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Chapter 03: Relativistic dynamics
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Dynamical quantities in classical mechanics

Let’s recall the different dynamical quantities in the classical mechanics (Newton

Mechanics):

* The momentum (impulsion): p|lkg. m.s™1| = mv

= The force: f[N] = if)’ = i(ml_}) = (d—m)?)’ + m(‘;—f) = m(‘;—f) = ma (m = Cte)

= Kinetic energy: T|J]| = %mv =

= Kineticmoment: L =7 AP = m(F A D)



Dynamical quantities in classical mechanics

Some quantities are conserved (under given conditions):

2= .7
i f
d Conservation of kinetic energy (elastic collisions):

{ f
ZE?H — ZE;OL‘
f

(dConservation of momentum:

1 Conservation of total energy:

i



The mass variation

One of the important consequence of the theory of special relativity is the dependance of the

mass particle on its own velocity.

To illustrate this dependance, let’s consider in a stationary frame (R), a binary collision between

two particles of identical masses at rest (m, = mg), both animated with same speed in

opposite directions (v, = —vg = u). This collision will produce an output particle of a mass M.
y A
v Up
e M 8
vy =0
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The mass variation

In other hand, let’s see how a moving observer (0’)related to the particle B (frame R’) will

consider this collision (m'p = m,):

—
| Ad |

Before impaCt: m,A‘l_;,A + m,Bv,B — M 4V »4
After impact: M'v'y; = (m'y + m'g)u = (m'4 + my)u

The conservation of the momentum implies: m',v'y = (m'4, + my)u
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The mass variation

Besides that, we know that v'; in the frame R’ is given with velocity transformation
A

law (T.L):
Vv, — U

(1 - vxu/cz)

!

UV, =

with:v', =v'y; v, =V5=1u

We obtain:

u-— (—u) 2u
'UA = =

(1 _u(-w /Cz) (1+%%/ )




The mass variation

Thus, the following equation :
m'yv'y = (m'y + my)u

Could be rewritten as (after doing projection):

, 2u , , , 2
m', =(mA+m0)u—>mA(2u)=(mA+m0)u(1+u/cz)

Then, we could obtain:
2 2
; _u _ u
m' U (1-%/ ) =moU (1+%/ ,)
Which leads to the following relevant result:
2
u
1+%/

2
1=/,
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m, =my




The mass variation

[ [ ] [ [ 2 [
By using the definitionof v’ = v’ = € ;‘/ i we could easily demonstrate that:
+/ 2
2
u
1+ CZ 1

This implies that is possible to link the mass of the particle with its mass in rest (R’), and

its own velocity measured with respect to another frame (R):
UZ
1+ /CZ . my

_U? B
1 /2 \/1—v2/cz

!

m,=my




The mass variation

As main result, in general way, a particle with a rest mass mg;, moving with a velocity v

will see its own mass increase according to the relation:

m(v) = mg =m,y

As another implicit consequence, we are brought to redefine the momentum (impulsion) as:

—

myv

x (p # myv)



The mass variation

Bucherer experiment (1908):

In this experiment Alfred Bucherer measured the quotient e/m (similarly to the experiment of J.J.
Thomson) as a function of the velocity of the [~ particle emitted by a radioactive source. A
velocity selector allows to slow or to accelerate the emitted electrons in the aim to make them
reach a given speed at the end of their travel. With this final speed, they will enter a space in the
presence of an intense magnetic field, perpendicular to the electron’s trajectory.

Quelle Blenden Schirm
TABLE 3-1 BUCHERER’S RESULTS

/e e/m(= u/rB) in coul/kg J (: c ) in coul/kg B

mo my/1 — u/c? X X| X Xug X X X
(Measured) (Measured) (Computed) ¥ X X X/ X X X
0.3173 1.661 X 10! 1.752 % 101 = """
0.3787 1.630 X 101! 1 761 X 1011 AR, }\ d
0.4281 1.590 x 1011 1.760 x 101! ol ol o
0.5154 1.511 X 101 1.763 x 101!
0.6870 1.283 x 1011 1.767 X 1011 !
- =




The Momentum four-vector and Mass-Energy equivalence

Four-vector momentum-energy:

Reconsider the mass expression as a function of velocity:
1

-

Let’s rewrite this expression by taking the square of the same expression:

m=m,

2
m? (1 -V /cz) = m§ - m?(c? — v?) = mic? o m?c? — m*v? = m§c?

