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Chapter 02: Relativistic kinematics

▪ Lorentz Transformations

▪ Distance contraction and time dilatation

▪ Proper length and proper time

▪ Velocity Transformations

▪ Applications: Optical Aberration and relativistic Doppler effect

▪ Minkowski Space-Time and Quadri-vectors



Reminder: Einstein postulates
The Space-time invariant for Einstein:

𝒔 = ෍

𝒊

∆𝒙𝒊
𝟐 − 𝒄𝟐𝒕𝟐 = 𝒔′ = ෍

𝒊

∆𝒙′
𝒊
𝟐

− 𝒄𝟐𝒕′𝟐
= 𝟎

By introducing the « time-light » dimension: 𝒍 = 𝒄𝒕 and defining an imaginary
coordinate 𝒙𝟒 = 𝒊𝒍, the invariant 𝒔 could be written in general form:

𝒔 = ෍

𝒊=𝟏

𝟒

∆𝑿𝒊
𝟐 = ∆𝑿𝟏

𝟐 + ∆𝑿𝟐
𝟐 + ∆𝑿𝟑

𝟐 + ∆𝑿𝟒
𝟐= 𝟎

𝒔′ = ෍

𝒊=𝟏

𝟒

∆𝑿′𝒊
𝟐 = ∆𝑿′𝟏

𝟐 + ∆𝑿′𝟐
𝟐 + ∆𝑿′𝟑

𝟐 + ∆𝑿′𝟒
𝟐= 𝟎

𝑺(𝒙, 𝒚, 𝒛, 𝒕) = 𝑺′(𝒙′, 𝒚′, 𝒛′, 𝒕′) = 𝟎

By identifying: 𝑋1 ≡ 𝑥; 𝑋2 ≡ 𝑦; 𝑋3 ≡ 𝑧; 𝑋4 ≡ 𝑖𝑐𝑡 (similarly for 𝑥′𝑖)



Lorentz Transformations

According to the definition of Einstein invariant, it is possible to establish a set of

transformations by respecting the equivalence principle of physical laws, to allow the

passage from a stationary frame to a moving one. Thus, in general, one can write that:

𝒙′ = 𝒙′ 𝒙, 𝒚, 𝒛, 𝒕 , 𝒚′ = 𝒚′ 𝒙, 𝒚, 𝒛, 𝒕 , 𝒛′ = 𝒛′ 𝒙, 𝒚, 𝒛, 𝒕 , 𝒕′ = 𝒕′ 𝒙, 𝒚, 𝒛, 𝒕

Thus, it is necessary that these transformations are linear (Space homogeneity):

𝒙′ = 𝒂𝟏𝟏𝒙 + 𝒂𝟏𝟐𝒚 + 𝒂𝟏𝟑𝒛 + 𝒂𝟏𝟒𝒕

𝒚′ = 𝒂𝟐𝟏𝒙 + 𝒂𝟐𝟐𝒚 + 𝒂𝟐𝟑𝒛 + 𝒂𝟐𝟒𝒕

𝒛′ = 𝒂𝟑𝟏𝒙 + 𝒂𝟑𝟐𝒚 + 𝒂𝟑𝟑𝒛 + 𝒂𝟑𝟒𝒕

𝒕′ = 𝒂𝟒𝟏𝒙 + 𝒂𝟒𝟐𝒚 + 𝒂𝟒𝟑𝒛 + 𝒂𝟒𝟒𝒕



The main objective for now, is to determine the different coefficients 𝒂𝒊𝒋 by

considering Einstein postulates, in addition of the space homogeneity and reciprocity

of measures in both frames.

• To do it in a simple way, let consider that the frame (𝑹’) is moves always with

respect to the stationary frame (𝑹), along the x-axis with a constant velocity 𝒖;

• At the initial instant 𝒕 = 𝒕′ = 𝟎, both frames are coincided with each other at the

same referential point 𝑶 = 𝑶′;

• Since the relative displacement is only along 𝑶𝑿’, the coordinates (𝒚, 𝒛) and

(𝒚′, 𝒛′) are completely independent of (𝒙, 𝒕) and (𝒙′, 𝒕′), respectively;

Lorentz Transformations



• Reciprocally, we can also consider the same for (𝒙, 𝒕) and (𝒙′, 𝒕′) to be

independent from (𝒚, 𝒛) and (𝒚′, 𝒛′);

• Since the planes 𝑿𝒀 transforms always into 𝑿′𝒀′ by keeping the same orientation

of 𝒚 − 𝒂𝒙𝒆𝒔 and 𝒛 − 𝒂𝒙𝒆𝒔, one can write directly that : 𝒚′ = 𝒚 and 𝒛′ = 𝒛;

All the previous considerations will lead to the following form of transformations:

𝒙′ = 𝒂𝟏𝟏𝒙 + 𝒂𝟏𝟐𝒚 + 𝒂𝟏𝟑𝒛 + 𝒂𝟏𝟒𝒕
𝒚′ = 𝒂𝟐𝟏𝒙 + 𝒂𝟐𝟐𝒚 + 𝒂𝟐𝟑𝒛 + 𝒂𝟐𝟒𝒕
𝒛′ = 𝒂𝟑𝟏𝒙 + 𝒂𝟑𝟐𝒚 + 𝒂𝟑𝟑𝒛 + 𝒂𝟑𝟒𝒕
𝒕′ = 𝒂𝟒𝟏𝒙 + 𝒂𝟒𝟐𝒚 + 𝒂𝟒𝟑𝒛 + 𝒂𝟒𝟒𝒕

→

𝒙′ = 𝒂𝟏𝟏𝒙 + 𝒂𝟏𝟒𝒕 

𝒚′ = 𝒚 

𝒛′ = 𝒛 
𝒕′ = 𝒂𝟒𝟏𝒙 + 𝒂𝟒𝟒𝒕 

Lorentz Transformations



Therefore, let’s consider the following set of transformations:

𝒙′ = 𝒂𝟏𝟏𝒙 + 𝒂𝟏𝟒𝒕

𝒚′ = 𝒚

𝒛′ = 𝒛

𝒕′ = 𝒂𝟒𝟏𝒙 + 𝒂𝟒𝟒𝒕

Since we have that 𝒙𝟎
′ = 𝟎 (𝑹’), corresponds always to the position 𝒙𝟎 = 𝒖𝒕 (𝑹), it

follows that: 𝒙′ − 𝒙𝟎
′ = 𝒙′ = 𝒂𝟏𝟏 𝒙 − 𝒖𝒕 ≡ 𝒂𝟏𝟏𝒙 + 𝒂𝟏𝟒𝒕 → 𝒂𝟏𝟒 = −𝒂𝟏𝟏𝒖:

𝒙′ = 𝒂𝟏𝟏𝒙 − 𝒂𝟏𝟏𝒕

𝒕′ = 𝒂𝟒𝟏𝒙 + 𝒂𝟒𝟒𝒕

Lorentz Transformations



We need now to determine the three coefficients: 𝒂𝟏𝟏, 𝒂𝟒𝟏, 𝒂𝟒𝟒!!!

To do that, we use the Einstein invariant formula: 𝑺’: 𝒙′𝟐 + 𝒚′𝟐 + 𝒛′𝟐 = 𝒄𝟐𝒕′𝟐

Lorentz Transformations

Indeed, by replacing 𝒙′, 𝒚′, 𝒛′, 𝒕′ in terms of 𝒙, 𝒚, 𝒛, 𝒕 we get:

𝒂𝟏𝟏
𝟐 𝒙 − 𝒖𝒕 𝟐 + 𝒚𝟐 + 𝒛𝟐 = 𝒄𝟐 𝒂𝟒𝟏𝒙 + 𝒂𝟒𝟒𝒕 𝟐

After necessary rearrangement, we obtain:

𝒂𝟏𝟏
𝟐 − 𝒄𝟐𝒂𝟒𝟏

𝟐 𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐 − 𝟐 𝒖𝒂𝟏𝟏
𝟐 + 𝒄𝟐𝒂𝟒𝟏𝒂𝟒𝟒 𝒙𝒕 = 𝒄𝟐𝒂𝟒𝟒

𝟐 − 𝒖𝟐𝒂𝟏𝟏
𝟐 𝒕𝟐

To preserve the same invariant in (𝑹) 𝑺: 𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐 = 𝒄𝟐𝒕𝟐, it is necessary that:

𝒂𝟏𝟏
𝟐 − 𝒄𝟐𝒂𝟒𝟏

𝟐 = 𝟏

𝒖𝒂𝟏𝟏
𝟐 + 𝒄𝟐𝒂𝟒𝟏𝒂𝟒𝟒 = 𝟎

𝒄𝟐𝒂𝟒𝟒
𝟐 − 𝒖𝟐𝒂𝟏𝟏

𝟐 = 𝒄𝟐



Homework (to hand over on 28 oct. 2024):

Solve the following system of equations, to find the expressions of

𝑎11, 𝑎41, 𝑎44 in terms of 𝑢 and 𝑐 :

𝒂𝟏𝟏
𝟐 − 𝒄𝟐𝒂𝟒𝟏

𝟐 = 𝟏 (𝟏)

𝒖𝒂𝟏𝟏
𝟐 + 𝒄𝟐𝒂𝟒𝟏𝒂𝟒𝟒 = 𝟎 (𝟐)

𝒄𝟐𝒂𝟒𝟒
𝟐 − 𝒖𝟐𝒂𝟏𝟏

𝟐 = 𝒄𝟐 (𝟑)

Indication: find the expressions of 𝒂𝟒𝟒 + 𝒖𝒂𝟒𝟏
𝟐 and 𝒂𝟒𝟒 − 𝒖𝒂𝟒𝟏 𝒂𝟒𝟒 + 𝒖𝒂𝟒𝟏 in

terms of 𝒖𝟐 and 𝒄𝟐.

