
Chapter 1

Sets, Relations and Maps

1.1 Basic Concepts of Set Theory.

1.1.1 Sets and elements

Set theory is a basis of modern mathematics, and notions of set theory are used in all formal descriptions. The

notion of set is taken as “undefined”, “primitive”, or “basic”, so we don’t try to define what a set is, but we

can give an informal description, describe important properties of sets, and give examples. All other notions of

mathematics can be built up based on the notion of set.

Définition 1.1.1. A set is a collection of objects together with some rule to determine whether a given object

belongs to this collection. Any object of this collection is called an element. of the set.

� Sets are usually denoted by capital letters and the members by lower case letters. We usually write all

elements in curly brackets. The notation

A = fa; b; cg

means that the set A consists of 3 elements: a; b and c: We can say that the element a belongs to the set A,

write a 2 A; or that d is not a member of A, write d /2 A. Sets can be finite or infinite.

� Sets can be finite or infinite.

� There is exactly one set, the empty set, or null set, which has no members at all. The symbol � represents

the empty set.

� A set with only one member is called a singleton or a singleton set. (“Singleton of a”)

1.1.2 Specification of sets

There are three main ways to specify a set:

(1) by listing all its members (list notation);

(2) by stating a property of its elements (predicate notation);

(3) by defining a set of rules which generates (defines) its members (recursive rules).
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1. Sets, Relations and Maps

(1) List notation: The first way is suitable only for finite sets. In this case we list names of elements of a set,

separate them by commas and enclose them in braces:

Examples:f1; 12; 45g; f George Washington, Bill Clintong; fa; b; d;mg.
“Three-dot abbreviation”:f1; 2; � � � ; 100g.
f1; 2; 3; 4; � � � ; g – this is not a real list notation, it is not a finite list, but it’s common practice as long as the

continuation is clear.

Note that we do not care about the order of elements of the list, and elements can be listed several times.f1; 12; 45g
, f12; 1; 45; 1g and f45; 12; 45; 1g are different representations of the same set (see below the notion of identity of

sets). List notation. The first way is suitable only for finite sets. In this case we list names of elements of a set,

separate them by commas and enclose them in braces: Examples: 1, 12, 45, George Washington, Bill Clinton,

a,b,d,m. “Three-dot abbreviation”: 1,2, ..., 100. (See xeroxed “preliminaries”, pp xxii-xxiii) 1,2,3,4,… – this is

not a real list notation, it is not a finite list, but it’s common practice as long as the continuation is clear. Note

that we do not care about the order of elements of the list, and elements can be listed several times. 1, 12, 45,

12, 1, 45,1 and 45,12, 45,1 are different representations of the same set (see below the notion of identity of sets).

Predicate notation. Example

fx j x is a natural number and x < 8g
Reading:” the set of all x such that x is a natural number and is less than 8”.

So the second part of this notation is a property the members of the set share (a condition or a predicate which

holds for members of this set).

Other examples:

fx j x is a letter of Russian alphabet g
fy j y is a student of UDBKM and y is older than 25g.
General form:

fx j P (x)g, where P is some predicate (condition, property).

The language to describe these predicates is not usually fixed in a strict way.

Recursive rules: (Always safe.) Example – the set E of even numbers greater than 3:

a) 4 2 E

b) if x 2 E, then x+ 2 2 E

c) nothing else belongs to E.

The first rule is the basis of recursion, the second one generates new elements from the elements defined before

and the third rule restricts the defined set to the elements generated by rules a and b. (The third rule should

always be there; sometimes in practice it is left implicit. It’s best when you’re a beginner to make it explicit.)

1.1.3 Subsets and power sets

Définition 1.1.2. If A is a subset of B (write A � B), then all elements of A are also elements of B;

(A � B)() (8x; x 2 A =) x 2 B)

. So A is ”contained” in B.
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1.1 Basic Concepts of Set Theory.

