
Chapter 5 Linear algebra

1 Algebraic Structures

1.1 Internal Composition Laws

Definition 1.1 Let E be a set. The function

T : E × E −→ E

(x, y) 7−→ T (x, y)

Is called an internal composition law on E (i.c.l)

Remark 1.1 1. There exist other notations for internal composition laws

?,⊥,4,+,×, . . .

2. An internal composition law is also called an operation

3. To prove that an operation ? is internal in E, one shows that whenever
we take any two elements x, y from E, the composition x ? y remains
within E.

Example 1.1 On E = Z
Addition

+ : Z× Z −→ Z

(x, y) 7−→ x+ y

Multiplication
× : Z× Z −→ Z

(x, y) 7−→ x× y
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are two internal composition laws on Z.
Division is not an internal composition law on Z, It is enough to see, for

example, that for (x, y) = (3, 2) ∈ Z× Z on a 3÷ 2 =
3

2
/∈ Z.

Example 1.2 We define on Z∗ the law ? as follow

∀ (x, y) ∈ Z∗ × Z∗, x ? y =
x+ y

2

Calculate 1 ? 1, 2 ? 3, (−5) ? 5.
The law ? Is it internal in Z∗.

Solution 1.2 We have ∀ (x, y) ∈ Z∗ × Z∗, x ? y =
x+ y

2
. Therefore

1) 1 ? 1 =
1 + 1

2
= 1

2) (−5) ? 5 =
−5 + 5

2
= 0

3) 2 ? 3 =
3 + 2

2
=

5

2
/∈ Z∗

From 3) we deduce that the law ?is not internal.

1.2 Properties of Internal Composition Laws

In all that follows, we assume that E is a set equipped with an internal
composition law denoted by ?.

Commutativity

We say that ? is commutative if and only if

∀x, y ∈ E x ? y = y ? x.

Example 1.3 Let ? an internal composition law defined on Z by

x ? y = x+ y + 1

? Is it commutative ?

Solution 1.3 Let x, y ∈ Z
x ? y = x+ y + 1 = y + x+ 1 = y ? x
So ? is a commutative internal composition law.

Remark 1.2 +, × are two commutative internal composition laws on R.
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Associativity

We say that ? is associative if and only if

∀x, y, z ∈ E (x ? y) ? z = x ? (y ? z) .

Example 1.4 We define on E = [0 1] an internal composition law ? by

∀x, y ∈ E x ? y = x+ y − xy

? is it associative?

Solution 1.4 Let x, y, z ∈ E

(x ? y) ? z = (x+ y − xy) ? z

= (x+ y − xy) + z − (x+ y − xy) z

= x+ y − xy + z − xz − yz + xyz.

= x+ y + z − xy − xz − yz + xyz....................(1)

x ? (y + z) = x ? (y + z − yz)
= x+ (y + z − yz)− x (y + z − yz)
= x+ y + z − yz − xy − xz + xyz

= x+ y + z − xy − yz − xz + xyz.................(2)

from (1) and (2) we deduce that (x ? y) ? z = x ? (y + z) , so ? is an
associative internal composition law

Example 1.5 E = Z ∀x, y ∈ E x ? y = 2x+ y + 5

Solution 1.5 Let x, y, z ∈ E
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(x ? y) ? z = (2x+ y + 5) ? z

= 2 (2x+ y + 5) + z + 5

= 4x+ 2y + 10 + z + 5.

= 4x+ 2y + z + 15...................(1)

x ? (y + z) = x ? (2y + z + 5)

= 2x+ (2y + z + 5) + 5

= 2x+ 2y + z + 5 + 5

= 2x+ 2y + 10...............(2)

from (1) et (2) we deduce that (x ? y) ? z 6= x ? (y + z) . As we can see ? is
not associative.

Identity Element

Let e ∈ E, we say that e is an identity element in E for the operation ? iff

∀x ∈ E x ? e = e ? x = x.

Example 1.6 0 is the identity element for the addition in R
1 is the identity element for the multiplication in R

Example 1.7 We define on E = ]−1 1[ the operation > as follow

∀x, y ∈ E x>y =
x+ y

1 + xy

Find the identity element in E for the operation >.