Lorentz Transformations



Finally, the transformations verifying the invariance between 𝑹 and 𝑹’:

𝒙′=𝒂𝟏𝟏𝒙+𝒂𝟏𝟒𝒕

𝒚′=𝒚

𝒛′=𝒛
𝒕′=𝒂𝟒𝟏𝒙+𝒂𝟒𝟒𝒕

→

𝒙′=
𝒙−𝒖𝒕

1− ൗ𝑢2

𝑐2

𝒚′=𝒚

𝒛′=𝒛

𝒕′=
𝒕−

𝒖

𝒄𝟐𝒙

1− ൗ𝑢2

𝑐2

𝒙′=𝜸 𝒙−𝒖𝒕

𝒚′=𝒚

𝒛′=𝒛

𝒕′=𝜸 𝒕−
𝒖

𝒄𝟐𝒙

Known as “Lorentz Transformations”. We denote:

Relative (reduced) velocity: 𝜷 =
𝒖

𝒄
; Contraction factor 𝜶 = 𝟏 − 𝜷𝟐;

Lorentz factor: 𝜸 =
𝟏

𝟏−𝜷𝟐

Hendrik Lorentz
(1853-1928, NL)

𝒂𝟏𝟏 = 𝒂𝟒𝟒 =
𝟏

𝟏 − ൗ𝒖𝟐

𝒄𝟐

𝒂𝟒𝟏 = −
𝒖

𝒄𝟐 𝟏 − ൗ𝒖𝟐

𝒄𝟐

Lorentz Transformations



It is obvious that the same transformations are obtained when passing from 𝑹’ to 𝑹, by

inversing the sign of the velocity 𝒖 into −𝒖:

𝒙=
𝒙′+𝒖𝒕′

1− ൗ𝑢2

𝑐2

𝒚=𝒚′
𝒛=𝒛′

𝒕=
𝒕′+

𝒖

𝒄𝟐𝒙′

1− ൗ𝑢2

𝑐2

𝒙=𝜸 𝒙′+𝒖𝒕′

𝒚=𝒚′
𝒛=𝒛′

𝒕=𝜸 𝒕′+
𝒖

𝒄𝟐𝒙′

Hendrik Lorentz
(1853-1928, NL)

Lorentz Transformations



Lorentz transformation (LT) could be summarized in the table below, with Galilean

transformations (GT) as the result of the classical approximation:

𝑳. 𝑻: 𝑹 → 𝑹′ 𝑳. 𝑻: 𝑹′ → 𝑹 𝒖 ≪ 𝒄 𝑮. 𝑻: 𝑺 → 𝑺′

𝒙′ = 𝜸 𝒙 − 𝒖𝒕 𝒙 = 𝜸 𝒙′ + 𝒖𝒕′ 𝜷 =
𝒖

𝒄
≪ 𝟏 𝒙′ ≅ 𝒙 − 𝒖𝒕

𝒚′ = 𝒚 𝒚 = 𝒚′
𝜸 =

𝟏

1 − 𝛽2
≅ 𝟏

𝒚′ = 𝒚

𝒛′ = 𝒛 𝒛 = 𝒛′ 𝒛′ = 𝒛

𝒕′ = 𝜸 𝒕 −
𝒖

𝒄𝟐
𝒙 𝒕 = 𝜸 𝒕′ +

𝒖

𝒄𝟐
𝒙′

𝒖

𝒄𝟐
≪≪ 𝟏 𝒕′ ≅ 𝒕

Hendrik Lorentz
(1853-1928, NL)

Lorentz Transformations



Exercise 01 (Series n°02)

Study both factors 𝛼 = 1 − ൗ𝑣2

𝑐2 and 𝛾 =
1

1− ൗ𝑣2

𝑐2

, by completing the following table,

then plot the variation of these factors as a function of the relative velocity 𝛽 = 𝑣/𝑐.

We give: 𝒄 = 𝟐𝟗𝟗𝟕𝟗𝟐𝟒𝟓𝟖 [𝒎. 𝒔−𝟏]

𝒗 0.05c 0.10c 0.30c 0.50c 0.75c 0.80c 0.85c 0.90c 0.95c 0.99c 0.999c

𝛼 0.995 0.600 0.523 0.436 0.141

𝛾 1.005 1.15 1.66 3.2 7.1

Test (30 min)



Study both factors 𝛼 = 1 − ൗ𝑣2

𝑐2 and 𝛾 =
1

1− ൗ𝑣2

𝑐2

, by completing the following table,

then plot the variation of these factors as a function of the relative velocity 𝛽 = 𝑣/𝑐.

We give: 𝒄 = 𝟐𝟗𝟗𝟕𝟗𝟐𝟒𝟓𝟖 [𝒎. 𝒔−𝟏]

𝒗 0.05c 0.10c 0.30c 0.50c 0.75c 0.80c 0.85c 0.90c 0.95c 0.99c 0.999c

𝛼 0.999 0.995 0.954 0.866 0.661 0.600 0.523 0.436 0.312 0.141 0.045

𝛾 1.001 1.005 1.05 1.15 1.51 1.66 1.91 2.92 3.2 7.1 22.36

Exercise 01 (Series n°02)



Etudier les facteurs 𝛼 = 1 − ൗ𝑣2

𝑐2 et 𝛾 =
1

1− ൗ𝑣2

𝑐2

, en complétant le tableau suivant et 

en traçant graphiquement la variation de ces facteurs en fonction de la vitesse réduite  

𝛽 = 𝑣/𝑐.

On donne : 𝒄 = 𝟐𝟗𝟗𝟕𝟗𝟐𝟒𝟓𝟖 [𝒎. 𝒔−𝟏]

𝒗 0.05c 0.10c 0.30c 0.50c 0.75c 0.80c 0.85c 0.90c 0.95c 0.99c 0.999c

𝛼 0.999 0.995 0.954 0.866 0.661 0.600 0.523 0.436 0.312 0.141 0.045

𝛾 1.001 1.005 1.05 1.15 1.51 1.66 1.91 2.92 3.2 7.1 22.36

Exercise 01 (Series n°02)



One of the most important results of Lorentz Transformations (T.L) is the simultaneity
principle:

Two events 𝐴 𝑥𝐴, 𝑡𝐴 ; 𝐵 𝑥𝐵, 𝑡𝐵 are said simultaneous for a given observer, if this latter
could measure these two events at the same time.

In classical physics, if an observer notes that two events are simultaneous, this implies that
𝑡 = 𝑡′ according to Galilean Transformations (G.T), which also implies that any other
observer will note that both events are simultaneous.

In opposite, in relativistic physics, if two events 𝐴 𝑥′𝐴, 𝑡′𝐴 ; 𝐵 𝑥′𝐵 , 𝑡′𝐵 are said
simultaneous for a given moving observer (𝑂′: 𝑢), they are not necessarily for another one
𝑂 unless they occur in the same location 𝑥′𝐴 = 𝑥′𝐵:

𝑶′ : 𝒕′
𝑨 𝒙′

𝑨 ≡ 𝒕′
𝑩 𝒙′

𝑩 → 𝑶 : 𝒕𝑩 − 𝒕𝑨 =
Τ𝒗 𝒄𝟐 𝒙′𝑩 − 𝒙′𝑨

𝟏 − Τ𝒗𝟐 𝒄𝟐

Lorentz Transformations



Let’s examine the following example where an observer 𝑂 in a stationary frame (𝑅) could
observe two simultaneous and opposite light signals approaching him as shown in the
figure below. Both signals will arrive at the same time to the observer O (distances are
supposed equals).In other hand, another observer 𝑂’ in a moving frame (𝑅’) with respect
to (𝑅) will not see these two events at the same time.

𝑶

𝑅

𝑶′

𝑅′

𝒕𝑨 = 𝒕𝑩

𝒕′𝑩 𝒕′𝑨

𝐴 𝐵

Lorentz Transformations



• If a man (S’) on a moving train (with a constant velocity 𝒖 = 𝟐𝟎[𝒎. 𝒔−𝟏]) lights two
cigarettes, one ten minutes after the other, then these events occur at the same place
on his reference frame (the train). A ground observer (S), however, would assert that
these same events occur at different places in his reference system (the ground). By
using LT find what is the distance separation observed by (S). compare the findings with
those given by GT.

• Suppose that (S’), seated at the center of a moving railroad car in the same previous
train, observes that two men, on at each end of the car, light cigarettes simultaneously.
The ground observer S, watching the railroad car go by, would assert (if he could make
precise enough measurements) that the man in the back of the car lit his cigarette a
little before the man in the front of the car lit his. Assuming that the distance
separation in (S’) is 𝑑 = 25[𝑚], what is the time separation observed by (S).