If you want to say that A is NOT subset of B, write mathematically A 6� B:

Exemple 1.1. fa; bg � fd; a; b; eg and fa; bg � fd; a; b; eg, fa; bg � fa; bg but fa; bg 6� fa; bg

Notice that the empty set is a subset of any set.

To show that A � B, you need to show that every element of A is also an element of B.

Exercice 1.1. Let E =
�
1; 52

�
; F = [�5; 4]. Prove that E � F .

Proof. Start by choosing an arbitrary element x 2 E,then

x 2 E =) 1 < x � 5

2

=) �5 � 1 < x � 5

2
< 3

=) x 2 F:

If A is a subset of B but it they are not equal, then we say that A is a proper subset of B and write it

A � B (or A  B or A $ B).

To show that A is a proper subset of B, you need to show that A � b and find at least one element of B which

is not an element of A.

Exemple 1.2.

fa; b; cg � fa; b; c; dg;

f1; 2; 3g 6� f1; 2; 3g but f1; 2; 3g � f1; 2; 3g

.

Définition 1.1.3. The power set of a set A consists of all subsets of A and is usually denoted by P(A) (some

writers use 2A).

Exemple 1.3. if A = fa; bg;P(A) = f�; fag; fbg; fa; bgg:

From the example above: a 2 A; fag � A; fag 2 P(A):
� 62 A; � � A; � 2 P(A);� � P(A):

1.1.4 Cardinality and equality

Définition 1.1.4. In mathematics, the cardinality of a set A (card(A)or j A j ) is a measure of the ” number

of the elements of the set”.

Exemple 1.4. If fa; b; cg, then j A j= 3

Exemple 1.5. Important to notice:

j f�g j= 1; while j � j= 0:

j f0g j6= 0; but j f0g j= 1:
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1. Sets, Relations and Maps

Notice that the repetitions are ignored when we are counting the members of the set. The convention is to

list each element only once,the same number can be weritten in different forms.

F = f2;�1; 0; 1; 2; cos�; cos �
2
g = f�1; 0; 1; 2g; as cos� = �1; cos �

2
= 0;Hence; j F j= 4:

Définition 1.1.5. Two sets A and B are equal when they have exactly the same elements, i.e. every element

of A is an element of B and every element of B is an element of A. So

A = B () (A � B ^B � A):

To show that two sets A and B are equal, pick an arbitrary x 2 A and show that x 2 B and vice versa.

Exemple 1.6. Let A = f1; 2; 3; 4g and B = fx : x 2 N; x2 < 17g, where N is the set of natural numbers. Show

that A = B:

Proof. To prove the equality of the sets, we must show that for every x,

x 2 B =) x 2 A (B � A)

and

x 2 A =) x 2 B (A � B):

So if x 2 B, then x2 < 17, which implies x <
p
17. Therefore x � 4. Since x is a positive integer, therefore for

every x 2 B we have that 0 < x � 4. Hence, x 2 B =) x 2 A.

Now assume x 2 A, so x 2 f1; 2; 3; 4g. To prove that x 2 B, it suffices to show that the largest element

x 2 A satisfier x2 < 17 . Then it is also true for the smaller values since they all belong to N.

Since 8x 2 A;x2 � 42 � 16 < 17, we have that x 2 A =) x 2 B

Exercice 1.2. Show that f(cos t; sin t) : t 2 Rg = f(x; y) : x2 + y2 = 1g:

Proof. Let A = f(cos t; sin t) : t 2 Rg and B = f(x; y) : x2 + y2 = 1g: Now, to show that A = B we need to

show that A � B and B � A.

Let x = cos t and y = sin t. Then

x2 + y2 = cos2 t+ sin2 t = 1

because cos2 t+ sin2 t = 1 is a known identity. Hence we have that A � B.

Now, to show that B � A we appeal to geometry. Let (x; y) 2 B, hence x2 + y2 = 1. So (x; y) lies on the unit

circle.
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1.1 Basic Concepts of Set Theory.

