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Chapter 03: Relativistic dynamics

▪ Reminder: Dynamical quantities in classical mechanics

▪ The mass variation

▪ The Momentum four-vector andMass-Energy equivalence

▪ Dynamics of a massive particle

▪ Transformations of Momentum 4-vector

▪ Applications



Dynamical quantities in classical mechanics

Let’s recall the different dynamical quantities in the classical mechanics (Newton

Mechanics):

▪ The momentum (impulsion): 𝒑 𝒌𝒈. 𝒎. 𝒔−𝟏 = 𝒎𝒗

▪ The force: 𝒇 𝑵 =
𝒅

𝒅𝒕
𝒑 =

𝒅

𝒅𝒕
𝒎𝒗 =

𝒅𝒎

𝒅𝒕
𝒗 + 𝒎

𝒅𝒗

𝒅𝒕
= 𝒎

𝒅𝒗

𝒅𝒕
= 𝒎𝒂 (𝒎 = 𝑪𝒕𝒆)

▪ Kinetic energy: 𝑻 𝑱 =
𝟏

𝟐
𝒎𝒗𝟐 =

𝒑𝟐

𝟐𝒎

▪ Kinetic moment: 𝑳 = 𝒓 ⋏ 𝒑 = 𝒎 𝒓 ⋏ 𝒗



Some quantities are conserved (under given conditions):

❑Conservation of momentum:

෍

𝒊

𝒑𝒊 = ෍

𝒇

𝒑𝒇

❑ Conservation of kinetic energy (elastic collisions):

෍

𝒊

𝑻𝒊 = ෍

𝒇

𝑻𝒇

❑ Conservation of total energy:

෍

𝒊

𝑬𝒊
𝒕𝒐𝒕 = ෍

𝒇

𝑬𝒇
𝒕𝒐𝒕

Dynamical quantities in classical mechanics



The mass variation 

One of the important consequence of the theory of special relativity is the dependance of the

mass particle on its own velocity.

To illustrate this dependance, let’s consider in a stationary frame (R), a binary collision between

two particles of identical masses at rest (𝒎𝑨 = 𝒎𝑩), both animated with same speed in

opposite directions (𝒗𝑨 = −𝒗𝑩 = 𝒖). This collision will produce an output particle of a mass 𝑴.

𝑶 𝒙

𝑹

𝒚

𝒗𝑨
𝒎𝑨 𝒎𝑩

𝒗𝑩𝑴

𝒗𝑴 = 𝟎



In other hand, let’s see how a moving observer 𝑶’ related to the particle 𝑩 (frame 𝑹′) will

consider this collision (𝒎′𝑩 = 𝒎𝟎):

Before impact: 𝒎′𝑨𝒗′𝑨 + 𝒎′𝑩𝒗′𝑩 = 𝒎′𝑨𝒗′𝑨

After impact: 𝑴′𝒗′𝑴 = 𝒎′𝑨 + 𝒎′𝑩 𝒖 = 𝒎′𝑨 + 𝒎𝟎 𝒖

The conservation of the momentum implies: 𝒎′𝑨𝒗′𝑨 = 𝒎′𝑨 + 𝒎𝟎 𝒖

𝑶′ 𝒙’

𝑹′

𝒚′

𝒗′𝑨𝒎𝑨

−𝒖

𝒎𝑩

𝒗′𝑩 = 𝟎

𝑴
𝒖

The mass variation 



Besides that, we know that 𝒗′𝑨 in the frame 𝑹’ is given with velocity transformation

law (T.L):

𝒗′𝒙 =
𝒗𝒙 − 𝒖

𝟏 − ൗ
𝒗𝒙𝒖

𝒄𝟐

with : 𝒗′𝒙 = 𝒗′𝑨; 𝒗𝒙 = 𝒗𝑨 = 𝒖

We obtain :

𝒗′𝑨 =
𝒖 − (−𝒖)

𝟏 − ൗ𝒖(−𝒖)
𝒄𝟐

=
𝟐𝒖

𝟏 + ൗ𝒖𝟐

𝒄𝟐

The mass variation 



Thus, the following equation :
𝒎′𝑨𝒗′𝑨 = 𝒎′𝑨 + 𝒎𝟎 𝒖

Could be rewritten as (after doing projection):

𝒎′𝑨

𝟐𝒖

𝟏 + ൗ𝒖𝟐

𝒄𝟐

= 𝒎′𝑨 + 𝒎𝟎 𝒖 → 𝒎′𝑨 𝟐𝒖 = 𝒎′𝑨 + 𝒎𝟎 𝒖 𝟏 + ൗ𝒖𝟐

𝒄𝟐

Then, we could obtain:

𝒎′𝑨𝑼 𝟏 − ൗ𝒖𝟐

𝒄𝟐 = 𝒎𝟎𝑼 𝟏 + ൗ𝒖𝟐

𝒄𝟐

Which leads to the following relevant result:

𝒎′𝑨 = 𝒎𝟎

𝟏 + ൗ𝒖𝟐

𝒄𝟐

𝟏 − ൗ𝒖𝟐

𝒄𝟐

The mass variation 



By using the definition of 𝒗′𝑨 = 𝒗′ =
𝟐𝒖

𝟏+ ൗ𝒖𝟐

𝒄𝟐

, we could easily demonstrate that:

𝟏 + ൗ𝒖𝟐

𝒄𝟐

𝟏 − ൗ𝒖𝟐

𝒄𝟐

=
𝟏

𝟏 − ൗ𝒗′𝟐

𝒄𝟐

This implies that is possible to link the mass of the particle with its mass in rest (𝑹’), and

its own velocity measured with respect to another frame (𝑹):

𝒎′𝑨 = 𝒎𝟎

𝟏 + ൗ𝑼𝟐

𝒄𝟐

𝟏 − ൗ𝑼𝟐

𝒄𝟐

=
𝒎𝟎

𝟏 − ൗ𝒗𝟐

𝒄𝟐

The mass variation 



As main result, in general way, a particle with a rest mass 𝒎𝟎, moving with a velocity 𝒗

will see its own mass increase according to the relation:

