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part of abstract algebra, sets are fundamental to all areas of mathematics and we

need to establish a precise language for sets. We also explore operations on sets

and relations between sets, developing an “algebra of sets” that strongly resembles

aspects of the algebra of sentential logic. In addition, as we discussed in chapter 1,

a fundamental goal in mathematics is crafting articulate, thorough, convincing, and

insightful arguments for the truth of mathematical statements. We continue the

development of theorem-proving and proof-writing skills in the context of basic

set theory.

After exploring the algebra of sets, we study two number systems denoted

Zn and U(n) that are closely related to the integers. Our approach is based on a

widely used strategy of mathematicians: we work with specific examples and look

for general patterns. This study leads to the definition of modified addition and

multiplication operations on certain finite subsets of the integers. We isolate key

axioms, or properties, that are satisfied by these and many other number systems and

then examine number systems that share the “group” properties of the integers. Finally,

we consider an application of this mathematics to check digit schemes, which have

become increasingly important for the success of business and telecommunications in

our technologically based society. Through the study of these topics, we engage in a

thorough introduction to abstract algebra from the perspective of the mathematician—

working with specific examples to identify key abstract properties common to diverse

and interesting mathematical systems.

2.1 The Algebra of Sets

Intuitively, a set is a “collection” of objects known as “elements.” But in the early

1900’s, a radical transformation occurred in mathematicians’ understanding of sets

when the British philosopher Bertrand Russell identified a fundamental paradox

inherent in this intuitive notion of a set (this paradox is discussed in exercises 66–70 at

the end of this section). Consequently, in a formal set theory course, a set is defined as

a mathematical object satisfying certain axioms. These axioms detail properties of sets

and are used to develop an elegant and sophisticated theory of sets. This “axiomatic”

approach to describing mathematical objects is relevant to the study of all areas of

mathematics, and we begin exploring this approach later in this chapter. For now, we

assume the existence of a suitable axiomatic framework for sets and focus on their

basic relationships and operations. We first consider some examples.

Example 2.1.1 Each of the following collections of elements is a set.

• V = {cat, dog, fish}
• W = {1, 2}
• X = {1, 3, 5}
• Y = {n : n is an odd integer} = {. . . , −5, −3, −1, 1, 3, 5, . . .}

n

In many settings, the upper case letters A, B, . . . , Z are used to name sets, and a

pair of braces {, } is used to specify the elements of a set. In example 2.1.1, V is a finite
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set of three English words identifying common household pets. Similarly, W is finite

set consisting of the integers 1 and 2, and X is a finite set consisting of the integers

1, 3, and 5. We have written Y using the two most common notations for an infinite

set. As finite beings, humans cannot physically list every element of an infinite set one

at a time. Therefore, we often use the descriptive set notation {n : P(n)}, where P(n) is

a predicate stating a property that characterizes the elements in the set. Alternatively,

enough elements are listed to define implicitly a pattern and ellipses “. . .” are used to

denote the infinite, unbounded nature of the set. This second notation must be used

carefully, since people vary considerably in their perception of patterns, while clarity

and precision are needed in mathematical exposition.

Certain sets are of widespread interest to mathematicians. Most likely, they are

already familiar from your previous mathematics courses. The following notation,

using “barred” upper case letters, is used to denote these fundamental sets of numbers.

Definition 2.1.1 • ∅ denotes the empty set { }, which does not contain any elements.

• N denotes the set of natural numbers { 1, 2, 3, . . . }.
• Z denotes the set of integers { . . . , −3, −2, −1, 0, 1, 2, 3, . . . }.
• Q denotes the set of rational numbers { p/q : p, q ∈ Z with q 6= 0 }.
• R denotes the set of real numbers consisting of directed distances from a

designated point zero on the continuum of the real line.

• C denotes the set of complex numbers { a + bi : a, b ∈ R with i =
√

−1 }.

