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Chapiter 04: Special Relativity and Electromagnetism

=  Reminder: Maxwell’s equations and Galilean relativity

= |nvariance of the wave equation

= |mplications of the invariance of Maxwell’s equations under Lorentz
Transformations

= Lorentz Transformation of Electromagnetic field

=  Four-vector charge-current



Reminder: Maxwell’s equations and Galilean relativity

 The Maxwell’s equations:

W) V.E=F QVAE+=—==0
&0 at
—_ — — — aﬁ -
(3) V.B=0 (4)V/\B—ﬂ08()a=ﬂo
. . . 0p(t) T 7 _
With the continuity equation: . T V.j=20
w7 o Equations (2) and (3) are structural equations
J.C. Maxwell
(1831-1879, UK) Equations (1) and (4) link fields to the sources
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REMEMBER EM and Newton relativity

- Maxwell’s equations under Galilean transformations:
"= Now, lets rewrite the Maxwell’s equations in the new frame (R’), since we know that in (R) we -
have:

() V.E= JIG

— (2) VAE + a—B =0 in addition of the continuity equation: —— + v.j=0
€0
B V.E=0 (4)VAB—10—E_;¢0]

Let’s verify if these equations are invariant under Galilean transformations (p’ = p,ﬁ = 0):
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REMEMBER EM et relativité Newtonienne

-~ Maxwell’s equations under Galilean transformations:

—

= By replacing with: E' = E + @ A B and B’ = B, and by using: V' =V, % = % + 1.V, we get for the

15t equation:

_V>.(E'>+ﬁ/\§) :££—>_|7>.E'>+_|7>.(ﬁ/\§):_|7>.E'>+B>,_|7>/\ﬁ—ﬁ(_|7’/\§):—__Zﬁ_E:_ x
0 % T _a & C £
2 0

-

= By considering the vector identity: VA (AAB) = A(V.B) — B(V.A) + (B.V)4 — (A.V)B, the 2" equation

will verify the same one as in (R) :

FAE+inE)+ 28 T AF+ B LT AB)+ @F)B = 0
A(E+UA )+at,—¥/\ +a—€+¥/\(u/\ _)O+(u. )B = V S

MM e 35 LAZ . Y A e 3 QAA -
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REMEMBER EM et relativité Newtonienne

-~ Maxwell’s equations under Galilean transformations:

. By replacing with: E' = E + A B and B’ = B, and by using: V' =V, % = % + 1.V, we get for the 3

equation:
rE=v5=0 N/

And for the 4™ equation, we have:

- - 19(E+4rB) - — 10E 1, - 19, - 1 .
VAB-Z———0 =17/\BTCZOtJ—CZ(u.VE———(uAB)—;(u.V)uABsz

The Galilean transformation did not

preserve the Maxwell’s equations !!!




EM et relativité Newtonienne

©. Maxwell’s equations under Galilean transformations:

In the same way, we could get similar results for the wave equation of E.M fields when we try to write

it in a moving inertial frame (R’), where we get non-invariant equation under Galilean transformations:

_ 2 _ 23
(S): AE —=2L = 0etAB-=22 =0

c? at? c? 9t

c2 otz = 2 dxratr dxr2

_ 22 2 22
GmAE—laE+1(mlaE—nﬁaE)=oaAB——

The Galilean transformation did not
preserve the EM wave equation !!!




Exercise 08

Show that the electromagnetic wave equation:
1 0%p 0% 0%p 1
Ap —— @ = + + - —
P 2% ™ 942 dy? 0z? c? ¥
Is not invariant under the Galilean transformations.
x=x"+uthhy=yhz=zt=t
Use the following rules of the differential derivation to pass from a frame to another.

=0

dQ _6(p,_6x’+0<p,_ay’+0<p,_az’+6<p,_6t’
dx; Ox '0x; 09y 'dx; 0z '0x; Ot 0x;
Solution:
ox' ox’' ox' 0x' ay' ay' dy' ay'
d0x ot dy 0z dy ot dx 0z
ot at" ot"  odt" 0z 1_az’ ~dz" 0z .
dx dy 9z ot dz ot ox 0z




Exercise 08
Show that the electromagnetic wave equation:
1 0%p 0% 0%p 1
Ap —— @ = ——p=0
P 2% ™ 942 i dy? i 922 c2?

Is not invariant under the Galilean transformations.
x=x"+uthhy=yhz=zt=t
Use the following rules of the differential derivation to pass from a frame to another.
dp Jde,6 ox' Jd¢,k6 0y’ Jd¢, 6 0z Od¢, 6 Ot
ox;, 0x '0x, 0y 'ox, 0z 'ox, ot 'ox

Solution:

This will give:
0 d o d o0 0

dx ox'dy 0y 0z 07

0 0

" a —
"9t ot “ox

Implying:
02 _0* 9% _0* 9t _9* 9t _0* 0.9 0
9xZ  0x'2' 9y 0y'2'0z2 072 0t2  ar? ‘ot ox | 9x?