Exercise 02 (Series n°02)



1. If a man (S’) on a moving train (with a constant velocity 𝒖 = 𝟐𝟎[𝒎. 𝒔−𝟏]) lights two cigarettes, one ten
minutes after the other, then these events occur at the same place on his reference frame (the train). A
ground observer (S), however, would assert that these same events occur at different places in his reference
system (the ground). By using LT find what is the distance separation observed by (S). compare the findings
with those given by GT.

Using T.L to pass from an observer 𝑶’(𝒙′
𝟐

= 𝒙′
𝟏) to another 𝑶 :

𝒙𝟐 − 𝒙𝟏 = 𝜸 𝒙′
𝟐 − 𝒙′

𝟏 + 𝒖 𝒕′
𝟐 − 𝒕′

𝟏 ≅ 𝒖 𝒕′
𝟐 − 𝒕′

𝟏 = 𝟏𝟐𝟎𝟎𝟎𝒎 = 𝟏𝟐𝒌𝒎

2. Suppose that (S’), seated at the center of a moving railroad car in the same previous train, observes that

two men, on at each end of the car, light cigarettes simultaneously. The ground observer S, watching the

railroad car go by, would assert (if he could make precise enough measurements) that the man in the back

of the car lit his cigarette a little before the man in the front of the car lit his. Assuming that the distance

separation in (S’) is 𝑑 = 25[𝑚], what is the time separation observed by (S).

Similarly, by using T.L, while in this case we know that: 𝒕′𝟐 = 𝒕′𝟏 :

𝒕𝟐 − 𝒕𝟏 = 𝜸 𝒕′
𝟐 − 𝒕′

𝟏 +
𝒖

𝒄𝟐
𝒙′

𝟐 − 𝒙′
𝟏 ≅

𝒖

𝒄𝟐
𝒙′

𝟐 − 𝒙′
𝟏 = 𝟓. 𝟓𝟔 × 𝟏𝟎−𝟏𝟓𝒔 ≡ 𝟎

Exercise 02 (Series n°02)



Length contraction and time dilatation
From L.T it follows two major considerations. The first one concerns the length of a solid
body when measured by more than one observer.
Indeed, after the first equation from L.T, the measure of both ends for a given length in the
frame (R’) as a function of the measure in the frame (R) could be written as follows:

𝑥′1 = 𝛾 𝑥1 + 𝑢𝑡1 ; 𝑥′2 = 𝛾 𝑥2 + 𝑢𝑡2

Thus, the distance between the both measured points is given by:

𝑙′ = 𝑥′2 − 𝑥′
1 = 𝛾 𝑥2 − 𝑥1 + 𝑢 𝑡2 − 𝑡1

Since the length measure is done simultaneously (𝑡2 = 𝑡1):

𝑙′ = 𝑥′2 − 𝑥′
1 = 𝛾 𝑥2 − 𝑥1 = 𝛾𝑙 → 𝑙 = 𝛼𝑙′ = 𝑙′ 1 − Τ𝑢2 𝑐2

This is the length contraction consequence of L.T: a measured length within proper
frame where it is considered at rest, seems shorter than its measure taken by another
observer in stationary frame for whom the measured length is considered in motion.



The second consequence of T.L is related to the time measure between two observers,
one is moving with respect to the other.
Let’s consider now, two events observed by (𝑂′) attached to the proper frame (𝑅′) in the
same spatial point but a different instants: 𝐴(𝑥′, 𝑡′1) et 𝐵(𝑥′, 𝑡′2). These two event will be
measured by an external observer (𝑂) attached to the laboratory (stationary) frame (𝑅)
in the following way:

𝑡1 = 𝛾 𝑡′1 −
𝑢

𝑐2
𝑥′ ; 𝑡2 = 𝛾 𝑡′2 −

𝑢

𝑐2
𝑥′

Thus, the time shift between both events could be given as:

∆𝑡 = 𝑡2 − 𝑡1 = 𝛾 𝑡′
2 − 𝑡′

1 = 𝛾∆𝑡′ =
∆𝑡′

1 − Τ𝑢2 𝑐2

This is called the time dilatation: two non-proper synchronized clocks will measure a
longer time interval than a clock related to both events happening at the same location
but at different instants.

Length contraction and time dilatation



𝑅′
𝑅

Length contraction and time dilatation



Proper length and proper time

We will retain that the length measure of a rigid body will be done at rest in the proper

frame of the body. This length denoted 𝑙′ = 𝐿0 is called the “proper length”

This length measured by another observer which is not in the proper frame, is denoted 𝐿

and it is related to the proper length by the relation of length contraction, known

“Lorentz-Fitzgerald contraction”:

𝑳 = 𝑳𝟎 1 − Τ𝑢2 𝑐2



In the same way, a clock measuring a time interval between two events happening at the

same point of the space, within the proper frame where both events are considered at

rest, will give the “proper time” of these two events, when measured by the same clock,

denoted : ∆𝝉 or ∆𝒕𝟎.

This time duration measured by another observer moving with respect to the stationary

frame, will require two synchronized clocks, since the observer will see that the two

events will occur at different places and at different instants:

∆𝒕 =
∆𝝉

𝟏 − Τ𝒖𝟐 𝒄𝟐

Proper length and proper time



A rod moving from left to right. When the left end of the rod passes a camera, a picture is

taken of the end together with a stationary calibrated meterstick. In the developed picture

the left end of the rod coincides with the zero mark and the right end coincides with the

0.90m mark on the meterstick. If the rod is moving at 0.8c with respect to the camera,

determine the actual length of the rod.

Exercise 03 (Series n°02)



A rod moving from left to right. When the left end of the rod passes a camera, a picture is taken of the end

together with a stationary calibrated meterstick. In the developed picture the left end of the rod coincides

with the zero mark and the right end coincides with the 0.90m mark on the meterstick. If the rod is moving

at 0.8c with respect to the camera, determine the actual length of the rod.

In order that the light signal from the right end of the rod will be recorded by the camera, it must have

started from the 0.90m mark at an earlier time given by:

∆𝒕 =
∆𝒔

𝒄
=

𝟎. 𝟗

𝟑 × 𝟏𝟎𝟖
= 𝟑 × 𝟏𝟎−𝟗𝒔

During this time interval the left end of the rod will advance through a distance ∆𝑺∗ given by:

∆𝑺∗= 𝒗. ∆𝒕 = 𝟎. 𝟖 × 𝟑 × 𝟏𝟎𝟖 × 𝟑 × 𝟏𝟎−𝟗 = 𝟎. 𝟕𝟐𝒎

Therefore, the actual length of the rod is 𝑳 = 𝟎. 𝟗𝟎 + 𝟎. 𝟕𝟐 = 𝟏. 𝟔𝟐𝒎

This result illustrates that photographing a moving rod will not give its correct length.

Exercise 03 (Series n°02)



Among the particles of high-energy physics are charged pions, particles of
mass between that of the electron and the proton and of positive or negative
electronic charge 𝜋± 𝑞𝜋 = ±𝑞𝑒 , 𝑚𝜋 = 139.57𝑀𝑒𝑉/𝑐2 . They can be
produced by bombarding a suitable target in an accelerator with high-energy
protons, the pions leaving the target with speeds close to that of light. It is
found that the pions are radioactive and, when they are brought to rest, their
half-life is measured to be 𝜏𝜋 = 2.6 × 10−8𝑠. A collimated pion beam, leaving
the accelerator target at a speed 𝑢 = 0.99𝑐, is found to drop to half its original
intensity around 55m from the target.

1. Are these results consistent with kinetic calculations?

2. Show how the time dilatation accounts for the measurements.

3. Show how the length contraction accounts for the measurements.

Exercise 04 (Series n°02)



1. Are these results consistent with kinetic calculations?

By using a simple calculation, during a time interval ∆𝒕′ = 𝝉𝝅 the pions will travel a

distance : 𝒅′ = 𝒖. ∆𝒕′ = 𝒖. 𝝉𝝅 = 𝟎. 𝟗𝟗𝒄 × 𝟐. 𝟔 × 𝟏𝟎−𝟖 = 𝟕. 𝟕𝟏𝒎

The obtained results of classical kinematic calculations does not match with measurement

of 55m.

2. Show how the time dilatation accounts for the measurements.

If the laboratory observation register a distance of 𝒅 = 𝟓𝟓 ≅ 𝟕𝒅′, this indicates that the

necessary time to the decay of the half of the initial beam, it is much longer than the

proper period (measured within the proper frame of pions), thus, we observe a time

dilatation due to relativistic effects (𝜷 =
𝒖

𝒄
= 𝟎. 𝟗𝟗)

𝝉𝝅 = 𝟐. 𝟔 × 𝟏𝟎−𝟖𝒔

Exercise 04 (Series n°02)



3. Show how the length contraction accounts for the measurements.

By using the length dilatation law, one can find:

𝑻𝝅 =
𝝉𝝅

𝟏 − 𝜷𝟐
= 𝟕. 𝟎𝟗 × 𝟐. 𝟔 × 𝟏𝟎−𝟖 = 𝟏𝟖. 𝟑𝟒 × 𝟏𝟎−𝟖𝒔

𝒅 = 𝒖. ∆𝒕 = 𝒖𝑻𝝅 = 𝟓𝟒. 𝟔𝒎 ≅ 𝟓𝟓𝒎

𝝉𝝅 = 𝟐. 𝟔 × 𝟏𝟎−𝟖𝒔

Exercise 04 (Series n°02)



A train 800𝑚 long (as measured by an observer on the train) is traveling at a
speed of 𝑢 = 200𝑘𝑚/ℎ. Two lightning bolts strike the ends of the train

simultaneously (𝑡𝐴= 𝑡𝐵) as determined by an observer O on the ground. What

is the time separation as measured by an observer O’ on the train?