In this definition, various names are used for the same collection of num-

bers. For example, the natural numbers are referred to by the mathematical sym-

bol “N,” the English words “the natural numbers,” and the set-theoretic notation

“{1, 2, 3, . . .}.” Mathematicians move freely among these different ways of referring

to the same number system as the situation warrants. In addition, the mathematical

symbols for these sets are “decorated” with the superscripts “∗,” “+,” and “−”

to designate the corresponding subcollections of nonzero, positive, and negative

numbers, respectively. For example, applying this symbolism to the integers Z =
{. . . , −3, −2, −1, 0, 1, 2, 3, . . .}, we have

Z∗ = {. . . , −3, −2, −1, 1, 2, 3, . . .},

Z+ = {1, 2, 3, . . .},

Z− = {−1, −2, −3, . . .}.

There is somediscussion in themathematics community concerningwhether or not

zero is a natural number. Many define the natural numbers in terms of the “counting”

numbers 1, 2, 3, . . . (as we have done here) and refer to the set {0, 1, 2, 3, . . .} as

the set of whole numbers. On the other hand, many mathematicians think of zero

as a “natural” number. For example, the axiomatic definition of the natural numbers

introduced by the ItalianmathematicianGiuseppePeano in the late 1800s includes zero.

Throughout this book, we use definition 2.1.1 and refer to the natural numbers as the

set N = { 1, 2, 3, . . . }.
Our study of sets focuses on relations and operations of sets. Themost fundamental

relation associated with sets is the “element of” relationship that indicates when an

object is a member of a set.
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Definition 2.1.2 If a is an element of set A, then a ∈ A denotes “a is an element of A.”

Example 2.1.2 As in example 2.1.1, let W = {1, 2} and recall that Q is the set of rationals.

• 1 is in W , and so 1 ∈ W .

• 3 is not in W , and so 3 6∈ W .

• 1
2
is rational, and so 1

2
∈ Q.

•
√
2 is not rational (as we prove in section 3.4), and so

√
2 6∈ Q.

n

Question 2.1.1 Give an example of a finite set A with 2 ∈ A and an infinite set B with 2 6∈ B.

n

We now consider relationships between sets. We are particularly interested in

describing when two sets are identical or equal.As it turns out, the identity relationship

on sets is best articulated in terms of a more primitive “subset” relationship describing

when all the elements of one set are contained in another set.

Definition 2.1.3 Let A and B be sets.

• A is a subset of B if every element of A is an element of B. We write A ⊆ B and

show A ⊆ B by proving that if a ∈ A, then a ∈ B.

• A is equal to B if A and B contain exactly the same elements. We write A = B

and show A = B by proving both A ⊆ B and B ⊆ A.

• A is a proper subset of B if A is a subset of B, but A is not equal to B. We

write either A ⊂ B or A ( B and show A ⊂ B by proving both A ⊆ B and

B 6⊆ A.

Formally, the notation and the associated proof strategy are not part of the definition

of these set relations. However, these facts are fundamental to working with sets and

you will want to become adept at transitioning freely among definition, notation, and

proof strategy.

Example 2.1.3 As in example 2.1.1, letW = {1, 2}, X = {1, 3, 5}, andY ={n : n is an odd integer}.
We first prove X ⊆ Y and then prove W 6⊆ Y .

Proof that X ⊆ Y We prove X ⊆ Y by showing that if a ∈ X , then a ∈ Y . Since X =
{1, 3, 5} is finite, we prove this implication by exhaustion; that is, we consider every

element of X one at a time and verify that each is in Y . Since 1 = 2 · 0 + 1, 3 =
2 · 1 + 1, and 5 = 2 · 2 + 1, each element of X is odd; in particular, each element

of X has been expressed as 2k + 1 for some k ∈ Z). Thus, if a ∈ X , then a ∈ Y ,

and so X ⊆ Y .

