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Let f and g be two C1 functions on R2. We consider the following differential system




x
′(t) = f(x(t), y(t))

y
′(t) = g(x(t), y(t)).

(1)

Assume that this system admits an equilibrium (x∗, y∗) ∈ R2, and denote by A the Jacobian matrix

of the system.

1. State, without proof, the properties relating the eigenvalues of the matrix A to the stability of

the equilibrium (x∗, y∗) of system (1).

2. Let α and β be two real parameters, and let C be the square matrix defined by

C =




α β

−β α




Consider the following linear differential system

X
′(t) = CX(t) (2)

Give an example of values of (α, β) for which the equilibrium 0R2 = (0, 0)T is:

a stable node, a stable focus, an unstable focus, and a center.

Exercise 02:(06 pts)

Let A ∈ Md(R) be a given square matrix.

1. Recall the necessary and sufficient condition on A for the equilibrium x∗ = 0 to be asymptoti-

cally stable for the differential equation x
′ = Ax.

2. Let P be a continuous matrix-valued function.
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(a) Prove that, for any initial condition x0, the Cauchy problem




x
′(t) = (A + P (t))x

x(0) = x0

(3)

admits a unique global solution.

(b) Prove that the solution x satisfies

x(t) = etAx0 +
∫ t

0
e(t−s)AP (s)x(s) ds, ∀t ≥ 0.

3. Assume that ∥etA∥ ≤ C1e
−λt for all t ≥ 0, with λ > 0, and that

∫ t
0 ∥P (t)∥ < +∞.

Prove that the function Ψ(t) = eλt∥x(t)∥ satisfies the inequality

Ψ(t) ≤ C1∥x0∥eC1
∫ t

0 ∥P (s)∥ds, ∀t ≥ 0.

Exercise 03:(04 pts)

Consider the following differential system:




(1 + t2)x′ − tx − y = 2t2 − 1

(1 + t2)y′ + x − ty = 3t.

(4)

1. Show that




1

−t


 and




t

1


 are two linearly independent solutions of





(1 + t2)x′ − tx − y = 0

(1 + t2)y′ + x − ty = 0.

(5)

2. Determine the resolvent matrix and deduce the solution of the homogeneous system.

3. Find a particular solution of system (4).

Exercise 04:(05 pts)

For θ ∈ R, define

M(θ) =




cos(θ) sin(θ)

sin(θ) − cos(θ)




1. Verify that M2
θ = I2, where

I2 =




1 0

0 1




is the identity matrix.
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I. (05 points) Exercise 01: Let f, g be two C1 functions on R2. Consider the following
differential system: {

x′1(t) = f(x1(t), x2(t))

x′2(t) = g(x1(t), x2(t))
(1) (1)

Assume that this system admits an equilibrium (x∗1, x
∗
2) ∈ R2. Let A denote the

Jacobian matrix of this system.

(1) State, without proof, the properties linking the eigenvalues of matrix A and the
stability of the equilibrium (x∗1, x

∗
2) for system (1).

Answer: Let λ1 and λ2 be the eigenvalues of A (in C). We have the following
results:

1. If Re(λ1) < 0 and Re(λ2) < 0, then the equilibrium (x∗1, x
∗
2) is asymp-

totically stable for system (1). 0.5 pt

2. If Re(λ1) > 0 or Re(λ2) > 0, then the equilibrium (x∗1, x
∗
2) is unstable

for system (1). 0.5 pt

3. If Re(λ1) ≤ 0 and Re(λ2) = 0 (or Re(λ2) ≤ 0 or λ1 = 0), we cannot
conclude the stability of (x∗1, x∗2) for system (1). 0.5 pt

(2) Let α and β be two real parameters. Let A be the square matrix defined by

A =

(
α β
−β α

)
.

Consider the differential system:

X ′(t) = AX(t) . . . (2) (2)

Give an example of (α, β) for which the equilibrium OR2 = (0, 0)T is:

Answer:

a) A stable node
For α = −1 and β = 0, A = −I2, OR2 is a stable node for (2). 0.5 pt
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b) A stable focus
For α = −1 and β = 1,

A =

(
−1 1
−1 −1

)
.