We already have L.T allowing us to calculate the time laps (measured in R) ∆𝒕 = 𝒕𝟐 − 𝒕𝟏, as a function of the

measure on the train :

𝒕𝑩 = 𝜸 𝒕′𝑩 +
𝒖

𝒄𝟐
𝒙′𝑩 ; 𝒕𝑨 = 𝜸 𝒕′𝑨 +

𝒖

𝒄𝟐
𝒙′𝑨 → ∆𝒕 = 𝒕𝑩 − 𝒕𝑨 = 𝜸 𝒕′𝑩 − 𝒕′

𝑨 +
𝒖

𝒄𝟐
𝒙′𝑩 − 𝒙′𝑨

Since : 𝒕𝑩 = 𝒕𝑨, we get:

𝟎 = 𝜸 𝒕′𝑩 − 𝒕′
𝑨 +

𝒖

𝒄𝟐
𝒙′𝑩 − 𝒙′𝑨 → ∆𝒕′ = 𝒕′𝑩 − 𝒕′

𝑨 =
−𝒖

𝒄𝟐
𝒙′

𝑩 − 𝒙′
𝑨 = −

𝟐𝟎𝟎 × 𝟏𝟎𝟑 × 𝟖𝟎𝟎

𝟗 × 𝟏𝟎𝟏𝟔 × 𝟑𝟔𝟎𝟎

≅ −𝟓 × 𝟏𝟎−𝟏𝟑𝒔

The observer 𝑶’ on the train will see the A event happening before the B event.

Exercise 05 (Series n°02)



The space-time coordinates of two events as measured by O are:
𝐴 𝑥1 = 6 × 104𝑚, 𝑦1 = 𝑧1 = 0, 𝑡1 = 2 × 10−4𝑠 ;

𝐵 𝑥2 = 12 × 104𝑚, 𝑦1 = 𝑧1 = 0, 𝑡2 = 10−4𝑠

1. What must be the velocity of O’ with respect to O if O’ measures the two events to

occur simultaneously?

2. What is the spatial separation of the two events as measured by O’ ?

1. Let’s use L.T to deduce the velocity of 𝑶’ with respect to 𝑶:

𝒕′
𝟐 − 𝒕′

𝟏 = 𝟎 = 𝜸 𝒕𝟐 − 𝒕𝟏 −
𝒖

𝒄𝟐
𝒙𝟐 − 𝒙𝟏 → 𝒖 = 𝒄𝟐

𝒕𝟐 − 𝒕𝟏

𝒙𝟐 − 𝒙𝟏
= −𝟏. 𝟓 × 𝟏𝟎𝟖

𝒎

𝒔

𝒗

𝒄
= −𝟎. 𝟓

The observer 𝑶’ should move with a speed 𝐯 = 𝟎. 𝟓𝒄 in the direction of the event 𝑨 −𝑶𝑿 to see both

events occur simultaneously

2. The observer 𝑶’, will see both events separated by a distance 𝒙′𝟐 − 𝒙′𝟏 :

𝒙′
𝟐 − 𝒙′

𝟏 = 𝜸 𝒙𝟐 − 𝒙𝟏 − 𝒖 𝒕𝟐 − 𝒕𝟏

𝒙′
𝟐 − 𝒙′

𝟏 = 𝟏. 𝟏𝟓 𝟔 × 𝟏𝟎𝟒 + 𝟏. 𝟓 × 𝟏𝟎𝟖 × −𝟏 × 𝟏𝟎−𝟒 = 𝟔. 𝟗𝟐 × 𝟏𝟎𝟒𝒎
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A 𝜇 − 𝑚𝑒𝑠𝑜𝑛 (𝜇) with an average lifetime 𝜏𝜇 = 2.2µ𝑠 is created in the upper atmosphere at an
elevation ℎ = 6000𝑚. When it is created it has a velocity 𝑢 = 0.998𝑐 in a direction toward the earth.

1. What is the average distance that it will travel before decaying, as determined by an observer O
on the earth?

2. Consider an observer O’ at rest with respect to the 𝜇 − 𝑚𝑒𝑠𝑜𝑛. How far will he measure the earth
to approach him before the 𝜇 − 𝑚𝑒𝑠𝑜𝑛 disintegrates? Compare this distance with the distance he
measures from the point of creation of the 𝜇 − 𝑚𝑒𝑠𝑜𝑛 to the earth.

Exercise 08 (Series n°02)



Suppose an observer O determines that two events are separated by a distance  𝑥𝐵 − 𝑥𝐴 =
3.6 × 108𝑚 and occur with a delay ∆𝑡 = 𝑡𝐵 − 𝑡𝐴 = 2𝑠 apart. 

1. What should be the velocity of an observer O’ to see both events happening 
simultaneously?

2. Therefore, what is the proper time interval (∆𝑡′) between the occurrence of these two 
events as measured by the observer O’?

1. If a given observer O’ could observe two events A and B in his proper frame, then the observations of

O and O’ are related with L.T relationships:

𝒙′
𝑩 − 𝒙′

𝑨 = 𝟎 = 𝜸 𝒙𝑩 − 𝒙𝑨 − 𝒖 𝒕𝑩 − 𝒕𝑨 → 𝒙𝑩 − 𝒙𝑨 = 𝒖 𝒕𝑩 − 𝒕𝑨

𝒖 =
𝒙𝑩 − 𝒙𝑨

𝒕𝑩 − 𝒕𝑨
=

𝟑. 𝟔 × 𝟏𝟎𝟖

𝟐
= 𝟏. 𝟖 × 𝟏𝟎𝟖 𝒎/𝒔 = 𝟎. 𝟔𝒄

2. In this case, the proper time interval ∆𝝉 could be deduced by using the time dilatation equation:

∆𝒕 =
∆𝝉

𝟏 − ൗ𝒖𝟐

𝒄𝟐

→ ∆𝝉 𝟏 − ൗ𝒖𝟐

𝒄𝟐 = 𝟐 × 𝟎. 𝟖 = 𝟏. 𝟔𝒔

Exercise 09 (Series n°02)



Velocity transformations
Let’s remember that for the classical mechanics and according to G.T, the velocity addition

theorem between two velocities from a moving frame (𝑅’) with respect to a stationary (𝑅),

is given by:

𝒗′ = 𝒗 − 𝒖 𝒗 = 𝒗′ + 𝒖

What about relativistic mechanics?

Consider a passenger walking with a velocity 𝒗′

inside the railroad car of train (as measured by an

observer 𝑶’ attached to the train 𝑹’). This train is

moving with a velocity 𝒖 with respect to a ground

observer 𝑶. The whole motion is along 𝑶𝑿//𝑶’𝑿’.
𝑶 𝒙

𝑶′ 𝒙′

𝑹′

𝑹

𝒗′

𝒖



And by using L.T, we obtain for the x-component:

𝒗𝒙 =
𝒅𝒙

𝒅𝒕
=

𝜸 𝒅𝒙′ + 𝒖𝒅𝒕′

𝜸 𝒅𝒕′ + ൗ𝒖
𝒄𝟐 𝒅𝒙′

=
𝒗′𝒙 + 𝒖

𝟏 + ൗ𝒗′𝒙𝒖
𝒄𝟐

We get the addition law of velocities according the

Special Relativity of Einstein.
𝑶 𝒙

𝑶′ 𝒙′

𝑹′

𝑹

𝒗′

𝒖

From the definition the velocity, which is the same in both frames:

𝑣𝑥 =
𝑑𝑥

𝑑𝑡
; 𝑣′𝑥 =

𝑑𝑥′

𝑑𝑡′

with: 𝑑𝑥 = 𝛾(𝑑𝑥′ + 𝑢𝑑𝑡′) et 𝑑𝑡 = 𝛾(𝑑𝑡′ + Τ𝑢
𝑐2 𝑑𝑥′)

Velocity transformations



Similarly, this is could be used to calculate in general way the other components 𝑣𝑦 et 𝑣𝑧.

