
Lecture 5: Functions : Images, Compositions,
Inverses

1 Functions

We have all seen some form of functions in high school. For example, we have
seen polynomial, exponential, logarithmic, trigonometric functions in calculus.
These functions map real numbers to real numbers. We have also seen func-
tions that map functions to functions, such a derivatives. Functions are of interest
in many branches of mathematics, including enumerative combinatorics, topology,
and group theory among others. An abstract understanding of function would be,
an output f(x) for each input x. We formalize this notion below.

Definition 1.1 (Function). Let A and B be sets. A function (also called a
map) from A to B denoted f : A→ B is a subset F ⊆ A× B such that for each
a ∈ A, there is a unique pair of the form (a, b) in F . The set A is called the domain
of f and the set B is called the co-domain of f .

Remark 1. To show the equality of functions, we need to show that the domain,
co-domain, and subset of the product of domain and co-domain satisfying the given
condition imposed by function f , all three must agree.

Definition 1.2. Let A and B be sets, and let S ⊆ A be a subset.

1. A constant map f : A → B is any function of the form f(x) = b for all
x ∈ A, where b ∈ B is some fixed element.

2. The identity map on A is the function 1A : A → A defined by 1A(x) = x
for all x ∈ A.

3. The inclusion map from S → A is the function j : S → A defined by
j(x) = x for all x ∈ A.

4. If f : A→ B is a map, the restriction of f → S, denoted by f |S is the map
f |S : S → B, defined by f |S(x) = x for all x ∈ S.
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5. If g : A→ B is a map, an extension of g to A is any map G : A→ B such
that G|s = g.

6. The projection maps from A× B are the functions, π1 : A× B → A and
π2 : A×B → B defined by π1(a, b) = a and π2(a, b) = b for all (a, b) ∈ A×B.
Projection maps πi : A1×A2× · · ·×Ap → Ai for any finite collection of sets
A1, A2 . . . Ap are defined similarly.

2 Image and Inverse Image

Definition 2.1 (Image and inverse image). Let f : A→ B be a function.

1. For each P ⊆ A, the image of P under f is defined as

f(P ) = {b ∈ B : b = f(p) for some p ∈ P} = {f(p) : p ∈ P}.

2. For each Q ⊆ B, the inverse image (or preimage) of Q under f is defined
as

f−1(Q) = {a ∈ A : f(a) = q for some q ∈ Q} = {a ∈ A : f(a) ∈ Q}
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f ∗(Q)

f
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f ∗

Figure 1: Image and inverse image under a function f .

Remark 2. Let f : A→ B be a function.

i) For every ∅ 6= P ⊆ A, ∅ 6= f(P ) ⊆ B and |P | > |f(P )|.

ii) The range (or image) of f is the set f(A). The range need not be equal to
the co-domain.

iii) For every Q ⊆ B, f−1(Q) ⊆ A, possibly be empty, and |Q| 6 |f−1(Q)|.
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iv) Given a function f : A→ B, the process of taking image of subsets of A can
be thought of as operation of a function f∗ : P(A) → P(B) on subsets of A
and induced by f .

v) Given a function f : A → B, the process of taking inverse image of subsets
of B can be thought of as operation of a new function f ∗ : P(B)→ P(A) on
subsets of B and induced by f .

vi) Abuse of notation:

a) Notice that f maps elements in A to elements in B, and f∗ maps subsets
of A to subsets of B. Following common convetions, we will use f for f/ast.

b) Similarly, f ∗ is replaced with f−1 for inverse image.

c) Later, we will look at the inverse of a function f : A → B (if it exists)
and denote it by f−1 : B → A. If the inverse function of f does not exist,
then f−1(Q) is used to refer to the inverse image f−1(Q) of Q under f . If
the inverse of f exists, then it takes elements and not subsets of B as the
argument, and f−1(Q) = f ∗(Q) = f−1∗ (Q). That is, f−1(Q) can be used to
refer to both the inverse image f ∗(Q) of Q under f and the image f−1∗ (Q)
of Q under f−1.