𝒎 𝒗 = 𝒎𝟎

𝟏

𝟏 − ൗ𝒗𝟐

𝒄𝟐

= 𝒎𝟎

𝟏

𝟏 − 𝜷𝟐
= 𝜸. 𝒎𝟎

The mass variation 

As another implicit consequence, we are brought to redefine the momentum (impulsion) as:

𝒑 = 𝒎. 𝒗 = 𝜸𝒎𝟎𝒗 =
𝒎𝟎𝒗

𝟏 − 𝜷𝟐
; 𝒑 ≠ 𝒎𝟎𝒗



Bucherer experiment (1908):

In this experiment Alfred Bucherer measured the quotient 𝑒/𝑚 (similarly to the experiment of J.J.
Thomson) as a function of the velocity of the 𝛽−particle emitted by a radioactive source. A
velocity selector allows to slow or to accelerate the emitted electrons in the aim to make them
reach a given speed at the end of their travel. With this final speed, they will enter a space in the
presence of an intense magnetic field, perpendicular to the electron’s trajectory.

The mass variation 



The Momentum four-vector and Mass-Energy equivalence

Four-vector momentum-energy:

Reconsider the mass expression as a function of velocity:

𝒎 = 𝒎𝟎

𝟏

𝟏 − 𝜷𝟐

Let’s rewrite this expression by taking the square of the same expression:

𝒎𝟐 𝟏 − ൗ𝒗𝟐

𝒄𝟐 = 𝒎𝟎
𝟐 → 𝒎𝟐 𝒄𝟐 − 𝒗𝟐 = 𝒎𝟎

𝟐𝒄𝟐 𝒎𝟐𝒄𝟐 − 𝒎𝟐𝒗𝟐 = 𝒎𝟎
𝟐𝒄𝟐

Knowing that by definition: 𝒑 = 𝒎𝒗 and multiplying by 𝒄𝟐 :

𝒎𝟐𝒄𝟒 = 𝒑𝟐𝒄𝟐 + 𝒎𝟎
𝟐𝒄𝟒 𝑬𝟐 = 𝒑𝟐𝒄𝟐 + 𝑬𝟎

𝟐

By identification, we get :
𝒑𝒄 = 𝒎𝒗𝒄: energy equivalence of momentum

𝑬𝟎 = 𝒎𝟎𝒄𝟐: rest energy

𝑬 = 𝒎𝒄𝟐: total energy of the particle 𝑬𝟎 = 𝒎𝟎𝒄𝟐

𝒑𝒄



Four-vector momentum-energy:

In fact, the previous result is equivalent to define a 4-vector of momentum (momentum-energy),

from the 4-vector of velocity:

ෝ𝒑 = 𝒎𝟎
෡𝑽 = 𝒎𝟎. 𝜸

𝒗𝒙
𝒗𝒚

𝒗𝒛
𝒄

= 𝒎

𝒗𝒙
𝒗𝒚

𝒗𝒛
𝒄

=

𝒎𝒗𝒙
𝒎𝒗𝒚

𝒎𝒗𝒛
𝒎𝒄

≡ 𝒑, 𝒎𝒄 ≡ 𝒑,
𝑬

𝒄

The measure (the norm) of this four-vector is given by :

ෝ𝒑𝟐 = 𝒎𝟎
𝟐෡𝑽𝟐 = 𝒎𝟐𝒗𝟐 − 𝒎𝟐𝒄𝟐 = −𝒎𝟎

𝟐𝒄𝟐 𝒎𝟐𝒄𝟐 − 𝒎𝟐𝒗𝟐 = 𝒎𝟎
𝟐𝒄𝟐

In a simple way, and for a particle with a rest mass 𝒎𝟎 = 𝑪𝒕𝒆, the previous results, inform us by

the invariance of such quantity (momentum-energy):

𝑬𝟐 − 𝒑𝟐𝒄𝟐 = 𝒎𝟎
𝟐𝒄𝟒 = 𝑪𝒕𝒆

The Momentum four-vector and Mass-Energy equivalence



Equivalence Mass-Energy:

We note that the dimension of the quantities: 𝒎𝒄𝟐 ≡ 𝒎𝒗𝟐 ≡ 𝒑𝒄 are in well concordance with

energy dimension.

The usual unit in this case, is 𝟏𝒆𝑽 = 𝟏. 𝟔 × 𝟏𝟎−𝟏𝟗𝑱 besides the multiples:

𝑲𝒆𝑽 𝟏𝟎𝟑 , 𝑴𝒆𝑽 𝟏𝟎𝟔 , 𝑮𝒆𝑽 𝟏𝟎𝟗

The definition of the rest energy 𝑬𝟎 = 𝒎𝟎𝒄𝟐, and the total energy 𝑬 = 𝒎𝒄𝟐, show clearly that in

special relativity an equivalence exists between the energy and the mass of particles, through

the factor 𝒄𝟐.

Indeed, it is possible to choose a unit system, such that 𝒄 = 𝟏, which implies 𝑬 = 𝒎

The Momentum four-vector and Mass-Energy equivalence



Dynamics of a massive particle: Force, Work and Kinetic Energy

(A)Concept of force:

We consider the general definition of the force as the time derivation of the momentum:

𝑭 =
𝒅

𝒅𝒕
𝒑

Thus, the expression of the force in special relativity could be written:

𝑭 =
𝒅

𝒅𝒕
𝒎𝒗 = 𝒎

𝒅𝒗

𝒅𝒕
+ 𝒗

𝒅𝒎

𝒅𝒕

This expression will be examined again, after the definition of the force work, and the kinetic

energy expressions.



