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Chapiter 04: Special Relativity and Electromagnetism

▪ Reminder: Maxwell’s equations and Galilean relativity

▪ Invariance of the wave equation

▪ Implications of the invariance of Maxwell’s equations under Lorentz 

Transformations

▪ Lorentz Transformation of Electromagnetic field

▪ Four-vector charge-current



J.C. Maxwell

(1831-1879, UK)

(1) 𝜵. 𝑬 =
𝝆

𝜺𝟎
      (2) 𝜵 ∧ 𝑬 +

𝝏𝑩

𝝏𝒕
= 𝟎  

(3) 𝜵. 𝑩 = 𝟎        (4) 𝜵 ∧ 𝑩 − 𝝁𝟎𝜺𝟎
𝝏𝑬

𝝏𝒕
= 𝝁𝟎

Ԧ𝑱

Equations (2) and (3) are structural equations

Equations (1) and (4) link fields to the sources

With the continuity equation: 
𝝏𝝆 𝒕

𝝏𝒕
+ 𝜵. Ԧ𝑱 = 𝟎

• The Maxwell’s equations:

Reminder: Maxwell’s equations and Galilean relativity



EM and Newton relativity

Maxwell’s equations under Galilean transformations:

▪ Now, lets rewrite the Maxwell’s equations in the new frame (R’), since we know that in (R) we

have:

(1) 𝜵. 𝑬 =
𝝆

𝜺𝟎
(2) 𝜵 ∧ 𝑬 +

𝝏𝑩

𝝏𝒕
= 𝟎 in addition of the continuity equation:

𝝏𝝆 𝒕

𝝏𝒕
+ 𝜵. Ԧ𝑱 = 𝟎

(3) 𝜵. 𝑩 = 𝟎 (4) 𝜵 ∧ 𝑩 −
𝟏

𝒄𝟐

𝝏𝑬

𝝏𝒕
= 𝝁𝟎

Ԧ𝑱

Let’s verify if these equations are invariant under Galilean transformations (𝝆′ = 𝝆, 𝑱′ = 𝟎):

(1) 𝜵′. 𝑬′ =
𝝆

𝜺𝟎
(2) 𝜵′ ∧ 𝑬′ +

𝝏𝑩′

𝝏𝒕′
= 𝟎

(3) 𝜵′. 𝑩′ = 𝟎 (4) 𝜵′ ∧ 𝑩′ −
𝟏

𝒄𝟐

𝝏𝑬′

𝝏𝒕′
= 𝝁𝟎

Ԧ𝑱′



Maxwell’s equations under Galilean transformations:

▪ By replacing with: 𝐸′ = 𝐸 + 𝑢 ⋏ 𝐵 and 𝐵′ = 𝐵, and by using: ∇′ = ∇,
𝜕

𝜕𝑡′
=

𝜕

𝜕𝑡
+ 𝑢. ∇, we get for the

1st equation:

𝜵. 𝑬 + 𝑢 ⋏ 𝐵 =
𝝆

𝜺𝟎
→ 𝜵. 𝑬 + 𝜵. Ԧ𝑢 ⋏ Ԧ𝐵 = ต𝜵. 𝑬

𝝆
𝜺𝟎

+ Ԧ𝐵. 𝜵 ⋏ Ԧ𝑢
=𝟎

− Ԧ𝑢 𝜵 ⋏ Ԧ𝐵 =
𝝆

𝜺𝟎

−
1

𝑐2
Ԧ𝑢.

𝝏𝑬

𝝏𝒕
=

𝝆

𝜺𝟎

▪ By considering the vector identity: 𝜵 ∧ Ԧ𝐴 ⋏ 𝐵 = Ԧ𝐴 𝜵. 𝐵 − 𝐵 𝜵. Ԧ𝐴 + 𝑩. 𝜵 𝑨 − (𝑨. 𝜵)𝑩, the 2nd equation

will verify the same one as in (R) :

𝜵 ∧ 𝑬 + 𝑢 ⋏ 𝐵 +
𝝏𝑩

𝝏𝒕′
= 𝜵 ∧ 𝑬 +

𝝏𝑩

𝝏𝒕
=𝟎

+ 𝜵 ∧ 𝑢 ⋏ 𝐵 + 𝒖. 𝜵 𝑩

=𝟎

= 𝟎

EM et relativité Newtonienne



Maxwell’s equations under Galilean transformations:

By replacing with: 𝐸′ = 𝐸 + 𝑢 ⋏ 𝐵 and 𝐵′ = 𝐵, and by using: ∇′ = ∇,
𝜕

𝜕𝑡′
=

𝜕

𝜕𝑡
+ 𝑢. ∇, we get for the 3rd

equation:

𝜵′. 𝑩′ = 𝜵. 𝑩 = 𝟎

And for the 4th equation, we have:

𝜵 ∧ 𝑩 −
𝟏

𝒄𝟐

𝝏 𝑬 + 𝑢 ⋏ 𝐵

𝝏𝒕′
= 𝜵 ∧ 𝑩 −

𝟏

𝒄𝟐

𝝏𝑬

𝝏𝒕
𝝁𝟎Ԧ𝑱

−
𝟏

𝒄𝟐
𝑢. ∇ 𝑬 −

𝟏

𝒄𝟐

𝝏

𝝏𝒕
𝑢 ⋏ 𝐵 −

𝟏

𝒄𝟐
𝑢. ∇ 𝑢 ⋏ 𝐵 = 0

EM et relativité Newtonienne

The Galilean transformation did not 

preserve the Maxwell’s equations !!!