n

Proof that W 6⊆ Y We prove W 6⊆ Y by showing that a ∈ W does not necessarily imply

a ∈ Y . Recall that (p → q) is false precisely when [p ∧ (∼q)] is true; in this case, we

need to identify a counterexample with a ∈ W and a 6∈ Y . Consider 2 ∈ W . Since

2 = 2 · 1 is even, we conclude 2 6∈ Y . Therefore, not every element of W is an

element of Y .

n
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Question 2.1.2 As in example 2.1.1, let X = {1, 3, 5} and Y = {n : n is an odd integer }. Prove
that X is a proper subset of Y .

n

Example 2.1.4 The fundamental sets of numbers fromdefinition 2.1.1 are contained in one another

according to the following proper subset relationships.

∅ ⊂ N ⊂ Z ⊂ Q ⊂ R ⊂ C

n

When working with relationships among sets, we must be careful to use the

notation properly so as to express true mathematical statements. One common misuse

of set-theoretic notation is illustrated by working with the set W = {1, 2}. While it is

true that 1 ∈ W since 1 is in W , the assertion that {1} ∈ W is not true. In particular,

W contains only numbers, not sets, and so the set {1} is not inW . In general, some sets do

contain sets—W is just not one of these sets. Similarly, we observe that {1} ⊆ W since

1 ∈ {1, 2} = W , but 1 ⊆ W is not true; indeed, 1 ⊆ W is not a sensible mathematical

statement since the notation ⊆ is not defined between an element and a set, but only

between sets.

Despite these distinctions, there is a strong connection between the “element of”

relation ∈ and the subset relation ⊆, as you are asked to develop in the following

question. In this way, we move beyond discussing relationships among specific sets

of numbers to exploring more general, abstract properties that hold for every element

and every set.

Question 2.1.3 Prove that a ∈ A if and only if {a} ⊆ A.

Hint: Use definitions 2.1.2 and 2.1.3 to prove the two implications forming this

“if-and-only-if” mathematical statement.

n

We now turn our attention to six fundamental operations on sets. These set

operations manipulate a single set or a pair of sets to produce a new set.When applying

the first three of these operations, you will want to utilize the close correspondence

between the set operations and the connectives of sentential logic.

Definition 2.1.4 Let A and B be sets.

• AC denotes the complement of A and consists of all elements not in A, but in

some prespecified universe or domain of all possible elements including those

in A; symbolically, we define AC = {x : x 6∈ A}.
• A ∩ B denotes the intersection of A and B and consists of the elements in both

A and B; symbolically, we define A ∩ B = {x : x ∈ A and x ∈ B}.
• A ∪ B denotes the union of A and B and consists of the elements in A or

in B or in both A and B; symbolically, we define A ∪ B = {x : x ∈ A or

x ∈ B}.
• A \ B denotes the set difference of A and B and consists of the elements in A that

are not in B; symbolically, we define A \ B = {x : x ∈ A and x 6∈ B}. We often use

the identity A \ B = A ∩ BC .
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• A × B denotes the Cartesian product of A and B and consists of the set of all

ordered pairs with first-coordinate in A and second-coordinate in B; symbolically,

we define A × B = {(a, b) : a ∈ A and b ∈ B}.
• P(A) denotes the power set of A and consists of all subsets of A; symbolically,

we define P(A) = {X : X ⊆ A}. Notice that we always have ∅ ∈ P(A) and

A ∈ P(A).

Example 2.1.5 As above, we let W = {1, 2}, X = {1, 3, 5} and Y = {n : n is an odd integer }.
In addition, we assume that the set of integers Z = {. . . , −2, −1, 0, 1, 2, . . .} is

the universe and we identify the elements of the following sets.