Since: 𝑦 = 𝑦′ → 𝑑𝑦 = 𝑑𝑦′ and 𝑧 = 𝑧′ → 𝑑𝑧 = 𝑑𝑧′, we could write:

𝑣𝑦 =
𝑑𝑦

𝑑𝑡
=

𝑑𝑦′

𝛾 𝑑𝑡′ + ൗ𝑢
𝑐2 𝑑𝑥′

=
𝑑𝑦′/𝑑𝑡′

𝛾 1 + ൗ𝑢
𝑐2 𝑑𝑥′/𝑑𝑡′

=
𝑣′𝑦 1 − ൗ𝑢2

𝑐2

1 + ൗ𝑣′𝑥𝑢
𝑐2

𝑣𝑧 =
𝑑𝑧

𝑑𝑡
=

𝑑𝑧′

𝛾 𝑑𝑡′ + ൗ𝑢
𝑐2 𝑑𝑥′

=
𝑑𝑧′/𝑑𝑡′

𝛾 1 + ൗ𝑢
𝑐2 𝑑𝑥′/𝑑𝑡′

=
𝑣′𝑧 1 − ൗ𝑢2

𝑐2

1 + ൗ𝑣′𝑥𝑢
𝑐2

Velocity transformations



We summarize these velocity transformations in the following table:

𝑻. 𝑳: (𝑹′) → (𝑹) 𝑻. 𝑳: (𝑹) → (𝑹′) 𝑻. 𝑮:  𝒖 ≪ 𝒄

𝒗𝒙 =
𝒗′𝒙 + 𝒖

𝟏 + ൗ𝒗′𝒙𝒖
𝒄𝟐

𝒗′𝒙 =
𝒗𝒙 − 𝒖

𝟏 − ൗ
𝒗𝒙𝒖

𝒄𝟐
𝒗′𝒙 ≅ 𝒗𝒙 − 𝒖

𝒗𝒚 =
𝒗′𝒚 𝟏 − ൗ𝒖𝟐

𝒄𝟐

𝟏 + ൗ𝒗′𝒙𝒖
𝒄𝟐

𝒗′𝒚 =
𝒗𝒚 𝟏 − ൗ𝒖𝟐

𝒄𝟐

𝟏 − ൗ
𝒗𝒙𝒖

𝒄𝟐

𝒗′𝒚 ≅ 𝒗𝒚

𝒗𝒛 =
𝒗′𝒛 𝟏 − ൗ𝒖𝟐

𝒄𝟐

𝟏 + ൗ𝒗′𝒙𝒖
𝒄𝟐

𝒗′𝒛 =
𝒗𝒛 𝟏 − ൗ𝒖𝟐

𝒄𝟐

𝟏 − ൗ
𝒗𝒙𝒖

𝒄𝟐

𝒗′𝒛 ≅ 𝒗𝒛

Velocity transformations



Let’s apply the L.T of velocities for a photon as observed in a frame 𝑹’ (𝒗′ = 𝒄). This latter

is moving with a velocity 𝒖 in the same direction of the photon. So, could be observed in

another stationary frame 𝑺 with another velocity, different from light celerity 𝒄 ?

If now, the frame 𝑹’ is just another photon (with celerity 𝒖 = 𝒄), how the first photon,

moving with a velocity (𝒗′ = 𝒄) with respect to the photon frame, could be observed by a

stationary observe at 𝑹 ?

𝒗 =
𝒗′ + 𝒖

𝟏 + ൗ𝒗′𝒖
𝒄𝟐

=
𝒄 + 𝒖

𝟏 + ൗ𝒄𝒖
𝒄𝟐

=
𝒄 + 𝒖

𝟏 + 𝒖/𝒄
= 𝒄

𝒄 + 𝒖

𝒄 + 𝒖
= 𝒄

𝒗 =
𝒗′ + 𝒖

𝟏 + ൗ𝒗′𝒖
𝒄𝟐

=
𝒄 + 𝒄

𝟏 + ൗ𝒄. 𝒄
𝒄𝟐

=
𝟐𝒄

𝟏 + 𝟏
= 𝒄

Velocity transformations: 𝒄 + 𝒄 = 𝒄 !



In the same way than previously, one could deduce the relativistic transformations for

accelerations, but with a little bit tedious calculations:

𝑎𝑥 =
𝑑𝑣𝑥

𝑑𝑡
=

𝑑

𝑑𝑡

𝒗′𝒙 + 𝒖

𝟏 + ൗ𝒗′𝒙𝒖
𝒄𝟐

𝑎𝑦,𝑧 =
𝑑𝑣𝑦,𝑧

𝑑𝑡
=

𝑑

𝑑𝑡

𝒗′𝒚,𝒛 𝟏 − ൗ𝒖𝟐

𝒄𝟐

𝟏 + ൗ𝒗′𝒙𝒖
𝒄𝟐

with :
𝑑𝑣′𝑥

𝑑𝑡′
= 𝑎′𝑥;

𝑑𝑣′𝑦

𝑑𝑡′
= 𝑎′𝑦;

𝑑𝑣′𝑧

𝑑𝑡′
= 𝑎′𝑧

It could be an interesting 

exam exercise !!!
acceleration transformations



Solution:

1. Using GT transformations (on the same axis):

𝑣 = 𝑣′ + 𝑢 → 𝑣′ = 𝑣 − 𝑢 = 0.67𝑐 − −0.67𝑐 = 1.34𝑐

This is no-sense result, since there are no particles with speed over light speed in free space!!!

2. Let’s use now LT transformations:

𝑣′ =
𝑣 − 𝑢

1 − 𝑣𝑢/𝑐2
=

0.67𝑐 + 0.67𝑐

1 + 0.67 2
=

1.34

1.45
= 0.92𝑐

Two electrons are ejected in opposite directions from radioactive atoms in a sample of

radioactive material at rest in the laboratory. Each electron has a speed of 0.67c as measured by

a laboratory observer O.

1. What is the speed of one electron as measured from the other considered as a moving

observer O’, according to the classical velocities’ addition law? Comment!

2. Reexamine this problem by using the relativistic law of velocities’ addition. 

Exercise 10 (Series n°02)



Solution:

1. Using the velocities L.T along 𝑂𝑋:

𝑣′𝐴 =
𝑣𝐴 − 𝑣𝐵

1 − ൗ
𝑣𝐴𝑣𝐵

𝑐2

=
0.8𝑐 − (−0.6𝑐)

1 − 0.8(−0.6)
= 0.946𝑐

Rocket A travels to the right and rocket B travels to the left, with velocities Ԧ𝑣𝐴 = 0.8𝑐Ԧ𝑖 et
Ԧ𝑣𝐵 = −0.6𝑐Ԧ𝑖, respectively, relative to the earth. What is the velocity of rocket A measured
from rocket B?

- Repeat the previous question, if rocket A travels now with same speed in the +y-direction
relative to the earth.

𝑨𝑩Exercise 11 (Series n°02)



Rocket A travels to the right and rocket B travels to the left, with velocities Ԧ𝑣𝐴 = 0.8𝑐Ԧ𝑖 et
Ԧ𝑣𝐵 = −0.6𝑐Ԧ𝑖, respectively, relative to the earth. What is the velocity of rocket A measured
from rocket B?

- Repeat the previous question, if rocket A travels now with same speed in the +y-direction
relative to the earth.

𝑨𝑩Exercise 11 (Series n°02)

2. In this second case, both components of A could be calculated as follows:

𝑣′𝐴𝑥 =
𝑣𝐴𝑥 − 𝑣𝐵

1 − ൗ
𝑣𝐴𝑥𝑣𝐵

𝑐2

=
0 − (−0.6𝑐)

1 − 0(−0.6)
= 0.6𝑐; 𝑣′𝐴𝑦 =

𝑣𝐴𝑦 1 − ൗ𝑣𝐵
2

𝑐2

1 − ൗ
𝑣𝐴𝑥𝑣𝐵

𝑐2

=
0.8𝑐 × 0.8

1
= 0.64𝑐

We get:

𝑣′𝐴 = 0.6𝑐𝑖′ + 0.64𝑐𝑗′ → 𝑣′𝐴 = 𝑣′𝐴𝑥
2 + 𝑣′𝐴𝑦

2 = 0.36 + 0.4096 = 0.877𝑐

tan 𝜑′ =
𝑣′𝐴𝑦

𝑣′𝐴𝑥
=

0.64

0.6
= 1.0667 → 𝜑′ ≅ 46°85′



Consider a radioactive nucleus that moves with a constant speed 𝑢 = 0.5𝑐 relative to the
laboratory. The nucleus decays and emits an electron 𝑒− with a speed 𝑣′𝑒 = 0.9𝑐 relative to
the nucleus along the direction of motion. Find the velocity of the electron in the laboratory
frame.

Now, suppose that the nucleus decays by emitting an electron with the same speed in a
direction perpendicular to the direction (the laboratory) motion as determined by an
observer at rest with respect to the nucleus. Find the velocity of the electron as measured by
an observer in the laboratory frame.

Solution:

By using the L.T for velocities (from R’ to R), one can find

𝑣𝑒 =
𝑣′𝑒 + 𝑢

1 + ൗ𝑣′𝑒𝑢
𝑐2

=
0.9𝑐 + 0.5𝑐

1 + 0.9 × 0.5
= 0.965𝑐
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Now, suppose that the nucleus decays by emitting an electron with the same speed in a
direction perpendicular to the direction motion as determined by an observer at rest (the
laboratory) with respect to the nucleus. Find the velocity of the electron as measured by an
observer in the laboratory frame.