Maxwell’s equations under Galilean transformations:

In the same way, we could get similar results for the wave equation of E.M fields when we try to write

it in a moving inertial frame (R’), where we get non-invariant equation under Galilean transformations:

(S): ∆𝑬 −
𝟏

𝒄𝟐

𝝏𝟐𝐸

𝝏𝒕𝟐 = 𝟎 et ∆𝑩 −
𝟏

𝒄𝟐

𝝏𝟐𝐵

𝝏𝒕𝟐 = 𝟎

(S’): ∆𝑬 −
𝟏

𝒄𝟐

𝝏𝟐𝐸

𝝏𝒕′𝟐 +
𝟏

𝒄𝟐 𝟐𝒖
𝝏𝟐𝐸

𝝏𝒙′𝝏𝒕′
− 𝒖𝟐 𝝏𝟐𝐸

𝝏𝒙′𝟐 = 𝟎 et ∆𝑩 −
𝟏

𝒄𝟐

𝝏𝟐𝐵

𝝏𝒕′𝟐 +
𝟏

𝒄𝟐 𝟐𝒖
𝝏𝟐𝐵

𝝏𝒙′𝝏𝒕′
− 𝒖𝟐 𝝏𝟐𝐵

𝝏𝒙′𝟐 = 𝟎

EM et relativité Newtonienne

The Galilean transformation did not 

preserve the EM wave equation !!!



Exercise 08

Solution: 
𝜕𝑥′

𝜕𝑥
= 1;

𝜕𝑥′

𝜕𝑡
= −𝑢;

𝜕𝑥′

𝜕𝑦
=

𝜕𝑥′

𝜕𝑧
= 0 ,

𝜕𝑦′

𝜕𝑦
= 1;

𝜕𝑦′

𝜕𝑡
=

𝜕𝑦′

𝜕𝑥
=

𝜕𝑦′

𝜕𝑧
= 0

𝜕𝑡′

𝜕𝑥
=

𝜕𝑡′

𝜕𝑦
=

𝜕𝑡′

𝜕𝑧
= 0;

𝜕𝑡′

𝜕𝑡
= 1 ,

𝜕𝑧′

𝜕𝑧
= 1;

𝜕𝑧′

𝜕𝑡
=

𝜕𝑧′

𝜕𝑥
=

𝜕𝑧′

𝜕𝑧
= 0

Show that the electromagnetic wave equation:

∆𝜑 −
1

𝑐2
𝜑 =

𝜕2𝜑

𝜕𝑥2
+

𝜕2𝜑

𝜕𝑦2
+

𝜕2𝜑

𝜕𝑧2
−

1

𝑐2
𝜑 = 0

Is not invariant under the Galilean transformations.
𝑥 = 𝑥′ + 𝑢𝑡′; 𝑦 = 𝑦′; 𝑧 = 𝑧′; 𝑡 = 𝑡′

Use the following rules of the differential derivation to pass from a frame to another.
𝜕𝜑

𝜕𝑥𝑖
=

𝜕𝜑

𝜕𝑥
’ ;

𝜕𝑥′

𝜕𝑥𝑖
+

𝜕𝜑

𝜕𝑦
’ ;

𝜕𝑦′

𝜕𝑥𝑖
+

𝜕𝜑

𝜕𝑧
’ ;

𝜕𝑧′

𝜕𝑥𝑖
+

𝜕𝜑

𝜕𝑡
’ ;

𝜕𝑡′

𝜕𝑥𝑖



Exercise 08
Show that the electromagnetic wave equation:

∆𝜑 −
1

𝑐2
𝜑 =

𝜕2𝜑

𝜕𝑥2
+

𝜕2𝜑

𝜕𝑦2
+

𝜕2𝜑

𝜕𝑧2
−

1

𝑐2
𝜑 = 0

Is not invariant under the Galilean transformations.
𝑥 = 𝑥′ + 𝑢𝑡′; 𝑦 = 𝑦′; 𝑧 = 𝑧′; 𝑡 = 𝑡′

Use the following rules of the differential derivation to pass from a frame to another.
𝜕𝜑