• WC = {. . . , −2, −1, 0, 3, 4, 5, . . .}
• YC = {n : n is an even integer } by the parity property of the integers

• W ∩ X = {1}, since 1 is the only element in both W and X

• W ∪ X = {1, 2, 3, 5}, since union is defined using the inclusive-or

• W \ X = {2}
• X \ W = {3, 5}
• Z∗ = Z \ {0} = {. . . , −3, −2, −1, 1, 2, 3, . . .}
• W × X = {(1, 1), (1, 3), (1, 5), (2, 1), (2, 3), (2, 5)}
• P(W ) = { ∅, {1}, {2}, {1, 2} }

n

The last two sets given in example 2.1.5 contain mathematical objects other than

numbers; the power set is also an example of a set containing other sets.Aswe continue

exploring mathematics, we will study sets of functions, matrices, and other more

sophisticated mathematical objects.

Question 2.1.4 Working with W , X, and Y from example 2.1.5, identify the elements in the sets

XC, W ∩ Y , W ∪ Y , W \ Y , Y \ W , X × W , W × W , W × Y , and P(X). In

addition, state six elements in P(Y ); that is, state six subsets of Y .

n

The use of symbols to represent relationships and operations on mathematical

objects is a standard feature of mathematics. Good choices in symbolism can facilitate

mathematical understanding and insight, while poor choices can genuinely hinder the

study and creation of mathematics. Historically, the symbols ∈ for “element of,” ∩ for

“intersection,” and∪ for “union” were introduced in 1889 by the Italianmathematician

Giuseppe Peano. His work in formalizing and axiomatizing set theory and the basic

arithmetic of the natural numbers remains of central importance. The Cartesian product

× is named in honor of the Frenchmathematician and philosopherRenéDescartes, who

first formulated “analytic geometry” (an important branch of mathematics discussed

in section 4.1).

Although we have presented the Cartesian product A × B as an operation on

pairs of sets, this product extends to any finite number of sets. Mathematicians work

with ordered triples A × B × C = {(a, b, c) : a ∈ A, b ∈ B, and c ∈ C}, ordered
quadruples A × B × C × D = {(a, b, c, d) : a ∈ A, b ∈ B, c ∈ C, and d ∈ D}, and even

ordered n-tuples A1 × · · · × An = {(a1, . . . , an) : ai ∈ Ai for 1 ≤ i ≤ n}. While the use

of n-tuples may at first seem to be of purely academic interest, models for science
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and business with tens (and even hundreds and thousands) of independent variables

have become more common as computers have extended our capacity to analyze

increasingly sophisticated events.

Along with considering the action of set-theoretic operations on specific sets of

numbers, we are also interested in exploring general, abstract properties that hold for

all sets. In this way we develop an algebra of sets, comparing various sets to determine

when one is a subset of another or when they are equal. In developing this algebra, we

adopt the standard approach of confirming informal intuitions and educated guesses

with thorough and convincing proofs.

Example 2.1.6 For sets A and B, we prove A ∩ B ⊆ A.

Proof We prove A ∩ B ⊆ A by showing that if a ∈ A ∩ B, then a ∈ A. We give a direct

proof of this implication; we assume that a ∈ A ∩ B and show that a ∈ A. Since

a ∈ A ∩ B, both a ∈ A and a ∈ B from the definition of intersection. We have thus

quickly obtained the goal of showing a ∈ A.

n

In example 2.1.6 we used a direct proof to show that one set is a subset of another.

This strategy is very important: we proveX ⊆ Y by assuming a ∈ X and showing a ∈ Y .

In addition, the process of proving a ∈ X implies a ∈ Y usually involves “taking apart”

the setsX andY and characterizing their elements based on the appropriate set-theoretic

definitions. Once X and Y have been expanded in this way, our insights into sentential

logic should enable us to understand the relationship between the two sets and to craft

a proof (or disproof) of the claim. We illustrate this approach by verifying another

set-theoretic identity.

Example 2.1.7 For sets A and B, we prove A \ B = A ∩ BC .

Proof In general, we prove two sets are equal by demonstrating that they are sub-

sets of each other. In this case, we must show both A \ B ⊆ A ∩ BC and

A ∩ BC ⊆ A \ B.

