
���

�

Solution of Laboratory Work 2

Exercise 1 :

--> a = 7; b = 3;

--> sum = a + b;

--> difference = a - b;

--> product = a * b;

--> quotient = a / b;

--> a = 5.2; b = 1.8;

--> sum = a + b;

--> difference = a - b;

--> product = a * b;

--> quotient = a / b;

Exercise 2 :

--> integer = 5;

--> integer_type = typeof(integer);

--> real = 3.14;

--> real_type= typeof(reel);

Scilab treats integers and real numbers as constant data, meaning they are of

the double data type, which is used for floating-point numbers.

���

�

Exercise 3 :

--> real_number = 3.14159265359

 real_number =

 3.1415927

--> format(5)

--> real_number

 real_number =

 3.14

--> format(26)

format: Wrong value for input argument #1: Must be in

the interval [2, 25].

--> floor(real_number)

 ans =

 3.

--> ceil(real_number)

 ans =

 4.

--> round(real_number)

 ans =

 3.

Exercise 4 :

--> 1/sqrt(8ˆ3+2)-2*sind(45)/exp(2)+log(4)

--> A=1/sqrt(8ˆ3+2);

--> B=2*sind(45)/exp(2);

--> C=log(4);

--> disp(A-B+C)

Exercise 5 :

--> small_number = 1.230D-07

--> large_number= 1.234567890D+9

���

�

Exercise 6 :

The range of real numbers in double precision goes from approximately

�1 � 2 �3
453� to �1 � 2 �3

53�.

--> positive_number = 1.23456789012345D-100;

--> negative_number = -1.23456789012345D-100;

Exercise 7 :

--> epsilon = %eps

 epsilon =

 2.220D-16

--> result_eps = 1 + epsilon

 result_eps =

 1.

-->%eps+1==1

ans =

 F

In Scilab, double-precision numbers can range roughly from �1 � 2 �3
453� to

�1 � 2 �3
53�. The constant %eps (� 2.22 × 10

-16
) does not represent the

smallest number in this range, but instead measures the precision of floating-

point calculations, it is the smallest number that can, in theory, makes

1 + %eps slightly greater than 1. It is used to assess the precision of numerical

calculations.

--> infinity = %inf

 infinity =

 Inf

--> result_inf_positive = infinity + 1000

 result_inf_positive =

 Inf

--> result_inf_negative = infinity - 1000

 result_inf_negative =

 Inf

���

�

Operations with %inf behave in such a way that they generate special results.

Adding %inf to a positive number gives %inf, and adding %inf to a negative

number also gives %inf. This reflects the behavior of mathematical infinities.

Exercise 8 :

--> z1=complex(2,1), z2=complex(1,2)

--> addition = z1 + z2, subtraction = z1 - z2

--> multiplication = z1 * z2, division = z1 / z2

--> z1_bar=conj(z1), real_z2 = real(z2)

--> imaginary_z2 = imag(z2)

--> modulus_z1 = abs(z1)

--> argument_z1 = atan(imag(z1), real(z1))

--> [radius, angle]=polar(z1)

--> figure(0)

--> clf()

--> hf=gcf()

--> hf.background=-2

--> ha=gca()

--> ha.data_bounds=[-5 -5; 5 5]

--> xgrid()

--> plot([0 2],[0 1],'b','LineWidth',3)

--> plot([0 1],[0 2],'r','LineWidth',3)

--> xlabel('Real axis (Re)','FontSize',2)

--> ylabel('Imaginary axis (Im)','FontSize',2)

--> legend('$\Large{z_{1}}$','$\Large{z_{2}}$')

--> plot(0,0,'sk')

--> plot(2,1,'sk')

--> plot(1,2,'sk')

--> xstring(2,1,'$\Large{z_{1}=2+i}$')

--> xstring(1,2,'$\Large{z_{2}=1+2i}$')

--> title('Complex numbers','FontSize',1)

