Chapter 5 Linear algebra

1 Algebraic Structures
1.1 Internal Composition Laws
Definition 1.1 Let E be a set. The function

T: ExE—FE

(z,y) — T'(,y)

Is called an internal composition law on E (i.c.l)
Remark 1.1 1. There exist other notations for internal composition laws

*, LA+, %, ..

2. An internal composition law is also called an operation

3. To prove that an operation x is internal in E, one shows that whenever
we take any two elements x,y from E, the composition T xy remains
within E.

Example 1.1 On E=7
Addition
+: ZxX7Z—7Z

(z,y)—z+y
Multiplication

X: ZXZ—17Z

(z,y) —r Xy



are two internal composition laws on 7.
Division is not an internal composition law on Z, It is enough to see, for

3
example, that for (z,y) = (3,2) EZ X Z on a3 +2 = 5 ¢ 7.

Example 1.2 We define on Z* the law * as follow

V(x,y)EZ*xZ*,x*yzm—;y
Calculate 1 %1, 2% 3,(—=5) x 5.
The law % Is it internal in Z*.
. X X T4y

Solution 1.2 We have V (z,y) € Z* X Z*, xxy = —5 Therefore

141
1) 1*1:%:1
2) (—5)*5:_5+5:0

3+2 5
3)2x3=——==-¢7*

From 3) we deduce that the law xis not internal.

1.2 Properties of Internal Composition Laws

In all that follows, we assume that FE is a set equipped with an internal
composition law denoted by *.

Commutativity
We say that x is commutative if and only if
Ve,ye E xxy=y*zx.
Example 1.3 Let x an internal composition law defined on Z by
zxy=ax+y+1
* Is it commutative ¢
Solution 1.3 Let z,y € Z
zxy=x+y+l=y+ax+1l=y*x

So * is a commutative internal composition law.

Remark 1.2 +, X are two commutative internal composition laws on R.



Associativity

We say that * is associative if and only if
Ve,y,z€ B (z*xy)xz=x*(y*2).
Example 1.4 We define on E = [0 1] an internal composition law % by
Ve,y e E T xYy=x+y—xY
* 1s it associative?

Solution 1.4 Let z,y,z € E

(zxy)xz = (x+y—ay)*z

= (e+y—azy)+tz—(r+y—uzy)z
r+y—TY+z—22—Yz+ Yz
THY+2—2Y — 22— Y2+ TYZurriaririannen. (1)

zx(y+z) = z*x(y+z—y2)
r+(y+z—yz)—x(y+z—yz)
T+yY+z2—yz—2xYy— Tz +TYZ

= THY+2Z—TY — Y2 — T2+ TYZeoernn (2)

from (1) and (2) we deduce that (xxy) xz = x x (y+ 2z), so x is an
associative internal composition law

Example 1.5 F=Z Vz,y e E rxy=2r+y—+>5

Solution 1.5 Let z,y,z € E



(x*y) *z

zx (Y +2)

from (1) et (2) we deduce that (z *y) x z # x x (y + z) . As we can see * is

not associative.

Identity Element

Let e € F, we say that e is an identity element in F for the operation x iff

Ve e E

(2r+y+5)*z

220 +y+5)+2+5

4z + 2y + 104+ 2z + 5.

dr +2y+ 2+ 15, (1)
rx(2y +2z+5)

20+ (2y+2+5)+5
20+2y+2z+5+5
20+ 2y 4+ 10ccenee. (2)

Txe=€exTr=2xI.

Example 1.6 0 is the identity element for the addition in R
1 is the identity element for the multiplication in R

Example 1.7 We define on E = |—1 1] the operation T as follow

Ve,y e K

r+y
14+ 2y

rTy =

Find the identity element in E for the operation T.

Solution 1.6 Let e € E such that

rle=x <=

LTt

VreE zTe=¢eT =x

xr+e

1+ ze
xr+e

Tr+e
e—x’e=0

e(l—:nQ):()

e = 0 because (1—302) #0 for x €]-11]

z (14 xe)

ac+a:26
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In the same way, for eTx = z, we find e = 0. Therefore, 0 is the identity
element in |—1; 1[ for the operation T.