Exercise 08

Show that the electromagnetic wave equation:
1 0%p 0% 0%p 1
A2 =52 T o2t o2 2
Is not invariant under the Galilean transformations.
x=x"+uthhy=yhz=zt=t
Use the following rules of the differential derivation to pass from a frame to another.
dp Jdo 0x’ N do 0y’ N do 0z’ N de, ot

dx; Ox '0x; 0y 'dx; 0z 'dx; Ot 0x;

=0

Solution:
By replacing this in the wave equation written in (R’):
09 0%p 0% 10%p 1 0% ,0%¢
2U =0

t—t— - += —u
0x'2 ~ dy'2  0z'2 c?2ot'? 2 ot'ox’ dx'?

The wave equation is no more invariant under the Galilean transformations !!!




Invariance of the wave equation

Let’s examine the transformation of the wave equation under L.T:
1 92 % 0% 0% 1 02
2 a2 P = 2 + 2 + )
c- at'? ox dy 0z c- dt
By using the partial derivation rule:
dp d¢ ax' N dp dy' N dp 0z' N dp ot
dx; O0x'dx; 9y 0x; 0z dx; Ot dx;

A’

With TL(R > R):x' =y(x—ut), y=y';z=2z";t"' = y(t—ix)

c?2

0 d ox' a9y 9 9z 0 ot d u d d u d
= / + / + / + A=y 4 r V5 =V r

dx 0x' 0x 0y 0x 0z dx Ot 0x ox c? ot’ ax' c*ot

0_00ox a0y 907 9ot 3 3 _ 0 .2

at ox' ot "oy ot oz ot ot ot  Tlax Yar Y\ "ox " ar

0 _0dx 009y 0097 odr_9 9 _ 30

dy 0dx'dy 9y dy 0z'dy ot'dy 0y’ 0z oz




Invariance of the wave equation

Thus, we could also find the square of the derivations:

02_ 5 d u od 0 u o B
ax2 YV \ox' c@av)\ax  cor )~

? 0 0 0 0 _
oz Y \"%ox Tar )\ % oax Tar )~

d* 3% 0? d*
ay? N dy'? '9z2 022




Invariance of the wave equation

Thus, we could also find the square of the derivations:

u? 94

9> 5 0 u d o0 u od 5 9> u o0 d
E il 4 T T =Y " 2 +
dx> ax' c2at')\ox' c?ot dx'? c2 ox' ot

ct ot'?

ik 0 0 i

|

? 0 0 0 0\_ [, , .
oz YV \"%ox Tar )\ %ax Tar) TV Y axz “Moaxar T ar2

d* 3% 0? d*
ay? N dy'? '9z2 022

|



Invariance of the wave equation

By replacing now into the wave equation:

0%p 0% 0%p 1 02
=t — - @
0x? 0y* 0z? c?ot?

We get:

2 2 2
"Zla _NaJru 9 9 ik

dx'? c2 dx’ It~ ct at'2] ¢+ ay'? ¢+ az2% "~ y

=0




Invariance of the wave equation

We obtain finally:
’p 0%¢p 0% 1 0% A 1 d%¢

_ _ _ —0
9x'2 + 3y'2 + 922 2 gp2 L 3¢'2

Which is equivalent to the wave equation in the frame (R):

0* d* d* 1 9%
¢ 0% ¢ 0=0
dx%  0dy? 0z% c?ot?

This result implies that the wave equation is invariant under L.T and preserve the same

formulation when we pass from an inertial frame to another.

What about the Maxwell’s equations ?




Implications of the invariance of Maxwell’s equations under L.T

()V.E=2 (2)VAE+Z—’f=o

€0

(3) V.B=0 (4) V/\B Ho€o — 9t [10]

To do, we will focus on both structural equations (2) and (3), due to their relative

simplicity, and let’s see what their invariance will imply on both fields EetB
(

( —

(R): 4 T3 =Y > R):S ot
\V.B=0 \V'.B'=0

We recall, that partial derivations between the two frames (R) et (R’):

o (9 wua\ a 0 0\ 0_9 a_20
ax Y\ox cav) ot Y\ Yox Tor) oy 8y’'0z oz




Implications of the invariance of Maxwell’s equations under L.T

First, we rewrite the two equations (2 & 3):

—y

(0E, OE, B, dE, OE, a 9
dy 9z at Ay’ a7 Y (_ ax' +i) B, I
= = dB JE, OE, _ 0By OE, ( d u 0 ) ( p)
= —— — = (—) —_— —_—— — — = —
VAE ot < dz  ox ot < oz V\ox ~ @or E, Y{7Us
0Ey 0Ex _ _ 9B, (i_ii) _OEx _ _ (_ J
\ 9x dy ot Ly axr ¢ at’ Ey ay’ Y \ Wox —
TE—o an+aBy+aB d ud B +aBy+aBz 0
. = - =
dx 0y 0z ax 2ot )T 8y a7
After a rearrangement (d,, , on the left, d; on the right):