Therefore, we have that cos t = x and sin t = y. As x2 + y2 = 1, substituting in for x and y gives

cos2 t+ sin2 t = 1

and hence we have shown that B � A and so A = B.

1.1.5 Common sets of numbers

The commonly used sets of numbers are:

I The set of natural numbers, N = f0; 1; 2; 3; 4; � � � g;

I The set of integers,Z = f� � � ;�3;�2;�1; 0; 1; 2; 3; � � � g;

I The set of rational numbers Q = fm
n

: m;n 2 Z; n 6= 0g;

I The set of real numbers R, which is the union of both rational Q and irrational numbers (which cannot

be expressed as a fraction, for example log 2;
p
2;�; e).

I the complex numbers C = fa+ ib j a; b 2 Rg, where i2 = �1.

Notice that one set is a subset of another, in the following order: N � Z � Q � R � C.

1.1.6 SET OPERATIONS

a. Intersection

Définition 1.1.6. Let A and B be subsets of a set X: The intersection of A and B is the set of all

elements in X common to both A and B.

Notation: ”A \B” denotes ”A intersection B” or the intersection of sets A and B.

Thus, A \B := fx 2 X j (x 2 A) and (x 2 B)g; or A \B := fx 2 X j (x 2 A) ^ (x 2 B)g;

Exemple 1.7.
(a) Given that the box below represents X, the shaded area represents A \B :

(b) Let A = f2; 4; 5g and B = f1; 4; 6; 8g. Then, A \B = f4g .

(c) Let A = f2; 4; 5g and B = f1; 3g. Then, A \B = �

Remark 1.1.1. If, as in the above example, A and B are two sets such that A \ B is the empty set, we

say that A and B are disjoint.

5
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b. Union

Définition 1.1.7. Let A and B be subsets of a set X. The union of A and B is the set of all elements

belonging to A or B.

Notation:“A [B” denotes “ A unionB“ or the union of sets A and B.

Thus,A [B := fx 2 X j x 2 A or x 2 Bg; or A [B := fx 2 X j x 2 A ^ x 2 Bg:

Exemple 1.8.
(a) Given that the box below represents X, the shaded area represents A [B :

(b) Let A = f2; 4; 5g and B = f1; 4; 6; 8g. Then, A [B = f1; 2; 4; 5; 6; 8g .

c. Difference

Définition 1.1.8. Let A and B be subsets of a set X. The set B � A (or B n A), called the difference

of B and A, is the set of all elements in B which are not inA.

Thus, B � A = fx 2 X j x 2 B and x 62 Ag.

Notation: symmetric difference of A and B is given by

A4B := (A�B) [ (B � A) = (A [B)� (A \B)

Exemple 1.9.
(a) Given that the box below represents X, the shaded area represents B � A.

(b) Let B = f2; 3; 6; 10; 13; 15g and A = f2; 10; 15; 21; 22g. Then B � A = f3; 6; 13g.

d. complement

Définition 1.1.9. If A � X , then X �A is sometimes called the complement of A with respect to X.

Notation: The following symbols are used to denote the complement of A with respect to X:

CXA;C
A
X ; A

c; A:

Thus, Ac = fx 2 X j x 62 Ag.
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1.1 Basic Concepts of Set Theory.

Exemple 1.10.
(a) Given that the box below represents X, the shaded area represents Ac.

X :

(b) Let X = f1; 2; � � � ; 10g be the universal set, A = f2; 3; 5; 7g , B = f2; 4; 6; 8; 10g and C = f4; 8; 10g.
Then

CAX = A = f1; 4; 6; 8; 9; 10g , CBX = B = f1; 3; 5; 7; 9g and CCX = C = f1; 2; 3; 5; 6; 7; 9g:
CCB = f2; 6g and CCA is not defined because C 6� A:

e. Cartesian Product

Définition 1.1.10. The Cartesian product (or simply the product) A� B of two sets A and B is the

set consisting of all ordered pairs whose first coordinate belongs to A and whose second coordinate belongs

to B. In other words,

A�B = f(a; b) : a 2 A and b 2 Bg:

Remark 1.1.2. We’ve already mentioned that when a set A is described by listing its elements, the order

in which the elements of A are listed doesn’t matter. That is, if the set A consists of two elements x and y,

then A = fx; yg = fy; xg . When we speak of the ordered pair (x; y), however, this is another story. The

ordered pair (x; y) is a single element consisting of a pair of elements in which x is the first element (or

first coordinate) of the ordered pair (x; y) and y is the second element (or second coordinate). Moreover,

for two ordered pairs (x; y) and (w; z) to be equal, that is, (x; y) = (w; z), we must have x = w and y = z.

So, if x 6= y, then (x; y) 6= (y; x).

Exemple 1.11. If A = fx; yg and B = f1; 2; 3g, then

A�B = f(x; 1); (x; 2); (x; 3); (y; 1); (y; 2); (y; 3)g,
while

B � A = f(1; x); (1; y); (2; x); (2; y); (3; x); (3; y)g.
Since, for example, (x; 1) 2 A� B and (x; 1) 6= B � A, these two sets do not contain the same elements;

so A�B 6= B � A.Also, j A j= 2 and j B j= 3 ; while j A�B j= 6. Indeed, for all finite sets A and B,

j A�B j=j A j � j B j :

1.1.7 Laws of the algebra of sets

Théorème 1.1.11. Let X be an arbitrary set and let P (X) the power set of X. Let A;B; and C be arbitrary

elements of P (X) then
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1. Sets, Relations and Maps

Associative laws A [ (B [ C) = (A [B) [ C A \ (B \ C) = (A \B) \ C
Commutative laws A [B = B [ A A \B = B \ A
Identity laws A [ � = A A \ � = �

A [X = X A \X = A

Idempotent laws A [ A = A A \ A = A

Distributive laws A \ (B [ C) = (A \B) [ (A \ C) A [ (B \ C) = (A [B) \ (A [ C)

Complement laws A [ Ac = X A \ Ac = �

Xc = � �c = X

(Ac)c = A = A If A � B then Bc � Ac

De Morgan’s laws (A [B)c = Ac \Bc (A \B)c = Ac [Bc

Exercice 1.3.

1.2 Introduction to Relations

Sometimes it is necessary not to look at the full Cartesian product of two sets A and B, but rather at a subset

of the Cartesian product. This leads to the following

1.2.1 Binary relations

Définition 1.2.1. A binary relation R from a set A to a set B is a subset R � A�B.

In other words, a binary relation from A to B is a set R of ordered pairs where the first element of each

ordered pair comes from A and the second element comes from B. We use the notation aRb to denote that

(a; b) 2 R and a 6 R to denote that (a; b) 62 R. Moreover, when (a; b) belongs to R; a is said to be related to b

by R.

Binary relations represent relationships between the elements of two sets.

The set of pairs (a; b) 2 A � B which satisfy (a; b) 2 R is called the graph of the relation R we denote it by

GR, and we write

GR = f(a; b) 2 A�B j aRbg

Exemple 1.12. Let A = f0; 1; 2; 3; 5; 8; 10; 16g; B = f4; 10; 16; 20; 23; 27g. Then Rf(x; y) j y = 2xg is a relation

from A to B and we write

8(x; y) 2 A�B; xRy , y = 2x

.

This means, for instance, that

GR = f(x; y) 2 A�B j xRyg = f(2; 4); (5; 10); (8; 16); (10; 20)g

2R4; but that 3 6 R4.
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1.2 Introduction to Relations

1.2.2 Binary relation on a set

Définition 1.2.2. A binary relation R from a set A is a subset of A� A or from A to A.

Exemple 1.13. Let A be the set f1; 2; 3; 4g. Which ordered pairs are in the relation R = f(a; b) j a divides bg?