Remark 1.3 The identity element, if it exists, is unique.

Invertible Element

We assume that the operation x has an identity element in F denoted as e.
For an element x € F, we say that the element 2’ € E is the symmetric or
the inverse of x in F with respect to the operation « if and only if

xxx =12 xx =e.
If 2 is invertible then its inverse is denoted z~!.

Example 1.8 —x is the symmetric of x with respect to addition in R.

1
Let x #£ 0, the symmetric of x with respect to multiplication in R is —.
x

Example 1.9 Let /A an internal composition law defined on Z by

Ve,yeZ xAy=2x—y+1

Find the symmetric, if it exists, of an element x in Z.

Solution 1.7 Let x € Z, before looking for the symmetric of x dans Z We
must check if the identity element for the operation /A exists in Z.
Let e € Z, in order that e be an identity element, it is necessary and sufficient
that it satisfies:

xAe =elAx =x where x € Z.

(xhe=1x) = (e=x+1). So, it is clear that e does not exist, since ac-
cording to this result, for each value of x, we have a value of e, whereas the
identity element, if it exists, is unique

Since the identity element for the operation /\ does not exist, the elements
of Z are not invertible for the operation /\.

Example 1.10 Let A an internal composition law defined on R par
Vo,y e RL  zAy = /a2 +y?

Find the symmetric, if it exists, of an element x in RY.



Solution 1.8 [t is clear that O is the identity element for this operation.
Indeed
Ve e RL 2A0= a2+ 0% = |z| =2 =0Axz.

Let x € RY, we say that ' € RY is the symmetric of x for the operation
triangle if and only if
Az’ =0 =2'Ax.

A\’ =0= V12 + 22 =0et2’Ax=0= V2?2 +22=0.
It follows that x> + ' = 0, which is impossible since x,x’ are two strictly
positive elements. Therefore, no element of R has a symmetric for A.

Remark 1.4 o If e is the identity element in E for the operation x,
then e is invertible, and e~! = e.

o If x,y are invertible for the operation x, then x xy is invertible, and

we have (zxy) ' =y L xa L.

e If a is invertible for the operation x, then the equation axx = b has a
solution x = a~' x b. It is easy to see

1

axr=b <= a ‘xaxz=a 'xb

e exxr=a '%xb

— x=a'%xb

Distributivité

Now, let’s assume that E is equipped with two internal composition laws, *
and T. We say that « is distributive with respect to T if and only if

Ve,y,z € B zx(yTz)=(z*xy) T (x*2).
Example 1.11 We define on Z Two internal composition laws x and T by

Ve,yeZ xxy=x+y—+3

et
Ve,y e Z xTy=uxy

* 48 it distributive with respect to T ¢
T is it distributive with respect to x?



Solution 1.9 Let x,y,z € Z

xx(yTz)=x+ (yTz)+3=x4+yz+3 ... (1)
(xxy) T(xxz) = (z*xy) x(z*x2)
= (z+y+3)(z+2+3). (2)

Since (1) # (2) then * is not distributive with respect to T.

Now, we interchange the positions of the two operations, and we obtain,

xT(yxz) =X (y*x2)=xx(y+2+3)=2y+22+30 .rvevrnn. (1)

(xTy)*x(xTz)=(xTy)+ (xT2)+3=zy+z2+3. .rvrrrnee. (2)

Since (1) = (2) then T is distributive with respect to *.

1.3  Group Structure
(E, ) is called a groupe iff
1. x is associative
2. * admit an identity element
3. every element in E admits a symetric element in E.

If, moreover, x is commutative, then (E,x) is a commutative or Abelian
group.

Example 1.12 1. (Z,+) is a commutative group.

2. (R, x) is not a group because 0 does not admit a symmetrical element.
3.

(Ri, ><) is an Abelian group.



Subgroup

Let (E,*) a group and F' C E. We say that F' is a subgroup of (E,) iff
1. F'is stable under the operation x, e.i., Vx,y € F xxy € F
2. (F,*) is itself a group.

Example 1.13 (R, x) is a group (R*Jr, ><) Is a subgroup of this group.

