Chapter 5 Linear algebra

1 Algebraic Structures

1.1 Internal Composition Laws

Definition 1.1 Let E be a set. The function

 $T: E \times E \longrightarrow E$

 $(x, y) \longmapsto T(x, y)$

Is called an internal composition law on $E(i.c.l)$

Remark 1.1 1. There exist other notations for internal composition laws

 $\star, \perp, \triangle, +, \times, \ldots$

- 2. An internal composition law is also called an operation
- 3. To prove that an operation \star is internal in E, one shows that whenever we take any two elements x, y from E, the composition $x \star y$ remains within E.

Example 1.1 On $E = \mathbb{Z}$ Addition

Multiplication

$$
+ : \mathbb{Z} \times \mathbb{Z} \longrightarrow \mathbb{Z}
$$

$$
(x, y) \longmapsto x + y
$$

$$
\times : \mathbb{Z} \times \mathbb{Z} \longrightarrow \mathbb{Z}
$$

$$
(x, y) \longmapsto x \times y
$$

are two internal composition laws on Z.

Division is not an internal composition law on Z, It is enough to see, for example, that for $(x, y) = (3, 2) \in \mathbb{Z} \times \mathbb{Z}$ on $a \cdot 3 \div 2 = \frac{3}{2}$ $\frac{3}{2} \notin \mathbb{Z}$.

Example 1.2 We define on \mathbb{Z}^* the law \star as follow

$$
\forall (x, y) \in \mathbb{Z}^* \times \mathbb{Z}^*, \ x \star y = \frac{x + y}{2}
$$

Calculate $1 \star 1$, $2 \star 3$, $(-5) \star 5$. The law \star Is it internal in \mathbb{Z}^* .

Solution 1.2 We have $\forall (x, y) \in \mathbb{Z}^* \times \mathbb{Z}^*, x \star y = \frac{x + y}{2}$ $\frac{1}{2}$. Therefore 1) $1 \star 1 = \frac{1+1}{2} = 1$ 2 2) $(-5) \star 5 = \frac{-5+5}{2}$ $\frac{1}{2}$ = 0 3) $2 \star 3 = \frac{3+2}{2}$ $\frac{+2}{2} = \frac{5}{2}$ $\frac{0}{2} \notin \mathbb{Z}^*$ From 3) we deduce that the law \star is not internal.

1.2 Properties of Internal Composition Laws

In all that follows, we assume that E is a set equipped with an internal composition law denoted by \star .

Commutativity

We say that \star is commutative if and only if

$$
\forall x, y \in E \qquad x \star y = y \star x.
$$

Example 1.3 Let \star an internal composition law defined on \mathbb{Z} by

$$
x \star y = x + y + 1
$$

 \star Is it commutative ?

Solution 1.3 Let $x, y \in \mathbb{Z}$ $x \star y = x + y + 1 = y + x + 1 = y \star x$ $So \star is a commutative internal composition law.$

Remark 1.2 +, \times are two commutative internal composition laws on R.

Associativity

We say that \star is associative if and only if

$$
\forall x, y, z \in E \qquad (x \star y) \star z = x \star (y \star z).
$$

Example 1.4 We define on $E = \begin{bmatrix} 0 & 1 \end{bmatrix}$ an internal composition law \star by

$$
\forall x, y \in E \qquad x \star y = x + y - xy
$$

 \star is it associative?

Solution 1.4 Let $x, y, z \in E$

$$
(x \star y) \star z = (x + y - xy) \star z
$$

=
$$
(x + y - xy) + z - (x + y - xy) z
$$

=
$$
x + y - xy + z - xz - yz + xyz.
$$

=
$$
x + y + z - xy - xz - yz + xyz.
$$
...(1)

$$
x \star (y + z) = x \star (y + z - yz)
$$

= $x + (y + z - yz) - x (y + z - yz)$
= $x + y + z - yz - xy - xz + xyz$
= $x + y + z - xy - yz - xz + xyz$...(2)

from (1) and (2) we deduce that $(x \star y) \star z = x \star (y + z)$, so \star is an associative internal composition law

Example 1.5 $E = \mathbb{Z} \,\forall x, y \in E \qquad x \star y = 2x + y + 5$

Solution 1.5 Let $x, y, z \in E$

$$
(x * y) * z = (2x + y + 5) * z
$$

= 2(2x + y + 5) + z + 5
= 4x + 2y + 10 + z + 5.
= 4x + 2y + z + 15.................(1)

$$
x * (y + z) = x * (2y + z + 5)
$$

= 2x + (2y + z + 5) + 5
= 2x + 2y + z + 5 + 5
= 2x + 2y + 10.................(2)

from (1) et (2) we deduce that $(x \star y) \star z \neq x \star (y + z)$. As we can see \star is not associative.

Identity Element

Let $e \in E$, we say that e is an identity element in E for the operation \star iff

 $\forall x \in E \quad x \star e = e \star x = x.$

Example 1.6 0 is the identity element for the addition in \mathbb{R} 1 is the identity element for the multiplication in $\mathbb R$

Example 1.7 We define on $E =]-1 \text{1}$ the operation \top as follow

$$
\forall x, y \in E \qquad x \top y = \frac{x+y}{1+xy}
$$

Find the identity element in E for the operation \top .