Solution 1.6 Let e ∈ E such that ∀x ∈ E x>e = e> = x

x>e = x ⇐⇒ x+ e

1 + xe
= x

⇐⇒ x+ e = x (1 + xe)

⇐⇒ x+ e = x+ x2e

⇐⇒ e− x2e = 0

⇐⇒ e
(
1− x2

)
= 0

=⇒ e = 0 because
(
1− x2

)
6= 0 for x ∈ ]−1 1[
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In the same way, for e>x = x, we find e = 0. Therefore, 0 is the identity
element in ]−1; 1[ for the operation >.

Remark 1.3 The identity element, if it exists, is unique.

Invertible Element

We assume that the operation ? has an identity element in E denoted as e.
For an element x ∈ E, we say that the element x′ ∈ E is the symmetric or
the inverse of x in E with respect to the operation ? if and only if

x ? x′ = x′ ? x = e.

If x is invertible then its inverse is denoted x−1.

Example 1.8 −x is the symmetric of x with respect to addition in R.
Let x 6= 0, the symmetric of x with respect to multiplication in R is

1

x
.

Example 1.9 Let 4 an internal composition law defined on Z by

∀x, y ∈ Z x4y = 2x− y + 1

Find the symmetric, if it exists, of an element x in Z.

Solution 1.7 Let x ∈ Z, before looking for the symmetric of x dans Z We
must check if the identity element for the operation 4 exists in Z.
Let e ∈ Z, in order that e be an identity element, it is necessary and sufficient
that it satisfies:

x4e = e4x = x where x ∈ Z.

(x4e = x) =⇒ (e = x+ 1) . So, it is clear that e does not exist, since ac-
cording to this result, for each value of x, we have a value of e, whereas the
identity element, if it exists, is unique
Since the identity element for the operation 4 does not exist, the elements
of Z are not invertible for the operation 4.

Example 1.10 Let 4 an internal composition law defined on R∗+ par

∀x, y ∈ R∗+ x4y =
√
x2 + y2

Find the symmetric, if it exists, of an element x in R∗+.
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Solution 1.8 It is clear that 0 is the identity element for this operation.
Indeed

∀x ∈ R∗+ x40 =
√
x2 + 02 = |x| = x = 04x.

Let x ∈ R∗+, we say that x′ ∈ R∗+ is the symmetric of x for the operation
triangle if and only if

x4x′ = 0 = x′4x.

x4x′ = 0 =⇒
√
x2 + x′2 = 0 et x′4x = 0 =⇒

√
x′2 + x2 = 0.

It follows that x2 + x′2 = 0, which is impossible since x, x′ are two strictly
positive elements. Therefore, no element of R∗+ has a symmetric for 4.

Remark 1.4 • If e is the identity element in E for the operation ?,
then e is invertible, and e−1 = e.

• If x, y are invertible for the operation ?, then x ? y is invertible, and
we have (x ? y)−1 = y−1 ? x−1.

• If a is invertible for the operation ?, then the equation a ? x = b has a
solution x = a−1 ? b. It is easy to see

a ? x = b ⇐⇒ a−1 ? a ? x = a−1 ? b

⇐⇒ e ? x = a−1 ? b

⇐⇒ x = a−1 ? b

Distributivité

Now, let’s assume that E is equipped with two internal composition laws, ?
and >. We say that ? is distributive with respect to > if and only if

∀x, y, z ∈ E x ? (y>z) = (x ? y)> (x ? z) .

Example 1.11 We define on Z Two internal composition laws ? and > by

∀x, y ∈ Z x ? y = x+ y + 3

et
∀x, y ∈ Z x>y = xy

? is it distributive with respect to >?
> is it distributive with respect to ??
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Solution 1.9 Let x, y, z ∈ Z

x ? (y>z) = x+ (y>z) + 3 = x+ yz + 3 .........(1)

(x ? y)> (x ? z) = (x ? y)× (x ? z)

= (x+ y + 3) (x+ z + 3) . ...........(2)

Since (1) 6= (2) then ? is not distributive with respect to >.

Now, we interchange the positions of the two operations, and we obtain,

x> (y ? z) = x× (y ? z) = x× (y + z + 3) = xy + xz + 3x ..............(1)

(x>y) ? (x>z) = (x>y) + (x>z) + 3 = xy + xz + 3. ..............(2)

Since (1) = (2) then > is distributive with respect to ?.

