SW N°3 : REPETITIVES STATEMENTS : LOOPS

Exercise 01 : Dividers of a number

- Write an algorithm to read an integer N, greater than 1 and display all its dividers.

Exercise 02 : Perfect, Deficient or Abundant (Examen 2022/2023)

A number is perfect if it is equal to the sum of its proper dividers (different from itself). A number is deficient if it is strictly greater than the sum of its proper dividers. A number is abundant if it is strictly less than the sum of its proper dividers.

- Write an algorithm to display whether a given number N is perfect, deficient or abundant.

Example: N = 28 -----> 28 is perfect N = 16 ----> 16 is deficient N = 18 ----> 28 is abundant

Exercise 03 : Maximum

Write an algorithm that successively asks the user for 20 numbers, and then tells him which was the largest among these 20 numbers.

Exercise 04 : Division by subtraction

Write an algorithm allowing you to divide an integer A (positive or zero) by the positive integer B.

Example : we want to divide 20 by 3.

20 - 3 = 17	1	
17 - 3 = 14	2	2 is the rest.
14 - 3 = 11	3	The quotient is the number of
11 - 3 = 8	4	times we were able to subtract
8 - 3 = 5	5	3 from 20 (6 times)
5 - 3 = 2	6	

Dividing A by B involves finding Q and R positive or zero such that: A = B*Q + R with R < B.

Exercise 05 : Average calculation

Write an algorithm that asks the user for a series of numbers, representing measurements that can only be strictly positive. The user does not count the number of measurements to enter, but signals that he is finished by entering a negative or a null number.

- The algorithm then displays the number of measurements entered, and their arithmetic average.

Exercise 06 : Never satisfied (Examen 2014/2015)

Write an algorithm that asks for a number between 10 and 20, until the answer matches. In the event of a response greater than 20, a message will appear: "Smaller! ", and conversely, "Bigger!" » if the number is less than 10.

Exercise 07 : Syracuse sequence (Examen 2014/2015)

The Syracuse sequence is defined by $u_0 \in \mathbb{N}$ and

for each
$$n \in \mathbb{N}$$
, $u_{n+1} = \begin{cases} \frac{u_n}{2}, & \text{if } u_n \text{ is even} \\ \\ 3u_n + 1, & \text{if } u_n \text{ is odd} \end{cases}$

Write an algorithm asking the user for a number n and displaying all the values

 u_1, u_2, \dots, u_n ; with $u_0 = 3$.

Exercise 08 : The FIBONACCI sequence

Construct the algorithm which calculates the Nth (with N>2) term of the FIBONACCI sequence which is defined by : $\int U_{0} = U_{1} = I$

$$U_n = U_{n-1} + U_{n-2}$$
 for every $n \ge 2$

FIBONACCI sequence: 1, 1, 2, 3, 5, 8, 13, ... Example : if N=5 then we display : 8

Exercise 09 : Convert from decimal to binary

Construct the algorithm for converting an integer N into binary (base 2).

Example : $(29)_{10} = (11101)_2$

Exercise 10: Divisibility by 3 (Examen 2020/2021)

An integer is divisible by 3 if the sum of its digits is divisible by 3.

Write an algorithm that allows you to say whether an integer N is divisible by 3 or not.

<u>Example</u> : N = 903 = Sum of digits = 3+0+9 = 12 is divided by 3; then, 903 can be divided by 3;

Exercise 11: the approximation of Sin(x) (Examen 2013/2014)

Write an algorithm that calculates the approximation of Sin(x), such that :

$$\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

With x given real and n positive integer.