Solution 1.6 Let $e \in E$ such that $\forall x \in E$ $x \top e = e \top = x$

$$
x \top e = x \iff \frac{x + e}{1 + xe} = x
$$

\n
$$
\iff x + e = x (1 + xe)
$$

\n
$$
\iff x + e = x + x^2 e
$$

\n
$$
\iff e - x^2 e = 0
$$

\n
$$
\iff e (1 - x^2) = 0
$$

\n
$$
\implies e = 0 \text{ because } (1 - x^2) \neq 0 \text{ for } x \in]-1 1[
$$

In the same way, for $e^{\top}x = x$, we find $e = 0$. Therefore, 0 is the identity element in $|-1;1|$ for the operation \top .

Remark 1.3 The identity element, if it exists, is unique.

Invertible Element

We assume that the operation \star has an identity element in E denoted as e. For an element $x \in E$, we say that the element $x' \in E$ is the symmetric or the inverse of x in E with respect to the operation \star if and only if

$$
x \star x' = x' \star x = e.
$$

If x is invertible then its inverse is denoted x^{-1} .

Example 1.8 $-x$ is the symmetric of x with respect to addition in \mathbb{R} . Let $x \neq 0$, the symmetric of x with respect to multiplication in $\mathbb R$ is $\frac{1}{x}$ $\frac{1}{x}$.

Example 1.9 Let \triangle an internal composition law defined on \mathbb{Z} by

$$
\forall x, y \in \mathbb{Z} \quad x \triangle y = 2x - y + 1
$$

Find the symmetric, if it exists, of an element x in \mathbb{Z} .

Solution 1.7 Let $x \in \mathbb{Z}$, before looking for the symmetric of x dans \mathbb{Z} We must check if the identity element for the operation Δ exists in \mathbb{Z} . Let $e \in \mathbb{Z}$, in order that e be an identity element, it is necessary and sufficient that it satisfies:

$$
x \triangle e = e \triangle x = x \text{ where } x \in \mathbb{Z}.
$$

 $(x \triangle e = x) \Longrightarrow (e = x + 1)$. So, it is clear that e does not exist, since according to this result, for each value of x , we have a value of e , whereas the identity element, if it exists, is unique

Since the identity element for the operation \triangle does not exist, the elements of $\mathbb Z$ are not invertible for the operation \triangle .

Example 1.10 Let \triangle an internal composition law defined on \mathbb{R}^* par

$$
\forall x, y \in \mathbb{R}_+^* \quad x \triangle y = \sqrt{x^2 + y^2}
$$

Find the symmetric, if it exists, of an element x in \mathbb{R}^*_+ .

Solution 1.8 It is clear that 0 is the identity element for this operation. Indeed

$$
\forall x \in \mathbb{R}_+^* \quad x \triangle 0 = \sqrt{x^2 + 0^2} = |x| = x = 0 \triangle x.
$$

Let $x \in \mathbb{R}_+^*$, we say that $x' \in \mathbb{R}_+^*$ is the symmetric of x for the operation triangle if and only if

$$
x \triangle x' = 0 = x' \triangle x.
$$

 $x \triangle x' = 0 \Longrightarrow \sqrt{}$ $x^2 + x'^2 = 0 \text{ et } x' \triangle x = 0 \Longrightarrow \sqrt{2 \text{ et } x'^2 + x'^2}$ $x^2 + x^2 = 0.$ It follows that $x^2 + x'^2 = 0$, which is impossible since x, x' are two strictly positive elements. Therefore, no element of \mathbb{R}^*_+ has a symmetric for \triangle .

- **Remark 1.4** If e is the identity element in E for the operation \star , then e is invertible, and $e^{-1} = e$.
	- If x, y are invertible for the operation \star , then $x \star y$ is invertible, and we have $(x \star y)^{-1} = y^{-1} \star x^{-1}$.
	- If a is invertible for the operation \star , then the equation $a \star x = b$ has a solution $x = a^{-1} \star b$. It is easy to see

$$
a \star x = b \iff a^{-1} \star a \star x = a^{-1} \star b
$$

$$
\iff e \star x = a^{-1} \star b
$$

$$
\iff x = a^{-1} \star b
$$

Distributivité

Now, let's assume that E is equipped with two internal composition laws, \star and \top . We say that \star is distributive with respect to \top if and only if

$$
\forall x, y, z \in E \quad x \star (y \top z) = (x \star y) \top (x \star z).
$$

Example 1.11 We define on \mathbb{Z} Two internal composition laws \star and \top by

$$
\forall x, y \in \mathbb{Z} \quad x \star y = x + y + 3
$$

et

$$
\forall x, y \in \mathbb{Z} \quad x \top y = xy
$$

 \star is it distributive with respect to \top ? \top is it distributive with respect to \star ? Solution 1.9 Let $x, y, z \in \mathbb{Z}$

$$
x \star (y \top z) = x + (y \top z) + 3 = x + yz + 3 \quad \dots \dots \dots (1)
$$

$$
(x * y) \top (x * z) = (x * y) \times (x * z)
$$

= $(x + y + 3) (x + z + 3)$(2)

Since $(1) \neq (2)$ then \star is not distributive with respect to \top .

Now, we interchange the positions of the two operations, and we obtain,

$$
x \top (y \star z) = x \times (y \star z) = x \times (y + z + 3) = xy + xz + 3x \quad \dots \dots \dots \dots (1)
$$

$$
(x\top y) \star (x\top z) = (x\top y) + (x\top z) + 3 = xy + xz + 3.
$$
 (2)

Since (1) = (2) then \top is distributive with respect to \star .