1.3 Group Structure

(E, ?) is called a groupe iff

1. ? is associative

2. ? admit an identity element

3. every element in E admits a symetric element in E.

If, moreover, ? is commutative, then (E, ?) is a commutative or Abelian
group.

Example 1.12 1. (Z,+) is a commutative group.

2. (R,×) is not a group because 0 does not admit a symmetrical element.

3.
(
R∗+,×

)
is an Abelian group.
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Subgroup

Let (E, ?) a group and F ⊂ E. We say that F is a subgroup of (E, ?) iff

1. F is stable under the operation ?, e.i., ∀x, y ∈ F x ? y ∈ F

2. (F, ?) is itself a group.

Example 1.13 (R,×) is a group
(
R∗+,×

)
Is a subgroup of this group.

Characterization of a subgroup

Let (E, ?) a group and F ⊂ E, We have the following equivalence

F est un sous groupe de (E, ?)⇐⇒


F 6= ∅
∀x ∈ F x−1 ∈ F
∀x, y ∈ F x ? y ∈ F

Proof. We prove the following two implications
=⇒) If F is a subgroup then it is itself a group, so we deduce that F is not
empty because it contains the identity element. Moreover, the inverse of
each element of F belongs to F. Furthermore, the stability of the operation
gives us that for all x, y ∈ F we have x ? y ∈ F.
⇐=) We assume that we have

(1) F 6= ∅
(2) ∀x ∈ F x−1 ∈ F
(3) ∀x, y ∈ F x ? y ∈ F

1) F Is stable under the operation ? according to the assumption (3).
2) (F, ?) Is itself a group because:
• ∀x ∈ F, x−1 ∈ F and x ? x−1 ∈ F then e ∈ F
• ? is associative in E, so it is associative in F (F ⊂ E)

from 1) and 2) we deduce that F is a subgroup of (E, ?) .

Example 1.14 Soit (E, ?) un groupe non commutatif et F une partie de E
telle-que

F =
{
a ∈ E : a ? x = x ? a ∀x ∈ E

}
Montrer que F est un sous groupe de (E, ?) .
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Solution 1.10 1) F 6= ∅
Indeed, let e be the identity element in the group (E, ?) , we have

∀x, y ∈ E x ? e = e ? x

then e ∈ F

2) F is stable by ?
Indeed, let a, b ∈ F then we have

x ? a = a ? x et x ? b = b ? x, ∀x ∈ E

we have to prove that a ? b ∈ F, e.i., x ? (a ? b) = (a ? b) ? x ∀x ∈ E.
Since a, b ∈ F ⊂ E and since ? is associative on E, we have for all x ∈ E

x ? (a ? b) = (x ? a) ? b by associativity

= (a ? x) ? b beacause a ∈ F
= a ? (x ? b) by associativity

= a ? (b ? x) because b ∈ F
= (a ? b) ? x by associativity

donc (a ? b) ∈ F.
3) let a ∈ F we have

x ? a = a ? x ∀x ∈ E

We want to prove that a−1 ∈ F, e.i.,

x ? a−1 = a−1 ? x ∀x ∈ E.

Let e The identity element in E, since F ⊂ E it yieds a ∈ E and therefore
the inverse of a exists in E and satisfies

a ? a−1 = a−1 ? a = e

Let x ∈ E, We know that ? is an internal composition law in E then x?a−1 ∈
E, Moreover, we have(

x ? a−1
)
? e = e ?

(
x ? a−1

)
=
(
x ? a−1

)
,
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Therefore, we have

x ? a−1 = e ?
(
x ? a−1

)
=

(
a−1 ? a

)
?
(
x ? a−1

)
= a−1 ? a ? x ? a−1

= a−1 ? (a ? x) ? a−1 by associativity

= a−1 ? (x ? a) ? a−1 because a ∈ F
=

(
a−1 ? x

)
?
(
a ? a−1

)
by associativity

= a−1 ? x

so a−1 ∈ F.
Conclusion: According to 1), 2), 3), we deduce that F is a subgroup of (E, ?) .

Morphisme de groupe

Let (E, ?) and (H,>) two groups a f : E −→ H a function.

• We say that f is a group homomorphism if and only if

∀x, y ∈ E f (x ? y) = f(x)>f(y).

