Chapter 7. Symbolic computation

Symbolic computation allows exact manipulation of mathematical expressions,
such as polynomials, equations, derivatives, integrals, and series.
Unlike numerical computation, which gives approximate values, symbolic
computation preserves the algebraic form of expressions. Scilab can perform
symbolic calculations by integrating Maxima, a well-established computer
algebra system, through the free Symbolic Toolbox for Scilab,
implemented by Jean-Francois Magni (2006) and available at
https://github.com/sengupta/scilab-maxima.git. Most functions of this toolbox
have a syntax similar to the Matlab Symbolic Toolbox, although the
functionality of this toolbox is limited to the functionality available in Maxima.
This chapter is a practical guide to using Symbolic computation capabilities in

Scilab.

. Using the SciMax Symbolic Toolbox:

1.1. Symbolic Objects:

The Symbolic Toolbox defines a new Scilab data type called a symbolic object.
Internally, a symbolic object is a data structure that stores a string representation
of a symbol. The toolbox uses symbolic objects to represent symbolic variables,
expressions, and matrices. Actual computations involving symbolic objects are
primarily performed by Maxima, an open-source system for symbolic and
numerical mathematics. Maxima was originally developed at the Massachusetts
Institute of Technology as part of the Macsyma project in the 1960s. It was
released under the GNU General Public License (GPL) in 1998 and continues to

be actively maintained by a community of users and developers.

100



1.2 How to declare symbolic variables and handle symbolic expressions:

To create a symbolic expression that is a constant, you must use the sym

command. For example, to convert the number 5 into a symbolic constant, enter:

-—> £ = sym('5")
£ =
5
-—> a=sqrt (f)
a =
5%(1/2)

Use the command syms to declare variables as symbolic. For example, the

commands:

—-=> syms X y z

declare x, y, and z as symbols, not numbers. This allows you to create

expressions like:

-—> expr = x"2 + 3*y - z
expr =

z — 3*y + x"2

To substitute a symbolic variable with a value, you must use the subs

command. For example:

—-—> subs (expr, x, 2)
ans=

4 + 3*y - z

To simplify an expression, use simple command. For example:

-—> syms a b;

101




-—> £ = (a + b)*"2 - (a - b)"2;
—-—> simple (f)
ans =

4d*a*pb

. Expanding and Functionalizing an Expression:

The expand function develops expressions into their standard form. For

example:

-—> syms X;

-—> £ = (x + 2)"3;
——>expand (£f)

ans=

x"3 + 6*x"2 + 12*x + 8

With a trigonometric expansion example:

—-=>syms X y;

-—>f = sin(x + y);
-—> expand (f)

ans =

sin (x) *cos (y) + cos(x) *sin(y)

3. Derivatives and Integrals of a Function:

The diff function computes derivatives:

// First derivative
—-—> syms X
—> £ = x"3 + 2*x"2 + x;
-—>df = diff (£, x)
df =
3*x72 + 4*x + 1

102




//Higher—-order derivatives:
Df2=diff(f, x, 2) // Second derivative
df2=
6*x + 4
//Partial Derivatives:
—-=> syms X y
-—>f = x"2*y + sin(y);

—-—>dx=diff (£, x)//Partial derivative with respect to x:
dx=

2*x*y

-—>dy=diff (f, y)// Partial derivative with respect to y:
dy=

x"2 + cos(y)

The integ function is used to integrate a symbolic expression:

// Indefinite integral:
-—> syms X
-—> £ = x*2;
-—>integ(f, x)
ans=

x*3 / 3
// Definite integral:
--> integ(f, x, 0, 1)
ans=

1/3

4. Calculating the Tavlor Expansion of a Function:

The taylor function for Taylor expansion. The syntax of this function is as

follow :

--> taylor(f, x, x0, n) // "f": function to expand,

"x": wvariable, "x0": point of expansion, "n": order.

103




For example:

// sin(x) around 0 up to order 5

—-—>syms X

-->taylor(sin(x), x, 0, 5)

ans=

x — x"3/6 + x*5/120

// log(l + x) around x = 0 up to order 4
—-—>syms Xx

-—>taylor(log(l + x), x, 0, 4)

ans=

x - x*2/2 + x*3/3 - x"4/4

104