(B) Concept of work and kinetic energy:

The work of a given force, which exerting on a solid body to displace it from A to B, through a

path 𝒅Ԧ𝒍 is defined as:

𝑾 = න
𝑨

𝑩

𝑭. 𝒅Ԧ𝒍

Dynamics of a massive particle: Force, Work and Kinetic Energy

We will suppose that the displacement is on x-axis only, and this force will take the body from

its rest state (𝒖 = 𝟎) to another state with a non-null velocity (𝒖 = 𝒗):

𝑾 = න
𝒖=𝟎

𝒖=𝒗

𝑭. 𝒅𝒙 = න
𝒖=𝟎

𝒖=𝒗 𝒅

𝒅𝒕
(𝒎𝒖). 𝒅𝒙 = න

𝒖=𝟎

𝒖=𝒗

𝒅(𝒎𝒖).
𝒅𝒙

𝒅𝒕

𝑾 = න
𝒖=𝟎

𝒖=𝒗

𝒅(𝒎𝒖). 𝒖 = න
𝒖=𝟎

𝒖=𝒗

(𝒎𝒅𝒖 + 𝒖𝒅𝒎). 𝒖 = න
𝒖=𝟎

𝒖=𝒗

(𝒎𝒖𝒅𝒖 + 𝒖𝟐𝒅𝒎)



(B) Concept of work and kinetic energy :

Let’s recall also that the body mass verify the following expression of the 4-vector momentum:

𝒎𝟐𝒄𝟐 − 𝒎𝟐𝒖𝟐 = 𝒎𝟎
𝟐𝒄𝟐

By taking the differential of this expression: 𝒅(𝒎𝟐𝒄𝟐 − 𝒎𝟐𝒖𝟐) = 𝒅(𝒎𝟎
𝟐𝒄𝟐) we get:

𝟐𝒎. 𝒅𝒎. 𝒄𝟐 − 𝟐𝒎. 𝒅𝒎. 𝒖𝟐 −𝟐𝒎𝟐. 𝒖. 𝒅𝒖 = 𝟎

Which is equivalent to write (after simplifying by 𝟐𝒎):

𝒅𝒎. 𝒄𝟐 − 𝒅𝒎. 𝒖𝟐 − 𝒎. 𝒖. 𝒅𝒖 = 𝟎 𝒖𝟐𝒅𝒎 + 𝒎. 𝒖. 𝒅𝒖 = 𝒄𝟐𝒅𝒎

We could already identify the integrand appearing in the expression of the work 𝑾:

𝑾 = න
𝒖=𝟎

𝒖=𝒗

(𝒎𝒖𝒅𝒖 + 𝒖𝟐𝒅𝒎) = 𝒄𝟐 න
𝒎𝟎

𝒎

𝒅𝒎 = 𝒄𝟐 𝒎 − 𝒎𝟎 = 𝒎𝒄𝟐 − 𝒎𝟎𝒄𝟐

Dynamics of a massive particle: Force, Work and Kinetic Energy



(B) Concept of work and kinetic energy :

This force work, will allow to the particle to acquire a kinetic energy 𝑻 at the end of its path,

implying that:

𝑾 = 𝑻 = 𝒎𝒄𝟐 − 𝒎𝟎𝒄𝟐 → 𝑻 = 𝑬 − 𝑬𝟎

Or, in other way:
𝑬 = 𝑻 + 𝑬𝟎

Dynamics of a massive particle: Force, Work and Kinetic Energy

By the same, the expression of kinetic energy as a function of mass and velocity:

𝑻 = 𝒎𝟎𝒄𝟐 𝜸 − 𝟏 = 𝒎𝟎𝒄𝟐
𝟏

𝟏 − ൗ𝒗𝟐

𝒄𝟐

− 𝟏

We note that in the case of a particle in rest:

𝒗 = 𝟎 → 𝒎 𝒗 = 𝟎 = 𝒎𝟎 → 𝑻 = 𝒎𝟎𝒄𝟐 − 𝒎𝟎𝒄𝟐 = 𝟎



(B) Concept of work and kinetic energy :

Classical limit:

The relativistic expression of kinetic energy, should allow us to get the classical expression of

kinetic energy: 𝑻𝒄 =
𝟏

𝟐
𝒎𝒗𝟐

Dynamics of a massive particle: Force, Work and Kinetic Energy

Indeed, from the relativistic expression and for 𝒗 ≪ 𝒄, with a judicious Limited Development:

𝑻 = 𝒎𝟎𝒄𝟐
𝟏

𝟏 − ൗ𝒗𝟐

𝒄𝟐

− 𝟏 = 𝒎𝟎𝒄𝟐 𝟏 − ൗ𝒗𝟐

𝒄𝟐

−𝟏/𝟐

− 𝟏 ≅ 𝒎𝟎𝒄𝟐 𝟏 +
𝒗𝟐

𝟐𝒄𝟐 − 𝟏

𝑻 ≡ 𝑻𝒄 =
𝟏

𝟐
𝒎𝟎𝒗𝟐



(B) Concept of work and kinetic energy :

Back to 4-vector momentum-energy

Let’s take both formulas where the total energy of a particle is cited:

𝑬𝟐 = 𝒑𝟐𝒄𝟐 + 𝒎𝟎
𝟐𝒄𝟒; 𝑬 = 𝑻 + 𝒎𝟎𝒄𝟐

This two relationships, allow us to link the momentum to the kinetic energy:

𝑬𝟐 = 𝑻 + 𝒎𝟎𝒄𝟐 𝟐
= 𝑻𝟐 + 𝟐𝑻𝒎𝟎𝒄𝟐 + 𝒎𝟎

𝟐𝒄𝟒 = 𝒑𝟐𝒄𝟐 + 𝒎𝟎
𝟐𝒄𝟒

𝑻𝟐 + 𝟐𝑻𝒎𝟎𝒄𝟐 = 𝒑𝟐𝒄𝟐 → 𝒑 =
𝑻𝟐

𝒎𝟎𝒄𝟐 + 𝟐𝑻 𝒎𝟎

In the case of low velocities (classical) : 𝒗 < 𝒄 → 𝑻 < 𝒎𝟎𝒄𝟐 → 𝑻𝟐 ≪ 𝒎𝟎𝒄𝟐: 𝒑 ≅ 𝟐𝑻𝒎𝟎