The eigenvalues of A are
λ1,2 = −1± i.

They have a non-zero imaginary part and a strictly negative real part, so
OR2 is a stable focus. 1 pt

c) An unstable focus
For α = 1 and β = 1,

A =

(
1 1
−1 1

)
.

The eigenvalues are
λ1,2 = 1± i.

They have a non-zero imaginary part and a strictly positive real part, so
OR2 is an unstable focus. 1 pt

d) A center
For α = 0 and β = 1,

A =

(
0 1
−1 0

)
.

The eigenvalues are
λ1,2 = ±i.

They are purely imaginary, so OR2 is a center. 1 pt

II. (06pts points) Exercise 02: Let A ∈Mn(R) be a given square matrix.

(1) Recall the necessary and sufficient condition on A for the equilibrium x∗ = 0 to
be asymptotically stable for the equation x′ = Ax.

Answer: The condition seen in class is that all eigenvalues of A must have a
strictly negative real part. 0.5 pt

(2) Let P be a continuous matrix-valued function.
a) Prove that for any initial condition x0, the Cauchy problem{

x′(t) = (A+ P (t))x,

x(0) = x0

admits a unique global solution.

Answer: This is a linear differential equation, so the global Cauchy-Lipschitz
theorem applies, ensuring the existence and uniqueness of a global solution for
any associated Cauchy problem. 1 pt

Dr F. Chita / f.chita@univ-dbkm.dz Page 4



(3) b) Given the initial condition x0, show that x satisfies

x(t) = etAx0 +

∫ t

0

e(t−s)AP (s)x(s) ds, ∀t ≥ 0.

Answer: Let b(t) = P (t)x(t). Then x satisfies

x′(t) = Ax+ b(t).

Multiply by e−At:

e−Atx′ − e−AtAx = e−Atb or equivalently
d

dt
(e−Atx(t)) = e−Atb(t).

Integrate from t0 to t:∫ t

t0

d

ds
(e−Asx(s))ds =

∫ t

t0

e−Asb(s)ds.

This gives

e−Atx(t)− e−At0x(t0) =

∫ t

t0

e−Asb(s)ds.

Multiplying both sides by eAt and taking t0 = 0 gives the integrated formula:

x(t) = etAx0 +

∫ t

0

eA(t−s)b(s)ds. 2 pts

(4) Suppose that

∥etA∥ ≤ C1e
−λt, λ > 0, ∀t ≥ 0, and

∫ t

0

∥P (s)∥ds < +∞.

Define the function ψ(t) := eλt∥x(t)∥. Show that it satisfies the inequality

ψ(t) ≤ C1∥x0∥ eC1

∫+∞
0 ∥P (s)∥ds, ∀t ≥ 0.

Answer: For t ≥ 0, taking the norm in the integral formula:

∥x(t)∥ ≤ ∥etA∥ ∥x0∥+
∫ t

0

∥e(t−s)A∥ · ∥P (s)∥ ∥x(s)∥ds.

Using the bound on ∥etA∥, we get:

∥x(t)∥ ≤ C1e
−λt∥x0∥+ C1

∫ t

0

e−λ(t−s)∥P (s)∥ ∥x(s)∥ds.

Multiplying both sides by eλt, we have:

ψ(t) ≤ C1∥x0∥+ C1

∫ t

0

∥P (s)∥ψ(s)ds.
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Applying Gronwall’s lemma gives:

ψ(t) ≤ C1∥x0∥ exp

(
C1

∫ t

0

∥P (s)∥ds
)

≤ C1∥x0∥ exp

(
C1

∫ +∞

0

∥P (s)∥ds
)
. 2 pts

III. (04 points) Exercise 03: Consider the following differential system{
(1 + t2)x′ − tx− y = 2t2 − 1,

(1 + t2)y′ + x− ty = 3t
(3)

(1) Show that

X1 =

(
1
−t

)
, X2 =

(
t
1

)
are two linearly independent solutions of the homogeneous system{

(1 + t2)x′ − tx− y = 0,

(1 + t2)y′ + x− ty = 0.