• If, in addition, f is bijective, we refer to it as an isomorphism of groups.

• If E = H et ? = > then f is called endomorphism of groups.

• If f is a bijective endomorphism, it’s called an automorphism.

Example 1.15 Consider the function

f : R −→ R∗

x 7−→ f(x) = ex

Show that f is a group homomorphism from (R,+) to (R∗,×)

Solution 1.11 Let x, y ∈ R

f (x+ y) = ex+y = exey = f(x)× f(y) the proof is complete
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Example 1.16 We consider the function

f : R∗ −→ R∗

x 7−→ f(x) = xn n ∈ N
f is it an endomorphisme on (R∗, ·)?

Solution 1.12 let x, y ∈ R∗

f (x.y) = (x.y)n = xn.yn = f(x).f(y) the proof is complete

1.4 Ring structure

Let E a set equipped with two internal composition laws ? et >.
We say that (E, ?,>) is a ring if and only if

1. (E, ?) is an Abelian group,

2. the law > is associative,

3. the law > is distributive with respect to ? on the left and on the right.
That is

∀x, y, z ∈ E x> (y ? z) = (x>y)?(x>z) et (x ? y)>z = (x>z)?(y>z) .

If, in addition, the operation > is commutative, then the ring (E, ?,>) is
commutative.
If the neutral element with respect to the operation > exists in E, then the
ring (E, ?,>) is called unitary.

Example 1.17 (Z,+,×) is a commutatif ring.
(Z,×,+) is not a ring.

1.5 Field structure

Let E be a set equipped with two internal composition laws ? and >.
(E, ?,>) is called a field if and only if

1. (E, ?,>) is a unitary ring,

2. every element of E − {e} is invertible, where e is the neutral element
with respect to the operation ?.

If, in addition, the operation > is commutative, then the field (E, ?,>) is
commutative.

Example 1.18 (R,+,×) is a commutative field.
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2 Vector Spaces- Sub Vector Spaces

2.1 Vector Spaces

Let K be a commutative field (generally R or C) and let E be a set equipped
with an internal operation denoted by (+) and an external operation denoted
by (.), such that

(+) : E × E −→ E

(x, y) 7−→ x+ y

(.) : K× E −→ E

(λ, x) 7−→ λ.x

Definition 2.1 (E,+, .) is a vector Space on K or a K−vector Space If the
following properties are satisfied:

1. (E,+) is an Abelian groupe ,

2. ∀λ ∈ K, ∀x, y ∈ E λ. (x+ y) = λ.x+ λ.y,

3. ∀λ, µ ∈ K, ∀x ∈ E (λ+ µ) .x = λ.x+ µ.x,

4. ∀λ, µ ∈ K,∀x ∈ E λ. (µ.x) (λµ) .x = (λ.x) .µ,

5. ∀x ∈ E 1K.x = x

If E is a K-vector space, then the elements of E are called vectors, and those
of K are called scalars

Remark 2.1 To simplify notations, we write λx instead of λ.x

Properties

Let E be a K-vector space, we have the following properties

1. ∀λ ∈ K, ∀x ∈ E
[
λx = 0E ⇐⇒ (λ = 0K ∨ x = 0E)

]
,

2. ∀λ ∈ K, ∀x ∈ E λ (−x) = −λx,

3. ∀λ ∈ K, ∀x, y ∈ E λ (x− y) = λx− λy,

4. ∀x ∈ E, 0K.x = 0E ,

5. ∀λ ∈ K, λ.0E = 0E
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2.2 Sub Vector Spaces

Let (E,+, .) be a vector space, and F ⊂ E. We say that F is a sub-vectorial-
space (s.v.s.) of E if one of the following equivalent properties is satisfied:

1. (F,+, .) a vector space.

2.

{
F 6= ∅,
∀x, y ∈ F,∀λ, µ ∈ K (λx+ µy) ∈ F.

3.


F 6= ∅
∀x, y ∈ F x+ y ∈ F
∀λ ∈ K, ∀x ∈ F λx ∈ F.

Remark 2.2 This remark is very useful in practice.

• To show that F 6= ∅, it is sufficient to prove that 0E ∈ F.

• If 0E /∈ F then F cannot be a vector subspace.