Characterization of a subgroup

Let (E, ) a group and F' C E, We have the following equivalence

F£0
F est un sous groupe de (E,x) <= (Ve e F z7 '€ F
Ve,ye F xxy € F

Proof. We prove the following two implications
=) If F' is a subgroup then it is itself a group, so we deduce that F' is not
empty because it contains the identity element. Moreover, the inverse of
each element of I’ belongs to F. Furthermore, the stability of the operation
gives us that for all z,y € F we have x xy € F.

<=) We assume that we have

(1) F#0
(2) Ve € F ol eF
(3) Vez,ye F zxy€eF

1)  F Is stable under the operation x according to the assumption (3).
2) (F,*) Is itself a group because:

e VzcF, o7 'eF and z+z '€ Fthen ec F

e x is associative in E, so it is associative in F' (F C E)

from 1) and 2) we deduce that F' is a subgroup of (E,*). ®

Example 1.14 Soit (E,*) un groupe non commutatif et F' une partie de E
telle-que
F:{aEE: Aa*xT=T*xa VaceE}

Montrer que F' est un sous groupe de (E,*).



Solution 1.10 1) F #1)
Indeed, let e be the identity element in the group (E,*), we have

Ve,ye E zxe=exx

then ee F

2)  F is stable by %
Indeed, let a,b € F' then we have

rxa=axx et rxb=bxx, Vr € FE

we have to prove that axb € F, e.i., xx (a*b) = (axb)xx Vx € E.
Since a,b € F C E and since * is associative on E, we have for all x € E

xx(axb) = (rxa)*xb by associativity
= (axx)*b beacause a € F
= ax(x*b) by associativity
= ax(bxx) because b € F

= (axb)xx by associativity

donc (a*b) € F.
3) leta € F we have
rxka=a*xx VreEFE

We want to prove that a=' € F, e.i.,

rxa t=a %z Vo eE.

Let e The identity element in E, since F C E it yieds a € E and therefore
the inverse of a exists in E and satisfies

Let x € E, We know that x is an internal composition law in E then xxa~! €
E. Moreover, we have

(a:*a_l)*e:e*(x*a_l) = (az*a_l),



Therefore, we have

rxal =

_1*(a*x)*a_1

-1

by associativity

1

*(xxa)*a” because a € I

a bt x :n) * (a * a_l) by associativity

soa"leF.
Conclusion: According to 1), 2), 3), we deduce that F is a subgroup of (E,*) .

Morphisme de groupe

Let (E,*) and (H, T) two groups a f: E — H a function.

e We say that f is a group homomorphism if and only if
Ve,ye B flzxy)=f@)Tf(y)
e If, in addition, f is bijective, we refer to it as an isomorphism of groups.

o If E=H et x=T then f is called endomorphism of groups.

e If f is a bijective endomorphism, it’s called an automorphism.
Example 1.15 Consider the function
f: R—R*

x> f(z) =¢€"

Show that f is a group homomorphism from (R, +) to (R*, x)
Solution 1.11 Let x,y € R

fx+y) ="V =¢%Y = f(x) x f(y) the proof is complete
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Example 1.16 We consider the function
f: R* —R*
x+— f(x)=2" neN
f is it an endomorphisme on (R*,-)?
Solution 1.12 let z,y € R*
f(xy) = (zy)" =2"y" = f(x).f(y) the proof is complete

1.4 Ring structure

Let F a set equipped with two internal composition laws x et T.
We say that (E,*, T) is a ring if and only if

1. (E,*) is an Abelian group,
2. the law T is associative,

3. the law T is distributive with respect to x on the left and on the right.
That is

Ve,y,z € B T (y*2) = (xTy)x(xTz) et (z*xy) Tz=(xT2)x(yTz).
If, in addition, the operation T is commutative, then the ring (E,*, T) is
commutative.

If the neutral element with respect to the operation T exists in E, then the
ring (E,, T) is called unitary.