Answer: System (3) can be written in the form X ′ = A(t)X +B(t), with

A(t) =

(
t

1+t2
1

1+t2

− 1
1+t2

t
1+t2

)
, B(t) =

(
2t2−1
1+t2

3t
1+t2

)
.

We check that X1 and X2 are solutions of the homogeneous system:

• X ′
1 − AX1 =

(
0
−1

)
−

(
t

1+t2
1

1+t2

− 1
1+t2

t
1+t2

)(
1
−t

)
=

(
0
0

)
0.5 pt

• X ′
2 − AX2 =

(
0
1

)
−

(
t

1+t2
1

1+t2

− 1
1+t2

t
1+t2

)(
t
1

)
=

(
0
0

)
0.5 pt

• The Wronskian:

W (X1, X2) = det

(
1 t
−t 1

)
= 1 + t2 ̸= 0, ∀t ∈ R. 0.5 pt

(2) Determine the resolvent matrix and deduce the solution of the homogeneous
system.

Answer: a) The fundamental matrix is

M(t) =

(
1 t
−t 1

)
.

b) The resolvent matrix is

R(t, t0) =M(t)M(t0)
−1, with M(t0)

−1 =
1

1 + t20

(
1 −t0
t0 1

)
. 0.5 pt
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Thus
R(t, t0) =

1

1 + t20

(
1 + tt0 −t0 + t
−t+ t0 1 + tt0

)
. 0.5 pt

The homogeneous solution is then:

XH(t) = R(t, t0)C =
1

1 + t20

(
C1 − t0C2 + t(t0C1 + C2)

−t(C1 − t0C2) + C2 + t0C1

)
, C =

(
C1

C2

)
. 0.5 pt

(3) Find a particular solution of (3).

Answer: A particular solution is

XP (t) =

∫ t

t0

R(t, s)B(s) ds.

After calculation, we obtain

XP (t) =

(
t3 − t− tt20 + t0
2t2 − t20 + tt0

)
. 0.5 pt

IV. (05 points) Exercise 04:

(1) Answer: We have

M2
θ =Mθ ·Mθ

=

(
cos θ sin θ
sin θ − cos θ

)(
cos θ sin θ
sin θ − cos θ

)
=

(
cos2 θ + sin2 θ cos θ sin θ − sin θ cos θ

sin θ cos θ − cos θ sin θ sin2 θ + cos2 θ

)
=

(
1 0
0 1

)
= I2. (0.1 pt)

(2) Answer: 2.1) Show that ∀n ∈ N, M2n
θ = I2.

For n = 0, we have M0
θ = I2.

Assume for a fixed n that M2n
θ = I2, then

M
2(n+1)
θ =M2n

θ ·M2
θ = I2 · I2 = I2.

Hence, ∀n ∈ N, M2n
θ = I2. (0.1 pt)

2.2) Show that ∀n ∈ N, M2n+1
θ =Mθ.

For n = 0, we have M2·0+1
θ =Mθ.

Assume for a fixed n that M2n+1
θ =Mθ, then

M2n+3
θ =M2n+1

θ ·M2
θ

=Mθ · I2 =Mθ.
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Hence, ∀n ∈ N, M2n+1
θ =Mθ. (0.1 pt)

(3) Answer: Let t ∈ R. We have

etMθ =
+∞∑
n=0

(tMθ)
n

n!
=

+∞∑
n=0

tnMn
θ

n!

=
+∞∑
n=0

t2nM2n
θ

(2n)!
+

+∞∑
n=0

t2n+1M2n+1
θ

(2n+ 1)!

=
+∞∑
n=0

t2nI2
(2n)!

+
+∞∑
n=0

t2n+1Mθ

(2n+ 1)!

=

(
+∞∑
n=0

t2n

(2n)!

)
I2 +

(
+∞∑
n=0

t2n+1

(2n+ 1)!

)
Mθ

= cosh t · I2 + sinh t ·Mθ. (0.2 pt)
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