A \ B ⊆ A ∩ BC : We assume a ∈ A \ B and show a ∈ A ∩ BC . Since a ∈ A \ B,

we know a ∈ A and a 6∈ B. The key observation is that a 6∈ B is equivalent to

a ∈ BC from the definition of set complement. Since a ∈ A and a 6∈ B, we have

both a ∈ A and a ∈ BC . Therefore, by the definition of intersection, a ∈ A ∩ BC .

Thus, we have A \ B ⊆ A ∩ BC , completing the first half of the proof.

A ∩ BC ⊆ A \ B: We assume a ∈ A ∩ BC and show a ∈ A \ B. From the

definition of intersection, we know a ∈ A ∩ BC implies both a ∈ A and a ∈ BC .

Therefore, both a ∈ A and a 6∈ B from the definition of complement. This is exactly

the definition of set difference, and so a ∈ A \ B. Thus, A ∩ BC ⊆ A \ B, completing

the second half of the proof.

The proof of these two subset relationships establishes the desired equality

A \ B = A ∩ BC for every set A and B.

n

Question 2.1.5 Prove that if A and B are sets with A ⊆ B, then BC ⊆ AC .

n
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A whole host of set-theoretic identities can be established using the strategies

illustrated in the preceding examples. As we have seen, the ideas and identities of

sentential logic play a fundamental role in working with the set-theoretic operations.

Recall that De Morgan’s laws are among the most important identities from sentential

logic; consider the following set-theoretic version of these identities.

Example 2.1.8 De Morgan’s laws for sets We prove one of De Morgan’s laws for sets: If A and B

are sets, then both (A ∩ B)C = AC ∪ BC and (A ∪ B)C = AC ∩ BC .

Proof We prove the identity (A ∩ B)C = AC ∪ BC by arguing that each set is a subset of

the other based on the following biconditionals:

a ∈ (A ∩ B)C iff a 6∈ A ∩ B Definition of complement

iff a is not in both A and B Definition of intersection

iff either a 6∈ A or a 6∈ B Sentential De Morgan’s laws

iff either a ∈ AC or a ∈ BC Definition of complement

iff a ∈ AC ∪ BC Definition of union

Working through these biconditionals from top to bottom, we have a ∈ (A ∩ B)C

implies a ∈ AC ∪BC , and so (A∩B)C ⊆ AC ∪BC . Similarly,working through these

biconditionals from bottom to top, we have a ∈ AC ∪ BC implies a ∈ (A ∩ B)C ,

and so AC ∪ BC ⊆ (A ∩ B)C . This proves one of De Morgan’s laws for sets,

(A ∩ B)C = AC ∪ BC for every set A and B.

n

Question 2.1.6 Prove the other half of De Morgan’s laws for sets; namely, prove that if A and B

are sets, then (A ∪ B)C = AC ∩ BC .

n

We end this section by discussing proofs that certain set-theoretic relations and

identities do not hold. From section 1.7, we know that (supposed) identities can be

disproved by finding a counterexample, exhibiting specific sets for which the given

equality does not hold. To facilitate the definition of sets A, B, C with the desired

properties, we introduce a visual tool for describing sets and set operations known as

a Venn diagram. In a Venn diagram, the universe is denoted with a rectangle, and sets

are drawn inside this rectangle using circles or ellipses. When illustrating two or more

sets in a Venn diagram, we draw overlapping circles to indicate the possibility that the

sets may share some elements in common. The Venn diagrams for the first four set

operations from definition 2.1.4 are given in figure 2.1.

Example 2.1.9 We disprove the false claim that if A, B, and C are sets, then A ∩ (B ∪ C) =
(A ∩ B) ∪ C. This demonstrates that union and intersection operations are not

associative when used together, and so we must be careful with the order of

operation when “mixing” union and intersection.

The Venn diagrams given in figure 2.2 illustrate the sets we are considering

in this example. We use three circles to denote the three distinct sets A, B, and C.