Example 1.17 (Z,+, x) is a commutatif ring.
(Z, x,+) 1is not a ring.
1.5 Field structure

Let FE be a set equipped with two internal composition laws x and T.
(E,*,T) is called a field if and only if

1. (E,*,T) is a unitary ring,

2. every element of E — {e} is invertible, where e is the neutral element
with respect to the operation .

If, in addition, the operation T is commutative, then the field (E,*, T) is
commutative.

Example 1.18 (R, +, X) is a commutative field.

11



2 Vector Spaces- Sub Vector Spaces

2.1 Vector Spaces

Let K be a commutative field (generally R or C) and let E be a set equipped
with an internal operation denoted by (+) and an external operation denoted
by (.), such that

(+): ExE—E

(r,y) —z+y

(): KxE—E
(A x) — Az

Definition 2.1 (E,+,.) is a vector Space on K or a K—vector Space If the
following properties are satisfied:

1. (E,+) is an Abelian groupe ,

2.V eK\Ve,ye E A (x+y)=Az+ \y,

3. VNpueKVee E (A 4u).z =Nz + pz,
4.V peR Ve e B A (uz) (M) .x = (A\x).u,
b.YVeelE lgx==x

If E' is a K-vector space, then the elements of E are called vectors, and those
of K are called scalars

Remark 2.1 To simplify notations, we write Ax instead of \.x

Properties

Let E be a K-vector space, we have the following properties
1. VAeK Ve € E [)\x:OE<:>()\:0K\/x:0E) ,
2.V eK, Ve e E A(—x) = -z,

VAeK\Ve,ye B Az —y) = x — Ny,

= L

Ve e B, Og.x =0g,
5 VYl e K, ANO0g =0g
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2.2 Sub Vector Spaces

Let (E,+,.) be a vector space, and F' C E. We say that F' is a sub-vectorial-
space (s.v.s.) of E if one of the following equivalent properties is satisfied:

1. (F,+,.) a vector space.

F#£0,
| Vz,ye FYApeK Mz +py) € F.

F#0
3. Ve,ye FF z4+yeF
VAeK, Ve e FF A\x € F.

Remark 2.2 This remark is very useful in practice.

e To show that F # (), it is sufficient to prove that Op € F.

o [f0p ¢ F then F cannot be a vector subspace.

Example 2.1 Set E=R? and F = { (r,y) €eR? | y= 2m}
Show that F is a vector subspace of R?.

F#(
Solution 2.2 We prove that F' satisfies { Vx,y € F x+ye F
VieK,Vxe F \xeF.

1. (0,0) € F because 0=2x0,
then F # 0.
2. Let X = (z1,y1) et Y = (z2,y2) two elements of F, e.i.,
Y1 = 21 et ys = 2x9.
We have
X+Y = (v1+x2,y1 +y2) et y1+y2 =201+ 2w =2 (21 +22),

then X +Y € F.

13



3. Let \€e K and X = (x1,11) € F.
(z1,91) € F <= y1 = 221.
We have
AX = (Ax1,Ay1) avee Ayr = A (2x1) = 2 (Axq),
then AX € F.
Conclusion: F is a vector subspace of R2.

Proposition 2.3 Let (E,+,.) un K— Vector Space. If Fy et Fy are two
vector subspaces of E then Fy N Fs is a vector subspace of E.

Proof. Let Fi, Fy two vector subspaces of a K— vector space E.
1. Og € F1 and Og € F5 then O € F1 N F, and consequently
P NEy # 0.

2. Let x,y € F1 N Fy then z,y € I} et x,y € F5. Since F; and F5 are
v.s.s of E then z +y € F} and = 4+ y € F1 N F; therefore

rx+y € Fi1NFy

3. Let v € Fy N F5 then ¢ € I et x € Fy. Since Fy et Fy are v.s.s of E
then for all A € R, we have Az € F; and Az € F5 then

Ar € F1 N Fy.
Conclusion: F} N Fy is a v.s.s of E.
]

Remark 2.3 Generally; the union of two vector spaces of E; is not a vector
subspace of E.

Example 2.2 We consider the following two vector subspaces
F={@yer | a=0}, B={@yer | y=0}
FyUFy 1s it a v.s.s. 0f]R2?

