Chapter 4. Programming Basics

The way Scilab has been used in the previous chapters may give the impression
that it is simply an "enhanced calculator" capable only of executing commands
entered via the keyboard and displaying the result. In reality, in Scilab, programs
can be written either as scripts or as functions, and this mode of operation is

preferred as soon as the number of command lines becomes sufficiently large.

1. Scripts:

A script in Scilab is a text file that contains a list of commands written just as
they would be entered in the console, and when executed, Scilab runs all these
commands automatically in sequence. It is usually saved with the extension .sce
and created using SciNotes, Scilab’s integrated text editor. A script shares the
same workspace as the main environment, meaning that all variables defined in it
remain available after execution. Scripts are especially useful for repeating a set
of commands or performing long calculations without having to retype them.

To accomplish this, you can launch the script editor directly from the console
using the command:

——=> scinotes

Alternatively, you can select SciNotes from the Scilab menu.
The file created is named Untitled by default. To change this name, simply select
Save As from the File menu and choose the name MyScript.sce. The created

window should look like this:

51

skiop\NyScriptace
File Edit Format Options Window Erecute ?

CERENS 4 X000 &8 (>D R|x|O

—— S——— 0 @ k)

21,
2025.10-31

You can now enter the following lines in the editor window:

// MyScript.sce

a = 2;

b = 3;

c = a + b;
disp(c);

The created window should look like this:

// myscript.sce

2
3la = 2;
4b = 3;
5
6
7

g-=.-d-+-bi
disp ()

e

Once the text has been entered in the window, save the file (Use the save button

&= or by selecting Save from the File menu).

52

In a script, parentheses, loop endings, function closures, and test commands are

automatically generated.

To execute the script "MyScript.sce", simply click on the button ", which

should display the following lines in the command window:

——> exec('C:\Users\a\Desktop\MyScript.sce', -1)
5.

You can also execute the file by selecting ...file with echo from the Execute

menu or by entering the following command in the console:

——> exec('C:\Users\a\Desktop\MyScript.sce')

2. Functions:

A function is a block of instructions stored in a .sci file that can take input
arguments and return one or more results. Functions help structure and organize
code, making it easier to manage complex or repeated computations. The general

syntax for defining a function is as follows:

function [rl, r2, ..., rm] = function_name (argl, arg2,..., argn)
// Function body
rl = ... // Value returned by rl

rm = ... // Value returned by rm

endfunction

As an example, let’s create a function to calculate the sine of the sum of two

angles a and b.

53

[functiont (€\Users\a\De:
file Edt Format Opl

ow Brecute 7

CIEE - PIC)

W //-First-file:functionl.sci

//This- function calculates the sine-of -the sum of two

// angles a and b.

function [r]=functionl (a,b)
r=sin(a) *cos (b) +cos (a) *sin (b) ;

endfunction

S W N

The file name can be different from the name of the function it defines, and a
single file may contain several functions. The function is then loaded into the

environment and can be executed.

—-—> exec('C:\Users\a\Desktop\functionl')
——> functionl (2, 3)
ans =

-0.9589243

It is also possible to define an "inline" function, i.e., directly from the Scilab
command line. This is practical when the function is very short to write. For

example:

——> deff ("c=plus(a,b)", "c=a+b");
--=> plus(1, 2)

ans =

54

In Scilab, most of the time, we work with vectors and matrices. The operators
and basic functions are designed to support this kind of manipulation and, more
generally, to allow program vectorization. Of course, the Scilab language
includes conditional operations (1f-then-else, elseif), loops (while,
for), and recursive programming. However, vectorization helps to reduce the
use of these features, which are not very efficient in an interpreted language.
The interpretation overhead can be dramatically penalizing compared to what a
compiled C or Fortran program can achieve when performing mainly scalar
calculations. Efficiency losses by a factor of 10 or even 100 can occur.
Therefore, it is important to minimize the interpreter’s workload by vectorizing
programs as much as possible.

Control structures are instructions that define and manage the order of execution
in a program. They allow the program to make decisions based on conditions or

to repeat actions through loops for specific processes.

3. Control loops:

"for' Loop:

The for loop is commonly used for repetition, executing a block of instructions

a predetermined number of times. Syntax:

for var = start : step : end
instructions
end
//"var" takes values from "start" to "end", increasing

by "step".

For example:

55

ans =

36.

ans =

121.

ans =

256.

Alternatively, you can replace start : step

example:

end with a vector. For

-—> v=[1 3 7 8]
v = [1x4 double]
1. 3. 7. 8.
-—> for i=v
> i/2
> end

ans =

ans =

ans =

56

ans =

4.

Loops can also be used to define matrices:

--> n=4; a=zeros(n,n);

——> for i=1 : n-1
> a(i,i)=2; a(i,i+1)=1; a(i+1,i)=-1;
> end

-—> a(n,n)=2;

——> a
a = [4x4 double]

2 1 0. 0

-1 2. 1 0

0 -1. 2 1

0 0 -1 2

Use break to exit a loop:

-—> for 1=0:0.01:1
test=i-exp(-1);
if (test>0) then
i

break

end

end

vV V.V V V V

i:

0.5700000

"While'" Loop:

The while loop executes instructions an indeterminate number of times, based

on a logical condition. The syntax is:

57

while condition do
instructions
// instructions to execute while the condition is
true
End

For example:

--> // Example: Display numbers from 1 to 5
--> i = 1; // initialization

——> while 1 < 3 do

> disp (i) ; // display the current value of i
> i=1+1; // increment i

> end

2.

4. Conditional statements:

The "1£" statement is the simplest and most commonly used control structure.
It executes different actions based on whether a condition is true or false.

The syntax of the if control structure is:

if condition then

instructions
// statements executed when the condition is true
End

or:

if condition then

instructions //statements executed when the condition is true
else

Instructions //statements executed when the conditions is false

End

For example:

58

-—> a=3.5;

-—> if a>1 then
> c=log(a—-1)
> end

——> ¢

c =
0.9162907

Using if, then, and else: The "instructions1" are executed if the logical

expression "condition" is true; otherwise, the "instructions2" are executed.

-> a=0.9;
-—> if a>0 then
> if a>1 then

f=1;

else

f=a*a;

>
>

>

> end
> else
> £=0;
> end

-—> f

If else is followed by another 1 £, you can use:

if condition then

instructions
// statements executed when the condition is true
elseif another condition then
instructions
// statements executed when the second condition

//is true

59

else
instructions
// statements executed when all conditions are
// false
End

5. Reading and Displaying Variables (Input and Qutput):

The input command is used for user input. The syntax is:

variable = input ('prompt text')

Example:

—> A=input ('Enter the matrix A: ")

Enter the matrix A: [1,2;3,4]
A = [2x2 double]

1. 2.

3. 4.

Second example:

——> name = input ('Enter your name: ', 'string')
Enter your name: Scilab
name =

"Scilab"

The "string" option allows the input of character strings.

The disp command is used to display variables. Its syntax is:

disp (var)

Here, "var" can be a number, vector, matrix, string, or expression. Example:

60

-—> t = 5;

-—> disp ("The solution is = ", (1 + sqgrt(t)) / 2)
"The solution is = "
1.6180340

61