Example 2.2. Consider the function f : R→ R plotted in Figure 2.

i) The range of f , f(R) = [−3,∞) ⊂ R.

ii) For P1 = [1.5, 1.9] and P2 = [−4.5,−3.3], f(P1) = [1.7, 2.5] and f(P2) =
[−3,−1].

iii) For Q1 = [1.7, 2.5] and Q2 = [−4,−3.2], f−1(Q1) = [−2,−1.6] ∪ [−0.6, 0] ∪
[1.7, 2.5] and f−1(Q2) = ∅.

iv) From (i) and (ii), we have that f−1(f(P1)) 6= P1, f
−1(f(P2)) = P2, f(f−1(Q1)) =

Q1 and f(f−1(Q2)) = Q2 (cf. Theorem 2.3).

We state the following theorem with proof left as an exercise to the reader.
Most of the proofs require showing set equality using set inclusions.

Theorem 2.3. Let A and B be sets, let C,D ⊆ A and S, T ⊆ B be subsets of A
and B respectively, and let f : A→ B be a function. Let I, J 6= ∅, let {Ui : i ∈ I}
and {Vj : j ∈ J} be indexed families of sets, where Ui ⊆ A, for all i ∈ I and
Vj ⊆ B, for all j ∈ J .
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Figure 2: Example function.

i) f(∅) = ∅ and f−1(∅) = ∅.
ii) f−1(B) = A.

iii) f(C) ⊆ S iff C ⊆ f−1(S).

iv) If C ⊆ D, then f(C) ⊆ f(D).

v) If S ⊆ T , then f−1(S) ⊆ f−1(T ).

vi) f(
⋃

i∈I Ui) =
⋃

i∈I f(Ui).

vii) f(
⋂

i∈I Ui) ⊆
⋂

i∈I f(Ui).

viii) f−1(
⋃

j∈J Vj) =
⋃

j∈J f
−1(Vj).

ix) f−1(
⋂

j∈J Vj) =
⋂

j∈J f
−1(Vj).

3 Composition of Function

We are interested in combining functions to create more interesting functions.
Addition and multiplication of functions is not defined on arbitrary sets. However,
as we will see in this section, combination is a natural way to define new functions
on arbitrary sets.

Definition 3.1 (Composition of Functions). Let A, B and C be sets, and let
f : A → B and g : B → C be functions. The composition of f and g is the
function g ◦ f : A→ C defined as

(g ◦ f)(x) = g(f(x)) for all x ∈ A.

Function compositions can be visualized by commutative diagrams. Fig-
ure 3 has the commutative diagram for g ◦ f .

Remark 3. Let f : A→ B and g : B → C be functions.
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Figure 3: Commutative diagram for g ◦ f .

i) Composition of three or more functions can be defined similarly.

ii) Though read/written left to write, while obtaining value of (g ◦ f)(a), a ∈ A,
f(a) is computed first followed by g(f(a)).

iii) The composition g ◦ f is defined iff the range of f is a subset of the domain
of g.

iv) If A = C, then f ◦ g is also defined but need not necessarily be equal to g ◦ f
or 1A.

v) The range of g ◦ f is a subset of range of g. That is, (g ◦ f)(A) ⊆ g(B).

Example 3.2. Let f : R→ R be defined by f(x) = x3 , g : [0,∞)→ R be defined
by g(x) =

√
x and h : R→ R be defined by h(x) = 2x. Then

i) f ◦ f : R→ R and (f ◦ f)(x) = (x3)3.

ii) (f ◦ g) : [0,∞)→ R and (f ◦ g)(x) =
√
x3.

iii) (f ◦ h) : R→ R and (f ◦ h)(x) = (2x)3.

iv) (h ◦ f) : R→ R and (h ◦ f)(x) = 2x3. (Note that (h ◦ f) 6= (f ◦ h))

v) (h ◦ g) : [0,∞)→ R and (h ◦ g)(x) = 2
√
x.

vi) f ◦ h ◦ g : [0,∞)→ R and (f ◦ h ◦ g)(x) = (2
√
x)3.

vii) f ◦ f ◦ h : R→ R and (f ◦ f ◦ h)(x) = ((2x)3)3.

viii) (g ◦ g), (g ◦ f), (g ◦ h), (f ◦ g ◦ h), (g ◦ h ◦ f), (g ◦ f ◦ h), (h ◦ g ◦ f) are not
defined.

Similarly, many more functions can be obtained.