Knowing that by definition: p = mv and multiplying by c? :

m?c* = p%c? + mic* o E? = p*c® + E}

By identification, we get : ,mcq'
pc = mvc: energy equivalence of momentum £°
E, = myc?: rest energy

E = mc?: total energy of the particle

pcC



The Momentum four-vector and Mass-Energy equivalence

Four-vector momentum-energy:

In fact, the previous result is equivalent to define a 4-vector of momentum (momentum-energy),

from the 4-vector of velocity:

Vy Vy muv, E
b= mol = mo.y (;;;) —m (:;g) . (’,ﬁ,’j:) - Gime) = (1)
c C mc

The measure (the norm) of this four-vector is given by :

=2

52 = m2P? = m?v? 2.2 2 .2 2.2 2.2 2.2

v —m“c® = —mgc” © mec — m°v* = mye

In a simple way, and for a particle with a rest mass my = Cte, the previous results, inform us by

the invariance of such quantity (momentum-energy):

E? — p*c? = mjc* = Cte



The Momentum four-vector and Mass-Energy equivalence

Equivalence Mass-Energy:

2 —

We note that the dimension of the quantities: mc? = mv? =

pc are in well concordance with

energy dimension.
The wusual unit in this case, is 1eV =1.6x10"1°] Dbesides the multiples:

KeV(103), MeV(10°),GeV(107)

The definition of the rest energy E, = myc?, and the total energy E = mc?, show clearly that in
special relativity an equivalence exists between the energy and the mass of particles, through

the factor c2.

Indeed, it is possible to choose a unit system, such that ¢ = 1, which implies E = m



Dynamics of a massive particle: Force, Work and Kinetic Energy

(A)Concept of force:

We consider the general definition of the force as the time derivation of the momentum:

- d
F=—(p
7; D)
Thus, the expression of the force in special relativity could be written:
P d (mF) = d17+_,dm
B AR TP T

This expression will be examined again, after the definition of the force work, and the kinetic

energy expressions.



Dynamics of a massive particle: Force, Work and Kinetic Energy

(B) Concept of work and kinetic energy:

The work of a given force, which exerting on a solid body to displace it from A to B, through a
path dl is defined as:

B
W=j F.dl
A

We will suppose that the displacement is on x-axis only, and this force will take the body from

its rest state (u = 0) to another state with a non-null velocity (u = v):

u=v u=v d u=v dx
w =] F.dx =f — (mu).dx =[ d(mu).—
u=0 u=0 dt u=0 dt

u=v u=v u=v
W= f d(mu).u = J (mdu + udm).u = f (mudu + u?dm)

u=0 u=0



Dynamics of a massive particle: Force, Work and Kinetic Energy

(B) Concept of work and kinetic energy :

Let’s recall also that the body mass verify the following expression of the 4-vector momentum:
m?c? — m*u? = mjc?

By taking the differential of this expression: d(m?c? — m?u?) = d(m5c?) we get:

2m.dm.c? = 2m.dm.u* -2m?*.u.du =0

Which is equivalent to write (after simplifying by 2m):

2

dm.c? —dm.u* —m.u.du = 0 & u*dm + m.u.du = c>dm

We could already identify the integrand appearing in the expression of the work W:

u=v m
W= J (mudu + u*dm) = c* j dm = c¢*(m — my) = mc? — myc?
u=0 my



Dynamics of a massive particle: Force, Work and Kinetic Energy
(B) Concept of work and kinetic energy :

This force work, will allow to the particle to acquire a kinetic energy T at the end of its path,
implying that:
W=T=mc*>—-myc>*>T=E—-E,

Or, in other way:
E —_ T + EO

By the same, the expression of kinetic energy as a function of mass and velocity:

1
T = myc*(y — 1) = myc? -1

N

v=0-m@=0)=my>T =myc* —myc* =0

We note that in the case of a particle in rest:




Dynamics of a massive particle: Force, Work and Kinetic Energy

(B) Concept of work and kinetic energy :

Classical limit:

The relativistic expression of kinetic energy, should allow us to get the classical expression of

N 1
kinetic energy: T, = Emv2

Indeed, from the relativistic expression and for v < ¢, with a judicious Limited Development:

1 B 1_ _ mOCZ [(1 B vz/cz)—l/z

17

2

T = myc

2
1%
—1] Em0c2[1+ﬁ_1l

1
T, = Emov

T 2




Dynamics of a massive particle: Force, Work and Kinetic Energy

(B) Concept of work and kinetic energy :