Again, by using the L.T for velocities (from R’ to R), but with new directions now:

𝑣𝑥 =
𝑣′𝑥 + 𝑢

1 + ൗ𝑣′𝑥𝑢
𝑐2

=
0 + 0.5𝑐

1 + 0
= 0. 5𝑐

𝒗𝒚 =
𝒗′𝒚 𝟏 − ൗ𝒖𝟐

𝒄𝟐

𝟏 + ൗ𝒗′𝒙𝒖
𝒄𝟐

=
𝟎. 𝟗𝒄 𝟏 − 𝟎. 𝟓 𝟐

𝟏 + 𝟎
= 𝟎. 𝟕𝟕𝟗𝒄

𝒗 = 𝒗𝒙
𝟐 + 𝒗𝒚

𝟐 = 𝟎. 𝟗𝟐𝟔𝒄 and 𝒕𝒂𝒏 𝝋 = ൗ
𝒗𝒚

𝒗𝒙 = 𝟏. 𝟓𝟔 → 𝝋 ≅ 𝟓𝟕. 𝟑°
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Applications: Optical Aberration and Doppler effect

Consider the light wave propagation in a

frame 𝑅’ moving with a velocity 𝑢 with

respect to another stationary frame 𝑅.

The light ray propagates since on the plane

𝑥’ − 𝑦’ from 𝑂’ , as shown in the opposite

figure.

𝑦

𝑥𝑂

𝑅

𝑥′

𝑥′𝑂′

𝑅′

𝜃′

𝒖

The wave function representing this propagation is a sinusoidal function, which could be

considered under the form: (𝑘′ =
2𝜋

′ ; 𝜔′ = 2𝜋ν′; ′ν′ = 𝑐):

𝑭 𝒙′, 𝒚′, 𝒕′ ∝ 𝐜𝐨𝐬 𝒓′. 𝒌′ − 𝝎′𝒕′ ≡ 𝒄𝒐𝒔 𝟐𝝅
𝐜𝐨𝐬 𝜽′

′
𝒙′ +

𝐬𝐢𝐧 𝜽′

′
𝒚′ − 𝝂′𝒕′

𝑭 𝒙, 𝒚, 𝒕 ∝ 𝐜𝐨𝐬 𝒓. 𝒌 − 𝝎𝒕



How an observer in 𝑅 , will observe the

propagation of this wave?

Knowing that the wave function is invariant

under L.T (Einstein postulates) :

𝒙′ = 𝜸 𝒙 − 𝒖𝒕

𝒕′ = 𝜸 𝒕 −
𝒖

𝒄𝟐
𝒙

𝑦

𝑥𝑂

𝑅

𝑥′

𝑥′𝑂′

𝑅′

𝜃′

𝒖

Thus, by replacing the expressions of 𝑥’ and 𝑡’ as a function of 𝑥 and 𝑡, then after rearrangements

we could get the following expression:

𝑭 𝒙, 𝒚, 𝒕 ∝ 𝒄𝒐𝒔 𝟐𝝅
𝒄𝒐𝒔 𝜽′ + 𝜷

′ 𝟏 − 𝜷𝟐
𝒙 +

𝒔𝒊𝒏 𝜽′

′
𝒚 −

𝜷𝒄𝒐𝒔 𝜽′ + 𝟏 𝝂′

𝟏 − 𝜷𝟐
𝒕

𝜃 =? (𝜃′)
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Now it is up to compare both expressions and identify the coefficients:

𝑭 𝒙, 𝒚, 𝒕 ∝ 𝒄𝒐𝒔 𝟐𝝅
𝒄𝒐𝒔 𝜽


𝒙 +

𝐬𝐢𝐧 𝜽


𝒚 − 𝝂𝒕

𝑭 𝒙, 𝒚, 𝒕 ∝ 𝒄𝒐𝒔 𝟐𝝅
𝒄𝒐𝒔 𝜽′ + 𝜷

′ 𝟏 − 𝜷𝟐
𝒙 +

𝒔𝒊𝒏 𝜽′

′
𝒚 −

𝟏 + 𝜷𝒄𝒐𝒔 𝜽′ 𝝂′

𝟏 − 𝜷𝟐
𝒕

This implies:

𝒄𝒐𝒔 𝜽


=

𝒄𝒐𝒔 𝜽′ + 𝜷

′ 𝟏 − 𝜷𝟐
;

𝐬𝐢𝐧 𝜽


=

𝒔𝒊𝒏 𝜽′

′
; 𝝂 =

𝟏 + 𝜷𝒄𝒐𝒔 𝜽′ 𝝂′

𝟏 − 𝜷𝟐

With the relation: ′ν′ = ν = 𝑐

𝜽 =? 𝜽′ → 𝒕𝒂𝒏 𝜽 =
𝒔𝒊𝒏 𝜽

𝒄𝒐𝒔 𝜽
=

𝒔𝒊𝒏 𝜽′ 𝟏 − 𝜷𝟐

𝒄𝒐𝒔 𝜽′ + 𝜷
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▪ Relativisitic optical aberration:

This is a relativistic optical phenomenon expected by the theory of special relativity. It stipulates

that a moving luminous object (star) with a constant speed 𝑢 with respect to a stationary

observer 𝑂, could be seen at a location slightly shifted from its real position (optical image). This

shift is given by the following relationship deduced previously:

𝒕𝒂𝒏 𝜽 =
𝒔𝒊𝒏 𝜽

𝒄𝒐𝒔 𝜽
=

𝒔𝒊𝒏 𝜽′ 𝟏 − 𝜷𝟐

𝒄𝒐𝒔 𝜽′ + 𝜷

The inverse relation is also obtained by replacing 𝜃 by 𝜃′ and 𝑢 by −𝑢:

𝒕𝒂𝒏 𝜽′ =
𝒔𝒊𝒏 𝜽′

𝒄𝒐𝒔 𝜽′
=

𝒔𝒊𝒏 𝜽 𝟏 − 𝜷𝟐

𝒄𝒐𝒔 𝜽 − 𝜷

Applications: Optical Aberration and Doppler effect



By using the relativistic aberration relationship given below, deduce the shift

between angles 𝜽′ and 𝜽, for 𝜽′ =
𝝅

𝟐
and 𝒖 = 𝟑 × 𝟏𝟎𝟒 𝒎/𝒔

𝒕𝒂𝒏 𝜽 =
𝒔𝒊𝒏 𝜽′ 𝟏 − 𝜷𝟐

𝒄𝒐𝒔 𝜽′ + 𝜷

Solution:

𝜽 =
𝝅

𝟐
= 𝟏. 𝟓𝟕𝟎𝟕𝟗𝟔𝟑𝟐 → 𝒔𝒊𝒏

𝝅

𝟐
= 𝟏; 𝒄𝒐𝒔

𝝅

𝟐
= 𝟎

𝜷 =
𝒖

𝒄
=

𝟑 × 𝟏𝟎𝟒

𝟑 × 𝟏𝟎𝟖
= 𝟏𝟎−𝟒 ≪≪ 𝟏 → 𝟏 − 𝜷𝟐 ≅ 𝟏

𝒕𝒂𝒏 𝜽′ =
𝟏 − 𝜷𝟐

𝜷
=

𝟏 − 𝜷𝟐

𝜷
≅

𝟏

𝜷
≡

𝒄

𝒖
= 𝟏𝟎𝟒 → 𝜽′ = 𝟏. 𝟓𝟕𝟎𝟔𝟗𝟔𝟑𝟐

∆𝜽 = 𝜽 − 𝜽′ = 𝟏𝟎−𝟒 ≅ 𝟎. 𝟎𝟎𝟓𝟕°
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At 𝒕 = 𝟎 observer O emits a photon traveling at speed c in a direction 𝜽 = 𝟔𝟎° with the x-

axis. A second observer O’, travels with a speed 𝒖 = 𝟎. 𝟔𝒄 along the common x-x’ axis.

Using the relationship below, find what angle does the photon make with the x’-axis of O’?

𝒕𝒂𝒏 𝜽′ =
𝒔𝒊𝒏 𝜽 𝟏 − 𝜷𝟐

𝒄𝒐𝒔 𝜽 − 𝜷

Solution:

𝜽 = 𝟔𝟎° → 𝒔𝒊𝒏 𝟔𝟎° = 𝟎. 𝟖𝟔𝟔; 𝒄𝒐𝒔 𝟔𝟎° = 𝟎. 𝟓

𝜷 =
𝒖

𝒄
= 𝟎. 𝟔 → 𝟏 − 𝜷𝟐 = 𝟎. 𝟖

𝒕𝒂𝒏 𝜽′ =
𝒔𝒊𝒏 𝜽 𝟏 − 𝜷𝟐

𝒄𝒐𝒔 𝜽 − 𝜷
=

𝟎. 𝟖𝟔𝟔 × 𝟎. 𝟖

𝟎. 𝟓 − 𝟎. 𝟔
= −𝟔. 𝟗𝟐𝟖 → 𝜽′ = −𝟖𝟏°. 𝟕𝟖′
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▪ Relativistic Doppler effect:

Consider now, the last coefficient obtained by identification between both expressions of wave

function (in R and R’, respectively):

𝝂 =
𝟏 + 𝜷𝒄𝒐𝒔 𝜽′ 𝝂′

𝟏 − 𝜷𝟐

This expression translates the well-known phenomenon; Relativistic Doppler Effect.