In addition, the circles overlap in a general way so as to indicate all the various

possibilities for sets sharing elements.
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The shaded set is Ac. The shaded set is A 
ù B.

AA B

B

The shaded set is A \ B.The shaded set is A   B.

Ac

AA B

Figure 2.1 Venn diagrams for basic set operations

A

A ù B   C A ù B   C

B

C

A B

C

Figure 2.2 The Venn diagram for example 2.1.9 showing A ∩ (B ∪ C) 6= (A ∩ B) ∪ C

Examining the Venn diagrams, we see that if A, B, C are defined so that C

contains an element that is in neither A nor B, the sets A ∩ (B ∪ C) and (A ∩ B)∪ C

will be different. Alternatively, we could define A, B, C so that B ∩ C contains an

element that is not in A. Following the first approach, we choose to define the sets

A = {1}, B = {1, 2}, and C = {1, 2, 3} and verify the desired inequality with the

following computations.

A ∩ (B ∪ C) = {1} ∩ {1, 2, 3} = {1}

(A ∩ B) ∪ C = {1} ∪ {1, 2, 3} = {1, 2, 3}

Therefore these three sets provide a counterexample demonstrating that sometimes

A ∩ (B ∪ C) 6= (A ∩ B) ∪ C.

n

In example 2.1.9, the choice of sets A, B, and C is just one choice among

many. We are certainly free to make other choices, and you might even think of
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constructing counterexamples as providing an opportunity to express your “mathe-

matical personality.”

Question 2.1.7 Guided by example 2.1.9, give another counterexample disproving the false claim

that A ∩ (B ∪ C) = (A ∩ B) ∪ C for all sets A, B, C.

n

We highlight one subtlety that arises in this setting. In example 2.1.9 and

question 2.1.7, the counterexamples only disprove the general claim that A ∩ (B ∪ C) =
(A ∩ B) ∪ C for all sets A, B, C. However, these counterexamples do not prove

that we have inequality for every choice of sets. In fact, there exist many different

cases in which equality does hold. For example, both A = ∅, B = ∅, C = ∅ and

A = {1, 2}, B = {1, 3}, C = {1} produce the equality A ∩ (B ∪ C) = (A ∩ B) ∪ C,

but only because we are working with these specific sets. We therefore cannot make

any general claims about the equality of A ∩ (B ∪ C) and (A ∩ B)∪ C, but must consider

each possible setting on a case-by-case basis. In short, if we want to prove that a set-

theoretic identity does not always hold, then a counterexample accomplishes this goal;

if we want to prove that a set-theoretic identity never holds, then we must provide a

general proof and not just a specific (counter)example.

Question 2.1.8 Sketch the Venn diagram representing the following sets.

(a) (A ∪ B) ∩ C (b) AC \ B

n

Question 2.1.9 Following the model given in example 2.1.9, disprove the false claim that the

following identities hold for all sets A, B, C.

(a) (A ∪ B) ∩ C = A ∪ (B ∩ C) (b) AC \ B = (A \ B)C

n

2.1.1 Reading Questions for Section 2.1

1. What is the intuitive definition of a set?

2. What is the intuitive definition of an element?

3. Describe two approaches to identifying the elements of an infinite set.

4. Name six important sets and the symbolic notation for these sets.

5. Define and give an example of the “element of” relation a ∈ A.

6. Define and give an example of the set relations: A ⊆ B, A = B, and A ⊂ B.

7. If A and B are sets, what strategy do we use to prove that A ⊆ B?

8. If A and B are sets, what strategy do we use to prove that A = B?

9. Define and give an example of the set operations: AC , A ∩ B, A ∪ B, A \ B,

A × B, and P(A).

10. Define and give an example of a generalized Cartesian product

A1 × A2 × · · · × An.

11. State both the sentential logic and the set-theoretic versions of De Morgan’s

laws.

12. Discuss the use of a Venn diagram for representing sets.