Back to 4-vector momentum-energy

Let’s take both formulas where the total energy of a particle is cited:

E? = p?>c? + m4ct, E = T + myc?
This two relationships, allow us to link the momentum to the kinetic energy:

2
E% = (T + myc?)” = T? + 2Tmyc? + m§c* = p%c? + mict

2 2 2.2 T
T + 2Tmyc” = p“c” »p = > + 2T |my
\ mycC

In the case of low velocities (classical) : v < ¢ > T < myc? - T* K myc®:p = /2Tm,




Dynamics of a massive particle: Force, Work and Kinetic Energy

(B) Concept of work and kinetic energy :

The triangle momentum-enerqy

Both relations: E? = p?c? + mic*; E = T + myc?

are depicted on the triangle in the opposite figure

(Pythagoras theorem)

It is possible to demonstrate that:

%
sme=ﬁ=z

sing =+1-— B2

pC



Dynamics of a massive particle: Force, Work and Kinetic Energy

(C) Expression of the force:

Let’s reconsider again the expression of the force:

- d _ dv _dm
F = a(mv) = mE+vE
To calculate the term ‘;—T, we use the definition of total energy:
e 2 E_dm_1dE_ 1 d(T +moc®) 1dT
c2 dt c?dt c? dt c? dt
By recalling that:
= ~ o dT —dl - _
W=T=fF.dl—>dT:F.dl—>—:F—:F.v
dt dt

We could write:
dm B 1dT B 1

- = - —_F.7v
dt c?2dt c?




Dynamics of a massive particle: Force, Work and Kinetic Energy

(C) Expression of the force :

By replacing C;—m = izi') v in the expression of the force:
Z_ d( 5) — dv_l_ dm dv_l__)(Fv)
—(mv)=m—+v—=m—+7v
dt dt dt dt c?

Since the definition of acceleration is d = 9/,  the relativistic expression of the second

Newton’s principle will become:

L _ _(E)
F=ma+v-—:;
c
Thus, the following expression inform us that a in general, is no more parallel to F:
_F _(Fv
a=—-—7v



Transformations of 4-vector Momentum

The four-vector p:

Consider the 4-vector momentum-energy defined by its four components in steady frame (R):

B . omgy,  mev,  mgv, mgc?
Px = MUy = ;py— Pz = ,E— 2
1_17
J1-7

N (L N [T

In another frame (R’) moving along-x-axis with a velocity u with respect of (R) :

/ / 12
AN SN mov o mOvy N myv , E = mgycC
Px=MV = D, = 'pz_ ) T

12 Y 2 1’2 1'2
0" e 7. 1=
Knowing that the L.T for velocities (from R to R’) are given in this case by:
!/ 2 !/ 2
v, +u vy\/l_u/cz. vz\/l_u/cz

y Vy = 7 y Vg = 7
(1 _|_vxu/c2) (1 "‘vxu/cz) (1 +vxu/cz)

Vy =




Transformations of 4-vector Momentum

The four-vector p:

Consider the 4-vector momentum-energy defined




Transformations of 4-vector Momentum

The four-vector P:

Initially, to make it simple, let’s consider a velocity with only both components x and y, which

2

implies that in each frame one can write: v* = v; + v5 and v'* = v'; + v’}

y
2
Vitu - v’wal_u /cz
/ ’ _ /
(1+7%2)" 7 (187 2) Y . 1
v
CZ(CZ_v,Z)(CZ_uZ) (1 +

(c2 +v1xu)2 -

By applying both L.T: v, =

It is possible to show that: ¢? — v? =

If we divide throughout by c?, invert, and take the square root, we can find:

v, u
1 1+ %7/ 2 1 1
>

[ e (e ) =




Transformations of 4-vector Momentum
The four-vector P:

Consequently, starting from the expression p,, :

m v, +u my(v', +u E'
Py = 0 :}, y = 0V ) =Ir(mv',+m'u)=ro <p’x + uﬁ>
2 x 2 2
-7 e) [, 1
v, [1-u%/ mev', |1 -4/ :
myv, m, y c2 0%y c? mev,
py = = 7 = = = p y

- =77 (047 a) -2, -, 1=

In the same way, one can find: p, = p’,, . Also, we have:

2
E=——"—=rm'c2(1+ %% ;) = I(E' +up’)

-7/




Transformations of 4-vector Momentum r =J

Four-vector p Lorentz Transformations

T.L:S - S’ T.L:S' —> S
Px=T px_uﬁ Px=T px"’“ﬁ
p’y:py py:p’y
p’Z:pz P =D,

E’:['(E_u-px) E=F(E’+u.p’x)