Dynamics of a massive particle: Force, Work and Kinetic Energy



(B) Concept of work and kinetic energy :

The triangle momentum-energy

Both relations: 𝑬𝟐 = 𝒑𝟐𝒄𝟐 + 𝒎𝟎
𝟐𝒄𝟒; 𝑬 = 𝑻 + 𝒎𝟎𝒄𝟐

are depicted on the triangle in the opposite figure

(Pythagoras theorem)

It is possible to demonstrate that:

𝒔𝒊𝒏 𝜽 = 𝜷 =
𝒗

𝒄

𝒔𝒊𝒏 𝝋 = 𝟏 − 𝜷𝟐

𝑬𝟎 = 𝒎𝟎𝒄𝟐

𝒑𝒄
𝜽

𝝋

Dynamics of a massive particle: Force, Work and Kinetic Energy



(C) Expression of the force:

Let’s reconsider again the expression of the force:

𝑭 =
𝒅

𝒅𝒕
𝒎𝒗 = 𝒎

𝒅𝒗

𝒅𝒕
+ 𝒗

𝒅𝒎

𝒅𝒕

To calculate the term
𝒅𝒎

𝒅𝒕
, we use the definition of total energy:

𝑬 = 𝒎𝒄𝟐 𝒎 =
𝑬

𝒄𝟐 →
𝒅𝒎

𝒅𝒕
=

𝟏

𝒄𝟐

𝒅𝑬

𝒅𝒕
=

𝟏

𝒄𝟐

𝒅 𝑻 + 𝒎𝟎𝒄𝟐

𝒅𝒕
=

𝟏

𝒄𝟐

𝒅𝑻

𝒅𝒕

By recalling that:

𝑾 = 𝑻 = න 𝑭. 𝒅Ԧ𝒍 → 𝒅𝑻 = 𝑭. 𝒅Ԧ𝒍 →
𝒅𝑻

𝒅𝒕
= 𝑭

𝒅Ԧ𝒍

𝒅𝒕
= 𝑭. 𝒗

We could write:
𝒅𝒎

𝒅𝒕
=

𝟏

𝒄𝟐

𝒅𝑻

𝒅𝒕
=

𝟏

𝒄𝟐 𝑭. 𝒗

Dynamics of a massive particle: Force, Work and Kinetic Energy



(C) Expression of the force :

By replacing
𝒅𝒎

𝒅𝒕
=

𝟏

𝒄𝟐 𝑭. 𝒗 in the expression of the force:

𝑭 =
𝒅

𝒅𝒕
𝒎𝒗 = 𝒎

𝒅𝒗

𝒅𝒕
+ 𝒗

𝒅𝒎

𝒅𝒕
= 𝒎

𝒅𝒗

𝒅𝒕
+ 𝒗

𝑭. 𝒗

𝒄𝟐

Since the definition of acceleration is 𝒂 = ൗ𝒅𝒗
𝒅𝒕 the relativistic expression of the second

Newton’s principle will become:

𝑭 = 𝒎𝒂 + 𝒗
𝑭. 𝒗

𝒄𝟐

Thus, the following expression inform us that 𝒂 in general, is no more parallel to 𝑭:

𝒂 =
𝑭

𝒎
− 𝒗

𝑭. 𝒗

𝒎𝒄𝟐

Dynamics of a massive particle: Force, Work and Kinetic Energy



Transformations of 4-vector Momentum

The four-vector ෝ𝒑:

Consider the 4-vector momentum-energy defined by its four components in steady frame (𝑹):

𝒑𝒙 = 𝒎𝒗𝒙 =
𝒎𝟎𝒗𝒙

𝟏 − ൗ𝒗𝟐

𝒄𝟐

; 𝒑𝒚 =
𝒎𝟎𝒗𝒚

𝟏 − ൗ𝒗𝟐

𝒄𝟐

; 𝒑𝒛 =
𝒎𝟎𝒗𝒛

𝟏 − ൗ𝒗𝟐

𝒄𝟐

; 𝑬 =
𝒎𝟎𝒄𝟐

𝟏 − ൗ𝒗𝟐

𝒄𝟐

In another frame 𝑹’ moving along-x-axis with a velocity u with respect of (𝑹) :

𝒑′𝒙 = 𝒎′𝒗′
𝒙 =

𝒎𝟎𝒗′
𝒙

𝟏 − ൗ𝒗′𝟐

𝒄𝟐

; 𝒑′
𝒚 =

𝒎𝟎𝒗′
𝒚

𝟏 − ൗ𝒗′𝟐

𝒄𝟐

; 𝒑′
𝒛 =

𝒎𝟎𝒗′
𝒛

𝟏 − ൗ𝒗′𝟐

𝒄𝟐

; 𝑬′ =
𝒎𝟎𝒄′𝟐

𝟏 − ൗ𝒗′𝟐

𝒄𝟐

Knowing that the L.T for velocities (from R to R’) are given in this case by:

𝒗𝒙 =
𝒗′𝒙 + 𝒖

𝟏 + ൗ
𝒗𝒙𝒖

𝒄𝟐

; 𝒗𝒚 =
𝒗′𝒚 𝟏 − ൗ𝒖𝟐

𝒄𝟐

𝟏 + ൗ𝒗′𝒙𝒖
𝒄𝟐

; 𝒗𝒛 =
𝒗′𝒛 𝟏 − ൗ𝒖𝟐

𝒄𝟐

𝟏 + ൗ𝒗′𝒙𝒖
𝒄𝟐



Transformations of 4-vector Momentum

The four-vector ෝ𝒑:

Consider the 4-vector momentum-energy defined by its four components in steady frame (𝑹):

𝒑𝒙 = 𝒎𝒗𝒙 =
𝒎𝟎𝒗𝒙

𝟏 − ൗ𝒗𝟐

𝒄𝟐

; 𝒑𝒚 =
𝒎𝟎𝒗𝒚

𝟏 − ൗ𝒗𝟐

𝒄𝟐

; 𝒑𝒛 =
𝒎𝟎𝒗𝒛

𝟏 − ൗ𝒗𝟐

𝒄𝟐

; 𝑬 =
𝒎𝟎𝒄𝟐

𝟏 − ൗ𝒗𝟐

𝒄𝟐

In another frame 𝑹’ moving along-x-axis with a velocity u with respect of (𝑹) :

𝒑′𝒙 = 𝒎′𝒗′
𝒙 =

𝒎𝟎𝒗′
𝒙

𝟏 − ൗ𝒗′𝟐

𝒄𝟐

; 𝒑′
𝒚 =

𝒎𝟎𝒗′
𝒚

𝟏 − ൗ𝒗′𝟐

𝒄𝟐

; 𝒑′
𝒛 =

𝒎𝟎𝒗′
𝒛

𝟏 − ൗ𝒗′𝟐

𝒄𝟐

; 𝑬′ =
𝒎𝟎𝒄′𝟐

𝟏 − ൗ𝒗′𝟐

𝒄𝟐

Knowing that the L.T for velocities (from R to R’) are given in this case by:

𝒗′𝒙 =
𝒗𝒙 − 𝒖

𝟏 − ൗ
𝒗𝒙𝒖

𝒄𝟐

; 𝒗′𝒚 =
𝒗𝒚 𝟏 − ൗ𝒖𝟐

𝒄𝟐

𝟏 − ൗ
𝒗𝒙𝒖

𝒄𝟐

; 𝒗′𝒛 =
𝒗𝒛 𝟏 − ൗ𝒖𝟐

𝒄𝟐

𝟏 − ൗ
𝒗𝒙𝒖

𝒄𝟐



The four-vector ෝ𝒑:

Initially, to make it simple, let’s consider a velocity with only both components x and y, which

implies that in each frame one can write: 𝒗𝟐 = 𝒗𝒙
𝟐 + 𝒗𝒚

𝟐 and 𝒗′𝟐 = 𝒗′𝒙
𝟐 + 𝒗′𝒚

𝟐

By applying both L.T: 𝒗𝒙 =
𝒗′𝒙+𝒖

𝟏+ ൗ
𝒗′𝒙𝒖

𝒄𝟐

; 𝒗𝒚 =
𝒗′𝒚 𝟏− ൗ𝒖𝟐

𝒄𝟐

𝟏+ ൗ
𝒗′𝒙𝒖

𝒄𝟐

It is possible to show that: 𝒄𝟐 − 𝒗𝟐 =
𝒄𝟐 𝒄𝟐−𝒗′𝟐 𝒄𝟐−𝒖𝟐

𝒄𝟐+𝒗′𝒙𝒖
𝟐

If we divide throughout by 𝒄𝟐 , invert, and take the square root, we can find:

𝟏

𝟏 − ൗ𝒗𝟐

𝒄𝟐

=
𝟏 + ൗ𝒗′𝒙𝒖

𝒄𝟐

𝟏 − ൗ𝒗′𝟐

𝒄𝟐 𝟏 − ൗ𝒖𝟐

𝒄𝟐

𝟏

𝟏 − ൗ𝒗𝟐

𝒄𝟐 𝟏 + ൗ𝒗′𝒙𝒖
𝒄𝟐

=
𝟏

𝟏 − ൗ𝒗′𝟐

𝒄𝟐 𝟏 − ൗ𝒖𝟐

𝒄𝟐

Transformations of 4-vector Momentum

𝜸

𝟏 + ൗ𝒗′𝒙𝒖
𝒄𝟐

= 𝜸′𝜞;  𝜞 =
𝟏

𝟏 − ൗ𝒖𝟐

𝒄𝟐



The four-vector ෝ𝒑:

Consequently, starting from the expression 𝒑𝒙 :

𝒑𝒙 =
𝒎𝟎

𝟏 − ൗ𝒗𝟐

𝒄𝟐

𝒗′𝒙 + 𝒖

𝟏 + ൗ𝒗′𝒙𝒖
𝒄𝟐

=
𝒎𝟎 𝒗′𝒙 + 𝒖

𝟏 − ൗ𝒗′𝟐

𝒄𝟐 𝟏 − ൗ𝒖𝟐

𝒄𝟐

= 𝜞 𝒎′𝒗′
𝒙 + 𝒎′𝒖 = 𝜞 𝒑′𝒙 + 𝒖

𝑬′

𝒄𝟐

𝒑𝒚 =
𝒎𝟎𝒗𝒚

𝟏 − ൗ𝒗𝟐

𝒄𝟐

=
𝒎𝟎

𝟏 − ൗ𝒗𝟐

𝒄𝟐

𝒗′𝒚 𝟏 − ൗ𝒖𝟐

𝒄𝟐

𝟏 + ൗ𝒗′𝒙𝒖
𝒄𝟐

=
𝒎𝟎𝒗′𝒚 𝟏 − ൗ𝒖𝟐

𝒄𝟐

𝟏 − ൗ𝒗′𝟐

𝒄𝟐 𝟏 − ൗ𝒖𝟐

𝒄𝟐

=
𝒎𝟎𝒗′𝒚

𝟏 − ൗ𝒗′𝟐

𝒄𝟐

= 𝒑′𝒚

In the same way, one can find: 𝒑𝒛 = 𝒑′𝒛 . Also, we have:

𝑬 =
𝒎𝟎𝒄𝟐

𝟏 − ൗ𝒗𝟐

𝒄𝟐

= 𝜞𝒎′𝒄𝟐 𝟏 + ൗ
𝒗𝒙𝒖

𝒄𝟐 = 𝜞 𝑬′ + 𝒖. 𝒑′𝒙

Transformations of 4-vector Momentum



Four-vector ෝ𝒑 Lorentz Transformations

𝑻. 𝑳: 𝑺 → 𝑺′ 𝑻. 𝑳: 𝑺′ → 𝑺

𝒑′𝒙 = 𝜞 𝒑𝒙 − 𝒖
𝑬

𝒄𝟐
𝒑𝒙 = 𝜞 𝒑′𝒙 + 𝒖

𝑬′

𝒄𝟐

𝒑′𝒚 = 𝒑𝒚 𝒑𝒚 = 𝒑′𝒚

𝒑′
𝒛 = 𝒑𝒛 𝒑𝒛 = 𝒑′𝒛

𝑬′ = 𝜞 𝑬 − 𝒖. 𝒑𝒙 𝑬 = 𝜞 𝑬′ + 𝒖. 𝒑′𝒙

Transformations of 4-vector Momentum 𝜞 =
𝟏

𝟏 − ൗ𝒖𝟐

𝒄𝟐



Applications

(a) Massless particles: Photons

The particular case of photon where 𝒎𝟎 = 𝒎𝒑𝒉 = 𝟎, knowing that the photon energy is given

as a function of its frequency (wave length) by the Einstein’s relation: 𝑬 = 𝒉ν =
𝒉𝒄



This will bring us to redefine an equivalent of the photon momentum:

𝒑 =
𝑬

𝒄
=

𝒉ν

𝒄
=

𝒉


=

𝒉

𝟐𝝅

𝟐𝝅


= ħ𝒌 → 𝒑 = ħ𝒌

The photonic four-vector could be then defined as:

ෝ𝒑𝒑𝒉 =

ħ𝒌
𝟎
𝟎

𝒉𝒗/𝒄

=
𝒑

𝒉ν
𝒄

≡ 𝒑,
𝒉ν

𝒄



(b) Compton Effect :

-
𝜽

Before interaction (electron at rest):

ෝ𝒑𝒑𝒉𝟏 =
𝒑𝒑𝒉𝟏

𝒉ν𝟏
𝒄

; ෝ𝒑𝒆𝟏 =
𝟎

𝑬𝒆𝟏/𝒄

After interaction:

ෝ𝒑𝒑𝒉𝟐 =
𝒑𝒑𝒉𝟐

𝒉ν𝟐
𝒄

; ෝ𝒑𝒆𝟐 =
𝒑𝒆𝟐

𝑬𝒆𝟐/𝒄

The invariance of the total four-vector (electron + photon):

ෝ𝒑𝒑𝒉𝟏 + ෝ𝒑𝒆𝟏 = ෝ𝒑𝒑𝒉𝟐 + ෝ𝒑𝒆𝟏 ෝ𝒑𝒑𝒉𝟏 + ෝ𝒑𝒆𝟏 − ෝ𝒑𝒑𝒉𝟐 = ෝ𝒑𝒆𝟐

And by squaring both sides:

ෝ𝒑𝒑𝒉𝟏 + ෝ𝒑𝒆𝟏 − ෝ𝒑𝒑𝒉𝟐

𝟐
= (ෝ𝒑𝒆𝟐)𝟐

Applications



𝜽

We know that: (ෝ𝒑𝒆𝟏)𝟐 = (ෝ𝒑𝒆𝟐)𝟐 = 𝒎𝒆
𝟐𝒄𝟒; (ෝ𝒑𝒑𝒉𝟏)𝟐 = (ෝ𝒑𝒑𝒉𝟐)𝟐 = 𝟎

Thus, we obtain:

(ෝ𝒑𝒆𝟏)𝟐 + (ෝ𝒑𝒑𝒉𝟏)𝟐 + (ෝ𝒑𝒑𝒉𝟐)𝟐 + 𝟐ෝ𝒑𝒑𝒉𝟏. ෝ𝒑𝒆𝟏 − 𝟐ෝ𝒑𝒑𝒉𝟏. ෝ𝒑𝒑𝒉𝟐 − 𝟐ෝ𝒑𝒆𝟏. ෝ𝒑𝒑𝒉𝟐 = (ෝ𝒑𝒆𝟐)𝟐

𝟐ෝ𝒑𝒑𝒉𝟏. ෝ𝒑𝒆𝟏 − 𝟐ෝ𝒑𝒑𝒉𝟏. ෝ𝒑𝒑𝒉𝟐 − 𝟐ෝ𝒑𝒆𝟏. ෝ𝒑𝒑𝒉𝟐 = 𝟎

Working on the dot products:

ෝ𝒑𝒑𝒉𝟏. ෝ𝒑𝒆𝟏 =
𝒑𝒑𝒉𝟏

𝒉ν𝟏
𝒄

.
𝟎

𝒎𝒆𝒄
= −𝒎𝒆𝒉ν𝟏; ෝ𝒑𝒆𝟏. ෝ𝒑𝒑𝒉𝟐 =

𝟎

𝒎𝒆𝒄
.

