
Algorithms And Data Structure 1

Mr Haniche Fayçal
Classroom link Qrcode

Von Neumann architecture
The von Neumann architecture —also known as
the von Neumann model or Princeton
architecture—is a computer architecture based on a
1945 description by John von Neumann, and by
others, in the First Draft of a Report on the
EDVAC. The document describes a design
architecture for an electronic digital computer with
these components:

• A processing unit with both an arithmetic logic
unit and processor registers

• A control unit that includes an instruction
register and a program counter

• Memory that stores data and instructions

• External mass storage

• Input and output mechanisms

What is algorithm?
 A finite set of instructions which accomplish a particular task

 A method or process to solve a problem

 Transforms input of a problem to output

Algorithm = Input + Process + Output

Algorithm development is an art – it needs practice, practice and only
practice!

What is a good algorithm?
 It must be correct

 It must be finite (in terms of time and size)

 It must terminate

 It must be unambiguous
Which step is next?

 It must be space and time efficient

A program is an instance of an algorithm, written in some
specific programming language

Characteristics of a good Algorithm

Algorithm development:
Basics
 Clearly identify:

 what Inputs are required?
 what is the Output?
What steps are required to transform input into
output

o The most crucial bit
o Needs problem solving skills
oA problem can be solved in many different ways
o Which solution, amongst the different possible
solutions is optimal?

How to express an algorithm?
• A sequence of steps to solve a problem
• We need a way to express this sequence of

steps
1. Natural language (NL) is an obvious choice, but

not a good choice. Why?
o NLs are notoriously ambiguous (unclear)

2. Programming language (PL) is another choice,
but again not a good choice. Why?
o Algorithm should be PL independent

 We need some balance
o We need PL independence
o We need clarity
o Pseudo-code provides the right balance

Steps of Problem Solving in Computer Science

Analyse and
Understand the

problem statement.

• Identify the expected actions of the mathematical solution.
• Identify the supporting inputs
• Identify the outputs (result data).

Build the
Algorithm.

• Write the Algorithmic solution
• Validity Check and correction

Coding • Chose à Programing Language
• Rewrite the Algorithm in the chosen PL

Compile and Execute

Problem

An Explicit statement
of the problem

Algorithmic Solution

Program

General structure of an Algorithm

Algorithm <Algorithm id>

Type
// liste of specific data types

Const
//List of constantes

Var
// Liste of Variables

Begin

// Liste of Instructions

End.

Algorithm header

instruction part

data declaration part

1. Integer int الأعداد الصحيحة :

2. Character char : denote Alphabet letters; digits and special character

(symbols)

3. Real (Floating point) real, float : represent fractional numbers

4. Boolean Bool : this type support two values True and False

5. String : A string data type is a combination of characters

Standard Data Type

Data is classified into data types. e.g. char, float, int, etc.
A data type is (i) a domain of allowed values and (ii) a set of
operations on these values.

Basic Operations

1- Basic Arithmetic Operations

The four basic arithmetic operations in Maths, for all real and Integer numbers, are:

•Addition (Finding the Sum; ‘+’)

•Subtraction (Finding the difference; ‘-’)

•Multiplication (Finding the product; ‘×’)

•Division (Finding the quotient; ‘/’)

Two additional operation for Euclidean division for integer numbers only:

• Div the quotient of Euclidean division

• Mod the remainder of Euclidean division

Basic Operations
2- Basic Logical Operations

Three basic logical operations for boolean data type

. Negation No.

. Conjunction And.

. Disjunction Or

3- comparison operators : >, <, <>, =, >=, <=

Comparison operators compare two values of the same type and return True or

False. (Such expressions are sometimes called Boolean expressions.)

4- String concatenation: ‘+’ ‘.’
Only whith string data type, which returns the concatenation of its right and left arguments

The Basic Statements

An Algorithm is composed of statements, which define the computation

by creating and manipulating variables, assigning data-type values to

them, and controlling the flow of execution of such operations.

Statements are often organized in blocks, sequences of statements

within curly braces.

The Basic Statements

Declarations.