Example 2.1 Set E = R2 and F =
{

(x, y) ∈ R2 | y = 2x
}

Show that F is a vector subspace of R2.

Solution 2.2 We prove that F satisfies


F 6= ∅
∀x, y ∈ F x+ y ∈ F
∀λ ∈ K,∀x ∈ F λx ∈ F.

1. (0, 0) ∈ F because 0 = 2× 0,

then F 6= ∅.

2. Let X = (x1, y1) et Y = (x2, y2) two elements of F, e.i.,

y1 = 2x1 et y2 = 2x2.

We have

X + Y = (x1 + x2, y1 + y2) et y1 + y2 = 2x1 + 2x2 = 2 (x1 + x2) ,

then X + Y ∈ F.
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3. Let λ ∈ K and X = (x1, y1) ∈ F.

(x1, y1) ∈ F ⇐⇒ y1 = 2x1.

We have

λX = (λx1, λy1) avec λy1 = λ (2x1) = 2 (λx1) ,

then λX ∈ F.

Conclusion: F is a vector subspace of R2.

Proposition 2.3 Let (E,+, .) un K− Vector Space. If F1 et F2 are two
vector subspaces of E then F1 ∩ F2 is a vector subspace of E.

Proof. Let F1, F2 two vector subspaces of a K− vector space E.

1. 0E ∈ F1 and 0E ∈ F2 then 0E ∈ F1 ∩ F2 and consequently

F1 ∩ F2 6= ∅.

2. Let x, y ∈ F1 ∩ F2 then x, y ∈ F1 et x, y ∈ F2. Since F1 and F2 are
v.s.s of E then x+ y ∈ F1 and x+ y ∈ F1 ∩ F2 therefore

x+ y ∈ F1 ∩ F2

3. Let x ∈ F1 ∩ F2 then x ∈ F1 et x ∈ F2. Since F1 et F2 are v.s.s of E
then for all λ ∈ R, we have λx ∈ F1 and λx ∈ F2 then

λx ∈ F1 ∩ F2.

Conclusion: F1 ∩ F2 is a v.s.s of E.

Remark 2.3 Generally; the union of two vector spaces of E; is not a vector
subspace of E.

Example 2.2 We consider the following two vector subspaces

F1 =
{

(x, y) ∈ R2 | x = 0
}
, F2 =

{
(x, y) ∈ R2 | y = 0

}
F1 ∪ F2 is it a v.s.s. of R2?

Solution 2.4 If X = (x1, y1) ∈ F1 ∪ F2 then X ∈ F1 where X ∈ F2. If we
consider the two elements (0, 2) , (−3, 0) which are in F1 ∪ F2, we have
(0, 2) + (−3, 0) = (−3, 2) /∈ F1 ∪ F2 because (−3, 2) /∈ F1 and (−3, 2) /∈ F2,
This means that you have found two elements that belong to the union of
F1 ∪ F2 but their sum is not in F1 ∪ F2. Then F1 ∪ F2 is not a v.s.s. of R2.
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2.3 Somme et somme directe

Definition 2.5 Let E is K− a vector space and F1, F2 two v.s.s of E. The
sum F1 and F2 is the subset of E denoted F1 + F2 and which is defined by

F1 + F2 =
{
η ∈ E | η = x+ y where x ∈ F1 and y ∈ F2

}
Proposition 2.6 F1 + F2 is a vector subspace of E.

Definition 2.7 Let E a K− vector space and F1, F2 two v.s.s of E. We say
that F1 and F2 are supplementary or that E is the direct sum of F1 and F2

if and only if
E = F1 + F2 et F1 ∩ F2 = {0E}

et on écrit
E = F1 ⊕ F2

Proposition 2.8
(
F1 et F2 are supplementary to each other in E

)
⇐⇒

(
∀η ∈ E there exists a unique x ∈

F1 and there exists a unique y ∈ F2 such-that η = x+ y
)

Example 2.3 E = R2, F1 =
{

(x, y) ∈ R2 | x = 0
}
, F2 =

{
(x, y) ∈

R2 | y = 0
}

E = F1 ⊕ F2

3 Base and dimension

Let (E,+, .) a K− vector space.