Solution: Because (a; b) is in R if and only if a and b are positive integers not exceeding 4 such that a

divides b, we see that

GR = f(1; 1); (1; 2); (1; 3); (1; 4); (2; 2); (2; 4); (3; 3); (4; 4)g:

The pairs in this relation are displayed graphically form in Figure 2.

1.2.3 Properties of Relations

Let R be a binary relation defined on A.Then

1) R is reflexive iff (8x 2 A; (xRx)) ;

2) R is symetric iff [8x; y 2 A; (xRy) =) (yRx)] ;

3) R is antisymetric iff [8x; y 2 A; ((xRy) ^ (yRx)) =) x = y] ;

4) R is transitive iff [8x; y; z 2 A; ((xRy) ^ (yRz)) =) xRz] ;

Exemple 1.14.

1.2.4 EQUIVALENCE RELATION

Définition 1.2.3. A relation R on a set A is called an equivalence relation if it is reflexive, symmetric,

and transitive.
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1. Sets, Relations and Maps

Exemple 1.15. We consider the relation R defined on Z by:

8x; y 2 Z; xRy , x� y is divisible by 3:

Solution: We show that R satisfies the conditions of an equivalence relation.

1) Reflexive : (8x 2 Z; (xRx)) ; 8x 2 Z we have x� x = 0 and 0 is divisible by 3. So xRx is true. Then R
is reflixive.

2) Symetric : [8x; y 2 Z; (xRy) =) (yRx)] ;
8x; y 2 Z we have

xRy ) x� yis divisible by 3

) 9k 2 Z; x� y = 3k

) 9k 2 Z;�(y � x) = 3k

) 9k 2 Z; (y � x) = �3k = 3k0wherek0 = �k

) yRxis true

Then R is symitric.

3) Transitive : [8x; y; z 2 A; ((xRy) ^ (yRz)) =) xRz] ;
8x; y 2 Z we have xRy ) 9k 2 Z; x� y = 3k::::::::::::::::(1)

yRz ) 9k0 2 Z; y � z = 3k0::::::::::::::::(2)

from (1) and (2) we find

x� y + y � z = 3k + 3k0 ) x� z = 3(k + k0) = 3k00 where k00 = k + k0 2 Z

So xRz is true, then R is transitive.

4) Since R is reflexive, symetric and transitive then R is an equivalence relation on Z.

Exercice 1.4. We consider the relation R defined on R by:

8x; y 2 Z; xRy , xey = yeX :

Show that R is an equivalence relation on R.

1.2.5 Equivalence classes

Définition 1.2.4. Let R be an equivalence relation on a set A.

1) The set of all elements that are related to an element a of A is called the equivalence class of a, denoted

by

a = ȧ = fx 2 A j xRag = fx 2 A j aRxg

2) a is a representative of equivalence class ȧ.

3) If b 2 ȧ, then b is a representative of this equivalence class. Any element of a class can be used as

representative.
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1.2 Introduction to Relations

4) The set of equivalence classes of all the elements of A is called set quotient of A by the equivalence

relation R, we not it A/R, and we write

A/R = fȧ; a 2 Ag:

Exemple 1.16. We consider the equivalente relation R defined on Z by:

8x; y 2 Z; xRy , x� y is divisible by 3:

1) Determine 0̇; 1̇; 2̇; 3̇; 4̇.

2) Determine Z/R.

Solution:

1) We give the equivalence classes. 0̇; 1̇; 2̇; 3̇; 4̇.