A declaration statement associates a variable name with a Data type,

The variables are used as data containers to temporally memorize input data, intermediate

data and output data,

Var

<ID> : <data type> ;

Exemple : in c language :

a: int; int a;

Long,larg : real; float long, larg;

L: char; char l;

Identifiers ID

Choosing meaningful names for

the variables, constants and subroutines makes it easier for

the next person to work on the code to understand it.

These names are called identifiers and they usually follow

certain rules:

rules
•They can contain letters and numbers but must start with a letter.

•They must contain at least one letter (at the start of the name).

•They must not contain special characters such as !@£$%&* or punctuation

characters. However, an underscore ‘_’ can be used.

•Spaces are not allowed.

•They will normally contain lower case letters. However, upper case letters

can be used if a variable name comprises more than one word joined

together.

•The name should be meaningful - it should represent the value it is holding.

Constants Id

Constants follow the same naming conventions as

variables except that they are conventionally written in

upper case.

The Basic Statements
Assignments ‘:=‘ ‘’ (we use ‘ = ‘ in c language)

An assignment statement associates a data value (defined by an expression) with a

variable. When we write c := a + b , we are not expressing mathematical equality, but are

instead expressing an action: set the value of the variable c to be the value of a plus the

value of b

<Var_ID> := <Expression> ;
Exp:

a := b;

b := (a-5)/(b+c);

A := 18;

The Expression will be
evaluated first

and the result will finally be
injected in the variable

Input Statement
Used for entering data to be manipulated with the Algorithm

Read(<var_id>[,<var_id]);

Exp :

Read(larg): in c language scanf("%f",&larg);

Read(a,b,c); scanf(« %d %d %f",&a, &b, &c);

Output Statement
Used for printing out text messages and Algorithm

results from variable contents,

Write (<text|var_id> [,<text|var_id])

Write(‘Hello World’) ;

in clanguage printf(“Hello World");

Write(‘the result = ‘ , surf) ;

printf(“the result =%f“, surf);

In a conditional statement we make a test. The result of the test is a Boolean -

either True or False. If the result of the test is True we take a certain course of

action and if the result of the test is False you take another course of action.

IF <condition >

THEN <sequence 1 >

ELSE <sequence 2 >

ENDIF

If the condition is True sequence 1 is executed, otherwise sequence 2 is executed.

Note : The ELSE sequence is optional.

CONDITIONAL Statement

CONDITIONAL Statement -Example-
if moy >= 10

then
write(‘Congratulation, you are passed!’)

else
write(‘Sorry, you are failed!’)

end if;

What will be the output if moy is equal to 15,,2?

In c language :

CONDITIONAL Statement

Notes:

- in c-language, the condition must be

written in brackets,

- in c-language, if sequence 1 or

sequence 2 have more than one

instruction, we use ‘{‘ and ‘}’ to

delimit the sequence

Algorithm representation
using Flowcharts

The Flowchart

• (Dictionary) A schematic representation of a sequence of operations, as in a

manufacturing process or computer program.

• (Technical) A graphical representation of the sequence of operations in an

information system or program.

• Information system flowcharts show how data flows from source documents through the

computer to final distribution to users.

• Program flowcharts show the sequence of instructions in a single program or subroutine.

Different symbols are used to draw each type of flowchart.

The Flowchart

A Flowchart

• shows logic of an algorithm

• emphasizes individual steps and their interconnections

• e.g. control flow from one action to the next

Flowchart Symbols

Oval

Parallelogram

Rectangle

Diamond

Hybrid

Name Symbol Use in Flowchart

Denotes the beginning or end of the program

Denotes an input operation

Denotes an output operation

Denotes a decision (or branch) to be made.
The program should continue along one of
two routes. (e.g. IF/THEN/ELSE)

Denotes a process to be carried out
e.g. addition, subtraction, division etc.

Flow line Denotes the direction of logic flow in the program

Basic

Example

• Write an algorithm and draw a flowchart to convert the length in feet
to centimeter.

Pseudocode:
• Input the length in feet (Lft)
• Calculate the length in cm (Lcm) by multiplying LFT with 30
• Print length in cm (LCM)

Example 1

START

Read(Lft)

Lcm := Lft x 30

Write(Lcm)

STOP

Flowchart

Example 2

Write an algorithm and draw a flowchart that will read the two

sides of a rectangle and calculate its area.