𝒑𝒑𝒉𝟐

𝒉ν𝟐
𝒄

= −𝒎𝒆𝒉ν𝟐

ෝ𝒑𝒑𝒉𝟏. ෝ𝒑𝒑𝒉𝟐 =
𝒑𝒑𝒉𝟏

𝒉ν𝟏
𝒄

.
𝒑𝒑𝒉𝟐

𝒉ν𝟐
𝒄

= 𝒑𝒑𝒉𝟏. 𝒑𝒑𝒉𝟐 −
𝒉ν𝟏

𝒄

𝒉ν𝟐

𝒄
=

𝒉ν𝟏

𝒄

𝒉ν𝟐

𝒄
𝒄𝒐𝒔 𝝋 − 𝟏

Applications
(b) Compton Effect :



𝜽

We insert the former results of dot products in the equation:

ෝ𝒑𝒑𝒉𝟏. ෝ𝒑𝒆𝟏 − ෝ𝒑𝒑𝒉𝟏. ෝ𝒑𝒑𝒉𝟐 − ෝ𝒑𝒆𝟏. ෝ𝒑𝒑𝒉𝟐 = 𝟎

We obtain the wellknown relation of Compton scattering:

−𝒎𝒆𝒉ν𝟏 + 𝒎𝒆𝒉ν𝟐 −
𝒉ν𝟏

𝒄

𝒉ν𝟐

𝒄
𝒄𝒐𝒔 𝝋 − 𝟏 = 𝟎

𝒉ν𝟏

𝒄

𝒉ν𝟐

𝒄
𝟏 − 𝒄𝒐𝒔 𝝋 = 𝒎𝒆 𝒉ν𝟏 − 𝒉ν𝟐

𝟏

𝒉ν𝟐
−

𝟏

𝒉ν𝟏
=

𝟏

𝒎𝒆𝒄𝟐 𝟏 − 𝒄𝒐𝒔 𝝋

In terms of wave length the same relation could be written:

𝟐 − 𝟏 =
𝒉𝒄

𝒎𝒆𝒄𝟐 𝟏 − 𝒄𝒐𝒔 𝝋 ∆ = 𝟐𝒄𝒔𝒊𝒏𝟐 𝝋/𝟐 ; 𝒄 =
𝒉𝒄

𝒎𝒆𝒄𝟐

Applications

(b) Compton Effect :



(c) Nuclear binding energy:

• The rest mass of a given nucleus made from 𝒁 protons and 𝑵 neutrons, is given by the mass
number𝑨, which could be grossly considered as the sum of rest masses of this constituents:

𝑴𝒕𝒉 = 𝒁𝒎𝒑 + 𝑵𝒎𝒏

• But experimentally speaking, the rest mass of the same nucleus is given by a measured value:

𝑴𝒆𝒙𝒑 = 𝑴𝑵 which is slightly different from the theoretical one 𝑴𝒕𝒉 = 𝒁𝒎𝒑 + 𝑵𝒎𝒏

• The existing difference between this two values ∆𝑴 = 𝑴𝒕𝒉 − 𝑴𝒆𝒙𝒑 = 𝒁𝒎𝒑 + 𝑵𝒎𝒏 − 𝑴𝑵 is

called as “Mass excess”, and its equivalent in energy :

𝑬𝑩 𝒁, 𝑵 = ∆𝑴 𝒁, 𝑨 𝒄𝟐[𝑴𝒆𝑽]

• This is the nuclear binding energy of the nucleus. It represents the contribution of each nucleon

with an amount of an equivalent energy to preserve the nucleus cohesion and stability.
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(c) Nuclear binding energy :

We can perform the calculation of the average binding energy

per nucleon for any given isotope, since we have the

experimental measure of its rest mass:

ൗ𝑬𝑩
𝑨 =

𝒁𝒎𝒑 + 𝑵𝒎𝒏

𝑨
− 1 𝒄𝟐

Isotope(Z,N) Mass [u.m.a] 𝑬𝑩/𝑨[𝑴𝒆𝑽]

0
1𝑛 1.008665 −

1
1𝐻 1.007825 𝟎

1
2𝐷 2.014102 𝟏. 𝟏𝟏𝟐𝟐𝟎𝟒

2
4𝐻𝑒 4.002603 𝟕. 𝟎𝟕𝟑𝟗𝟗𝟖

6
12𝐶 12.000000 𝟕. 𝟔𝟖𝟎𝟏𝟔𝟖

8
16𝑂 15.994915 𝟕. 𝟗𝟕𝟔𝟐𝟎𝟗

11
23𝑁𝑎 22.989770 𝟖. 𝟏𝟏𝟏𝟒𝟗

13
27𝐴𝑙 26.981538 𝟖. 𝟑𝟑𝟏𝟓𝟗𝟑

26
56𝐹𝑒 55.934942 𝟖. 𝟕𝟗𝟎𝟐𝟕𝟔

29
63𝐶𝑢 62.929601 𝟖. 𝟕𝟓𝟐𝟏𝟏𝟏

47
107𝐴𝑔 106.905093 𝟖. 𝟓𝟓𝟑𝟗𝟏𝟖

79
197𝐴𝑢 196.966552 𝟕. 𝟗𝟏𝟓𝟕𝟕𝟓

82
208𝑃𝑏 207.976636 𝟕. 𝟖𝟔𝟕𝟓𝟔

92
238𝑈 238.050783 𝟕. 𝟓𝟕𝟎𝟏𝟕𝟖

99
252𝐸𝑠 252.082972 𝟕. 𝟒𝟓𝟕𝟑𝟎𝟓

Applications

~𝟑𝟓𝟎𝟎 𝑰𝒔𝒐𝒕𝒐𝒑𝒆𝒔 (𝑫𝒂𝒕𝒂𝟐𝟎𝟐𝟏)



(d) Nuclear fission energy:
The nuclear fission reaction consists of the nucleus scission (heavy nuclei) into two fragments
called Fission Products (FPs) with few emitted neutrons, and gammas:

0
1𝑛 + 92

235𝑈 → 92
236𝑈∗ → 36

92𝐾𝑟 + 56
141𝐵𝑎 + 3𝑛 + 𝑄

Applications

𝑸 = 𝒎𝒏 + 𝑴𝟐𝟑𝟓 𝒄𝟐 − 𝟑𝒎𝒏 + 𝑴𝟗𝟐 + 𝑴𝟏𝟒𝟏 𝒄𝟐

The Q-value is the energy
balance of the fission reaction,
and it is defined by :

𝑸 = ෍

𝒊

𝒎𝒊 𝒄𝟐 − ෍

𝒇

𝒎𝒇𝒄𝟐

Isotope(Z, N) 𝑴𝒊[𝒖. 𝒎. 𝒂]

92
235𝑈 235.043928

36
92𝐾𝑟 91.926173

56
141𝐵𝑎 140.914404

𝑸[𝑴𝒆𝑽] 𝟏𝟕𝟑. 𝟐𝟕𝟕

initial

final



(d) Nuclear fission energy :

Applications

Find the Q-value for each reaction?

