Chapter 1: Real functions of one real variable

Number sets

 \mathbb{N} , \mathbb{N}_0 , \mathbb{Z} , \mathbb{Q} , \mathbb{I} , \mathbb{R} , \mathbb{C}

Definition: A Cartesian product $M \times N$ of sets M and N is a coordinate system of ordered pairs (m, n) where $m \in M$ and $n \in N$.

$$M \times N = \{(m, n) | m \in M \land n \in N\}$$

Definition: Let $\emptyset \neq M \subset \mathbb{R}$. We say that M is bounded above (bounded below), if there is a number $a \in \mathbb{R}$ such that for all $m \in M$ is $m \leq (\geq)$ a. The number a is called upper (lower) bound of set M.

The set *M* is *bounded*, if it is simultaneously bounded below and above.

Definition: Let $\emptyset \neq M \subset \mathbb{R}$. We say that $\max M$ ($\min M$) is *maximum* (*minimum*) of set M, if:

- (i) $\forall m \in M : m \leq \max M (\geq \min M)$
- (ii) $\max M \pmod{M} \in M$

Real functions of one real variable

Definition: Let $M \subset \mathbb{R}$. A function f of a real variable is a rule which assigns to each $x \in M$ exactly one $y \in \mathbb{R}$.

Variable *x* is called *argument* or *independent variable* and variable *y* is called *dependent*.

The set M is called *the domain* of function f and denoted by D(f). A set $\{y = f(x) | x \in D(f)\}$ is called *the range* of f and is denoted by H(f).

- Notation: $y = f(x), f : M \to \mathbb{R}, x \mapsto f(x), x \mapsto y$
- General term: mapping

Definition *Graph of function* f is a set of ordered pairs of real numbers (x, f(x)), where $x \in D(f)$. We write

graph
$$f = \{(x, f(x)) | x \in D(f)\}$$

Remark:

- 1. The domain is a part of definition of the function. If it is not given we consider the *natural domain*, that is the largest possible domain.
- 2. Two functions f and g are equal (f = g), if
 - (i) D(f) = D(g)
 - (ii) $\forall x \in D(f) : f(x) = g(x)$

Composition of functions

Definition: Let f and g be real functions with domains D(f) and D(g).

■ Let $H(f) \subseteq D(g)$. Then under the composition of function f and g we understand function h defined by

$$\forall x \in D(h) : h(x) = g(f(x))$$

with D(h) = D(f). Notation: $h = g \circ f$.

■ If $H(f) \nsubseteq D(g)$, then by the domain of function $h = g \circ f$ we understand set

$$D(h) = \{x \in D(f) | f(x) \in D(g)\}$$

Remark: In general $g \circ f \neq f \circ g$.

Special classes of functions - injective functions

Definition: Function $f: D(f) \subseteq \mathbb{R} \to \mathbb{R}$ is *injective (one to one)* on $M \subseteq D(f)$ if

$$\forall x_1, x_2 \in M : x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$$

Remark:

 \blacksquare equivalently \rightarrow proof that f is injective

$$\forall x_1, x_2 \in M : f(x_1) = f(x_2) \Rightarrow x_1 = x_2$$

■ negation \rightarrow proof that f is not injective

$$\exists x_1, x_2 \in M : x_1 \neq x_2 \land f(x_1) = f(x_2)$$

Special classes of functions - monotone functions

Definition: Consider $f: D(f) \subseteq \mathbb{R} \to \mathbb{R}$ and set $M \subseteq D(f)$. If for all $x_1, x_2 \in M$, $x_1 < x_2$ it holds

- (i) $f(x_1) < f(x_2)$ is f increasing na M
- (ii) $f(x_1) \le f(x_2)$ is f non-decreasing na M
- (iii) $f(x_1) > f(x_2)$ is f decreasing na M
- (iv) $f(x_1) \ge f(x_2)$ is f non-increasing na M

If f satisfies any of condition (i) - (iv) we call it *monotone*. If f has property (i) or (iii), we call it *strictly monotone*.

Proposition: A sum of two increasing (decreasing) functions is an increasing (decreasing) function.

