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Solution of Laboratory Work 2 

 

 

 

Exercise 1 :  

 

--> a = 7; b = 3; 

--> sum = a + b;  

--> difference = a - b; 

--> product = a * b;  

--> quotient = a / b; 

--> a = 5.2; b = 1.8;  

--> sum = a + b;  

--> difference = a - b;  

--> product = a * b;  

--> quotient = a / b; 

Exercise 2 : 

 

--> integer = 5;   

--> integer_type = typeof(integer); 

--> real = 3.14; 

--> real_type= typeof(reel); 

Scilab treats integers and real numbers as constant data, meaning they are of 

the double data type, which is used for floating-point numbers. 
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Exercise 3 : 

 
--> real_number = 3.14159265359 

 real_number  = 

               3.1415927 

--> format(5) 

--> real_number 

 real_number  =  

               3.14 

--> format(26) 

format: Wrong value for input argument #1: Must be in 

the interval [2, 25]. 

--> floor(real_number) 

 ans  = 

        3. 

--> ceil(real_number) 

 ans  = 

        4. 

--> round(real_number) 

 ans  = 

        3. 

 

Exercise 4 : 

 
--> 1/sqrt(8ˆ3+2)-2*sind(45)/exp(2)+log(4) 

--> A=1/sqrt(8ˆ3+2); 

--> B=2*sind(45)/exp(2); 

--> C=log(4);  

--> disp(A-B+C) 

 

Exercise 5 : 

 
--> small_number = 1.230D-07 

--> large_number= 1.234567890D+9 
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Exercise 6 : 

The range of real numbers in double precision goes from approximately               

�1 � 2  �3
453� to �1 � 2  �3

53�. 

 
--> positive_number = 1.23456789012345D-100; 

--> negative_number = -1.23456789012345D-100; 

 

Exercise 7 : 

 
--> epsilon = %eps 

 epsilon =  

           2.220D-16 

--> result_eps = 1 + epsilon 

 result_eps = 

               1. 

-->%eps+1==1 

ans  = 

         F 

In Scilab, double-precision numbers can range roughly from �1 � 2  �3
453� to 

�1 � 2  �3
53�. The constant %eps (� 2.22 × 10

-16
) does not represent the 

smallest number in this range, but instead measures the precision of floating-

point calculations, it is the smallest number that can, in theory, makes                    

1 + %eps slightly greater than 1. It is used to assess the precision of numerical 

calculations. 

 

--> infinity = %inf 

 infinity =    

            Inf 

--> result_inf_positive = infinity + 1000 

 

 result_inf_positive = 

                        Inf 

--> result_inf_negative = infinity - 1000 

  result_inf_negative = 

                        Inf 
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Operations with %inf behave in such a way that they generate special results. 

Adding %inf to a positive number gives %inf, and adding %inf to a negative 

number also gives %inf. This reflects the behavior of mathematical infinities. 

Exercise 8 : 

 

--> z1=complex(2,1), z2=complex(1,2) 

--> addition = z1 + z2,  subtraction  = z1 - z2   

--> multiplication  = z1 * z2, division = z1 / z2 

--> z1_bar=conj(z1),  real_z2 = real(z2)  

--> imaginary_z2 = imag(z2) 

--> modulus_z1 = abs(z1)   

--> argument_z1 = atan(imag(z1), real(z1)) 

--> [radius, angle]=polar(z1) 

--> figure(0) 

--> clf() 

--> hf=gcf() 

--> hf.background=-2 

--> ha=gca() 

--> ha.data_bounds=[-5 -5; 5 5] 

--> xgrid() 

--> plot([0 2],[0 1],'b','LineWidth',3) 

--> plot([0 1],[0 2],'r','LineWidth',3) 

--> xlabel('Real axis (Re)','FontSize',2) 

--> ylabel('Imaginary axis (Im)','FontSize',2) 

--> legend('$\Large{z_{1}}$','$\Large{z_{2}}$') 

--> plot(0,0,'sk') 

--> plot(2,1,'sk') 

--> plot(1,2,'sk') 

--> xstring(2,1,'$\Large{z_{1}=2+i}$') 

--> xstring(1,2,'$\Large{z_{2}=1+2i}$') 

--> title('Complex numbers','FontSize',1) 

 

 


