
���

�

Chapter 6. Graphics in Scilab

Plotting and graphics are among the most effective ways to analyze and present

data. Scilab offers powerful built-in tools for creating and customizing different

types of plots such as 2D plots, contour plots, and 3D surface plots. In this

chapter, we will learn how to generate these basic graphics and how to enhance

them with titles, axis labels, and legends for clearer presentation.

1. Displaying 2D and 3D plots:

The graphics window opens automatically with plotting commands. To open one

manually, use scf(number):

-->scf(1)

or

--> figure(1).

The graphic window looks like this:

���

�

You can close the graphic window using:

--> close()

The scf(n) function, which stands for Set Current Figure, selects the graphics

window with the number n as the current one. When you execute plotting

commands such as plot() or plot3d(), Scilab sends the results to this active

window. The following two graphics windows display 2D and 3D plots,

respectively.

���

�

2. Graphs of functions:

--> function y=f(x), y=abs(sin(x)), endfunction

--> plot(linspace(0,2*%pi,100),f)

This graph and the following ones display only the contents of the drawing area.

The Tools menu allows you to view details. Simply click on this menu, then

select Zoom and choose a point in the window and drag the mouse to define the

rectangle to zoom in on. This rectangle will then be displayed using the entire

window. The figure below shows the graph obtained by zooming in on a region

of the previous plot:

�	�

�

�

It is possible to repeat the operation to view more and more details. The "Original

view" option in the "Tools" menu restores the original graph.

Very often, a function is represented by a set of data points (x(i), y(i)). In this

case, the plot function can still be used.

--> p=linspace(0,10,100);

--> x=p.*sin(p);

--> y=p.*cos(p);

--> clf(), plot(x,y)

�
�

�

Many options can be specified through the arguments of the plot function (see

the help on LineSpec).

--> clf(), plot(x,y,'r')

--> clf(), plot(x,y,'d')

���

�

--> clf(), plot(x,y,'r-o')

The user often wants to draw several curves in the same window to compare their

behavior. Two different situations may occur: all the y-data correspond to the

same discretization of the x-values.

���

�

--> x=linspace(0,2*%pi,100);

--> y=[sin(x)',sin(2*x-1)'];

--> clf(); plot(x,y)

Note that each curve corresponds to a column of the matrix y. Each curve is

drawn with a different color. It is also possible to pass several curves as

arguments to the same plot function.

--> clf(); plot(x,sin(x),'r',x,sin(2*x-1),'d')

�
�

�

If each function has its own discretization of the x-values, the plot function can

then be called several times.

--> x1=linspace(0,2*%pi,100);

--> x2=linspace(0,2*%pi,10);

--> clf();

--> plot(x1,sin(x1),'r')

--> plot(x2,sin(x2)+rand(x2)/10,'O')

���

�

The following instructions allow you to add a legend (positioned by the user),

a title, and axis labels to the graph.

--> legend(['sin(x)','Bruit'],5)

--> xtitle('My first plot','x','sin(x)')

It is, for example, possible to plot curves in 3D using the param3d command,

such as a helix:

--> clf

--> t = 0:%pi/32:8*%pi;

--> param3d(cos(t), sin(t), t)

���

�

3. Analytical surfaces:

Let us first draw a surface defined by a function z = F(x,y).

--> function z=F(x,y),...

 > z=(2*x^2*y+y^2)/(x^2+2*y^2), endfunction

--> x=-7:0.55:7;

--> clf();fplot3d(x,x,F)

���

�

The visible surface is, by default, displayed in color number 2 from the color

table. This setting can be changed through the color_mode property.

-->gce().color_mode=8

The 2D/3D Rotation feature in the Tools menu enables adjustment of the

viewing angles � and �. The same result can be obtained by providing the

optional parameters � (theta) and � (alpha).

-->fplot3d(x,x,F,theta=115,alpha=63)

���

�

Alternatively, a surface can be represented using two vectors, x and y, specifying

the discretization along the x- and y-axes, and a matrix z, where z(i,j) denotes the

elevation at the point (x(i), y(j)). The surface corresponding to the function F

below can then be constructed by computing the matrix z as follows:

--> z=feval(x,x,F);

--> plot3d(x,x,z)

The surface, represented in this manner, can be visualized using the surf

function.

--> surf(x,x,z)