𝜕𝑥𝑖
=

𝜕𝜑

𝜕𝑥
’ ;

𝜕𝑥′

𝜕𝑥𝑖
+

𝜕𝜑

𝜕𝑦
’ ;

𝜕𝑦′

𝜕𝑥𝑖
+

𝜕𝜑

𝜕𝑧
’ ;

𝜕𝑧′

𝜕𝑥𝑖
+

𝜕𝜑

𝜕𝑡
’ ;

𝜕𝑡′

𝜕𝑥𝑖

Solution:
This will give:

𝜕

𝜕𝑥
=

𝜕

𝜕𝑥′
;

𝜕

𝜕𝑦
=

𝜕

𝜕𝑦′
;

𝜕

𝜕𝑧
=

𝜕

𝜕𝑧′
;

𝜕

𝜕𝑡
=

𝜕

𝜕𝑡′
− 𝑢

𝜕

𝜕𝑥′
Implying:

𝜕2

𝜕𝑥2
=

𝜕2

𝜕𝑥′2
;

𝜕2

𝜕𝑦2
=

𝜕2

𝜕𝑦′2
;

𝜕2

𝜕𝑧2
=

𝜕2

𝜕𝑧′2
;

𝜕2

𝜕𝑡2
=

𝜕2

𝜕𝑡′2
− 2𝑢

𝜕

𝜕𝑡′

𝜕

𝜕𝑥′
+ 𝑢2

𝜕2

𝜕𝑥′2



Exercise 08

Solution:
By replacing this in the wave equation written in (R’):

𝜕2𝜑

𝜕𝑥′2
+

𝜕2𝜑

𝜕𝑦′2
+

𝜕2𝜑

𝜕𝑧′2
−

1

𝑐2

𝜕2𝜑

𝜕𝑡′2 +
1

𝑐2
2𝑢

𝜕2𝜑

𝜕𝑡′𝜕𝑥′
− 𝑢2

𝜕2𝜑

𝜕𝑥′2
= 0

The wave equation is no more invariant under the Galilean transformations !!!

Show that the electromagnetic wave equation:

∆𝜑 −
1

𝑐2
𝜑 =

𝜕2𝜑

𝜕𝑥2
+

𝜕2𝜑

𝜕𝑦2
+

𝜕2𝜑

𝜕𝑧2
−

1

𝑐2
𝜑 = 0

Is not invariant under the Galilean transformations.
𝑥 = 𝑥′ + 𝑢𝑡′; 𝑦 = 𝑦′; 𝑧 = 𝑧′; 𝑡 = 𝑡′

Use the following rules of the differential derivation to pass from a frame to another.
𝜕𝜑

𝜕𝑥𝑖
=

𝜕𝜑

𝜕𝑥
’ ;

𝜕𝑥′

𝜕𝑥𝑖
+

𝜕𝜑

𝜕𝑦
’ ;

𝜕𝑦′

𝜕𝑥𝑖
+

𝜕𝜑

𝜕𝑧
’ ;

𝜕𝑧′

𝜕𝑥𝑖
+

𝜕𝜑

𝜕𝑡
’ ;

𝜕𝑡′

𝜕𝑥𝑖



Let’s examine the transformation of the wave equation under L.T:

∆′𝝋 −
𝟏

𝒄𝟐

𝝏𝟐

𝝏𝒕′𝟐
𝝋 =

𝝏𝟐𝝋

𝝏𝒙′𝟐 +
𝝏𝟐𝝋

𝝏𝒚′𝟐 +
𝝏𝟐𝝋

𝝏𝒛′𝟐 −
𝟏

𝒄𝟐

𝝏𝟐

𝝏𝒕′𝟐
𝝋 = 𝟎

By using the partial derivation rule:

𝝏𝝋

𝝏𝒙𝒊
=

𝝏𝝋

𝝏𝒙′

𝝏𝒙′

𝝏𝒙𝒊
+

𝝏𝝋

𝝏𝒚′

𝝏𝒚′

𝝏𝒙𝒊
+

𝝏𝝋

𝝏𝒛′

𝝏𝒛′

𝝏𝒙𝒊
+

𝝏𝝋

𝝏𝒕′

𝝏𝒕′

𝝏𝒙𝒊

With T.L(𝑅 → 𝑅′):𝑥′ = 𝛾 𝑥 − 𝑢𝑡 ; 𝑦 = 𝑦′; 𝑧 = 𝑧′; 𝑡′ = 𝛾 𝑡 −
𝑢

𝑐2 𝑥

Invariance of the wave equation

𝝏

𝝏𝒙
=

𝝏

𝝏𝒙′

𝝏𝒙′

𝝏𝒙
+

𝝏

𝝏𝒚′

𝝏𝒚′

𝝏𝒙
+

𝝏

𝝏𝒛′

𝝏𝒛′

𝝏𝒙
+

𝝏

𝝏𝒕′

𝝏𝒕′

𝝏𝒙
= 𝜸

𝝏

𝝏𝒙′
− 𝜸

𝒖

𝒄𝟐

𝝏

𝝏𝒕′ = 𝜸
𝝏

𝝏𝒙′
−

𝒖

𝒄𝟐

𝝏

𝝏𝒕′

𝝏

𝝏𝒕
=

𝝏

𝝏𝒙′

𝝏𝒙′

𝝏𝒕
+

𝝏

𝝏𝒚′

𝝏𝒚′

𝝏𝒕
+

𝝏

𝝏𝒛′

𝝏𝒛′

𝝏𝒕
+

𝝏

𝝏𝒕′

𝝏𝒕′

𝝏𝒕
= −𝜸𝒖

𝝏

𝝏𝒙′ + 𝜸
𝝏

𝝏𝒕′ = 𝜸 −𝒖
𝝏

𝝏𝒙′ +
𝝏

𝝏𝒕′

𝝏

𝝏𝒚
=

𝝏

𝝏𝒙′

𝝏𝒙′

𝝏𝒚
+

𝝏

𝝏𝒚′

𝝏𝒚′

𝝏𝒚
+

𝝏

𝝏𝒛′

𝝏𝒛′

𝝏𝒚
+

𝝏

𝝏𝒕′

𝝏𝒕′

𝝏𝒚
=

𝝏

𝝏𝒚′
;

𝝏

𝝏𝒛
=

𝝏

𝝏𝒛′



Thus, we could also find the square of the derivations:

𝝏𝟐

𝝏𝒙𝟐
= 𝜸𝟐

𝝏

𝝏𝒙′
−

𝒖

𝒄𝟐

𝝏

𝝏𝒕′

𝝏

𝝏𝒙′
−

𝒖

𝒄𝟐

𝝏

𝝏𝒕′
= ⋯

𝝏𝟐

𝝏𝒕𝟐 = 𝜸𝟐 −𝒖
𝝏

𝝏𝒙′ +
𝝏

𝝏𝒕′ −𝒖
𝝏

𝝏𝒙′ +
𝝏

𝝏𝒕′ = ⋯

𝝏𝟐

𝝏𝒚𝟐 =
𝝏𝟐

𝝏𝒚′𝟐 ;
𝝏𝟐

𝝏𝒛𝟐 =
𝝏𝟐

𝝏𝒛′𝟐

Invariance of the wave equation



Thus, we could also find the square of the derivations:

𝝏𝟐

𝝏𝒙𝟐
= 𝜸𝟐

𝝏

𝝏𝒙′
−

𝒖

𝒄𝟐

𝝏

𝝏𝒕′

𝝏

𝝏𝒙′
−

𝒖

𝒄𝟐

𝝏

𝝏𝒕′
= 𝜸𝟐

𝝏𝟐

𝝏𝒙′𝟐
− 𝟐

𝒖

𝒄𝟐

𝝏

𝝏𝒙′

𝝏

𝝏𝒕′
+

𝒖𝟐

𝒄𝟒

𝝏𝟐

𝝏𝒕′𝟐

𝝏𝟐

𝝏𝒕𝟐 = 𝜸𝟐 −𝒖
𝝏

𝝏𝒙′ +
𝝏

𝝏𝒕′ −𝒖
𝝏

𝝏𝒙′ +
𝝏

𝝏𝒕′ = 𝜸𝟐 𝒖𝟐
𝝏𝟐

𝝏𝒙′𝟐 − 𝟐𝒖
𝝏

𝝏𝒙′

𝝏

𝝏𝒕′ +
𝝏𝟐

𝝏𝒕′𝟐

𝝏𝟐

𝝏𝒚𝟐 =
𝝏𝟐

𝝏𝒚′𝟐 ;
𝝏𝟐

𝝏𝒛𝟐 =
𝝏𝟐

𝝏𝒛′𝟐

Invariance of the wave equation



By replacing now into the wave equation:

𝜕2𝜑

𝜕𝑥2
+

𝜕2𝜑

𝜕𝑦2
+

𝜕2𝜑

𝜕𝑧2
−

1

𝑐2

𝜕2

𝜕𝑡2
𝜑 = 0

We get:

𝜸𝟐
𝝏𝟐

𝝏𝒙′𝟐
− 𝟐

𝒖

𝒄𝟐

𝝏

𝝏𝒙′

𝝏

𝝏𝒕′
+

𝒖𝟐

𝒄𝟒

𝝏𝟐

𝝏𝒕′𝟐
𝝋 +

𝝏𝟐

𝝏𝒚′𝟐
𝝋 +

𝝏𝟐

𝝏𝒛′𝟐
𝝋 −

1

𝑐2
𝜸𝟐 𝒖𝟐

𝝏𝟐

𝝏𝒙′𝟐
− 𝟐𝒖

𝝏

𝝏𝒙′

𝝏

𝝏𝒕′
+

𝝏𝟐

𝝏𝒕′𝟐
𝝋 = 𝟎

𝜸𝟐 𝟏 −
𝒖𝟐

𝑐2

=𝟏

𝝏𝟐

𝝏𝒙′𝟐
𝝋 +

𝝏𝟐

𝝏𝒚′𝟐
𝝋 +

𝝏𝟐

𝝏𝒛′𝟐
𝝋 −

1

𝑐2
𝜸𝟐 𝟏 −

𝒖𝟐

𝒄𝟐

=1

𝝏𝟐

𝝏𝒕′𝟐
𝝋 = 𝟎

Invariance of the wave equation



We obtain finally:

𝝏𝟐𝝋

𝝏𝒙′𝟐
+

𝝏𝟐𝝋

𝝏𝒚′𝟐
+

𝝏𝟐𝝋

𝝏𝒛′𝟐
−

1

𝑐2

𝝏𝟐𝝋

𝝏𝒕′𝟐
= ∆′𝝋 −

1

𝑐2

𝝏𝟐𝝋

𝝏𝒕′𝟐
= 𝟎

Which is equivalent to the wave equation in the frame (R):

𝝏𝟐𝝋

𝝏𝒙𝟐 +
𝝏𝟐𝝋

𝝏𝒚𝟐 +
𝝏𝟐𝝋

𝝏𝒛𝟐 −
𝟏

𝒄𝟐

𝝏𝟐

𝝏𝒕𝟐
𝝋 = 𝟎

This result implies that the wave equation is invariant under L.T and preserve the same

formulation when we pass from an inertial frame to another.

Invariance of the wave equation

What about the Maxwell’s equations ?



Implications of the invariance of Maxwell’s equations under L.T

To do, we will focus on both structural equations (2) and (3), due to their relative

simplicity, and let’s see what their invariance will imply on both fields 𝑬 et 𝑩

(1) 𝜵. 𝑬 =
𝝆

𝜺𝟎
      (2) 𝜵 ∧ 𝑬 +

𝝏𝑩

𝝏𝒕
= 𝟎  

(3) 𝜵. 𝑩 = 𝟎        (4) 𝜵 ∧ 𝑩 − 𝝁𝟎𝜺𝟎
𝝏𝑬

𝝏𝒕
= 𝝁𝟎

Ԧ𝑱

𝑹 : ൞𝜵 ∧ 𝑬 +
𝝏𝑩

𝝏𝒕
= 𝟎

𝜵. 𝑩 = 𝟎 

→ 𝑹′ : ൞𝜵′ ∧ 𝑬′ +
𝝏𝑩′

𝝏𝒕′
= 𝟎

𝜵′. 𝑩′ = 𝟎 

We recall, that partial derivations between the two frames (R) et (R’):

𝝏

𝝏𝒙
= 𝜸

𝝏

𝝏𝒙′
−

𝒖

𝒄𝟐

𝝏

𝝏𝒕′
;

𝝏

𝝏𝒕
= 𝜸 −𝒖

𝝏

𝝏𝒙′
+

𝝏

𝝏𝒕′
;

𝝏

𝝏𝒚
=

𝝏

𝝏𝒚′
;

𝝏

𝝏𝒛
=

𝝏

𝝏𝒛′



First, we rewrite the two equations (2 & 3):