Inversely, we could write for an observer 𝑂 with respect to another one 𝑂’:

𝝂′ =
𝟏 − 𝜷𝒄𝒐𝒔 𝜽 𝝂

𝟏 − 𝜷𝟐

Applications: Optical Aberration and Doppler effect



▪ Relativistic Doppler effect:

We could also verify for very small velocities (with respect to light celerity), that the relativistic

expression:

𝝂 =
𝟏 + 𝜷𝒄𝒐𝒔 𝜽′ 𝝂′

𝟏 − 𝜷𝟐

Will be reduced to the classical expression of Doppler effect (𝛽 ≪ 1 → 1 − 𝛽2 ≅ 1)

𝝂 ≅ 𝟏 + 𝜷𝒄𝒐𝒔 𝜽 𝝂′

Pour 𝜃 = 0 (The source is moving from 𝑂 along x-axis in the direction 𝑂𝑋): 𝝂 ≅ 𝟏 + 𝜷 𝝂′

Pour 𝜃 = 𝜋 (The source is moving toward 𝑂 along x-axis in the direction 𝑂𝑋): 𝝂 ≅ 𝟏 − 𝜷 𝝂′

Applications: Optical Aberration and Doppler effect



For both limit cases of 𝜽 = 𝟎° et 𝜽 = 𝟏𝟖𝟎°, demonstrate that the relativistic Doppler
effect will be reduced to the following expressions:

𝝂′ = 𝝂
𝒄 − 𝒖

𝒄 + 𝒖
; 𝝂′ = 𝝂

𝒄 + 𝒖

𝒄 − 𝒖

Examine also the case of 𝜽 = 𝟗𝟎°.

Solution:

1. Partant de l’expression: 𝜈′ =
1−𝛽𝑐𝑜𝑠 𝜃 𝜈

1−𝛽2

Pour 𝜃 = 0 → 𝜈′ = 𝜈
1−𝛽

1−𝛽2
= 𝜈

1−𝛽 2

1−𝛽 1+𝛽
= 𝜈

1−𝛽

1+𝛽
= 𝜈

𝑐−𝑢

𝑐+𝑢

De même pour 𝜃 = 180° → 𝜈′ = 𝜈
1+𝛽

1−𝛽2
= 𝜈

1+𝛽 2

1−𝛽 1+𝛽
= 𝜈

𝑐+𝑢

𝑐−𝑢

2. Pour le cas 𝜃 = 90° → 𝜈′ = 𝜈
1

1−𝛽2
𝜈 = 𝜈′ 1 − 𝛽2
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1. A star is receding from the earth at a speed 𝒖 = 𝟓 × 𝟏𝟎−𝟑𝒄. What is the 
wavelength shift for the sodium 𝑫𝟐 line (𝑫𝟐 = 𝟓𝟖𝟗𝟎Å)?

2. Suppose that the Doppler shift in the sodium 𝑫𝟐 line is 𝟏𝟎𝟎Å when the 
light is observed from a distant star. Determine the star’s velocity of 
recession.

Solution:
1. Partant de l’expression 𝜃 = 0 :

𝜈′ = 𝜈
𝑐 − 𝑢

𝑐 + 𝑢

𝑐

′
=

𝑐



𝑐 − 𝑢

𝑐 + 𝑢
→ ′ = 

𝑐 + 𝑢

𝑐 − 𝑢
= 5890

1 + 0.005

1 − 0.005
= 5919.5Å

∆ = ′ −  = 𝟐𝟗. 𝟓Å
2. Dans le second cas, reprenons la même expression:

′ = 
𝑐 + 𝑢

𝑐 − 𝑢
5990 = 5890

𝑐 + 𝑢

𝑐 − 𝑢
→ 1.0342 =

𝑐 + 𝑢

𝑐 − 𝑢
→ 𝑢 = 0.0168𝑐
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Minkowski Space-Time and Quadri-vectors

In 1907, H. Minkowski proposed the unification of the three spatial

coordinates with the unique time coordinate, to form a space-time

continuum, known also as Minkowski space

In fact, we already saw that with the definition of the “time-light”

dimension𝑙 = 𝑐𝑡 as well as the imaginary variable 𝑥4 = 𝑖𝑐𝑡 = 𝑖𝑙, the

Einstein invariant could be written in more concise and elegant way:

𝒔 = ෍

𝒊=𝟏

𝟒

∆𝑿𝒊
𝟐 = ∆𝑿𝟏

𝟐 + ∆𝑿𝟐
𝟐 + ∆𝑿𝟑

𝟐 + ∆𝑿𝟒
𝟐= 𝒔′ = ෍

𝒊=𝟏

𝟒

∆𝑿′𝒊
𝟐 = ∆𝑿′𝟏

𝟐 + ∆𝑿′𝟐
𝟐 + ∆𝑿′𝟑

𝟐 + ∆𝑿′𝟒
𝟐= 𝟎

By identifying: χ1 ≡ 𝑥; χ2 ≡ 𝑦; χ3 ≡ 𝑧; χ4 ≡ 𝑖𝑐𝑡

Hermann MINKOWSKI
(1864-1909, Prussia)



▪ Four-vector in the space-time:

Any position vector in this space could be written:

ොχ = ොχ χ1, χ2, χ3, χ4 ≡ ොχ 𝑥, 𝑦, 𝑧, 𝑖𝑐𝑡 ≡ ොχ Ԧ𝑟, 𝑖𝑐𝑡 ≡

χ1
χ2
χ3
𝑖𝑐𝑡

Which is called the “Four-vector position”, defining an “event”.

The L.T could be then rewritten with the new notation:

Hermann MINKOWSKI
(1864-1909, Prussia)

𝑻. 𝑳: 𝑹 → 𝑹′ 𝑻. 𝑳: 𝑹′ → 𝑹

χ′𝟏 = 𝜸 χ𝟏 + 𝒊𝜷χ𝟒 χ𝟏 = 𝜸 χ′𝟏 − 𝒊𝜷χ′𝟒

χ′𝟐 = χ𝟐; χ′𝟑 = χ𝟑 χ𝟐 = χ′𝟐; χ𝟑 = χ′𝟑

χ′𝟒 = 𝜸 χ𝟒 − 𝒊𝜷χ𝟏 χ𝟒 = 𝜸 χ′𝟒 + 𝒊𝜷χ′𝟏

Minkowski Space-Time and Quadri-vectors



It is also usual to use tensor notation, where the sum operation

between two 4-vectors is defined as:

෍

𝜇,ν=1

4

𝑆ν 𝑇𝜇 = 𝛿𝜇
ν ෍

𝜇

𝑆𝜇𝑇𝜇 , 𝛿𝜇
𝜇

= 1, 𝛿𝜇
𝑣≠𝜇

= 0

Then, to obtain “the measure” of a 4-vector:

መ𝐴2 = ෍

𝜇1

4

መ𝐴𝜇 መ𝐴𝜇 = 𝐴1𝐴1 + 𝐴2𝐴2 + 𝐴3𝐴3 + 𝐴4𝐴4

with: 𝐴𝑖 = 𝐴𝑖 𝑖 = 1,2,3 ; 𝐴4 = −𝐴4

In some notations, one can find:𝐴0 = 𝐴0; 𝐴𝑖 = −𝐴𝑖 𝑖 = 1,2,3

Hermann MINKOWSKI
(1864-1909, Prussia)
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Using tensor notation (without imaginary variable) :

෠𝑋 = ෠𝑋 𝑋1, 𝑋2, 𝑋3, 𝑋4 ≡ ෠𝑋 𝑥, 𝑦, 𝑧, 𝑐𝑡 ≡ ෠𝑋 Ԧ𝑟, 𝑐𝑡 ≡

𝑋1
𝑋2

𝑋3
𝑐𝑡

Thus, the same four-vector position will verify the following L.T:

Hermann MINKOWSKI
(1864-1909, Prussia)

𝑻. 𝑳: 𝑹 → 𝑹′ 𝑻. 𝑳: 𝑹′ → 𝑹

𝑿′𝟏 = 𝜸 𝑿𝟏 − 𝜷𝑿𝟒 𝑿𝟏 = 𝜸 𝑿′𝟏 + 𝜷𝑿′𝟒

𝑿′𝟐 = 𝑿𝟐; 𝑿′𝟑 = 𝑿𝟑 𝑿𝟐 = 𝑿′𝟐; 𝑿𝟑 = 𝑿′𝟑

𝑿′𝟒 = 𝜸 𝑿𝟒 − 𝜷𝑿𝟏 𝑿𝟒 = 𝜸 𝑿′𝟒 + 𝜷𝑿′𝟏

In this notation, it is possible to see the symmtery of L.T (between 𝑿𝟏, 𝑿𝟒 and 𝑿′𝟏, 𝑿′𝟒 )!!!

