

Laboratory Work 2

Exercise 1:

1. a) Declare two variables, **a** and **b**, containing natural integers of your choice.
b) Calculate the sum, difference, product, and quotient of **a** and **b**.
2. a) Declare two variables, **a** and **b**, containing real numbers of your choice.
b) Calculate the sum, difference, product, and quotient of **a** and **b**.

Exercise 2:

1. a) Declare a variable containing a natural integer, for example, **integer=5**.
b) Use the **typeof** function to determine the data type of the integer variable.
2. a) Declare a variable containing a real number, for example, **real = 3.14**.
b) Use the **typeof** function to determine the data type of the real variable.
3. How does Scilab treat integers compared to real numbers in terms of data type?

Exercise 3:

1. Declare a variable containing a real number, for example, **real_number = 3.14159265359**.
2. Use the **format()** function to limit the display of **real_number** to 2, 15, and 26 decimal places.
3. Use the **floor()** function to round **real_number** down to the nearest integer (the nearest lower integer).
4. Use the **ceil()** function to round **real_number** up to the nearest integer (the nearest upper integer).
5. Use the **round()** function to round **real_number** to the nearest integer.

Exercise 4:

1. Give the Scilab command to calculate the following expression:

$$\frac{1}{\sqrt{8^3 + 1}} - \frac{2 \sin\left(\frac{\pi}{4}\right)}{e^2} + \log(4)$$

2. Same question with decomposition:

$$\underbrace{\frac{1}{\sqrt{8^3 + 1}}}_A - \underbrace{\frac{2 \sin\left(\frac{\pi}{4}\right)}{e^2}}_B + \underbrace{\log(4)}_C$$

Exercise 5:

1. Write a very small real number, for example, **0.000000123**, using scientific notation **D** and store it in a variable named **small_number**.
2. Write a very large real number, for example, **1234567890**, using scientific notation **D** and store it in a variable named **large_number**.

Exercise 6:

1. Identify the range of double-precision real numbers (approximately from **2.2×10⁻³⁰⁸** to **1.8 × 10³⁰⁸**).
2. Choose a positive real number within this range and store it in a variable named **positive_number**.
- 3) Choose a negative real number within this range and store it in a variable named **negative_number**.

Exercise 7:

1. Declare a variable **epsilon** and assign it the value of **%eps**.
2. Add **epsilon** to **1** and store the result in a variable **result_eps**.
3. What does **%eps** signify in Scilab?
4. Declare a variable **infinity** and assign it the value of **%inf**.
5. Add infinity to a positive number and store the result in a variable **result_inf_positive**.
6. Add infinity to a negative number and store the result in a variable **result_inf_negative**.
7. How do operations with **%inf** behave in calculations?

Exercise 8:

1. Declare two complex numbers **`z1`** and **`z2`** of your choice.
2. Perform the following operations and store the results in corresponding variables:
 - Addition of **`z1`** and **`z2`**.
 - Subtraction of **`z1`** by **`z2`**.
 - Multiplication of **`z1`** and **`z2`**.
 - Division of **`z1`** by **`z2`**.
3. Determine the conjugate of **`z1`**.
4. Calculate the real and imaginary parts of **`z2`** and store them in variables **`real_z2`** and **`imaginary_z2`**.
5. Calculate the modulus of **`z1`** and store it in a variable **`modulus_z1`**.
6. Calculate the argument of **`z1`** in radians and store it in a variable **`argument_z1`**.
7. Use the **`plot`** function to graph the complex numbers **`z1`** and **`z2`** on a complex plane.