Theorem: Let f be strictly monotone on set $M \subseteq \mathbb{R}$ then f is injective on M.

Special classes of functions - bounded functions

Definition:

We say that function f is bounded below on its domain D(f) if

$$\exists d \in \mathbb{R} \ \forall x \in D(f) : \ d \leq f(x)$$

We say that function f is bounded above on its domain D(f) if

$$\exists h \in \mathbb{R} \ \forall x \in D(f) : \ f(x) \leq h$$

■ Function is *bounded* if it is bounded below and above.

Special classes of functions - even and odd functions

Definition:

■ We say that function $f: D(f) \to \mathbb{R}$ is *even* if

$$\forall x \in D(f): f(-x) = f(x)$$

■ We say that function $f: D(f) \to \mathbb{R}$ is *odd* if

$$\forall x \in D(f): f(-x) = -f(x)$$

Remark:

- (i) Graph of an even function is symmetric with, respect to the *y* axis.
- (ii) Graph of an odd function is symmetric with, respect to the origin.
- (ii) Domain of an even or odd function is always symmetric with respect to the origin!

Special classes of functions - periodic functions

Definition: A function $f: D(f) \to \mathbb{R}$ is called *periodic* if $\exists p \in \mathbb{R}$, $p \neq 0$ such that:

- (i) $x \in D(f) \Rightarrow x \pm p \in D(f)$
- (ii) $\forall x \in D(f) : f(x \pm p) = f(x)$

Number p is called a *period* of f. The smallest positive period is called *primitive*.

Theorem:

- (i) If f is periodic with period p and function g such that $H(f) \subseteq D(g)$ then a composition h(x) = g(f(x)) is periodic with the same period p.
- (ii) If f is periodic with period p and $a \in \mathbb{R}$, $a \neq 0$, then function g(x) = f(ax) is periodic with period $\frac{p}{a}$.

Inverse functions

Definition: Let $f: D(f) \to \mathbb{R}$ be an injective function with range H(f). *Inverse function* of f (denoted f^{-1}) is defined by the relation

$$y = f(x) \Leftrightarrow x = f^{-1}(y)$$

Obviously the domain $D(f^{-1}) = H(f)$ and range $H(f^{-1}) = D(f)$ **Remarks:**

- (i) Graph of f^{-1} is symmetric to the graph of f with respect to a line y = x.
- (ii) $\forall x \in D(f) : f^{-1}(f(x)) = x$
- (iii) $\forall y \in D(f^{-1}) = H(f) : f(f^{-1}(y)) = y$
- (iv) $(f^{-1})^{-1} = f$

Exponential and logarithmic function

$$y = a^x \Leftrightarrow x = \log_a(y), x \in \mathbb{R}, y > 0, 1 \neq a > 0$$

Useful:
$$h(x) = f(x)^{g(x)} = e^{g(x) \ln(f(x))}$$

Trigonometric functions

Theorem:

Properties of functions $\arcsin(x)$, $\arccos(x)$, $\arctan(x)$, $\arctan(x)$, $\arctan(x)$

$\overline{f(x)}$	arcsin(x)	arccos(x)	arctg(x)	arccotg(x)
$\overline{D(f)}$	[-1, 1]	[-1,1]	\mathbb{R}	\mathbb{R}
H(f)	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$	$[0,\pi]$	$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$	$(0,\pi)$
increasing	\checkmark	_	\checkmark	_
decreasing	_	\checkmark	_	\checkmark
even	_	_	_	_
odd	\checkmark	_	\checkmark	_
$f^{-1}(x)$	sin(x)	cos(x)	tg(x)	$\cot g(x)$
	$\mathit{X} \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$	$x \in [0,\pi]$	$\mathit{X} \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$	$x \in (0,\pi)$

Theorem:
$$\operatorname{arcsin}(x) + \operatorname{arccos}(x) = \frac{\pi}{2} \text{ for } x \in [-1, 1]$$
 $\operatorname{arctg}(x) + \operatorname{arccotg}(x) = \frac{\pi}{2} \text{ for } x \in \mathbb{R}$