Definition 3.3 (Coordinate Function). Let A,A1, A2, . . . , An be sets for some
n ∈ N, and let f : A→ A1×A2× . . .×An be a function. For each i ∈ {1, 2, . . . , n},
let fi : A→ Ai be defined by fi = πi ◦ f , where πi : A1×A2× . . .×An → A is the
ith projection map. Then, functions f1, f2, . . . , fn are the coordinate functions
of f .
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With some abuse of notation, function f is sometimes written in terms of it’s
co-ordinate functions as (f1, f2, . . . , fn) or f1×f2× . . .×fn. Coordinates functions
can be represented using a commutative diagram; given below is the commutative
diagram for n = 2.

A

A1 × A2 A2

f f2

Π2

A1

f1

Π1

Example 3.4. The function f : R2 → R3 defined by f(x, y) = (xy, sin(x2), x+y3)
has 3 coordinate functions f1, f2, f3 : R2 → R given by

f1((x, y)) = xy,f2((x, y)) = sin(x2), and f3((x, y)) = x+ y3.

3.1 Properties of Composition of Functions

We wish to see whether properties such commutativity and associativity hold for
this function operation. It turns out that associativity holds, but commutativity
does not always hold for function composition (see Example 3.2(iv)).

Lemma 3.5. Let A, B, C, D be sets and f :→ B, g : B → C and h : C → D be
functions. Then the following are true.

i) (Associative law) (h ◦ g) ◦ f = h ◦ (g ◦ f).

ii) (Identity law) f ◦ 1A = f and 1B ◦ f = f .

4 Inverse Function

We are interested in finding out conditions for existence of inverse of a function f .
We will also see that this inverse is unique when it exists.

Definition 4.1 (Existence). Let A and B be sets and let f : A → B and
g : B → A be functions. Then the function g is

i) a right inverse for f if f ◦ g = 1B,

ii) a left inverse for f if g ◦ f = 1A, and

iii) an inverse for f if it is both a right and left inverse.

Remark 4. If g is a left (right) inverse for f , then f is a right (left) inverse for g.
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Example 4.2. Let P be the set of all people and W be the set of women with at
least one child, and let c : P → W be the function that maps a person to their
mother and m : W → P be the function that maps a woman to her eldest child.

Choose a person p ∈ P who is not the eldest of their siblings, and let the
eldest sibling of the chosen person be p′. Then, c(p) = w, for some w ∈ W and
m(w) = p′ 6= p. Thus, (m ◦ c)(p) 6= p,∀p ∈ P .

Choose a woman w ∈ W . Then, m(w) = p for some p ∈ P and c(p) = w.
Thus, (c ◦m)(w) = w.

Hence, m has a left inverse (c) but no right inverse and c has a right inverse
(m) but no left inverse.

Had P been the set of people who are eldest of their siblings, then the maps c
and m would have been inverse of each other.

Had m been a map from P to P , then neither right nor left inverse of either
maps would not have existed.

Lemma 4.3 (Uniqueness). Let A and B be sets, and let f : A → B be a
function.

i) If f has an inverse, then it is unique.

ii) If f has a right inverse g and a left inverse h, then g = h, and hence f has
an inverse.

iii) If f has an inverse g, then g has an inverse, which is f .

Proof. Same proof can be used in parts i) and ii). Part iii) is left as an exercise to
the reader. Suppose g, h : B → A are both inverses of f . We will show g = h. By
virtue of being inverses, g and h should be right and left inverse of f respectively.
That is, f ◦g = 1B and h◦f = 1A. Using associativity of combination of functions,
we conclude,

g = 1A ◦ g = h ◦ f ◦ g = h ◦ 1B = h.

Definition 4.4. Let A and B be sets, and let f : A→ B be a function. If f has
an inverse, then the inverse is denoted by f−1 : B → A.

Remark 5. 1. f−1 ◦ f = 1A and (f−1 ◦ f)(a) = a, ∀a ∈ A.

2. f ◦ f−1 = 1B and (f ◦ f−1)(b) = b, ∀b ∈ B.

3. Given the graph of a function f : A → B, where A,B ⊆ R, the inverse
function f−1 can be plotted by reflecting the graph of f in the line x = y.
This is same as first reflecting f in y-axis followed by 90◦ clockwise rotation.
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