Minkowski Space-Time and Quadri-vectors



▪ Four-vector velocity:

A moving body with a velocity 𝑢 with respect to another observer, will measure its proper time (with

respect to its proper frame 𝑅’) and the relation between the measured time by the observer and the

proper time is given by the dilatation time relation: 𝒕 = 𝜸𝝉 → 𝒅𝒕 = 𝜸𝒅𝝉

Therefore, we define a four-vector velocity as the derivative of the four-vector position with respect

to its proper time:

෡𝑽 =
𝒅෡𝑿

𝒅𝝉
=

𝒅𝒕

𝒅𝝉

𝒅෡𝑿

𝒅𝒕
= 𝜸

𝒅𝒓

𝒅𝒕
,
𝒅(𝒄𝒕)

𝒅𝒕
= 𝜸 𝒖, 𝒄 ≡ 𝜸

𝒖𝒙
𝒖𝒚

𝒖𝒛
𝒄

The norm of this four-vector (magnitude) is given by:

෡𝑽𝟐 = ෍

𝝁=𝟏

𝟒

𝑽𝝁
𝟐 = 𝜸𝟐 𝒖𝟐 − 𝒄𝟐 = 𝒄𝟐

𝒖𝟐/𝒄𝟐 − 𝟏

𝟏 − Τ𝒖𝟐 𝒄𝟐 = −𝒄𝟐

This is an invariant (the minus sign (-) comes from the adopted notation)
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▪ Four-vector acceleration :

In the same way, we could retrieve the four-vector acceleration:

෡𝑨 =
𝒅෡𝑼

𝒅𝝉
=

𝒅𝒕

𝒅𝝉

𝒅෡𝑼

𝒅𝒕
= 𝜸

𝒅

𝒅𝒕
𝜸𝒖, 𝜸𝒄 ≡ 𝜸

𝒅

𝒅𝒕

𝜸𝒖𝒙
𝜸𝒖𝒚

𝜸𝒖𝒛
𝜸𝒄

By applying the same derivation rules, knowing that:

𝑑

𝑑𝑡
𝛾 =

𝑑

𝑑𝑡
1 − ൗ𝑢2

𝑐2

−1/2

= 𝛾2
𝑢

𝑐2
; 𝑢 =

𝑑 Ԧ𝑟

𝑑𝑡
; Ԧ𝑎 =

𝑑𝑢

𝑑𝑡

Finally, we obtain:

෡𝑨 =
𝒅෡𝑼

𝒅𝝉
=

𝒅𝒕

𝒅𝝉

𝒅෡𝑼

𝒅𝒕
=

𝜸𝟒 𝒖. 𝒂
𝒄𝟐 𝒖 + 𝜸𝟐𝒂

𝜸𝟒 𝒖. 𝒂
𝒄𝟐

In the tangent frame of the object (𝒖 = 𝟎), the norm of ෡𝑨 : ෡𝑨 = 𝜸𝟐𝒂
𝟎

→ ෡𝑨𝟐 = 𝒂𝟐(𝜸 = 𝟏)

Minkowski Space-Time and Quadri-vectors



▪ The 𝒙 − 𝒄𝒕 representation of the space-time:

To make it simple, we consider only both dimensions (𝑥, 𝑙 = 𝑐𝑡) to represent the 2D

space-time. In this case, the L.T will be reduced to:

𝒙
𝒍

=
𝒄

𝒕
𝟎

𝒙′ = 𝜸 𝒙 − 𝜷𝒍 𝒙 = 𝜸 𝒙′ + 𝜷𝒍′

𝒍′ = 𝜸 𝒍 − 𝜷𝒙 𝒍 = 𝜸 𝒍′ + 𝜷𝒙

Thus, the travelling of a material particle (𝑚 ≠ 0) is

given by the curve “Universe line”, which represents

all the locations of this particle within this space-

time: All events lived by this particle
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▪ The 𝒙−𝒄𝒕 representation of the space-time:

The tangent of the universe line of the given particle at each point is given by:

tan 𝜃 = Τ𝑑𝑥 𝑑𝑙 = Τ𝑑𝑥 𝑐𝑑𝑡 = Τ𝑢 𝑐

Since 𝑢 < 𝑐 → 𝜃 < 45° for each material particle

In other hand, the universe line of a photon is

a straight line with an angle of 𝟒𝟓° with

respect to 𝑶𝑿 (𝒖 = 𝒄)

𝒙
𝒍

=
𝒄

𝒕
𝟎

𝜃

Universe line of a particle

45°
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▪ The 𝒙−𝒄𝒕 representation of the space-time:

Now, we will construct the frame 𝑅′(𝑥’, 𝑙’ = 𝑐𝑡’), with respect to the existing frame

𝑅(𝑥, 𝑙 = 𝑐𝑡):

▪ The 𝒍’ − 𝒂𝒙𝒊𝒔 is obtained for 𝒙’ = 𝟎, and

according to L.T: 𝒙 = 𝜷𝒍 (𝝋 < 𝟒𝟓°)

▪ The 𝒙’ − 𝒂𝒙𝒊𝒔 is obtained for 𝒍’ = 𝟎 ,

similarly by using L.T: 𝒍 = 𝜷𝒙

𝜑

𝒙

𝒍

𝟎

𝒙 = 𝟎

𝒄𝒕 = 𝟎

𝒙 = 𝜷𝒍

𝜑

𝒙′

𝒍 = 𝜷𝒙

The L.T will transform an orthogonal

frame into a non-orthogonal one.

𝒙′ = 𝜸 𝒙 − 𝜷𝒍

𝒍′ = 𝜸 𝒍 − 𝜷𝒙
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▪ The 𝒙−𝒄𝒕 representation of the space-time:

𝒙

𝒍

𝟎

𝒍′

𝒙′

𝒙

𝒍

𝟎 𝟏 𝟐 𝟑 𝟒

𝟏

𝟐

𝟑

𝟒

𝟏

𝟐

𝟑

𝟑

𝟐

𝟏

𝜷 = 𝟎. 𝟓

𝑷𝟏(𝟏, 𝟐)

𝑷𝟐(𝟐, 𝟐. 𝟓)

𝒙′ = 𝜸 𝒙 − 𝜷𝒍 𝒙 = 𝜸 𝒙′ + 𝜷𝒍′

𝒍′ = 𝜸 𝒍 − 𝜷𝒙 𝒍 = 𝜸 𝒍′ + 𝜷𝒙
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▪ The 𝒙−𝒄𝒕 representation of the space-time:

𝒙

𝒍

𝟎

𝒍′

𝒙′

𝒙

𝒍

𝟎 𝟏 𝟐 𝟑 𝟒

𝟏

𝟐

𝟑

𝟒

𝟏

𝟐

𝟑

𝟑

𝟐

𝟏

𝜷 = 𝟎. 𝟓

𝑷𝟏(𝟏, 𝟑) 𝑷𝟐(𝟐, 𝟑)

𝒙′ = 𝜸 𝒙 − 𝜷𝒍 𝒙 = 𝜸 𝒙′ + 𝜷𝒍′

𝒍′ = 𝜸 𝒍 − 𝜷𝒙 𝒍 = 𝜸 𝒍′ + 𝜷𝒙

𝑶

𝑶′
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▪ The 𝒙−𝒄𝒕 representation of the space-time:

Consequently, the Minkowski space allows a

better understanding of the simultaneity

question within the special relativity theory, as

well as the length contraction and time

dilatation consequences.

As it were Minkowski succeeded to geometrize

the physics of space and time
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▪ The light cone or the time order of events

𝒙

𝒕

𝟎 Pr
es

en
t 

Past

Future
According to our perception of time, we define

three times according to the chronological order:

- The past

- The present

- The future

This perception is easily translated by the time axis

with a unique direction, usually used in classical

physics.
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▪ The light cone or the time order of events

In relativistic physics, the order of events as seen

by an observer 𝑂, could eventually change for

another observer 𝑂’ in function of its motion

(velocity 𝑢) with respect of 𝑂.

However, the time-light axis 𝑙’ will be always

located at an angle 𝜑 < 45° with respect to 𝑙.
𝒙

𝒍

𝟎

Besides that, the time order is also respected between

events (at the same position) on this axis :

𝑃𝑝𝑎𝑠𝑡, 𝑃𝑛𝑜𝑤 and 𝑃𝑓𝑢𝑡𝑢𝑟𝑒

𝒍′

Pn

Pf

Pp
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▪ The light cone or the time order of events

In the same way, the spatial axis of an observer 𝑂’

moving with a velocity 𝑢, will be always oriented

with an angle 𝜑 < 45° with respect to 𝑥.

𝒙

𝒍

𝟎

And the following events will always happen in

simultaneous way but at different positions:

𝑃−1, 𝑃0 and 𝑃1

𝒍′

𝒙′

P0

P1

P-1
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▪ The light cone or the time order of events

Therefore, in the Minkowski space describing the special

relativity theory, it is possible for an observer 𝑂’ with a

velocity 𝑢, to perceive the order of events according to

three zones defined below :

- Absolute past

- Present

- Absolute future

𝒙

𝒍

𝟎

Absolute past

Present 

Present 

Absolute Future 

These three time zones are delimited by the « Light cone »:

𝟑𝑫 : 𝒙𝟐 + 𝒚𝟐 = 𝒄𝟐𝒕𝟐 → 𝟒𝑫 : 𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐 = 𝒄𝟐𝒕𝟐
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