad \vec{E}_2 = E_0 \vec{e}_x \mathrm{e}^{i(\vec{k}_2 \cdot \vec{r} - \omega t)}.$

- a. Calculer les champs magnétiques \vec{B}_1 et \vec{B}_2 correspondants.
- b. Calculer les parties réelles des champs électrique et magnétique résultant de la superposition des deux ondes.
- c. Calculer le vecteur de Poynting correspondant à la superposition des deux ondes, et sa moyenne temporelle.