Solution 2.4 If X = (z1,y1) € F1 U Fy then X € F| where X € Fy. If we
consider the two elements (0,2),(—3,0) which are in F1 U Fy, we have

(0,2) + (—3,0) = (—3,2) ¢ Fy UF; because (—3,2) ¢ F1 and (—3,2) ¢ Fs,
This means that you have found two elements that belong to the union of
Fy U Fy but their sum s not in Fy U Fy. Then Fy U Fy is not a v.s.s. ofRz.
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2.3 Somme et somme directe

Definition 2.5 Let E is K— a vector space and Fy, F» two v.s.s of E. The
sum Fy and Fy is the subset of E denoted I, + Fy and which is defined by

F1+F2:{77€E|7]:3:+y where x € F1 and yEFQ}
Proposition 2.6 F; + F5 is a vector subspace of E.

Definition 2.7 Let E a K— vector space and Fy, Fs two v.s.s of E. We say
that Iy and Fs are supplementary or that E is the direct sum of Fi and Fo
if and only if

E=F+F et FlﬂFQZ{OE}

et on écrit
E=F@Rn

PI‘OpOSitiOH 2.8 (Fl et Fo are supplementary to each other in E) = (Vn € E there exists a unique x €

F1 and there exists a unique y € Fy such-thatn = x + y)

Example 2.3 E = R?, Flz{(:c,y)E]R2| x:O}, FQZ{(fE,y)E
R? | yzO}

E=F&FR

3 Base and dimension

Let (E,+,.) a K— vector space.

Definition 3.1 (Linear Combination)
let x1,22,23,...,Ty, be n vector of E and A1, Ao, A3, ..., An, n scalars in K.
We call linear combinations of the n vectors of E the following sum

AMT1+ Xoxo + Agz3 + - + A\

Definition 3.2 (Generating family)
We say that the n vectors x1,x2, X3, ..., Ty of E Generate E, or that {x1,x2,x3,...,2pn}
is a Generating family of E iff

VX € E, I\, X, A3,..., Ay €K such-that X = Mz1+ oxo+A3x3+ - -+ ATy,

and we write E = (x1,22,...,T,) where E = Vect(x1,22,23,...,%n).
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Example 3.1 Prove that the vectors X = (1,1),Y = (1,0) generate R?

Solution 3.3 Let us consider Z = (z1, z2) we prove that there exists A1, A2 €
R such that

Z=MX4+XNY
Z=MX+XNY — (2’1,2’2) = (1 1) + Ao (1 0)
(z1,22) = (A1, A1) + (A2, 0)
(21, 22) = (/\1 + X2, A1)

I 11

2 =21 — 22

I

e
e

since z1, z9 are real numbers then \i, Ay exist.

Example 3.2 F = { (r,9,2) ER3 |z +y = 0}
Find a generating family of E.

Solution 3.4 Let X € FE, then X = (z,y,2) avec x +y = 0. We have
x = —vy, therefore X = (—y,y,2) = (—y,y,0) + (0,0,2) = y(—1,1,0) +
2(0,0,1) = yz1 + 222

avec x1 = (—1,1,0) et z2=(0,0,1). We write

E={(~1,1,0),(0,0,1)) ou E = Vect((—l, 1,0, (0,0, 1))
Definition 3.5 (Linearly independent vectors)

The n wvectors x1,2,%3,...,Ty of E are linearly independent or that the
family {x1,x2,x3,...,2,} is free if and only if ¥ A1, A2, Az, ..., A\p € K|

)\1:1:1+)\2x2+)\3:c3+---+)\nmn:0E:>)\1 Z)\QZAg:'--:)\n:OK
if the vectors x1, x2,x3, ..., Ty If they are not linearly independent, then they
are called linearly dependent, or the family {x1,xo,x3,... 2} is linearly
dependent.