1.3 Group Structure

 (E, \star) is called a groupe iff

- 1. \star is associative
- 2. \star admit an identity element
- 3. every element in E admits a symetric element in E .

If, moreover, \star is commutative, then (E, \star) is a **commutative** or **Abelian** group.

Example 1.12 1. $(\mathbb{Z}, +)$ is a commutative group.

- 2. (\mathbb{R}, \times) is not a group because 0 does not admit a symmetrical element.
- 3. (\mathbb{R}^*_+, \times) is an Abelian group.

Subgroup

Let (E, \star) a group and $F \subset E$. We say that F is a subgroup of (E, \star) iff

- 1. F is stable under the operation \star , e.i., $\forall x, y \in F$ $x \star y \in F$
- 2. (F, \star) is itself a group.

Example 1.13 (\mathbb{R}, \times) is a group (\mathbb{R}^*, \times) Is a subgroup of this group.

Characterization of a subgroup

Let (E, \star) a group and $F \subset E$, We have the following equivalence

$$
F \text{ est un sous groupe de } (E, \star) \Longleftrightarrow \begin{cases} F \neq \emptyset \\ \forall x \in F \ x^{-1} \in F \\ \forall x, y \in F \ x \star y \in F \end{cases}
$$

Proof. We prove the following two implications

 \implies) If F is a subgroup then it is itself a group, so we deduce that F is not empty because it contains the identity element. Moreover, the inverse of each element of F belongs to F . Furthermore, the stability of the operation gives us that for all $x, y \in F$ we have $x \star y \in F$.

⇐=) We assume that we have

$$
\begin{cases}\n(1) & F \neq \emptyset \\
(2) & \forall x \in F \ x^{-1} \in F \\
(3) & \forall x, y \in F \ x \star y \in F\n\end{cases}
$$

- 1) F Is stable under the operation \star according to the assumption (3).
- 2) (F, \star) Is itself a group because:
- $\forall x \in F, x^{-1} \in F$ and $x \star x^{-1} \in F$ then $e \in F$
- \star is associative in E, so it is associative in F (F \subset E)

from 1) and 2) we deduce that F is a subgroup of (E, \star) .

Example 1.14 Soit (E, \star) un groupe non commutatif et F une partie de E telle-que

 $F = \{ a \in E : a \star x = x \star a \quad \forall x \in E \}$

Montrer que F est un sous groupe de (E, \star) .

Solution 1.10 1) $F \neq \emptyset$ Indeed, let e be the identity element in the group (E, \star) , we have

$$
\forall x, y \in E \quad x \star e = e \star x
$$

then $e \in F$

2) F is stable by \star Indeed, let $a, b \in F$ then we have

$$
x \star a = a \star x \quad et \quad x \star b = b \star x, \quad \forall x \in E
$$

we have to prove that $a \star b \in F$, $e.i., x \star (a \star b) = (a \star b) \star x \quad \forall x \in E$. Since $a, b \in F \subset E$ and since \star is associative on E, we have for all $x \in E$

$$
x \star (a \star b) = (x \star a) \star b \qquad by \; associativity
$$

= $(a \star x) \star b$ because $a \in F$
= $a \star (x \star b)$ by associativity
= $a \star (b \star x)$ because $b \in F$
= $(a \star b) \star x$ by associativity

donc $(a \star b) \in F$. 3) let $a \in F$ we have

$$
x \star a = a \star x \quad \forall x \in E
$$

We want to prove that $a^{-1} \in F$, e.i.,

$$
x \star a^{-1} = a^{-1} \star x \quad \forall x \in E.
$$

Let e The identity element in E, since $F \subset E$ it yieds $a \in E$ and therefore the inverse of a exists in E and satisfies

$$
a \star a^{-1} = a^{-1} \star a = e
$$

Let $x \in E$, We know that \star is an internal composition law in E then $x \star a^{-1} \in$ E, Moreover, we have

$$
(x \star a^{-1}) \star e = e \star (x \star a^{-1}) = (x \star a^{-1}),
$$

Therefore, we have

$$
x \star a^{-1} = e \star (x \star a^{-1})
$$

\n
$$
= (a^{-1} \star a) \star (x \star a^{-1})
$$

\n
$$
= a^{-1} \star a \star x \star a^{-1}
$$

\n
$$
= a^{-1} \star (a \star x) \star a^{-1} \quad by associativity
$$

\n
$$
= a^{-1} \star (x \star a) \star a^{-1} \quad because a \in F
$$

\n
$$
= (a^{-1} \star x) \star (a \star a^{-1}) \quad by associativity
$$

\n
$$
= a^{-1} \star x
$$

so $a^{-1} \in F$. Conclusion: According to 1, 2, 3, we deduce that F is a subgroup of (E, \star) .

Morphisme de groupe

Let (E, \star) and (H, \top) two groups a $f : E \longrightarrow H$ a function.

• We say that f is a group homomorphism if and only if

$$
\forall x, y \in E \quad f(x \star y) = f(x) \top f(y).
$$

- If, in addition, f is bijective, we refer to it as an isomorphism of groups.
- $\bullet\,$ If $E=H$ et $\star=\top$ then f is called endomorphism of groups.
- If f is a bijective endomorphism, it's called an automorphism.