Pseudocode

• Input the width (W) and Length (L) of a rectangle

• Calculate the area (A) by multiplying L with W

• Print A

Example 2

START

Read(W, L)

Area := L x W

Write(area)

STOP

Write(‘please give
the measures’)

Exemple 3 the min_max Algorithm

START

Read(a,b)

min:=b;
max:=a;

Write(‘a and b
are equal’)

STOP

a=b

a>b

min:=a;
max:=b;

Write(‘max =‘,max);
Write(‘min=‘,min);

true

true

false

false

Exemple 3

Switch case statement
Switch case statement evaluates a given variable(the Selector) and based on the

evaluated value(matching a certain condition), it executes the statements

associated with it. Basically, it is used to perform different actions based on

different conditions(cases).

•Switch case statements follow a selection-control mechanism and allow a value

to change control of execution.

•They are a substitute for long if statements that compare a variable to several

integral values.

•The switch statement is a multiway branch statement. It provides an easy way to

dispatch execution to different parts of code based on the value of the selector.

Syntaxe

Switch <selector>

case value1: <sequence_1>;

case value2: <sequence_2>;

.

.

.

case value_n: <sequence_n>;

else : <default_sequence>;

End switch;

Rules of the switch case statement

Following are some of the rules that we need to follow while using the

switch statement:

• In a switch statement, the <selector> and “case value” must be of “char”

and “int” type (enumerated type in general).

• There can be one or N number of cases.

• The default Statement is optional. The default keyword is used to specify

the set of statements to execute if there is no case match.

Switch corresponding flowchart
Selector

evaluation

Case
1

Case
2

Case
n

<Sequence 1>;

<Sequence 2>;

<Sequence n>;

default
statements

Statement after
Switch

true

true

true

false

false

false

Repetition structures

Repetition structures

• Called loops,

• Used to repeat the same code mulitple times in succession.

• The number of repetitions is based on criteria defined in the loop structure,

usually a true/false expression

• Three loop structures are:

•while loops

•do-while loops

•for loops

while loop

while <condition>

begin

<sequence>;

end;

Logical expression

“Loop body”
one statement or

more

•The condition is evaluated to decide whether the loop takes a new

iteration (repetition) or not.

•true means run the loop body again.

•false means quit the loop.

While loop Flowchart

<Condition>

Loop body
<sequence>

true

false

Statements before
while loop

Statements After
while loop

While loop : Example The Average of Readen Measures
We need to calculate the Average of a set of given
measures, we continue reading while the entered measure
is a positive value
Inputs:

the measures, we need one variable mes of type real
in which we read many time,

Output :
the Average of type real

Process :
1- read the first measure

2- initialize the sum to 0
3- initialize the counter to 0
4-If the read measure >=0 then goto -5-

else goto -7-
5- add the measure to the sum
6- increment the counter
7- Read an other measure
8- goto -4-

9- calculate the average avg = sum/cnt
10-print out the average

do-while loop

The do..while loop is similar to the while loop with

one important difference :

The body of do...while loop is executed at least once.

Only then, the test expression is evaluated.
<Condition>

Loop body
<sequence>

true

false

Statements before
while loop

Statements After
while loop

do

<sequence>;

while <condition>

Do- - while loop Exemple
The same last Algorithm is given

here using the do-while loop:

- In this version it is not necessary to

separate the first reading of the measure

and the following readings, due to the fact

that the do-while loop ensures a first

iteration before the first test

For loop
When the number of iterations is known we use simply the for loop,

The loop mechanism is based on a loop counter that allows counting

the number of iterations that have been executed

Syntax

for <cnt> := s_v to f_v [step=p]

begin

<sequence >;

end;

1- initialize cnt with the starting value

2- if cnt is less or equal to the stopping value

then goto -3-

else goto -5- (exit)

3- execute the <sequence>

4- increment the counter cnt (according to the step)

5 – instructions after the loop

For loop flowchart

Cnt<=f_v

Loop body
<sequence>

true

false

Statements before
for loop

Statements After
for loop

cnt:=cnt+p

cnt:=s_v

