
�	�

�

Chapter 3. Vectors and Matrices 

 

 

 

1. Operations on vectors and matrices 

1.1. Vector and Matrix in Scilab: 

A vector can be a row vector or a column vector.  

In Scilab, a row vector contains elements in a single row. The elements are 

separated by commas ",", spaces, or both, and enclosed in square brackets [ ]. 

For example: 

 
--> v = [1,2,3];   // Using commas 

--> v = [1,2,3];   // Using spaces 

--> v = [1,2 3];   // both comma and space 

A column vector contains elements in a single column. The elements are 

separated by semicolons ";" and enclosed in square brackets [ ]. For example: 

--> v = [1;2;3];   // Using semicolons 

Specific vectors can be generated using the ":" (colon) operator, as shown 

below:   

--> x=1:5 

 x  =  

   1.   2.   3.   4.   5. 

 This assigns the integers from 1 to 5 to vector x. You can specify a different 

increment, for example: 

  



�
�

�

--> y = 0:%pi/4:%pi 

 y  =  

   0.   0.7853982   1.5707963   2.3561945   3.1415927 

This command always produces a row vector. Negative increments are also 

possible:  

--> y = 6:-1: 1 

 y  =  

   6.   5.   4.   3.   2.   1. 

You can create tables using these commands, which can later be used for 

graphical representations. For example:  

--> x = [0: 0.2:1]; 

--> y = exp(-x).*sin(x); 

--> [x' y'] 

 ans  = 

   0.    0.        

   0.2   0.1626567 

   0.4   0.2610349 

   0.6   0.3098824 

   0.8   0.3223289 

   1.    0.3095599 

To specify only the minimum, maximum values, and the number of desired 

values, use the linspace command:   

k = linspace(-%pi ,%pi ,5) 
 k  =  

 
  -3.1415927  -1.5707963   0.   1.5707963   3.1415927 

A matrix in Scilab is defined as a set of row vectors (resp. column vectors) 

separated by a semicolons (resp. commas) and enclosed in brackets [ ]. 



���

�

The matrix 

1 2 3

4 5 6

7 8 0

A

� �
� �

= � �
� �
� 	

  can be written in Scilab using one of the following 

syntaxes :  

 
--> A=[1 2 3;4 5 6;7 8 0] 

--> A=[1 2 3  

       4 5 6 

       7 8 0] 

--> A=[[1 2 3];[4 5 6];[7 8 0]] 

The number of elements in each row (column) must be the same across all rows 

(columns) of the matrix. 

An element of a matrix is referenced by its row and column numbers.                   

A(i,j) denotes the element in the 6-th row and 7-th column of matrix A.                     

For example: 

 
--> A(2,3) 

 ans  = 

   6. 

--> A(3,3)=A(1,3)+A(3,1) 

 A  =  

   1.   2.   3.  

   4.   5.   6.  

   7.   8.   10. 

1.2. Submatrix Manipulation: 

A(i,:) :  Extracts row i. 

A(:,j): Extracts column j. 

A(:): Gives all elements of A as a column vector. 

A(i:k,j:l): Extracts the submatrix between rows i and k and columns j  

and l  .  

A([i k],[j l]): Extracts the submatrix containing rows i and k, and 

columns j and l  .  For example: 



���

�

--> A(2,:) 

 ans  = 

   4.   5.   6. 

--> A(:,3) 

 ans  = 

   3. 

   6. 

   10. 

--> A(:) 

 ans  = 

   1. 

   4. 

   7. 

   2. 

   5. 

   8. 

   3. 

   6. 

   10. 

--> A(1:2,1:3) 

 ans  = 

   1.   2.   3. 

   4.   5.   6. 

--> A([1 3],[2 1]) 

 ans  = 

   2.   1. 

   8.   7. 

1.3. Deleting rows or columns:  

Deleting rows or columns is equivalent to inserting an empty matrix [ ].                     

For example:  

--> A([1 2],:)=[] 
 A  =  

 
   7.   8.   10. 

This instruction is equivalent to: 



�
�

�

--> A=A([3:$],:) 

 A  =  

   7.   8.   10. 

The symbol $ designates the last element. The symbol $ avoids the need to 

compute matrix dimensions. Example: Swap the first and last rows of matrix A, 

 
--> A([1 $],:)=A([$ 1],:) 
 A  =  

 
   7.   8.   10. 
   4.   5.   6.  
   1.   2.   3.  
  

1.3. Insert rows/columns: 

This instruction inserts a row in the last position: 

 
--> A($+1,:)=[11 12 13] 
 A  =  

 
   1.    2.    3.  
   4.    5.    6.  
   7.    8.    10. 
   11.   12.   13. 

 

And this instruction insert a column at the third position:  

 
--> A=[A(:,1:2),[11;12;13],A(:,3)] 
 A  =  

 
   1.   2.   11.   3.  
   4.   5.   12.   6.  
   7.   8.   13.   10. 