Example 1.15 Consider the function

$$
f: \mathbb{R} \longrightarrow \mathbb{R}^*
$$

$$
x \longmapsto f(x) = e^x
$$

Show that f is a group homomorphism from $(\mathbb{R}, +)$ to (\mathbb{R}^*, \times)

Solution 1.11 Let $x, y \in \mathbb{R}$

$$
f(x + y) = e^{x+y} = e^x e^y = f(x) \times f(y)
$$
 the proof is complete

Example 1.16 We consider the function

$$
f: \mathbb{R}^* \longrightarrow \mathbb{R}^*
$$

$$
x \longmapsto f(x) = x^n \quad n \in \mathbb{N}
$$

f is it an endomorphisme on (\mathbb{R}^*, \cdot) ?

Solution 1.12 let $x, y \in \mathbb{R}^*$

$$
f(x,y) = (x \cdot y)^n = x^n \cdot y^n = f(x) \cdot f(y)
$$
 the proof is complete

1.4 Ring structure

Let E a set equipped with two internal composition laws \star et \top . We say that (E, \star, \top) is a ring if and only if

- 1. (E, \star) is an Abelian group,
- 2. the law \top is associative,
- 3. the law \top is distributive with respect to \star on the left and on the right. That is

 $\forall x, y, z \in E \quad x \top (y \star z) = (x \top y) \star (x \top z) \text{ et } (x \star y) \top z = (x \top z) \star (y \top z).$

If, in addition, the operation \top is commutative, then the ring (E, \star, \top) is commutative.

If the neutral element with respect to the operation \top exists in E, then the ring (E, \star, \top) is called unitary.

Example 1.17 $(\mathbb{Z}, +, \times)$ is a commutatif ring. $(\mathbb{Z}, \times, +)$ is not a ring.

1.5 Field structure

Let E be a set equipped with two internal composition laws \star and \top . (E, \star, \top) is called a field if and only if

- 1. (E, \star, \top) is a unitary ring,
- 2. every element of $E \{e\}$ is invertible, where e is the neutral element with respect to the operation \star .

If, in addition, the operation \top is commutative, then the field (E, \star, \top) is commutative.

Example 1.18 $(\mathbb{R}, +, \times)$ is a commutative field.

2 Vector Spaces- Sub Vector Spaces

2.1 Vector Spaces

Let $\mathbb K$ be a commutative field (generally $\mathbb R$ or $\mathbb C$) and let E be a set equipped with an internal operation denoted by $(+)$ and an external operation denoted by (.), such that

$$
(+): E \times E \longrightarrow E
$$

$$
(x, y) \longmapsto x + y
$$

$$
\begin{aligned} (\mathbf{.}): \ \ \mathbb{K} \times E &\longrightarrow E \\ (\lambda, x) &\longmapsto \lambda \cdot x \end{aligned}
$$

Definition 2.1 ($E, +, .$) is a vector Space on K or a K−vector Space If the following properties are satisfied:

- 1. $(E,+)$ is an Abelian groupe,
- 2. $\forall \lambda \in \mathbb{K}, \forall x, y \in E \quad \lambda \ldotp (x + y) = \lambda \ldotp x + \lambda \ldotp y,$
- 3. $\forall \lambda, \mu \in \mathbb{K}, \forall x \in E \quad (\lambda + \mu). x = \lambda.x + \mu.x,$
- 4. $\forall \lambda, \mu \in \mathbb{K}, \forall x \in E \quad \lambda \ldotp (\mu \ldotp x) \, (\lambda \mu) \ldotp x = (\lambda \ldotp x) \ldotp \mu,$
- 5. $\forall x \in E \quad 1_{\mathbb{K}} \cdot x = x$

If E is a K-vector space, then the elements of E are called vectors, and those of K are called scalars

Remark 2.1 To simplify notations, we write λx instead of λx

Properties

Let E be a K -vector space, we have the following properties

1. $\forall \lambda \in \mathbb{K}, \forall x \in E \quad \big[\lambda x = 0_E \Longleftrightarrow (\lambda = 0_{\mathbb{K}} \vee x = 0_E) \big],$ 2. $\forall \lambda \in \mathbb{K}, \forall x \in E \quad \lambda(-x) = -\lambda x,$ 3. $\forall \lambda \in \mathbb{K}, \forall x, y \in E \quad \lambda (x - y) = \lambda x - \lambda y,$ 4. $\forall x \in E$, $0_{\mathbb{K}}.x = 0_E$, 5. $\forall \lambda \in \mathbb{K}, \quad \lambda.0_E = 0_E$

2.2 Sub Vector Spaces

Let $(E, +, .)$ be a vector space, and $F \subset E$. We say that F is a sub-vectorialspace (s.v.s.) of E if one of the following equivalent properties is satisfied:

1. $(F, +, .)$ a vector space.

2.
$$
\begin{cases} F \neq \emptyset, \\ \forall x, y \in F, \forall \lambda, \mu \in \mathbb{K} \quad (\lambda x + \mu y) \in F. \end{cases}
$$

3.
$$
\begin{cases} F \neq \emptyset \\ \forall x, y \in F \\ \forall \lambda \in \mathbb{K}, \forall x \in F \quad \lambda x \in F. \end{cases}
$$

Remark 2.2 This remark is very useful in practice.

- To show that $F \neq \emptyset$, it is sufficient to prove that $0_E \in F$.
- If $0_E \notin F$ then F cannot be a vector subspace.

Example 2.1 Set $E = \mathbb{R}^2$ and $F = \{(x, y) \in \mathbb{R}^2 \mid y = 2x\}$ Show that F is a vector subspace of \mathbb{R}^2 .