𝑚𝑛 1.00866
Q-value [MeV]

𝑀𝑈235 235.0439

𝑀𝑆𝑟90 89.90773

𝑀𝑋𝑒144 143.93894

𝑀𝐵𝑟87 86.92067

𝑀𝐿𝑎146 145.92569

𝑀𝑅𝑏96 95.93413

𝑀𝐶𝑠137 136.90709

𝑀𝑍𝑟97 96.91096

𝑀𝑇𝑒137 136.9256

𝑀𝐾𝑟92 91.92617

𝑀𝐵𝑎141 140.9144



(d) Nuclear fission energy :

Applications

𝑚𝑛 1.00866
Q-value [MeV]

𝑀𝑈235 235.0439

𝑀𝑆𝑟90 89.90773
175.67

𝑀𝑋𝑒144 143.93894

𝑀𝐵𝑟87 86.92067
167.89

𝑀𝐿𝑎146 145.92569

𝑀𝑅𝑏96 95.93413
172.67

𝑀𝐶𝑠137 136.90709

𝑀𝑍𝑟97 96.91096
185.09

𝑀𝑇𝑒137 136.9256

𝑀𝐾𝑟92 91.92617
173.28

𝑀𝐵𝑎141 140.9144



(d) Nuclear fission energy :

Applications

Products Emitted energy [MeV]

Prompt energy (instantaneous) 175 (~87%)

Fission fragments 163

Fission neutrons 5

𝜸 emission 7

Delayed energy (radioactivity) 27 (~13%)

𝜷 decay (electrons) 8

𝒗 emission (neutrinos) 12

𝜸 emission 7

Total 202



(e) Nuclear fusion energy:

Applications

The nuclear fusion reaction, in the contrary of the
fission reaction, consists to merge two nucleus (light
nuclei) to form a new one, and this is accompanied by
a release of energy with few particles like neutrons
and protons:

1
2𝐷 + 1

2𝐷 → 2
3𝐻𝑒 + 0

1𝑛 + 𝑄

Isotope(Z, N) 𝑴𝒊[𝒖. 𝒎. 𝒂]

1
2𝐷 235.043928

2
3𝐻𝑒 91.926173

𝑸[𝑴𝒆𝑽] 𝟑. 𝟐𝟕

𝑸 = 𝟐𝒎𝑫 𝒄𝟐 − 𝒎𝑯𝒆𝟑 + 𝒎𝒏 𝒄𝟐



(e) Nuclear fusion energy :

Applications

The nuclear fusion reaction, in the contrary of the fission reaction, consists to merge two

nucleus (light nuclei) to form a new one, and this is accompanied by a release of energy

with few particles like neutrons and protons:

𝟏
𝟐𝑫 + 𝟏

𝟐𝑫 → 𝟐
𝟑𝑯𝒆 + 𝟎

𝟏𝒏 + 𝑸

𝟏
𝟐𝑫 + 𝟏

𝟐𝑫 → 𝟏
𝟑𝑻 + 𝟏

𝟏𝒑 + 𝑸

𝟏
𝟐𝑫 + 𝟏

𝟑𝑻 → 𝟐
𝟒𝑯𝒆 + 𝟎

𝟏𝒏 + 𝑸

𝟏
𝟐𝑫 + 𝟐

𝟑𝑯𝒆 → 𝟐
𝟒𝑯𝒆 + 𝟏

𝟏𝒑 + 𝑸

Find the Q-value for each reaction?

𝑚𝑛 1.008664

𝑚𝑝 1.007825

𝑚𝐷 2.014101

𝑚𝑇 3.016049

𝑚𝛼 4.002603

𝑚𝐻𝑒3 3.016029



(e) Nuclear fusion energy :

Applications

The nuclear fusion reaction, in the contrary of the fission reaction, consists to merge two

nucleus (light nuclei) to form a new one, and this is accompanied by a release of energy

with few particles like neutrons and protons:

𝟏
𝟐𝑫 + 𝟏

𝟐𝑫 → 𝟐
𝟑𝑯𝒆 𝟎. 𝟖𝟐𝑴𝒆𝑽 + 𝟎

𝟏𝒏 𝟐. 𝟒𝟓𝑴𝒆𝑽 : 𝑸 = 𝟑. 𝟐𝟕𝑴𝒆𝑽

𝟏
𝟐𝑫 + 𝟏

𝟐𝑫 → 𝟏
𝟑𝑻 𝟏. 𝟎𝟏𝑴𝒆𝑽 + 𝟏

𝟏𝒑 𝟑. 𝟎𝟑𝑴𝒆𝑽 : 𝑸 = 𝟒. 𝟎𝟒𝑴𝒆𝑽

𝟏
𝟐𝑫 + 𝟏

𝟑𝑻 → 𝟐
𝟒𝑯𝒆 𝟑. 𝟓𝟐𝑴𝒆𝑽 + 𝟎

𝟏𝒏 𝟏𝟒. 𝟏𝑴𝒆𝑽 : 𝑸 = 𝟏𝟕. 𝟔𝟏𝑴𝒆𝑽

𝟏
𝟐𝑫 + 𝟐

𝟑𝑯𝒆 → 𝟐
𝟒𝑯𝒆 𝟑. 𝟔𝟕𝑴𝒆𝑽 + 𝟏

𝟏𝒑 𝟏𝟒. 𝟕𝑴𝒆𝑽 : 𝑸 = 𝟏𝟖. 𝟑𝟕𝑴𝒆𝑽
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