Example 3.3 Prove that e; = (1,0,0),e3 = (0,1,0),e3 = (0,0,1) are lin-
early independent.
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Solution 3.6 let A1, A2, A3 € R such-that A1e; + Ases + Azez = Ops

A1(1,0,0) + A2 (0,1,0) + A3 (0,0,1) = (0,0,0) <= (A1,0,0) 4 (0, A2,0) + (0,0, A3) = (0,0,0)
e (/\1,)\2,)\3) = (0,0,0)
= A1 = A2 = A3 = 0. the proof is complete

Definition 3.7 (Basis of a Vector Space)
The n vectors x1, 2, X3, ..., Ty of E form a basis for E iff the family {x1, x2,x3, ..., zn}
s a linearly independent and generating family of E.

Definition 3.8 (Canonical Basis)

Let e; = (1,0,0,0,...,0),e2 = (0,1,0,0,...,0),e3 =(0,0,1,0,...,0),...,
en =(0,0,0,0,...,1), n vectors de R", n € N. The vectors ey, ez,€3,..., e,
form a basis for R™ which is called the canonical basis of R™

Example 3.4 1. {e; = (1,0),e2 = (0,1)} est une base de R2.
2. {e1 = (1,0,0),e2 = (0,1,0),e3 = (0,0,1)} is a basis of R3.

Definition 3.9 (Dimension of a Vector Space)
The dimension of a vector space, denoted as dimkE is equal to the cardinality
of its basis.

It is recalled that the cardinality of a set is the number of elements in that
set.

Example 3.5 dimR? = 2, dimR" = n.
Remark 3.1 By convention, we define dim {0g} = 0.

Remark 3.2 Searching for a basis for a vector space E is to find a family
of vectors in E in such a way that this family is both a linearly independent
and generating family of E. The number of elements in this basis is the
dimension of the space E.

Theorem 3.10 In a vector space of dimension n, a basis for E is a family
that,

1. is free,
2. a generating family,

3. Contains n vectors
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and any family that satisfies two of the three previous properties is a basis
for E.

Example 3.6 Let 5 = {(1,1,1),(-1,1,1),(0,1,—1)}. The elements of
are vectors of R® and 8 contains three vectors. According to the theorem
3.10, to prove that B is a basis for R3, it is enough to show that the family
is linearly independent and generating, since card(B) = dimR3.

Theorem 3.11 Let E be a K— wvector space of dimension n. If F' is a vector
subspace of E then dimF < n, and if in addition dimF = n then E = F.

Theorem 3.12 Let E be a K— vector space of dimension n, and Fy, Fo two
v.s.s of E, then

dim (Fy + Fy) = dimFy + dimF5 — dim (Fy N Fy)
and

dim (F1 D Fg) = dimFy + dimFy

4 Linear Applications

4.1 Definitions and Properties

Definition 4.1 Let E,G two K—wvector spaces and f an application of E
into G. We say that [ is a linear application if and only if one of the two
properties are satisfied

1. Vr,ye ENVA\peK f(Az+py) = M(z) + pf(y).

p YV yeE,  flzty)=[flz)+f(y)
Ve EVAEK,  f(Ax) = Af(2).

Example 4.1
f:R? —R°

(ZL‘,y) '—>f($7y) = ($+y,$—y,2$)

Prove that f is linear

Solution 4.2 We prove that

Ve,ye B, f(z+y) = f(x)+ f(y)
Vee EVAeR  f(Ax) = Af(x).

18



Let (z,y),(z',y') € R*, we have (z,y) + (¢/,y) = (x + 2",y +¥)

fle+ay+y) =

(:L‘+x'+y+y’,:c+x'—y—y',2(:U+x'))
(.’E—Fy,,f - Y, 2$) + (ﬂs'—i—y',x' _y,a2$/)
[y + ()

Let (z,y) €R? and A€ R

F(A ()

(Az, Ay)
Ax 4+ Ay, Az — Ay, 2)\37)
Mz +y), A (@ =), A (20) )

= )\(x—i—y,x—y,Qx)
= AM(zy).

I
—_— —

So, f is a linear application.

Proposition 4.3 Let f : E — G is a linear application.

1. f(0g) = 0g.