Solution 2.2 We prove that F satisfies $\sqrt{ }$ \int $\overline{\mathcal{L}}$ $F\neq \emptyset$ $\forall x, y \in F \quad x + y \in F$ $\forall \lambda \in \mathbb{K}, \forall x \in F \quad \lambda x \in F.$

1. $(0, 0) \in F$ because $0 = 2 \times 0$,

then
$$
F \neq \emptyset
$$
.

2. Let $X = (x_1, y_1)$ et $Y = (x_2, y_2)$ two elements of F, e.i.,

$$
y_1 = 2x_1 \text{ et } y_2 = 2x_2.
$$

We have

$$
X + Y = (x_1 + x_2, y_1 + y_2) \quad et \ y_1 + y_2 = 2x_1 + 2x_2 = 2 (x_1 + x_2),
$$

then $X + Y \in F$.

3. Let $\lambda \in \mathbb{K}$ and $X = (x_1, y_1) \in F$.

$$
(x_1, y_1) \in F \Longleftrightarrow y_1 = 2x_1.
$$

We have

$$
\lambda X = (\lambda x_1, \lambda y_1)
$$
 avec $\lambda y_1 = \lambda (2x_1) = 2 (\lambda x_1)$,
then $\lambda X \in F$.

Conclusion: F is a vector subspace of \mathbb{R}^2 .

Proposition 2.3 Let $(E, +, .)$ un K– Vector Space. If F_1 et F_2 are two vector subspaces of E then $F_1 \cap F_2$ is a vector subspace of E.

Proof. Let F_1, F_2 two vector subspaces of a K– vector space E.

1. $0_E \in F_1$ and $0_E \in F_2$ then $0_E \in F_1 \cap F_2$ and consequently

 $F_1 \cap F_2 \neq \emptyset$.

2. Let $x, y \in F_1 \cap F_2$ then $x, y \in F_1$ et $x, y \in F_2$. Since F_1 and F_2 are v.s.s of E then $x + y \in F_1$ and $x + y \in F_1 \cap F_2$ therefore

$$
x + y \in F_1 \cap F_2
$$

3. Let $x \in F_1 \cap F_2$ then $x \in F_1$ et $x \in F_2$. Since F_1 et F_2 are v.s.s of E then for all $\lambda \in \mathbb{R}$, we have $\lambda x \in F_1$ and $\lambda x \in F_2$ then

$$
\lambda x \in F_1 \cap F_2.
$$

Conclusion: $F_1 \cap F_2$ is a v.s.s of E.

Remark 2.3 Generally; the union of two vector spaces of E ; is not a vector subspace of E.

Example 2.2 We consider the following two vector subspaces $F_1 = \left\{ (x, y) \in \mathbb{R}^2 \mid x = 0 \right\}, \quad F_2 = \left\{ (x, y) \in \mathbb{R}^2 \mid y = 0 \right\}$ $F_1 \cup \overline{F_2}$ is it a v.s.s. of \mathbb{R}^2 ?

Solution 2.4 If $X = (x_1, y_1) \in F_1 \cup F_2$ then $X \in F_1$ where $X \in F_2$. If we consider the two elements $(0, 2), (-3, 0)$ which are in $F_1 \cup F_2$, we have $(0, 2) + (-3, 0) = (-3, 2) \notin F_1 \cup F_2$ because $(-3, 2) \notin F_1$ and $(-3, 2) \notin F_2$, This means that you have found two elements that belong to the union of $F_1 \cup F_2$ but their sum is not in $F_1 \cup F_2$. Then $F_1 \cup F_2$ is not a v.s.s. of \mathbb{R}^2 .

2.3 Somme et somme directe

Definition 2.5 Let E is $K− a$ vector space and F_1, F_2 two v.s.s of E. The sum F_1 and F_2 is the subset of E denoted $F_1 + F_2$ and which is defined by

$$
F_1 + F_2 = \left\{ \eta \in E \mid \eta = x + y \text{ where } x \in F_1 \text{ and } y \in F_2 \right\}
$$

Proposition 2.6 $F_1 + F_2$ is a vector subspace of E.

Definition 2.7 Let E a $K−$ vector space and F_1, F_2 two v.s.s of E. We say that F_1 and F_2 are supplementary or that E is the direct sum of F_1 and F_2 if and only if

$$
E = F_1 + F_2 \text{ et } F_1 \cap F_2 = \{0_E\}
$$

et on écrit

$$
E=F_1\oplus F_2
$$

Proposition 2.8 $(F_1$ et F_2 are supplementary to each other in $E \rightarrow (\forall \eta \in E$ there exists a unique $x \in E$ F_1 and there exists a unique $y \in F_2$ such-that $\eta = x + y$

Example 2.3 $E = \mathbb{R}^2$, $F_1 = \left\{ (x, y) \in \mathbb{R}^2 \mid x = 0 \right\}$, $F_2 = \left\{ (x, y) \in \mathbb{R}^2 \mid x = 0 \right\}$ \mathbb{R}^2 | $y=0$ }

$$
E=F_1\oplus F_2
$$

3 Base and dimension

Let $(E, +, .)$ a K– vector space.

