Mustapha SADOUKI

Conference Master

Djilali Bounaama University, Khemis-Miliana

Faculty of Science Department of Matter Sciences

Series and differential equations

* Simple and multiple integrals

- Improper integrals
 - Differential equations
 - * Series: Numerical, integer and Fourier series
 - Fourier transform
 - ✤ Laplace transform

2nd year Licence Fundamental Physics

2023/2024

Introduction

This document is the culmination of a decade's worth of dedicated teaching experience, spanning the years from 2013 to 2023, during which I had the privilege of instructing second-year undergraduate physics students. The content within these pages is a testament to the evolution and refinement of my teaching methods and materials over this substantial period.

Our primary focus lies in providing a comprehensive and meticulously crafted course curriculum that seamlessly integrates with the "Series and Differential Equations" course, an essential component of the Fundamental Teaching Unit (UEF-F121) tailored specifically for second-year licence's students pursuing degrees in fundamental physics. It is our intention that this material not only complements the established syllabus but enriches the learning experience, offering students a robust foundation in the subject matter.

However, the potential reach of this resource extends far beyond the confines of fundamental physics. Its value is equally significant for students pursuing undergraduate studies in various disciplines, including but not limited to electronics, electromechanics, mechanical engineering, civil engineering, and automation. As the boundaries of science and technology continue to expand, this document aims to serve as a versatile tool for any learner seeking to grasp the intricate concepts of series and differential equations.

The document itself is organized into six fundamental chapters, each representing a cornerstone of mathematical understanding and practical application:

Simple and Multiple Integrals: We delve into the world of integrals, exploring both their basic and more complex forms, equipping students with the mathematical tools needed for a wide range of physics and engineering problems.

Improper Integrals: This chapter guides students through the subtleties of improper integrals, demonstrating their significance in various real-world scenarios.

Differential Equations: We demystify differential equations, a crucial language of science, and engineering, breaking them down into understandable components and solving techniques.

Series; Numerical, Integer, and Fourier Series: The study of series, both numerical and integer, introduces students to the realm of infinite summations, paving the way for a deeper understanding of Fourier series and their applications in diverse fields.

Fourier Transform: This chapter explores the Fourier transform, a powerful mathematical tool that finds applications in signal processing, image analysis, and quantum mechanics, among others.

Laplace Transform: We conclude with a thorough examination of the Laplace transform, a transformative technique essential for solving differential equations, making it indispensable in engineering and physics.

Within each chapter, students will find carefully crafted subchapters, each containing a selection of application exercises, bolstered by detailed solutions that illuminate the problem-solving process. Furthermore, at the end of each chapter, we present additional exercises, intended to challenge students, reinforce their comprehension, and stimulate further exploration of these mathematical concepts.

In essence, this document represents not only the culmination of a decade of teaching but also a bridge to deeper understanding and success in the diverse and ever-evolving fields of science and technology. It is our sincere hope that it serves as an invaluable resource on the educational journey of every student who engages with its content.

The second part of this document will be dedicated to solving the exercises presented in the preceding sections. Additionally, it will include solutions to past examination questions from the last ten years, which were administered to 2nd-year students pursuing a Fundamental Physics License. These exercises and past exams serve as valuable practice and provide a comprehensive understanding of the topics covered in this document. By working through these problems, students can reinforce their knowledge of simples and multiples integrals, Series, differential equations, Fourier and Laplace transforms, and their applications in physics.

Summary

Chapter 1: Simple and multiple integrals	01
1. The Riemann integral	01
1.1 Calculating an area	01
1.2 Properties	02
1.3 Applications	03
1.3.1 Mean value - RMS value	03
1.4 Indefinite integrals	03
1.5 Generalized integrals	03
1.6 Integration methods	04
1.6.1 Sum decomposition	04
1.6.2 Integration by parts	04
1.6.3 change of variable	05
2. Double integrals	07
2.1 Generalities	07
2.2 Calculation in Cartesian coordinates	07
2.3 Calculation in polar coordinates	08
2.4 Calculating the area of the <i>D</i> domain	09
2.5 Changing variables	10
3. Triple integrals	12
3.1 Generalities	12
3.2 Methods for calculating triple integrals	12
3.2.1 Calculation in Cartesian coordinates	12
3.2.2 Calculating the triple integral on a rectangular parallelepiped	14
3.2.3 Calculation of the triple integral using the slice method	14
3.2.4 Calculation of the triple integral using the stick method	10
2.2.1 Jacobian determinant	10
3.3.2 Coloulation in cylindrical coordinates	10
3.3.2 Calculation in cylindrical coordinates	19
Exercise series	21
Exercise series	25
Chapter 2: Improper (generalized) integrals	31
1. Single-bound problem	31
2. Two-terminal problem	32
3. Falsely improper integrals	33
4. Properties	34
4.1 Linearity	34
4.2 Integration by Parts	34
4.3 Variable Change	35
5. Convergence theorem - Integrable functions	36
5.1 Convergence theorem	36
5.2 Equivalence criteria	36
5.3 Integrable functions	36
5.4 Using asymptotic developments	38