Applications

(a) Massless particles: Photons

The particular case of photon where my = m,,;, = 0, knowing that the photon energy is given

as a function of its frequency (wave length) by the Einstein’s relation: E = hv = %

This will bring us to redefine an equivalent of the photon momentum:

E hv h h 21 b hﬁ
== = - =
P C C A 2T A p

The photonic four-vector could be then defined as:

. hok p _(_ hv

hv/c C



Applications
(b) Compton Effect : 3
Q

Before interaction (electron at rest): G—

~ Pphi B\ _( 0 >

After interaction:

R B Pph2 P Doz
Pph2 = % s Pe2 = E./c

The invariance of the total four-vector (electron + photon):
Pph1 + Pe1 = Pph2 T Pe1 © Ppn1 + Pe1r — Pph2 = Pe
And by squaring both sides:
[ﬁphl + Pet1 — ﬁphz]z = (Pe2)?



Applications

(b) Compton Effect :
We know that: (ﬁel)z = (ﬁeZ)z = mgCAF (ﬁph1)2 = (ﬁphz)z =0 R
Thus, we obtain: T | Tf\_;)_‘

(Per)* + (ﬁpm)z + (ﬁphz)z + 2Ppn1-Per — 2Pph1-Dphz — 2Pe1-Ppnz = Pe2)®

2Pph1-Pe1 — 2Dph1-Pphz — 2Pe1-Pprz = 0

Working on the dot products:

L Pphi 0 L 0 Pph2
Pph1-Pe1 = hvy |'\m.c = _mehvlipel'pphz = m.cl | hva = —mghv,
c © ¢ c
~ ~ ﬁphl ﬁphz . hv, hv, hvq hv,
pphl' pphZ — th . hVZ — pphl' pphz o = (COS P — 1)

cC C cC C
C C



Applications
(b) Compton Effect :

. . . P
We insert the former results of dot products in the equation:
5 BB B s 5 8
Pph1-Pe1 — Pph1-Pph2 — Pe1-Pph2
We obtain the wellknown relation of Compton scattering:

hvq hv,
—m,hvy + m,hv, — . (cos —1)=0

hV1 th
C C

1 1 1 e )
th hV1 mecz cos @

In terms of wave length the same relation could be written:

(A2 —Aq) =

(1—-cos @) =m,(hvy — hv,)

(1 — cos @) & AL = 2X.85in*(@/2) ; L, =

m,c? m,c?



@ MN:A

Applications @O @
(c) Nuclear binding energy: Zmmy + Ny, @@ o @ @

The rest mass of a given nucleus made from Z protons and N neutrons, is given by the mass
numberA, which could be grossly considered as the sum of rest masses of this constituents:

M, = Zm, + Nm,,
But experimentally speaking, the rest mass of the same nucleus is given by a measured value:

M., = My which is slightly different from the theoretical one M, = Zm, + Nm,,

The existing difference between this two values AM = My, — Mgy, = Zmy, + Nm,, — My is

called as “Mass excess”, and its equivalent in energy :

Eg(Z,N) = AM(Z,A)c*[MeV]

This is the nuclear binding energy of the nucleus. It represents the contribution of each nucleon

with an amount of an equivalent energy to preserve the nucleus cohesion and stability.



Applications

Isotope(Z,N) Mass [u.m.a]

(c) Nuclear binding energy : 1) L OEEGE
We can perform the calculation of the average binding energy 1H 1.007825
per nucleon for any given isotope, since we have the iD 2.014102

‘He 4.002603

experimental measure of its rest mass:

E/ _ (Zmp tNmy ) 2 'ec 12.000000

A4 A 120 15.994915

— e SNa 22.989770

"1 Y T 2741 26.981538
S8Fe 55.934942

N S3Cu 62.929601
4 197Ag 106.905093
197Au 196.966552

5 | 298Pb 207.976636
238y 238.050783

0 - 232Es 252.082972

T T T T T T
O 50 100 150 200 250



Applications

(d) Nuclear fission energy:

The nuclear fission reaction consists of the nucleus scission (heavy nuclei) into two fragments
called Fission Products (FPs) with few emitted neutrons, and gammas:

In+ 233U - 238U - 22Kr + '¢lBa +3n+Q

The Q-value is the energy JRIEEEEC

During nuclear fission, the nucleus of a heavy atom, such as uranium 235, is hit by ﬁnal

ba Ia nce Of the fiSSion reaCtion) a neutron and breaks up into nuclei of lighter elements, releasing about three new
a nd it iS defi ned by . neutrons and a large amount of energy.