Definition 3.1 (Linear Combination)
let x1, x2, x3, . . . , xn, be n vector of E and λ1, λ2, λ3, . . . , λn, n scalars in K.
We call linear combinations of the n vectors of E the following sum

λ1x1 + λ2x2 + λ3x3 + · · ·+ λnxn.

Definition 3.2 (Generating family)
We say that the n vectors x1, x2, x3, . . . , xn of E Generate E, or that {x1, x2, x3, . . . , xn}
is a Generating family of E iff

∀X ∈ E,∃λ1, λ2, λ3, . . . , λn ∈ K such-that X = λ1x1+λ2x2+λ3x3+· · ·+λnxn,

and we write E = 〈x1, x2, . . . , xn〉 where E = V ect (x1, x2, x3, . . . , xn) .
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Example 3.1 Prove that the vectors X = (1, 1) , Y = (1, 0) generate R2

Solution 3.3 Let us consider Z = (z1, z2) we prove that there exists λ1, λ2 ∈
R such that

Z = λ1X + λ2Y

Z = λ1X + λ2Y ⇐⇒ (z1, z2) = λ1 (1, 1) + λ2 (1, 0)

⇐⇒ (z1, z2) = (λ1, λ1) + (λ2, 0)

⇐⇒ (z1, z2) =
(
λ1 + λ2, λ1

)
=⇒

{
λ1 + λ2 = z1

λ1 = z2

=⇒

{
λ2 = z1 − z2
λ1 = z2

since z1, z2 are real numbers then λ1, λ2 exist.

Example 3.2 E =
{

(x, y, z) ∈ R3 | x+ y = 0
}

Find a generating family of E.

Solution 3.4 Let X ∈ E, then X = (x, y, z) avec x + y = 0. We have
x = −y, therefore X = (−y, y, z) = (−y, y, 0) + (0, 0, z) = y (−1, 1, 0) +
z (0, 0, 1) = yx1 + zx2
avec x1 = (−1, 1, 0) et x2 = (0, 0, 1) . We write

E = 〈(−1, 1, 0) , (0, 0, 1)〉 ou E = V ect
(

(−1, 1, 0) , (0, 0, 1)
)

Definition 3.5 (Linearly independent vectors)
The n vectors x1, x2, x3, . . . , xn of E are linearly independent or that the
family {x1, x2, x3, . . . , xn} is free if and only if ∀ λ1, λ2, λ3, . . . , λn ∈ K,

λ1x1 + λ2x2 + λ3x3 + · · ·+ λnxn = 0E =⇒ λ1 = λ2 = λ3 = · · · = λn = 0K

if the vectors x1, x2, x3, . . . , xn If they are not linearly independent, then they
are called linearly dependent, or the family {x1, x2, x3, . . . , xn} is linearly
dependent.

Example 3.3 Prove that e1 = (1, 0, 0) , e2 = (0, 1, 0) , e3 = (0, 0, 1) are lin-
early independent.
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Solution 3.6 let λ1, λ2, λ3 ∈ R such-that λ1e1 + λ2e2 + λ3e3 = 0R3

λ1 (1, 0, 0) + λ2 (0, 1, 0) + λ3 (0, 0, 1) = (0, 0, 0) ⇐⇒ (λ1, 0, 0) + (0, λ2, 0) + (0, 0, λ3) = (0, 0, 0)

⇐⇒ (λ1, λ2, λ3) = (0, 0, 0)

=⇒ λ1 = λ2 = λ3 = 0. the proof is complete

Definition 3.7 (Basis of a Vector Space)
The n vectors x1, x2, x3, . . . , xn of E form a basis for E iff the family {x1, x2, x3, . . . , xn}
is a linearly independent and generating family of E.

Definition 3.8 (Canonical Basis)
Let e1 = (1, 0, 0, 0, . . . , 0) , e2 = (0, 1, 0, 0, . . . , 0) , e3 = (0, 0, 1, 0, . . . , 0) , . . . ,
en = (0, 0, 0, 0, . . . , 1) , n vectors de Rn, n ∈ N. The vectors e1, e2, e3, . . . , en
form a basis for Rn which is called the canonical basis of Rn

Example 3.4 1. {e1 = (1, 0) , e2 = (0, 1)} est une base de R2.

2. {e1 = (1, 0, 0) , e2 = (0, 1, 0) , e3 = (0, 0, 1)} is a basis of R3.