i

Exercises series	39
Chapter 3: Differential equations	43
1. Definition	43
2. First-order linear differential equation	43
2.1 Linear differential equation without second member	43
2.2 Linear differential equation with second member	44
2.2.1 Finding a particular solution	44
2.2.2 Constant variation method	45
2.3 First-order linear differential equation with constant coefficients	46
2.4 Bernoulli equation and Riccati equation	47
2.4.1 Bernoulli equation	47
• Transforming a Bernoulli equation into a linear equation	48
2.4.2 Riccati equation	49
 Transforming a Riccati equation into a Bernoulli equation 	49
• Transforming a Riccati equation into a linear equation	49
3. Second-order differential equation	52
3.1 Linear differential equation without second member with constant coefficients	52
3.2 Second-order linear differential equation with second member and	
constant coefficients	53
3.3 Particular solutions	53
3.4 Second-order differential equation with non-constant coefficients and without	
second member	54
3.4.1 Incomplete equations	54
• Case of equations $F(x, y', y'') = 0$ (absence of y)	54
• Case of equations $F(y, y', y'') = 0$ (absence of x)	55
3.5 Second-order linear differential equation without second member and with	
non-constant coefficients	55
3.6 Linear second-order differential equation with non-constant coefficients with	
second member	57
4. System of differential equations	59
4.1 Definition of a system of differential equations	59
4.2 Differential equation of order n	59
4.3 Homogeneous linear systems with constant coefficients	61
4.3.1 Real eigenvalues	61
4.3.2 Complex eigenvalues	63
4.3.3 Case of a non-diagonalizable matrix	64
4.4 Non-homogeneous linear systems with constant coefficients	66
5. Partial differential equations (PDE)	69
5.1 Reminder of partial derivatives	69
5.2 Successive derivatives	69
5.3 Derivatives of a function composed of two variables	70
5.4 Total differentials	71
5.5 Exact total differential forms	71
5.6 Application to the integration of first-order differential equations	72
5./ Integrating factors	73
5.7.1 Determining monovariable integrating factors	73

• Integrating factor of the form F(x)	73
• Integrating factor of the form F(y)	74
5.8 Generalization to functions of more than two variables:	75
5.9 Total differential and state functions	78
5.10 Linear and homogeneous partial differential equation of 1er order in the c	ase
of a function of 2 variables	78
Exercices	80
	07
Chapter 4: Series	87
1 Numerical series	87
1.1 Geometric series	87
1.2 Exponentielle series	87
1.3 Series with positive or null terms	89
1.4 Cauchy and d'Alembert criteria	91
1.4.1 Cauchy's criterion	91
1.4.2 D'Alembert's criterion	92
1.5 Series with any terms	92
1.6 Sum of series	93
2 Integer series	95
2.1 Definitions	95
2.2 Abel's lemma	95
2.3 Radius of convergence of an integer sequence	96
2.4 Determining the radius of convergence	96
2.4.1 Hadamard's lemma	96
2.5 Derivative and primitive of an integer series	97
2.6 Operation on integer series	98
2.7 Taylor series	98
2.8 Differential equations and integer series	99
2.8.1 The binomial series	99
2.8.2 Second-order equation	101
3. Fourier series	102
3.1 Trigonometric series	102
3.2 Dirichlet condition	102
3.3 Fourier series decomposition expression	104
3.4 Algebraic form of the Fourier series decomposition	104
3.5 Polar form of the Fourier series decomposition	105
3.6 Complex form of the Fourier series decomposition	106
3.7 Function parity	108
3.7.1 Even functions	108
3.7.2 Odd fonctions	108
3.8 Fourier series expansion of non-periodic functions	111
3.9 Parseval relationship	113
Exercices	115
Chapter 5: Fourier transform	121
1. Definition	121
2. Fourier transform inversion	121
Djilali Bounaama University in Khemis-M iii	M.Sadouki

3. Properties of the Fourier transform3.1 Linearity	122 122
3.2 Translation	122
3.3 Modulation	122
3.4 Change of scale	123
3.5 Complex conjugation	123
3.6 Fourier transform of the derivative of a function	123
3.7 Derivation of the Fourier transform	124
3.8 Convolution and Fourier transformation	125
3.9 Parseval's theorem - Conservation of the norm	126
4. Fourier transform of a two- and three-dimensional radial function	127
5. Fourier transformation of a function of several variables	128
6. Uncertainty relationship	128
Exercices	130
Chapter 6: Laplace transform	133
1. Definition and inverse transform	133
2. Properties of Laplace transforms	134
2.1 Linearity	134
2.2 Translation in starting space	134
2.3 Expansion or contraction in the starting space	134
2.4 Laplace transform of a modulated function	134
2.5 Laplace transform of the derivative of a function	134
2.6 Laplace transform of the primitive of a function	134
2.7 Derivation of the Laplace transform	135
2.8 Initial value theorem	135
2.9 Final value theorem	135
2.10 Laplace transform of a convolution product	135
3. Applications: Laplace transform of standard functions	136
3.1 Laplace transform of the Dirac pulse	136
3.2 Laplace transform of the unit step	136
3.3 Laplace transform of the <i>sine</i> function	137
3.4 Laplace transform of the <i>cosine</i> function	137
3.5 Laplace transform of the exponential	138
3.6 Solving a linear differential equation	138
4. Table of Laplace transforms	140
Exercices	141
Appendix	143
Bibliography	149