Series 3 : Binary relations

Exercise 1 : Let R be a relation defined on \mathbb{R} by :

$$xRy \iff x^2 - y^2 = x - y$$

- 1) Prove that R is an equivalence relation.
- 2) Determine the equivalence classe [x] for all $x \in \mathbb{R}$.
- 3) Determine the quotient set \mathbb{R}/R .

Exercise 2: Let R be a relation defined on $\mathbb{Z} \times \mathbb{N}^*$ by :

$$(a,b)R(a',b') \iff ab' = a'b$$

- 1) Prove that R is an equivalence relation.
- 2) Let $(p,q) \in \mathbb{Z} \times \mathbb{N}^*$ with $p \wedge q = 1$. Write its equivalence classe [(p,q)].

Exercise 3 : Let < be a relation defined on \mathbb{N}^2 by :

$$(a,b) {<} (a',b') \Longleftrightarrow \left\{ \begin{array}{l} a < a' \\ or \\ a = a' \text{ and } b \leq b' \end{array} \right.$$

Prove that < is an order relation. Is it total or partial?

Exercise 4 : On \mathbb{N}^* , we define a relation \ll by assuming that for all $(k, l) \in \mathbb{N}^* \times \mathbb{N}^*$:

 $k \ll l \iff$ There exists $n \in \mathbb{N}^*$ such that $l = k^n$

1) Prove that \ll is a partial order relation.

2) We consider in the rest of the exercise that \mathbb{N}^* is ordered by the relation \ll . Let $A = \{2, 4, 16\}$, determine the greatest element and the smallest element of A.

Exercise 5: Let *E* and *F* two sets and $f : E \longrightarrow F$ a map. we define a relation *R* on *E* by assuming that for all $(x, x') \in E^2$:

$$xRx' \Longleftrightarrow f(x) = f(x')$$

- 1) Prove that R is an equivalence relation.
- 2) Determine the equivalence classe [x] for all $x \in E$.
- 3) Why the map :

$$\begin{array}{cccc} E/R & \longrightarrow & F \\ [x] & \longmapsto & f(x) \end{array}$$

is well defined? Show that it is injective.