( (9 9 OB’ 'y =EE,=y(E, + uB,)
J0E, d d u E'y E, y E  =v(E. — uB )
_ — _ et _ — _ =y u

oz Y gy (Be +uBy) = "at'<3'y+c2EZ)(_>< 9z  ax ot y = ViEy u
JE 9 u d0E', OF', dB’, B'y=vy(By,+—E,
U =y (B - —=E ) F o= - ¢
ax ay’ o'\ % ¢z L dx’  ay’ ot’' .
\ BZ=Y(Bz_ﬁEy)




Implications of the invariance of Maxwell’s equations under L.T

Let’s arrange the terms in remain equations (d, , , on the left, d; on the right):

(0E, OE, 0B, oB, ( OE, OE, 0B, 0B,
r —yu =Y T A YU = V5,
dy’ 0z ox’ ot’ o 4 dy 0z 0x ot
0B, 0B, 0B, u 9B, oB dB oB u’ dB
Vot —+ =y YU—tU—F U—— =y ———
" ax' a9y o7 c? at’' U ox’ ay' 0z’ c? at’'

By summing both equations from part to another:

o' y ot

dE, O0E, 0B, 0B, u*\dB, -10B,
— — 1—
3y oz Yoy Yazr - Y\ 7@

oB, O0y(E,+uB,) oy(E,-uB,) @E, JE, 0B,

dB, 9E, OE 9B
X z Yy y + vu — — —
ay Y%z 3y’ 3z ay oz at’

v Yoy Yoar tTH

This implies that the missing equation concerns the component x: B', = B,



Implications of the invariance of Maxwell’s equations under L.T

Therfore, the invariance of the Maxwell’s equations, under L.T implies the following L.T of
electric and magnetic fields:

T.L:S - S’

T.L:S" - S

Champ E’

Champ B’

Champ E

Champ B

E,x =E,

B’x = B,

E, = E’x

B, = B’x

E'y = Y(Ey — uBz)

, u
ByZY<By+pEz)

E,=y(E'y +uB';)

!/ u !/
v=7(By-2F)

E',=y(E,+uB,)

, u
B, :y(Bz—ﬁEy)

E,=y(E,—uB'))

4 u 14
ZZY(BZ+§Ey)

These transformations could also be rewritten under vector form

T.L:S

- S’

T.L:S" - S

Champ F’

Champ B’

Champ E

E')=E

—

B = B

E,=FE

E’)J_ :}’(ﬁl‘l‘ﬁ)/\ﬁl)

—_—

B,l =Y(§)J___I_’iAEL)

E')J_ =Y(E’)J__1_iAB’J_

)




Four-vector charge-current v
We define the density of a group of point charges Q as the quotient

charge/volume:

_da
P=av

Now, if we consider the volume of a cube with edge dl. Thus, the

previous expression becomes (V = dx x dy x dz = I3):

. dQ  dqQ
dx.dy.dz dl3

p

If this group of charge will move with a given velocity according the direction OX, then we could define

an electrical current, even a current density:

_do_dvde _deav _ dx . di
= = = = —_— = —_ —_—=] = - J =
Y“ar T avdt _avar Pat?rerTpasy J=Ppv=]=pY




Four-vector charge-current

How both quantities p et j will transform in special relativity?

To assess, we consider a volume distribution of charge defined in rest within a frame (R’)

moving with respect to another stationary frame (R) with a velocity u along x — axis.

y T.L: (S < S) vt 3

!/

dx , 2
| dx=—-=dx Jl — %/

r:’;._._ e dy = dy'

dz = dz’

~

dz




Four-vector charge-current
Let’s recall that the proper length is defined with respect to the moving frame (R"), such as:

_dqQ
dy’

Po

Thus, the charge density in the frame (R) could be deduced as:

~daQ dQ _dqQ uz; \/ u>
_dV’_p = > = dv 1 /cz—P 1 /Cz
dV/\/l—u / 2

Po

Po

J1-%

p= =YPo



Four-vector charge-current

With respect to (S) this charge density is moving with a velocity u, implying a current density:
pol

=%

In a general case, where we have: i = u,€, + u,é, + u,e,

27 VPolUx
. u
]_) = pu = pO = <yp0uy>

\/1 — uz/cz YPolU,
With: p = yp,
We remark th; B —
( _Po 2 =P 2
y=£-= o, SO T _’f=<j>
Po ™Mo |7=720 *_ﬂl—; *C:ﬂl—;c pc
{ my my my




Four-vector charge-current

Therefore, by analogy we can define a four-vector charge-current:

¥

With an invariant measure:

-

J
pc

)

—mjct

a2 ) 2 2 Po ? 2 2 2 CZ Po 2[p2C2—m2C4] Po ? 2 2
J- =] —p~Cc" = FO [p —mC]Xﬁz mg cz = m, CZ = —pPoC = Cte
. N . Quadrivecteur j
Thus, both quantities p and j will 1S 55 1.5 55
transform similarly from a frame to i =v(j. — pu) i =yl + p'w)
another, by obeying similar L.T of 'y =Jy Jy=1Jy
j,z = Jz Jz = j’z

those of four-vector momentum.

—

p'=v(p—wj./c?)

p=v(p +uj/c?)
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