Definition 3.1 (Linear Combination) let $x_1, x_2, x_3, \ldots, x_n$, be n vector of E and $\lambda_1, \lambda_2, \lambda_3, \ldots, \lambda_n$, n scalars in K. We call linear combinations of the n vectors of E the following sum

 $\lambda_1x_1 + \lambda_2x_2 + \lambda_3x_3 + \cdots + \lambda_nx_n.$

Definition 3.2 (Generating family)

We say that the n vectors $x_1, x_2, x_3, \ldots, x_n$ of E Generate E, or that $\{x_1, x_2, x_3, \ldots, x_n\}$ is a Generating family of E iff

 $\forall X \in E, \exists \lambda_1, \lambda_2, \lambda_3, \ldots, \lambda_n \in \mathbb{K}$ such-that $X = \lambda_1 x_1 + \lambda_2 x_2 + \lambda_3 x_3 + \cdots + \lambda_n x_n$

and we write $E = \langle x_1, x_2, \ldots, x_n \rangle$ where $E = Vect(x_1, x_2, x_3, \ldots, x_n)$.

Example 3.1 Prove that the vectors $X = (1, 1), Y = (1, 0)$ generate \mathbb{R}^2

Solution 3.3 Let us consider $Z = (z_1, z_2)$ we prove that there exists $\lambda_1, \lambda_2 \in$ R such that

$$
Z = \lambda_1 X + \lambda_2 Y
$$

$$
Z = \lambda_1 X + \lambda_2 Y \iff (z_1, z_2) = \lambda_1 (1, 1) + \lambda_2 (1, 0)
$$

\n
$$
\iff (z_1, z_2) = (\lambda_1, \lambda_1) + (\lambda_2, 0)
$$

\n
$$
\iff (z_1, z_2) = (\lambda_1 + \lambda_2, \lambda_1)
$$

\n
$$
\iff \begin{cases} \lambda_1 + \lambda_2 = z_1 \\ \lambda_1 = z_2 \end{cases}
$$

\n
$$
\iff \begin{cases} \lambda_2 = z_1 - z_2 \\ \lambda_1 = z_2 \end{cases}
$$

since z_1, z_2 are real numbers then λ_1, λ_2 exist.

Example 3.2 $E = \{(x, y, z) \in \mathbb{R}^3 \mid x + y = 0\}$ Find a generating family of E.

Solution 3.4 Let $X \in E$, then $X = (x, y, z)$ avec $x + y = 0$. We have $x = -y$, therefore $X = (-y, y, z) = (-y, y, 0) + (0, 0, z) = y(-1, 1, 0) +$ $z(0,0,1) = yx_1 + zx_2$ avec $x_1 = (-1, 1, 0)$ et $x_2 = (0, 0, 1)$. We write

$$
E = \langle (-1, 1, 0), (0, 0, 1) \rangle \quad \text{ou } E = Vect(-(1, 1, 0), (0, 0, 1))
$$

Definition 3.5 (Linearly independent vectors)

The n vectors $x_1, x_2, x_3, \ldots, x_n$ of E are linearly independent or that the family $\{x_1, x_2, x_3, \ldots, x_n\}$ is free if and only if $\forall \lambda_1, \lambda_2, \lambda_3, \ldots, \lambda_n \in \mathbb{K}$,

 $\lambda_1x_1 + \lambda_2x_2 + \lambda_3x_3 + \cdots + \lambda_nx_n = 0_E \Longrightarrow \lambda_1 = \lambda_2 = \lambda_3 = \cdots = \lambda_n = 0_E$

if the vectors $x_1, x_2, x_3, \ldots, x_n$ If they are not linearly independent, then they are called linearly dependent, or the family $\{x_1, x_2, x_3, \ldots, x_n\}$ is linearly dependent.

Example 3.3 Prove that $e_1 = (1, 0, 0), e_2 = (0, 1, 0), e_3 = (0, 0, 1)$ are linearly independent.

Solution 3.6 let $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$ such-that $\lambda_1 e_1 + \lambda_2 e_2 + \lambda_3 e_3 = 0_{\mathbb{R}^3}$

$$
\lambda_1 (1,0,0) + \lambda_2 (0,1,0) + \lambda_3 (0,0,1) = (0,0,0) \iff (\lambda_1, 0, 0) + (0, \lambda_2, 0) + (0, 0, \lambda_3) = (0,0,0)
$$

$$
\iff (\lambda_1, \lambda_2, \lambda_3) = (0,0,0)
$$

$$
\implies \lambda_1 = \lambda_2 = \lambda_3 = 0. \text{ the proof is complete}
$$

Definition 3.7 (Basis of a Vector Space)

The n vectors $x_1, x_2, x_3, \ldots, x_n$ of E form a basis for E iff the family $\{x_1, x_2, x_3, \ldots, x_n\}$ is a linearly independent and generating family of E.

Definition 3.8 (Canonical Basis)

Let $e_1 = (1, 0, 0, 0, \ldots, 0), e_2 = (0, 1, 0, 0, \ldots, 0), e_3 = (0, 0, 1, 0, \ldots, 0), \ldots,$ $e_n = (0, 0, 0, 0, \ldots, 1), n$ vectors de \mathbb{R}^n , $n \in \mathbb{N}$. The vectors $e_1, e_2, e_3, \ldots, e_n$ form a basis for \mathbb{R}^n which is called the canonical basis of \mathbb{R}^n

Example 3.4 1. $\{e_1 = (1,0), e_2 = (0,1)\}$ est une base de \mathbb{R}^2 .

2. $\{e_1 = (1,0,0), e_2 = (0,1,0), e_3 = (0,0,1)\}\$ is a basis of \mathbb{R}^3 .

Definition 3.9 (Dimension of a Vector Space)

The dimension of a vector space, denoted as $dim E$ is equal to the cardinality of its basis.