2. Vx e B, f(—x)=—f(x).
Proof. 1) Since Og =0 + 0p

2) Let x € E, we have

f0g) = f(0gp+0g)

f(0g) + f(Og)
= 2f(0g)
then f(0g) = 0¢

Flz—1)=f0p) =0G e, (1)

and since f est linear it yields

flx—2)=f(x+(—2)) = flx)+ f(—x) ... (2)

from (1) and (2) :

and consequently
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Space of Linear Applications

We denote by £ (E, G) The set of all linear applications fromF into G. This
set is equipped with an internal composition law denoted by (+) and an

external law (.) defined as follows:
Soient f,g € L(E,G) et A € K.

VeeE, (f+g)(@)=f(z)+g(x) et (Af)(x) =Af(z)

Proposition 4.4 (L(E,G),+,.) est un K— vector space.

4.2 Kernel and Image

Let f: E — G be a linear application.

Definition 4.5 (Kernel and iimage of a linear application)

o The kernel of f is denoted by ker, f and is defined as follows
ker f ={z € F| f(z) =0¢ }
We also denote kerf by ker f = f~1(0g)
o The image of f is the set denoted by im f and is defined as

imf={yeGly=f(z) ovzeE}=Ff(E).

e The rank of f is the dimension of im f, and it is written as rg(f) =
dim(im f).

Example 4.2
f:R?—R

(z,y) — =+ 2y
Prove that f is linear and give its kernel and image.

Solution 4.6

kerf = {(z,y) eR*| f(z) =0g }
= {(@y) eR|z+2y=0¢}
{(z,y) eR? |z = -2y }
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therefore

kerf = {(-2y,y) lyeR }
= {y(-2,1) |yeR }.
We can write  kerf = ((—2,1))
imf={ueR|u=f(zy) where(x,y)ERQ}
imf={ueR|u=xz+2y uwhere (m,y)€R2}

Properties

Let E,G be two K— vector spaces f: E — G is a linear application, we
have:

1. ker f is a vector subspace of F.

2. vm f is a vector subspace of G.

Proof. 1)

e Since f is a linear application, it yields f(0g) = Og, then Og € ker f and
therefore kerf # (.

o Let x1,29 € kerf then we have f(x1) =0 and f(xz2) = 0. Since f is
linear, we have

f(z1+22) = f(z1)+ f(x2) =0+ 0=0.
Donc x1 + a9 € kerf
o Let x € kerf,Ae K, f(Ax)=Af(x)=Ax0=0.

Then Az € kerf.

kerf is a vector subspace of E.
2)
o 0Og € imf then imf # (.
e Let y1,y2 € imf then it exist x1,x9 in E such that y; = f(z;) and
y2 = f(z2).
y1+y2 = f(z1)+ f(z2) = f (21 + z2) and since 1 +x9 € E, we deduce that

Y1+ y2 €imf.
o Let y € imf, A € K, we have A\y = Af(x) = f(A\z) € imf because Az €
E.

imf is a vector subspace of G.
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Theorem 4.7 (Injection- surjection )

f s injective <= ker f ={0g}
If dim G = p (finite), then
[ is surjective <= dim im f =dim G = p.

In other words,
[ is surjective <= im f =G.

Theorem 4.8 (Fundamental theorem)
Let f: E — G be a linear application such that dim E = n(finite), then

dim E = dimimf + dim ker f
Example 4.3 Let us consider the following application
f: R®—R?
(x,y,2) — f(z,y,2) = (v + 2y, 2z + 32)
Determine ker f,imf and provide dim kerf et rg(f).
Solution 4.9

kerf = {my, eR?| f(z,, )—OR2}
- { €R3|(:E+2y,2x+3z):(0,0)}
= {xy, JER? |2 +2y=0 and 2x+3z-0}
= {(m,y,z cER|y=—-z etz——fx}
= {(x,—x —x) ’ wER}
- {o(1-3.-3) 1 = <E}
- ()
imf ={f(@..2) | (v,9.2) e R}
flz,y,2) = (x+2y2c+32) | (z,y,2) € R

= (z,2z)+ (2y9,0) + (0, 3z)
= 2(1,2) +y(2,0) + 2(0,3)
= ((1,2),(2,0),(0,3))
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we have
dimR? = dimimf + dim kerf

dimR3? = 3 and dimkerf = 1 then rg(f) = dimimf = 2.
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