Definition 3.9 (Dimension of a Vector Space)
The dimension of a vector space, denoted as dimE is equal to the cardinality
of its basis.

It is recalled that the cardinality of a set is the number of elements in that
set.

Example 3.5 dimR2 = 2, dimRn = n.

Remark 3.1 By convention, we define dim {0E} = 0.

Remark 3.2 Searching for a basis for a vector space E is to find a family
of vectors in E in such a way that this family is both a linearly independent
and generating family of E. The number of elements in this basis is the
dimension of the space E.

Theorem 3.10 In a vector space of dimension n, a basis for E is a family
that,

1. is free,

2. a generating family,

3. Contains n vectors
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and any family that satisfies two of the three previous properties is a basis
for E.

Example 3.6 Let β = {(1, 1, 1) , (−1, 1, 1) , (0, 1,−1)} . The elements of β
are vectors of R3 and β contains three vectors. According to the theorem
3.10, to prove that β is a basis for R3, it is enough to show that the family
is linearly independent and generating, since card(β) = dimR3.

Theorem 3.11 Let E be a K− vector space of dimension n. If F is a vector
subspace of E then dimF ≤ n, and if in addition dimF = n then E = F.

Theorem 3.12 Let E be a K− vector space of dimension n, and F1, F2 two
v.s.s of E, then

dim (F1 + F2) = dimF1 + dimF2 − dim (F1 ∩ F2)

and
dim (F1 ⊕ F2) = dimF1 + dimF2

4 Linear Applications

4.1 Definitions and Properties

Definition 4.1 Let E,G two K−vector spaces and f an application of E
into G. We say that f is a linear application if and only if one of the two
properties are satisfied

1. ∀x, y ∈ E,∀λ, µ ∈ K f (λx+ µy) = λf(x) + µf(y).

2.

{
∀x, y ∈ E, f (x+ y) = f(x) + f(y)

∀x ∈ E,∀λ ∈ K, f (λx) = λf(x).

Example 4.1
f : R2 −→ R3

(x, y) 7−→ f (x, y) = (x+ y, x− y, 2x)

Prove that f is linear

Solution 4.2 We prove that{
∀x, y ∈ E, f (x+ y) = f(x) + f(y)

∀x ∈ E,∀λ ∈ R f (λx) = λf(x).
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Let (x, y) , (x′, y′) ∈ R2, we have (x, y) + (x′, y′) = (x+ x′, y + y′)

f
(
x+ x′, y + y′

)
=

(
x+ x′ + y + y′, x+ x′ − y − y′, 2

(
x+ x′

) )
=

(
x+ y, x− y, 2x

)
+
(
x′ + y′, x′ − y′, 2x′

)
= f (x, y) + f

(
x′, y′

)
Let (x, y) ∈ R2, and λ ∈ R

f
(
λ (x, y)

)
= f (λx, λy)

=
(
λx+ λy, λx− λy, 2λx

)
=

(
λ (x+ y) , λ (x− y) , λ (2x)

)
= λ

(
x+ y, x− y, 2x

)
= λf (x, y) .

So, f is a linear application.

Proposition 4.3 Let f : E −→ G is a linear application.

1. f(0E) = 0G.

2. ∀x ∈ E, f(−x) = −f(x).

Proof. 1) Since 0E = 0E + 0E

f(0E) = f (0E + 0E)

= f(0E) + f(0E)

= 2f(0E)

then f(0E) = 0G

2) Let x ∈ E, we have

f (x− x) = f(0E) = 0G .........(1)

and since f est linear it yields

f (x− x) = f (x+ (−x)) = f(x) + f(−x) .........(2)

from (1) and (2) :
f(x) + f(−x) = 0G

and consequently
f(−x) = −f(x).
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Space of Linear Applications

We denote by L (E,G) The set of all linear applications fromE into G. This
set is equipped with an internal composition law denoted by (+) and an
external law (.) defined as follows:
Soient f, g ∈ L (E,G) et λ ∈ K.

∀x ∈ E, (f + g) (x) = f(x) + g(x) et (λ.f) (x) = λ.f(x)

Proposition 4.4 (L (E,G) ,+, .) est un K− vector space.

4.2 Kernel and Image

Let f : E −→ G be a linear application.