It is recalled that the cardinality of a set is the number of elements in that set.

Example 3.5 dim $\mathbb{R}^2 = 2$, dim $\mathbb{R}^n = n$.

Remark 3.1 By convention, we define dim $\{0_E\} = 0$.

Remark 3.2 Searching for a basis for a vector space E is to find a family of vectors in E in such a way that this family is both a linearly independent and generating family of E. The number of elements in this basis is the dimension of the space E.

Theorem 3.10 In a vector space of dimension n, a basis for E is a family that,

- 1. is free,
- 2. a generating family,
- 3. Contains n vectors

and any family that satisfies two of the three previous properties is a basis for E.

Example 3.6 Let $\beta = \{(1, 1, 1), (-1, 1, 1), (0, 1, -1)\}$. The elements of β are vectors of \mathbb{R}^3 and β contains three vectors. According to the theorem 3.10, to prove that β is a basis for \mathbb{R}^3 , it is enough to show that the family is linearly independent and generating, since card(β) = dim \mathbb{R}^3 .

Theorem 3.11 Let E be a $K-$ vector space of dimension n. If F is a vector subspace of E then $dim F \leq n$, and if in addition $dim F = n$ then $E = F$.

Theorem 3.12 Let E be a $K−$ vector space of dimension n, and F_1, F_2 two v.s.s of E , then

$$
dim (F_1 + F_2) = dim F_1 + dim F_2 - dim (F_1 \cap F_2)
$$

and

$$
dim (F_1 \oplus F_2) = dim F_1 + dim F_2
$$

4 Linear Applications

4.1 Definitions and Properties

Definition 4.1 Let E, G two K −vector spaces and f an application of E into G. We say that f is a linear application if and only if one of the two properties are satisfied

1.
$$
\forall x, y \in E, \forall \lambda, \mu \in \mathbb{K}
$$
 $f(\lambda x + \mu y) = \lambda f(x) + \mu f(y)$.
\n2. $\begin{cases} \forall x, y \in E, & f(x + y) = f(x) + f(y) \\ \forall x \in E, \forall \lambda \in \mathbb{K}, & f(\lambda x) = \lambda f(x). \end{cases}$

Example 4.1

$$
f: \mathbb{R}^2 \longrightarrow \mathbb{R}^3
$$

$$
(x, y) \longmapsto f(x, y) = (x + y, x - y, 2x)
$$

Prove that f is linear

Solution 4.2 We prove that

$$
\begin{cases} \forall x, y \in E, & f(x + y) = f(x) + f(y) \\ \forall x \in E, \forall \lambda \in \mathbb{R} & f(\lambda x) = \lambda f(x). \end{cases}
$$

Let
$$
(x, y), (x', y') \in \mathbb{R}^2
$$
, we have $(x, y) + (x', y') = (x + x', y + y')$
\n $f(x + x', y + y') = (x + x' + y + y', x + x' - y - y', 2(x + x'))$
\n $= (x + y, x - y, 2x) + (x' + y', x' - y', 2x')$
\n $= f(x, y) + f(x', y')$

Let $(x, y) \in \mathbb{R}^2$, and $\lambda \in \mathbb{R}$

$$
f(\lambda(x, y)) = f(\lambda x, \lambda y)
$$

= $(\lambda x + \lambda y, \lambda x - \lambda y, 2\lambda x)$
= $(\lambda (x + y), \lambda (x - y), \lambda (2x))$
= $\lambda (x + y, x - y, 2x)$
= $\lambda f(x, y).$

So, f is a linear application.

Proposition 4.3 Let $f: E \longrightarrow G$ is a linear application.

1. $f(0_E) = 0_G$. 2. $\forall x \in E$, $f(-x) = -f(x)$.

Proof. 1) Since $0_E = 0_E + 0_E$

$$
f(0_E) = f(0_E + 0_E)
$$

= $f(0_E) + f(0_E)$
= $2f(0_E)$
then $f(0_E) = 0_G$

2) Let $x \in E$, we have

$$
f(x - x) = f(0_E) = 0_G \quad \dots \dots (1)
$$

and since f est linear it yields

$$
f(x - x) = f(x + (-x)) = f(x) + f(-x) \quad \dots \dots \dots (2)
$$

from (1) and (2) :

$$
f(x) + f(-x) = 0_G
$$

and consequently

$$
f(-x) = -f(x).
$$

 \blacksquare

Space of Linear Applications

We denote by $\mathcal{L}(E, G)$ The set of all linear applications from E into G. This set is equipped with an internal composition law denoted by (+) and an external law (.) defined as follows: Soient $f, g \in \mathcal{L}(E, G)$ et $\lambda \in \mathbb{K}$.

$$
\forall x \in E, \quad (f+g)(x) = f(x) + g(x) \quad \text{et} \quad (\lambda.f)(x) = \lambda.f(x)
$$

Proposition 4.4 $(L(E, G), +, .)$ est un K– vector space.

4.2 Kernel and Image

Let $f: E \longrightarrow G$ be a linear application.

Definition 4.5 *(Kernel and iimage of a linear application)*

• The kernel of f is denoted by ker, f and is defined as follows

$$
ker f = \{ x \in E \mid f(x) = 0_G \}
$$

We also denote kerf by $\ker f = f^{-1}(0_G)$

• The image of f is the set denoted by im f and is defined as

$$
im f = \{ y \in G \mid y = f(x) \text{ où } x \in E \} = f(E).
$$

• The rank of f is the dimension of im f, and it is written as $rg(f) =$ $dim(imf).$

Example 4.2

$$
f: \mathbb{R}^2 \longrightarrow \mathbb{R}
$$

$$
(x, y) \longmapsto x + 2y
$$

Prove that f is linear and give its kernel and image.