initial ’
- z mi cz B z mfcz | » ENER &
i f |

@ Three neutrons

1l
5N

Isotope(Z, N) M;[u.m.a]

Neutron ‘ . Ty | (((.
s 235.043928 - [ T— ??/
2Kr 91.926173 B @;
14lBa 140.914404

— (3m,, + Mg, + M141)C



Applications

(d) Nuclear fission energy :

BU +in —> PU —>

235U + 3n
2BU +§n
238U + 4n

28U +3n

—>

¢¢¢

236 U >

236 Su >

236U > 13?Te o

ESEU > 1

Ba+

8Br +1¥La + 3
2Rb +12ICs + 3
WIZr + 2

22Kr + 3

2Sr +13Xe + 2 §n

Find the Q-value for each reaction?

m, 1.00866
Q-value [MeV]

Myo3s 235.0439
Mg,90 89.90773
My o144 143.93894
Mg, g7 86.92067
M; 4146 145.92569
Mzpoe 95.93413
Mcg137 136.90709
M.97 96.91096
Mroq37 136.9256
Mg 91.92617
Mpa14a1 140.9144




Applications

(d) Nuclear fission energy :

251 4 in —> 28U —>

235U +.Dn
235U +C.n
235LJ +[}”

28U +3n

—

¢¢¢

236 U E

236 Su >

236y —> BTe +

236 —> 1

fiea + &

97
20Zr

Kr

gESr +144Xe +
8Br +12%La +

39Rb +13{Cs +

_|_

+

2

3

3

Mp 1.00866 o-value [MeV]

My,3s 235.0439

Mg;90 89.90773

Mxe144 143.93894 175.67
Mpgrg7 86.92067

M; 4146 145.92569 167.89
Mpgpoe 95.93413

Mcsi137 136.90709 172.67
Mz97 96.91096

Mre137 136.9256 185.09
M9, 91.92617
Mpa141 140.9144 173.28




Applications

(d) Nuclear fission energy :

Products Emitted energy [MeV]
Prompt energy (instantaneous) 175 (~87%)
Fission fragments 163
Fission neutrons 5
Y emission 7
Delayed energy (radioactivity) 27 (~13%)
P decay (electrons) 8
v emission (neutrinos) 12
y emission 7

Total

202




Applications

(e) Nuclear fusion energy:

The nuclear fusion reaction, in the contrary of the
fission reaction, consists to merge two nucleus (light
nuclei) to form a new one, and this is accompanied by
a release of energy with few particles like neutrons

and protons:

D+2D - 3He + {n+0Q

Q = (ZmD)CZ - (mHeS + mn)cz

Isotope(Z, N) M;[u.m.a]
2D 235.043928
SHe 91.926173
Q[MeV] 3.27

1|_| lH

) P
\/

%

o WH
\/
/l\v 5

Hw W HW WH
\/ \/

V/l l\v

\J3He 3He‘J
N 7
N

lH ) )lH

A
A _
) Proton He ! )
J Neutron Rayon gamma Y

Positron Neutrino D



Applications

(e) Nuclear fusion energy :  Find the Q-value for each reaction?
The nuclear fusion reaction, in the contrary of the fission reaction, consists to merge two
nucleus (light nuclei) to form a new one, and this is accompanied by a release of energy

with few particles like neutrons and protons:

2D +2D > 3He+ n+Q

m, 1.008664
ZD n ZD N 3T n 1 n my, 1.007825
1 1 i +1p+ @ my 2.014101
%D 1 %T N ‘lee 1 (1)11 +Q my 3.016049

My 4.002603
D+ 35He > 5He+1p+0Q Myes | 3.016029




Applications

(e) Nuclear fusion energy :

The nuclear fusion reaction, in the contrary of the fission reaction, consists to merge two

nucleus (light nuclei) to form a new one, and this is accompanied by a release of energy

with few particles like neutrons and protons:

2D + 42D — 3He(0.82MeV) + in(2.45MeV): Q = 3.27MeV
2D + 4D > 3T(1.01MeV) + 1p(3.03MeV): Q = 4.04MeV
4D + 3T > He(3.52MeV) + gn(14.1MeV):Q = 17.61MeV

2D + 5He — 5He(3.67MeV) + 1p(14.7MeV): Q = 18.37MeV
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