𝜵 ∧ 𝑬 = −
𝝏𝑩

𝝏𝒕
→

𝝏𝑬𝒛

𝝏𝒚
−

𝝏𝑬𝒚

𝝏𝒛
= −

𝝏𝑩𝒙

𝝏𝒕

𝝏𝑬𝒙

𝝏𝒛
−

𝝏𝑬𝒛

𝝏𝒙
= −

𝝏𝑩𝒚

𝝏𝒕
𝝏𝑬𝒚

𝝏𝒙
−

𝝏𝑬𝒙

𝝏𝒚
= −

𝝏𝑩𝒛

𝝏𝒕

𝝏𝑬𝒛

𝝏𝒚′
−

𝝏𝑬𝒚

𝝏𝒛′ = −𝜸 −𝒖
𝝏

𝝏𝒙′ +
𝝏

𝝏𝒕′ 𝑩𝒙

𝝏𝑬𝒙

𝝏𝒛′
− 𝜸

𝝏

𝝏𝒙′
−

𝒖

𝒄𝟐

𝝏

𝝏𝒕′ 𝑬𝒛 = −𝜸 −𝒖
𝝏

𝝏𝒙′ +
𝝏

𝝏𝒕′ 𝑩𝒚

𝜸
𝝏

𝝏𝒙′
−

𝒖

𝒄𝟐

𝝏

𝝏𝒕′ 𝑬𝒚 −
𝝏𝑬𝒙

𝝏𝒚′
= −𝜸 −𝒖

𝝏

𝝏𝒙′ +
𝝏

𝝏𝒕′ 𝑩𝒛

𝜵. 𝑩 = 𝟎 →
𝝏𝑩𝒙

𝝏𝒙
+

𝝏𝑩𝒚

𝝏𝒚
+

𝝏𝑩𝒛

𝝏𝒛
= 𝜸

𝝏

𝝏𝒙′
−

𝒖

𝒄𝟐

𝝏

𝝏𝒕′
𝑩𝒙 +

𝝏𝑩𝒚

𝝏𝒚′
+

𝝏𝑩𝒛

𝝏𝒛′
= 𝟎

After a rearrangement (𝝏𝒙,𝒚,𝒛 on the left, 𝝏𝒕 on the right):

𝝏𝑬𝒙

𝝏𝒛′
− 𝜸

𝝏

𝝏𝒙′
𝑬𝒛 + 𝒖𝑩𝒚 = −𝜸

𝝏

𝝏𝒕′ 𝑩𝒚 +
𝒖

𝒄𝟐 𝑬𝒛

𝜸
𝝏

𝝏𝒙′
𝑬𝒚 − 𝒖𝑩𝒛 −

𝝏𝑬𝒙

𝝏𝒚′
= −𝜸

𝝏

𝝏𝒕′ 𝑩𝒛 −
𝒖

𝒄𝟐 𝑬𝒚

𝝏𝑬′𝒙

𝝏𝒛′
−

𝝏𝑬′𝒛

𝝏𝒙′
= −

𝝏𝑩′𝒚

𝝏𝒕′
𝝏𝑬′𝒚

𝝏𝒙′
−

𝝏𝑬′𝒙

𝝏𝒚′
= −

𝝏𝑩′𝒛

𝝏𝒕′

→

𝑬′𝒙 = 𝑬𝒙; 𝑬′𝒛 = 𝜸 𝑬𝒛 + 𝒖𝑩𝒚

𝑬′𝒚 = 𝜸 𝑬𝒚 − 𝒖𝑩𝒛

𝑩′𝒚 = 𝜸 𝑩𝒚 +
𝒖

𝒄𝟐 𝑬𝒛

𝑩′𝒛 = 𝜸 𝑩𝒛 −
𝒖

𝒄𝟐 𝑬𝒚

Implications of the invariance of Maxwell’s equations under L.T



Let’s arrange the terms in remain equations (𝝏𝒙,𝒚,𝒛 on the left, 𝝏𝒕 on the right):
𝝏𝑬𝒛

𝝏𝒚′
−

𝝏𝑬𝒚

𝝏𝒛′ − 𝜸𝒖
𝝏𝑩𝒙

𝝏𝒙′ = −𝜸
𝝏𝑩𝒙

𝝏𝒕′

𝜸
𝝏𝑩𝒙

𝝏𝒙′
+

𝝏𝑩𝒚

𝝏𝒚′
+

𝝏𝑩𝒛

𝝏𝒛′
= 𝜸

𝒖

𝒄𝟐

𝝏𝑩𝒙

𝝏𝒕′

𝝏𝑬𝒛

𝝏𝒚′
−

𝝏𝑬𝒚

𝝏𝒛′ − 𝜸𝒖
𝝏𝑩𝒙

𝝏𝒙′ = −𝜸
𝝏𝑩𝒙

𝝏𝒕′

𝜸𝒖
𝝏𝑩𝒙

𝝏𝒙′
+ 𝒖

𝝏𝑩𝒚

𝝏𝒚′
+ 𝒖

𝝏𝑩𝒛

𝝏𝒛′
= 𝜸

𝒖𝟐

𝒄𝟐

𝝏𝑩𝒙

𝝏𝒕′

By summing both equations from part to another:

→
𝝏𝑬𝒛

𝝏𝒚′
−

𝝏𝑬𝒚

𝝏𝒛′
+ 𝒖

𝝏𝑩𝒚

𝝏𝒚′
+ 𝒖

𝝏𝑩𝒛

𝝏𝒛′
= −𝜸 𝟏 −

𝒖𝟐

𝒄𝟐

𝝏𝑩𝒙

𝝏𝒕′
=

−𝟏

𝜸

𝝏𝑩𝒙

𝝏𝒕′

−
𝝏𝑩𝒙

𝝏𝒕′
= 𝜸

𝝏𝑬𝒛

𝝏𝒚′
− 𝜸

𝝏𝑬𝒚

𝝏𝒛′
+ 𝜸𝒖

𝝏𝑩𝒚

𝝏𝒚′
+ 𝜸𝒖

𝝏𝑩𝒛

𝝏𝒛′
=

𝝏𝜸 𝑬𝒛 + 𝒖𝑩𝒚

𝝏𝒚′
−

𝝏𝜸 𝑬𝒚 − 𝒖𝑩𝒛

𝝏𝒛′
=

𝝏𝑬′
𝒛

𝝏𝒚′
−

𝝏𝑬′
𝒚

𝝏𝒛′
= −

𝝏𝑩′𝒙

𝝏𝒕′

This implies that the missing equation concerns the component 𝒙: 𝑩′𝒙 = 𝑩𝒙

Implications of the invariance of Maxwell’s equations under L.T



Therfore, the invariance of the Maxwell’s equations, under L.T implies the following L.T of
electric and magnetic fields:

𝑻. 𝑳: 𝑺 → 𝑺′ 𝑻. 𝑳: 𝑺′ → 𝑺

Champ 𝑬’ Champ 𝑩’ Champ 𝑬 Champ 𝑩

𝑬′𝒙 = 𝑬𝒙 𝑩′𝒙 = 𝑩𝒙 𝑬𝒙 = 𝑬′𝒙 𝑩𝒙 = 𝑩′𝒙

𝑬′𝒚 = 𝜸 𝑬𝒚 − 𝒖𝑩𝒛 𝑩′𝒚 = 𝜸 𝑩𝒚 +
𝒖

𝒄𝟐
𝑬𝒛 𝑬𝒚 = 𝜸 𝑬′𝒚 + 𝒖𝑩′𝒛 𝑩𝒚 = 𝜸 𝑩′𝒚 −

𝒖

𝒄𝟐
𝑬′𝒛

𝑬′𝒛 = 𝜸 𝑬𝒛 + 𝒖𝑩𝒚 𝑩′𝒛 = 𝜸 𝑩𝒛 −
𝒖

𝒄𝟐 𝑬𝒚 𝑬𝒛 = 𝜸 𝑬′𝒛 − 𝒖𝑩′𝒚 𝑩𝒛 = 𝜸 𝑩′𝒛 +
𝒖

𝒄𝟐 𝑬′𝒚

These transformations could also be rewritten under vector form

𝑻. 𝑳: 𝑺 → 𝑺′ 𝑻. 𝑳: 𝑺′ → 𝑺

Champ 𝑬’ Champ 𝑩’ Champ 𝑬 Champ 𝑩

𝑬′‖ = 𝑬‖ 𝑩′‖ = 𝑩‖ 𝑬‖ = 𝑬′‖ 𝑩‖ = 𝑩′‖

𝑬′⊥ = 𝜸 𝑬⊥ + 𝒖 ⋏ 𝑩⊥ 𝑩′⊥ = 𝜸 𝑩⊥ −
𝟏

𝒄𝟐 𝒖 ⋏ 𝑬⊥ 𝑬⊥ = 𝜸 𝑬′⊥ − 𝒖 ⋏ 𝑩′⊥ 𝑩⊥ = 𝜸 𝑩′⊥ +
𝟏

𝒄𝟐 𝒖 ⋏ 𝑬′⊥

Implications of the invariance of Maxwell’s equations under L.T



Four-vector charge-current
We define the density of a group of point charges 𝑸 as the quotient

charge/volume:

𝝆 =
𝒅𝑸

𝒅𝑽

Now, if we consider the volume of a cube with edge 𝒅𝒍. Thus, the

previous expression becomes (𝑽 = 𝒅𝒙 × 𝒅𝒚 × 𝒅𝒛 = 𝒍𝟑):

𝝆 =
𝒅𝑸

𝒅𝒙. 𝒅𝒚. 𝒅𝒛
=

𝒅𝑸

𝒅𝒍𝟑

If this group of charge will move with a given velocity according the direction 𝑶𝑿, then we could define

an electrical current, even a current density:

𝒊 =
𝒅𝑸

𝒅𝒕
=

𝒅𝑽

𝒅𝑽

𝒅𝑸

𝒅𝒕
=

𝒅𝑸

𝒅𝑽

𝒅𝑽

𝒅𝒕
= 𝝆

𝒅𝒙

𝒅𝒕
𝒅𝒚. 𝒅𝒛 = 𝝆𝒅𝑺𝒗 →

𝒅𝒊

𝒅𝑺
= 𝒋 = 𝝆. 𝒗 → Ԧ𝒋 = 𝝆𝒗

𝒙

𝒚

𝒛

𝑑𝑥

𝑑y

𝑑𝑧



Four-vector charge-current

How both quantities 𝝆 et Ԧ𝒋 will transform in special relativity?

To assess, we consider a volume distribution of charge defined in rest within a frame (𝑹′)

moving with respect to another stationary frame (𝑹) with a velocity 𝒖 along 𝒙 − 𝒂𝒙𝒊𝒔.