Solution 4.6

$$
ker f = \{ (x, y) \in \mathbb{R}^2 \mid f(x) = 0_G \}
$$

=
$$
\{ (x, y) \in \mathbb{R}^2 \mid x + 2y = 0_G \}
$$

=
$$
\{ (x, y) \in \mathbb{R}^2 \mid x = -2y \}
$$

therefore

$$
ker f = \{ (-2y, y) \mid y \in \mathbb{R} \} = \{ y (-2, 1) \mid y \in \mathbb{R} \}.
$$

We can write $\ker f = \langle (-2, 1) \rangle$

$$
im f = \{ u \in \mathbb{R} \mid u = f(x, y) \quad where \ (x, y) \in \mathbb{R}^2 \}
$$

$$
im f = \{ u \in \mathbb{R} \mid u = x + 2y \quad where \ (x, y) \in \mathbb{R}^2 \}
$$

Properties

Let E, G be two K– vector spaces $f: E \longrightarrow G$ is a linear application, we have:

- 1. ker f is a vector subspace of E .
- 2. *im f* is a vector subspace of G .

Proof. 1)

• Since f is a linear application, it yields $f(0_E) = 0_G$, then $0_E \in ker f$ and therefore $ker f \neq \emptyset$.

• Let $x_1, x_2 \in \text{ker } f$ then we have $f(x_1) = 0$ and $f(x_2) = 0$. Since f is linear, we have

$$
f(x_1 + x_2) = f(x_1) + f(x_2) = 0 + 0 = 0.
$$

Donc $x_1 + x_2 \in \text{ker } f$

• Let $x \in \text{ker } f, \lambda \in \mathbb{K}, \ f(\lambda x) = \lambda f(x) = \lambda \times 0 = 0.$

Then $\lambda x \in \text{ker } f$.

 $ker f$ is a vector subspace of E.

2)

• $0_G \in imf$ then $imf \neq \emptyset$.

• Let $y_1, y_2 \in imf$ then it exist x_1, x_2 in E such that $y_1 = f(x_1)$ and $y_2 = f(x_2)$.

 $y_1 + y_2 = f(x_1) + f(x_2) = f(x_1 + x_2)$ and since $x_1 + x_2 \in E$, we deduce that $y_1 + y_2 \in imf.$

• Let $y \in imf, \lambda \in \mathbb{K}$, we have $\lambda y = \lambda f(x) = f(\lambda x) \in imf$ because $\lambda x \in$ E.

 imf is a vector subspace of G .

Г

Theorem 4.7 (Injection- surjection)

f is injective \iff ker $f = \{0_E\}$

If dim $G = p$ (finite), then

f is surjective \iff dim im $f = \dim G = p$.

In other words,

f is surjective \iff im $f = G$.

Theorem 4.8 (Fundamental theorem) Let $f: E \longrightarrow G$ be a linear application such that $dim E = n(finite)$, then

 $dim E = dim imf + dim kerf$

Example 4.3 Let us consider the following application

$$
f: \mathbb{R}^3 \longrightarrow \mathbb{R}^2
$$

$$
(x, y, z) \longrightarrow f(x, y, z) = (x + 2y, 2x + 3z)
$$

Determine kerf, imf and provide dim kerf et rg (f) .

Solution 4.9

$$
ker f = \left\{ (x, y, z) \in \mathbb{R}^3 \mid f (x, y, z) = 0_{\mathbb{R}^2} \right\}
$$

\n
$$
= \left\{ (x, y, z) \in \mathbb{R}^3 \mid (x + 2y, 2x + 3z) = (0, 0) \right\}
$$

\n
$$
= \left\{ (x, y, z) \in \mathbb{R}^3 \mid x + 2y = 0 \text{ and } 2x + 3z = 0 \right\}
$$

\n
$$
= \left\{ (x, y, z) \in \mathbb{R}^3 \mid y = -\frac{1}{2}x \text{ et } z = -\frac{2}{3}x \right\}
$$

\n
$$
= \left\{ \left(x, -\frac{1}{2}x, -\frac{2}{3}x \right) \mid x \in \mathbb{R} \right\}
$$

\n
$$
= \left\{ x \left(1, -\frac{1}{2}, -\frac{2}{3} \right) \mid x \in \mathbb{R} \right\}
$$

\n
$$
= \left\{ (1, -\frac{1}{2}, -\frac{2}{3}) \right\}.
$$

$$
imf = \left\{ f(x, y, z) \mid (x, y, z) \in \mathbb{R}^3 \right\}
$$

$$
f(x, y, z) = (x + 2y, 2x + 3z) \mid (x, y, z) \in \mathbb{R}^3
$$

$$
= (x, 2x) + (2y, 0) + (0, 3z)
$$

$$
= x (1, 2) + y (2, 0) + z (0, 3)
$$

$$
= \langle (1, 2), (2, 0), (0, 3) \rangle
$$

we have

$$
\dim \mathbb{R}^3 = \dim \operatorname{im} f + \dim \ker f
$$

 $dim \mathbb{R}^3 = 3$ and $dim ker f = 1$ then $rg(f) = dim im f = 2$.