 

1.4. Basic Operations on Matrices: 

Transposition 

The special character "’" (prime or apostrophe) indicates the transposition 

operation. For example: 



���

�

 
--> A=[1 2 3; 4 5 6; 7 8 0] 
 A  =  

 
   1.   2.   3. 
   4.   5.   6. 
   7.   8.   0. 

 
--> B=A' 
 B  =  

 
   1.   4.   7. 
   2.   5.   8. 
   3.   6.   0. 

 
--> X=[-1 0 2]' 
 X  =  

 
  -1. 
   0. 
   2. 

The transposition operation transposes matrices in the classical sense. If Z is a 

complex matrix, then Z'gives the conjugate transpose, which both transposes the 

matrix and takes the complex conjugate of each element. While the command  

Z.' gives the transpose of the matrix Z without changing the sign of the 

imaginary parts. For example: 

 

--> Z = [1 + 2*%i,3 - %i; -%i,4 + 3*%i] 

 Z  =  

   1. + 2.i   3. - i   

  -i          4. + 3.i 

 

--> Z_conjugate_transpose =Z' 

 Z_conjugate_transpose  =  

                          1. - 2.i   i        

                          3. + i     4. - 3.i 

--> Z_transpose = Z.' 

 Z_transpose  =  

                 1. + 2.i  -i        

                 3. - i     4. + 3.i 

 

 



���

�

Addition and Subtraction:   

The operators "+" and "-" act on matrices and vectors. These operations are valid 

as long as the dimensions of the matrices or vectors are the same. For example, 

with the matrices from the previous example, the addition: 

--> A=[1 2 3; 4 5 6; 7 8 0] 

 A  =  

   1.   2.   3. 

   4.   5.   6. 

   7.   8.   0. 

--> X=[-1 0 2]' 

 X  =  

  -1. 

   0. 

   2. 

--> A+X 

Inconsistent row/column dimensions. 

produces an "Inconsistent row/column dimensions" error because A  is 3×3 and X 

is 3×1. However, the following operation is valid: 

--> A 

 A  =  

   1.   2.   3. 

   4.   5.   6. 

   7.   8.   0. 

 

 

 



���

�

--> B 

 B  =  

   1.   4.   7. 

   2.   5.   8. 

   3.   6.   0. 

--> C=A+B 

 C  = 

   2.    6.    10. 

   6.    10.   14. 

   10.   14.   0.  

Addition and subtraction are also defined if one of the operands is a scalar, that 

is, a 1×1 matrix. In this case, the scalar is added to or subtracted from all 

elements of the other operand. For example: 

--> z=X-1 

 z  =  

  -2. 

  -1. 

   1. 

Multiplication: 

The symbol "*" represents the matrix multiplication operator. This operation is 

valid as long as the dimensions of the operands are compatible, meaning that the 

number of columns of the left operand must equal the number of rows of the 

right operand. For example, the following operation is not valid: 

--> X*z 

Inconsistent row/column dimensions. 



���

�

produces an "Inconsistent row/column dimensions" error. However, the 

following command: 

--> X'*z 

 ans  = 

   4. 

gives the dot product of X and z. Another valid command is: 

--> b=A*X 

 b  =  

   5. 

   8. 

  -7. 

Multiplying a matrix by a scalar is, of course, always valid: 

--> A*2 

 ans  = 

   2.    4.    6.  

   8.    10.   12. 

   14.   16.   0.  

Matrix inversion and division:   

The inverse of a square matrix can be easily obtained with the inv command. 

For example: 

--> B=inv(A) 

 B  =  

  -1.7777778   0.8888889  -0.1111111 

   1.5555556  -0.7777778   0.2222222 

  -0.1111111   0.2222222  -0.1111111 



���

�

--> C=B*A 

 C  =  

   1.          4.441D-16   0. 

  -2.220D-16   1.          0. 

   0.          0.          1. 

Note the minor errors due to finite calculation precision (matrix C should ideally 

be the identity matrix). 

Matrix division is implemented in Scilab with the following meaning: the 

expression A/B  yields the result of the operation AB
-1

. This is equivalent to the 

command A*inv(B). For left division, the expression A\B yields the result of 

the operation A
-1
B. This is equivalent to the command inv(A)*B.                   

Dimension compatibility between the two matrices must be respected for this 

division to be meaningful. 

Left division is commonly used when solving a linear system. For example, to 

solve the linear system Ay=X, with the equations: 

 

1 2 3

1 2 3

1 2

2 3 1

4 5 6 0

7 8 2

y y y

y y y

y y

+ + = −�
�

+ + =�
�

+ =


  

in Scilab, we write: 

 
--> y=A\X 

 y  =  

   1.5555556 

  -1.1111111 

  -0.1111111 

When Scilab interprets this expression, it does not invert matrix A before 

multiplying it by X on the right. Instead, it effectively solves the system of 

equations using Gaussian elimination, which is approximately three times faster 

than if we had written: 



�	�

�

--> y=inv(A)*X 

 y  =  

   1.5555556 

  -1.1111111 

  -0.1111111 

because in this case, we first need to calculate the inverse of the matrix (solving 3 

linear systems) and then perform a matrix-vector multiplication. The accuracy of 

the results can be verified as follows: 

--> A*y-X 

 ans  = 

   0. 