𝒙

𝒚

𝒛

𝑑𝑥

𝑑y

𝑑𝑧

𝑻. 𝑳: (𝑺′ 𝑺)

𝑑𝑥 =
𝑑𝑥′

𝛾
= 𝑑𝑥′ 1 − ൗ𝑢2

𝑐2

𝑑𝑦 = 𝑑𝑦′

𝑑𝑧 = 𝑑𝑧′

𝒅𝑽 = 𝒅𝒙. 𝒅𝒚. 𝒅𝒛 = 𝒅𝒙′. 𝒅𝒚′. 𝒅𝒛′ 𝟏 − ൗ𝒖𝟐

𝒄𝟐 = 𝒅𝑽′ 𝟏 − ൗ𝒖𝟐

𝒄𝟐

𝒙′

𝒚′

𝒛′

𝑑𝑥′

𝑑y′

𝑑𝑧′

𝒖



Four-vector charge-current

Let’s recall that the proper length is defined with respect to the moving frame (𝑹′), such as:

𝝆𝟎 =
𝒅𝑸

𝒅𝑽′

Thus, the charge density in the frame (𝑹) could be deduced as:

𝝆𝟎 =
𝒅𝑸

𝒅𝑽′
= 𝝆′ =

𝒅𝑸

𝒅𝑽/ 𝟏 − ൗ𝒖𝟐

𝒄𝟐

=
𝒅𝑸

𝒅𝑽
𝟏 − ൗ𝒖𝟐

𝒄𝟐 = 𝝆 𝟏 − ൗ𝒖𝟐

𝒄𝟐

𝝆 =
𝝆𝟎

𝟏 − ൗ𝒖𝟐

𝒄𝟐

= 𝜸𝝆𝟎



Four-vector charge-current

With respect to (𝑺) this charge density is moving with a velocity 𝒖, implying a current density:

Ԧ𝒋 = 𝝆𝒖 =
𝝆𝟎𝒖

𝟏 − ൗ𝒖𝟐

𝒄𝟐

In a general case, where we have: 𝒖 = 𝒖𝒙𝒆𝒙 + 𝒖𝒚𝒆𝒚 + 𝒖𝒛𝒆𝒛

Ԧ𝒋 = 𝝆𝒖 =
𝝆𝟎𝒖

𝟏 − ൗ𝒖𝟐

𝒄𝟐

=

𝜸𝝆𝟎𝒖𝒙

𝜸𝝆𝟎𝒖𝒚

𝜸𝝆𝟎𝒖𝒛

With : 𝝆 = 𝜸𝝆𝟎

We remark that:

𝜸 =
𝝆

𝝆𝟎
=

𝒎

𝒎𝟎
→

𝝆 =
𝝆𝟎

𝒎𝟎
𝒎

Ԧ𝒋 =
𝝆𝟎

𝒎𝟎
𝒎𝒖 =

𝝆𝟎

𝒎𝟎
𝒑

𝝆𝒄𝟐 =
𝝆𝟎

𝒎𝟎
𝒎𝒄𝟐

Ԧ𝒋𝒄 =
𝝆𝟎

𝒎𝟎
𝒑𝒄

→ Ƹ𝒋 =
Ԧ𝒋

𝝆𝒄



Four-vector charge-current

Therefore, by analogy we can define a four-vector charge-current:

Ƹ𝒋 =
Ԧ𝒋

𝝆𝒄

With an invariant measure:

Ƹ𝒋𝟐 = Ԧ𝒋𝟐 − 𝝆𝟐𝒄𝟐 =
𝝆𝟎

𝒎𝟎

𝟐

𝒑𝟐 − 𝒎𝟐𝒄𝟐 ×
𝒄𝟐

𝒄𝟐
=

𝝆𝟎

𝒎𝟎

𝟐
𝒑𝟐𝒄𝟐 − 𝒎𝟐𝒄𝟒

𝒄𝟐
=

𝝆𝟎

𝒎𝟎

𝟐
−𝒎𝟎

𝟐𝒄𝟒

𝒄𝟐
= −𝝆𝟎

𝟐𝒄𝟐 = 𝑪𝒕𝒆

Quadrivecteur Ƹ𝒋

𝑻. 𝑳: 𝑺 → 𝑺′ 𝑻. 𝑳: 𝑺′ → 𝑺

𝒋′𝒙 = 𝜸 𝒋𝒙 − 𝝆𝒖 𝒋𝒙 = 𝜸 𝒋′𝒙 + 𝝆′𝒖

𝒋′𝒚 = 𝒋𝒚 𝒋𝒚 = 𝒋′𝒚

𝒋′
𝒛

= 𝒋𝒛 𝒋𝒛 = 𝒋′𝒛

𝝆′ = 𝜸 𝝆 − 𝒖. 𝒋𝒙/𝒄𝟐 𝝆 = 𝜸 𝝆′ + 𝒖. 𝒋′𝒙/𝒄𝟐

Thus, both quantities 𝝆 and Ԧ𝒋 will

transform similarly from a frame to

another, by obeying similar L.T of

those of four-vector momentum.
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