

Chapter 2. Numbers in Scilab

1. Natural integers:

An integer in Scilab always contains the " ." character, even if the decimal point is optional during input. Example:

```
--> n = 5  
n =  
5.
```

2. Representation of real numbers:

The basic objects in the Scilab language are real numbers, which are stored as double-precision floating-point numbers following the **IEEE 754** standard. Implementation of IEEE Standard for Floating-Point Arithmetic can be found at https://en.wikipedia.org/wiki/IEEE_754. In this format, each number occupies **64** bits: **1** bit for the sign (positive or negative), **11** bits for the exponent (which sets the scale), and **52** bits for the mantissa (the significant digits). Although up to **18** digits may appear on the screen, only the first **15–16** digits are truly accurate. Scilab displays real numbers in decimal notation, using an optional decimal point “.” and the signs “+” or “–”. In scientific notation, Scilab uses the letter “D” to indicate the power-of-ten scaling factor. For example, **–123456.789123456789** is represented as **–1.23456789123456789D+5**, where the mantissa is **1.23456789123456789**, the sign is negative, **D+5** indicates the exponent (meaning **10⁵**), the signed exponent is **5** (positive), and the sign is negative for the entire number.

In Scilab, real numbers have an absolute value ranging from about 2×10^{-308} to 1.8×10^{308} . The value range can change depending on the version of Scilab, the computer's hardware, and system configuration. For example, when the value exceeds the upper limit (around **1.8D+308**), such as **2D+308**, Scilab displays **%inf**, which represents infinity:

```
--> 2D+308
ans=
%inf
```

The result of a calculation operation is by default displayed with 7 digits after the decimal point (ten characters: the sign and the decimal point included). Example, by default, Scilab displays the number **-1.23456789123456789D+5** such as **-123456.79**, but maintains full precision internally for accurate calculations.

```
--> -1.23456789123456789D+5
ans=
-123456.79
```

If more precision (more significant decimals) is needed, the **format** function is used. For example:

```
---> format(25)
---> -1.23456789123456789D+5
ans =
- 123456.78912345679418650
```

To return to the default format, type:

```
---> format('v', 10)
```

Notice that the valid range for the **format** function in Scilab is [2, 25].

To obtain the scientific notation, the **format e** function is used. For example:

```

----> x=0.476190547
---> format e
---> x
ans=
4.762D-01

```

Scilab provides the usual mathematical operations (addition, subtraction, multiplication, division) and elementary functions such as sine, cosine, exponential, etc.

Addition	Subtraction	Multiplication	Division	Exponentiation
+	-	*	/	$^$ or **

The evaluation of an expression is executed from left to right, considering the operation priority indicated in the following table:

Operation	Parentheses ()	Exponentiation	Multiplication and division	Addition and subtraction
Priority	1	2	3	4

For this example:

```

--> (%e^8-5)*(6+9/2)
ans =
31247.559

```

The order of calculation is shown below:

$$\left(\underbrace{e^8 - 5}_{\substack{1 \\ 2 \\ 1}} \right) * \left(\underbrace{6 + \frac{9}{2}}_{\substack{1 \\ 2}} \right)$$

In the expression $(%e^8 - 5) * (6 + 9/2)$, Scilab follows the standard order of operations. First, it evaluates the parentheses: $(%e^8 - 5)$ and

$(6 + 9/2)$. Next, it computes the exponent $\%e^8$, then performs the division $9/2 = 4.5$. After that, it completes the addition and subtraction: $6 + 4.5 = 10.5$ and $\%e^8 - 5$. Finally, it multiplies the two results to give $(e^8 - 5) \times 10.5$.

Some of the most commonly used functions include the following:

Function	Meaning
sin (x)	sine of x (in radians)
cos (x)	cosine of x (in radians)
tan (x)	tangent of x (in radians)
sind(x) , cosd(x) , tand(x)	sine, cosine, tangent of x (in degrees)
asin(x)	arcsine of x
acos(x)	arccosine of x
atan(x)	arctangent of x
sqrt(x)	square root of x
abs(x)	absolute value of x
exp(x)	exponential of x
log(x)	natural logarithm
log10(x)	logarithm to the base 10
round(x)	rounds a number to the nearest integer
floor(x)	rounds a number down to the nearest integer
ceil(x)	rounds a number up to the nearest integer
sign(x)	gives the sign of x

3. Complex numbers:

Scilab provides complex numbers that are stored as pairs of real numbers. Complex numbers consist of a real part and an imaginary part. In Scilab, complex numbers are represented using **%i** for the imaginary part. Complex numbers can be written in Cartesian form as $x + iy$ or in polar form as $re^{i\theta}$, where x, y, r, θ are real numbers. Example:

```

--> z1 = 2 + 3 * %i
z 1=
    2. + 3.i
--> z2=-3*exp(4*%i)
z2=
    1.9609309+2.2704075i

```

Scilab allows mathematical operations with complex numbers, such as addition, subtraction, multiplication, and division. Example:

```

--> z1^2

ans  =
    -5. + 12.i

--> z1 + z2

ans  =
    3.9609309 + 5.2704075i

--> z1 - z2

ans  =
    0.0390691 + 0.7295925i

--> z1 * z2


ans  =
    -2.8893607 + 10.423608i

--> z1 / z2

ans  =
    1.1925649 + 0.1491086i

```

In the \mathbb{R}^2 plane, a specific point $M(x,y)$ is represented by the complex number $z = x + i y$, where x corresponds to the projection onto the real axis and y corresponds to the projection onto the imaginary axis.

The value $r = |z|$ (the modulus of z) and the argument are given by:

$$\begin{cases} r = \sqrt{x^2 + y^2} \\ \theta = \tan^{-1}\left(\frac{y}{x}\right) \end{cases}$$

Since $x = r \cos(\theta)$ and $y = r \sin(\theta)$, then $z = r(\cos(\theta) + i \sin(\theta)) = r e^{i\theta}$.

Let z be a complex number defined in Scilab

```
--> z = 2 + 3*%i
```

Some of the most commonly used functions on complex numbers include:

Function	Result	Description
real(z)	2	Returns the real part of z
imag(z)	3	Returns the imaginary part of z
abs(z)	3.605513	Returns the modulus of z
atan(imag(z), real(z))	0.9827937	Returns the angle θ
conj(z)	$2 - 3i$	The conjugate of z
imult(z)	$-3 + 2i$	The multiplication by i