  -2.220D-16 

  -1.776D-15 

As in the previous example, note the presence of errors on the order of machine 

precision. 

Element-wise Operations: 

The usual matrix operations can be performed element by element. For addition 

and subtraction, both viewpoints are the same since these two operations already 

act element by element on matrices. 

The symbol ".*" represents element-wise multiplication. If A and B have the 

same dimensions, then A.*B represents the array whose elements are simply the 

products of the individual elements of A and B. For example, if we define x and 

y as follows: 

 

 



�
�

�

 
--> x=[1 2 3] 

 x  =  

   1.   2.   3. 

--> y=[4 5 6] 

 y  =  

   4.   5.   6. 

then the command: 

--> z=x.*y 

produces the result: 

 z  =  

   4.   10.   18. 

Division works in the same way with "./": 

 
--> z=x./y 

 z  =  

   0.25   0.4   0.5 

The symbol ".^" represents element-wise exponentiation: 

 
--> x.^y 

 ans  = 

   1.   32.   729. 

--> x.^2 

 ans  = 

   1.   4.   9. 

--> 2.^x 

 ans  = 

   2.   4.   8. 



���

�

Note that for ".^", one of the operands can be a scalar.  

Relational Operators: 

Six relational operators are available to compare two matrices of equal 

dimensions: 

<     less than  

<=   less than or equal to 

>     greater than 

>=   greater than or equal to 

==  equal to 

<>  not equal 

Scilab compares corresponding pairs of elements; the result is a matrix of 

boolean constants, with F (false) representing false and T (true) representing 

true. For example: 

--> 2+2<>4 

 ans  = 

  F 

Logical operators allow you to view the layout of elements in a matrix that 

satisfy certain conditions. For example, take the matrix: 

--> A = [1 -1 2; -2 -4 1; 8 1 -1] 

 A  =  

   1.  -1.   2. 

  -2.  -4.   1. 

   8.   1.  -1. 



���

�

The command:  

 --> P=(A<0) 

 P  =  

  F T F 

  T T F 

  F F T 

returns a matrix P with T indicating the negative elements of A. 

Logical Operators: 

The operators "&", "|", and "~" represent the logical operators and, or, and 

not, respectively. They are used to create logical expressions. For example, with 

the matrix from the previous example, the command: 

 
--> P = (A < 0) & (modulo(A,2) == 0) 

 P  =  

  F F F 

  T T F 

  F F F 

identifies the elements in A that are both negative and multiples of 2. 

2. Basic mathematical functions for matrix processing: 

 

Function Meaning 

ones(n), ones(n,m)  Generates an  n×n or n×m matrix with 

all elements equal to 1. 

zeros(n), zeros(n,m)  Generates an n×n or n×m matrix with 

all elements equal to 0. 

eye(n)  Generates an n×n identity matrix. 



�
�

�

size    Calculates the number of rows and 

columns of a matrix. 

Det  Calculates the determinant of a matrix. 

inv  Calculates the inverse of a matrix.  

rank              Calculates the rank of a matrix. 

trace  Calculates the trace of a matrix. 

spec  Calculates the eigenvalues. 

norm   Calculates the norm. 

diag(V)            Creates a matrix with vector V 

as the diagonal and 0 elsewhere. 

 

Examples: 

  
--> A=zeros(3,2) 
 A  =  

 
   0.   0. 
   0.   0. 
   0.   0. 

 
--> B=ones(3,2) 
 B  =  

 
   1.   1. 
   1.   1. 
   1.   1. 

 
--> I = eye(3,3) 
 I  =  

 
   1.   0.   0. 
   0.   1.   0. 
   0.   0.   1. 

 
--> A=[1 2 3; 4 5 6; 7 8 9]; size(A) 
 ans  = 

 
   3.   3. 

 
 
 
 
 



���

�

--> v=[3 5 1 2 4]; [n,m]=size(v) 
 m  =  

 
   5. 

 
 n  =  

 
   1. 

 
--> det(A) 
 ans  = 

 
   6.661D-16 

 
--> inv(A) 
 ans  = 

 
  -4.504D+15   9.007D+15  -4.504D+15 
   9.007D+15  -1.801D+16   9.007D+15 
  -4.504D+15   9.007D+15  -4.504D+15 
 
--> rank(A) 
 ans  = 

 
   2. 

 
--> trace(A) 
 ans  = 

 
   15. 

 
--> spec(A) 
 ans  = 

 
   16.116844   
  -1.116844   
  -1.304D-15   

 
--> norm(A) 
 ans  = 

 
   16.848103 

 
--> diag(A) 
 ans  = 

 
   1. 
   5. 
   9. 
 

 