0̇ = fx 2 Z j xR0g;

= fx 2 Z j 9k 2 Z;x = 3kg;

= fx 2 Z j 9k 2 Z;x� 0 = 3kg;

= f3k; k 2 Zg;

= f� � � ;�12;�9;�6;�3; 0; 3; 6; 9; 12; � � � g:

1̇ = fx 2 Z j xR1g;

= fx 2 Z j 9k 2 Z;x� 1 = 3kg;

= fx 2 Z j 9k 2 Z;x = 3k + 1g;

= f3k + 1; k 2 Zg;

= f� � � ;�13;�10;�7;�4; 1; 4; 7; 10; 13; � � � g:

2̇ = fx 2 Z j xR2g;

= fx 2 Z j 9k 2 Z;x� 2 = 3kg;

= fx 2 Z j 9k 2 Z;x = 3k + 2g;

= f3k + 2; k 2 Zg;

= f� � � ;�14;�11;�8;�5; 2; 5; 8; 11; 14; � � � g:

3̇ = fx 2 Z j xR3g;

= fx 2 Z j 9k 2 Z;x� 3 = 3kg;

= fx 2 Z j 9k 2 Z;x = 3k + 3 = 3(k + 1) = 3k0wherek0 = k + 1 2 Zg;

= f3k0; k0 2 Zg;

= f� � � ;�12;�9;�6;�3; 0; 3; 6; 9; 12; � � � g

= 0̇:
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1. Sets, Relations and Maps

4̇ = fx 2 Z j xR4g;

= fx 2 Z j 9k 2 Z;x� 4 = 3kg;

= fx 2 Z j 9k 2 Z;x = 3k + 4 = 3(k + 1) + 1 = 3k0 + 1wherek0 = k + 1 2 Zg;

= f3k0 + 1; k0 2 Zg;

= f� � � ;�13;�10;�7;�4; 1; 4; 7; 10; 13; � � � g

= 1̇:

we can see also that 5̇ = 2̇.

2) According to question 1) the quotient set is

Z/R = f0̇; 1̇; 2̇g:

Remark 1.2.1. An equivalence relation R on A, will divide the set A into an equivalence classes, and they are

called portion of X.

1.2.6 Order relation

Définition 1.2.5.
1. A relation R on a set A is called a order relation iff it is refexive, antisymmetric, and transitive.

2. Let R be an order relation on A and a; b 2 A. The elements a and b are comparable if either aRb or bRa
holds.

3. Let R be an order relation on A and if any two elements of A are comparable, then R is called a total

order

4. If the order is not total it is said to be partial.

Exemple 1.17. the relation R defined on R by (8x; y 2 R;xRy , x � y) is a relation of total order on R. We

say that all the elements of R are comparable.

Exemple 1.18. Let R is a relation defined on N by:

8x; y 2 N; xRy , 9n 2 N; y = nx:

1. Show that R is an order relation.

2. The order is it total?

Solution:
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1.3 Functions

1.3.1 Basic Definitions

Définition 1.3.1. Let A;B be nonempty sets. A function from A to B is a relation from A to B which assigns

every element x 2 A at most one element in y 2 B such that xRy.

Generally , the fenctions are denoted by f; g; h; k; � � � : and we write:

f :A �! B

x 7�! y = f(x)

Terminology about Functions

Let f : A! B be a function from A to B.

� A is called the set of input of f .

� B is called the set of output or codomain of f .

� If f(a) = b then b is the image of a under f and a is the preimage of b.

� The domain of f is the set

Df = fx 2 A : 9y 2 B; y = f(x)g

� The set f(A) := ff(x) j x 2 Ag is called the range of f . (Note the difference between the range and the

codomain.)

� Two functions f : A! B and g : A0 ! B0 are equal iff A = A0, B = B0 and 8a 2 A; f(a) = g(a):

� The graph of f is the set of ordered pairs

Gf = f(x; y) 2 A�B j y = f(x)g

Définition 1.3.2. We call application or mapping of a set A into a set A, any correspondence f between the

elements of A and those of B which to each x 2 A corresponds to a unique element y 2 B and which satisfies

the relation y = f(x).

Remark 1.3.1. An application f defined from A to B is a function whene Df = A.

Exemple 1.19. the function

f : R! R

x 7! f(x) =
1

x

it is a function because 0 has no image by f , whereas f : R� ! R

x 7! f(x) =
1

x

it is an application because DF = R�
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1.3.2 Injection-Surjection-Bijection
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