Definition 4.5 (Kernel and iimage of a linear application)

• The kernel of f is denoted by ker, f and is defined as follows

ker f =
{
x ∈ E | f(x) = 0G

}
We also denote kerf by ker f = f−1(0G)

• The image of f is the set denoted by im f and is defined as

im f =
{
y ∈ G | y = f(x) où x ∈ E

}
= f (E) .

• The rank of f is the dimension of im f , and it is written as rg(f) =
dim(im f).

Example 4.2
f : R2 −→ R

(x, y) 7−→ x+ 2y

Prove that f is linear and give its kernel and image.

Solution 4.6

kerf =
{

(x, y) ∈ R2 | f(x) = 0G
}

=
{

(x, y) ∈ R2 | x+ 2y = 0G
}

=
{

(x, y) ∈ R2 | x = −2y
}
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therefore

kerf =
{

(−2y, y) | y ∈ R
}

=
{
y (−2, 1) | y ∈ R

}
.

We can write kerf = 〈(−2, 1)〉

im f =
{
u ∈ R | u = f (x, y) where (x, y) ∈ R2

}
im f =

{
u ∈ R | u = x+ 2y where (x, y) ∈ R2

}
Properties

Let E,G be two K− vector spaces f : E −→ G is a linear application, we
have:

1. ker f is a vector subspace of E.

2. im f is a vector subspace of G.

Proof. 1)
• Since f is a linear application, it yields f(0E) = 0G, then 0E ∈ kerf and
therefore kerf 6= ∅.
• Let x1, x2 ∈ kerf then we have f(x1) = 0 and f(x2) = 0. Since f is
linear, we have

f (x1 + x2) = f(x1) + f(x2) = 0 + 0 = 0.

Donc x1 + x2 ∈ kerf
• Let x ∈ kerf, λ ∈ K, f(λx) = λf(x) = λ× 0 = 0.

Then λx ∈ kerf.

kerf is a vector subspace of E.

2)
• 0G ∈ imf then imf 6= ∅.
• Let y1, y2 ∈ imf then it exist x1, x2 in E such that y1 = f(x1) and
y2 = f(x2).
y1 +y2 = f(x1)+f(x2) = f (x1 + x2) and since x1 +x2 ∈ E, we deduce that
y1 + y2 ∈ imf.
• Let y ∈ imf, λ ∈ K, we have λy = λf(x) = f(λx) ∈ imf because λx ∈
E.

imf is a vector subspace of G.
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Theorem 4.7 (Injection- surjection )

f is injective ⇐⇒ ker f = {0E}
If dim G = p (finite), then

f is surjective ⇐⇒ dim im f = dim G = p.

In other words,
f is surjective ⇐⇒ im f = G.

Theorem 4.8 (Fundamental theorem)
Let f : E −→ G be a linear application such that dimE = n(finite), then

dimE = dim imf + dimkerf

Example 4.3 Let us consider the following application

f : R3 −→ R2

(x, y, z) −→ f (x, y, z) = (x+ 2y, 2x+ 3z)

Determine kerf, imf and provide dimkerf et rg(f).

Solution 4.9

kerf =
{

(x, y, z) ∈ R3 | f (x, y, z) = 0R2

}
=

{
(x, y, z) ∈ R3 | (x+ 2y, 2x+ 3z) = (0, 0)

}
=

{
(x, y, z) ∈ R3 | x+ 2y = 0 and 2x+ 3z = 0

}
=

{
(x, y, z) ∈ R3 | y = −1

2
x et z = −2

3
x
}

=
{(

x,−1

2
x,−2

3
x

)
| x ∈ R

}
=

{
x

(
1,−1

2
,−2

3

)
| x ∈ R

}
= 〈

(
1,−1

2
,−2

3

)
〉.

imf =
{
f (x, y, z) | (x, y, z) ∈ R3

}
f (x, y, z) = (x+ 2y, 2x+ 3z) | (x, y, z) ∈ R3

= (x, 2x) + (2y, 0) + (0, 3z)

= x (1, 2) + y (2, 0) + z (0, 3)

= 〈(1, 2) , (2, 0) , (0, 3)〉
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we have
dimR3 = dim imf + dimkerf

dimR3 = 3 and dimkerf = 1 then rg(f) = dim imf = 2.
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