CHAPITRE 4
PROCESSUS STOCHASTIQUES
1.1.Introduction

Un processus stochastique X (t) est une famille de variable aléatoire c’est a dire a tout & (est
I'ensemble de tous les résultats expérimentaux) on associe une fonction X(t,€). Ainsi un
processus stochastique est une famille de fonctions temporelles dépendant du paramétre € ou,

de maniére équivalente, une fonction de t(ensemble R de nombres réels) et &.
1.2. Notions de processus stochastiques

Si l'expérience est réalisée n fois, alors n fonctions X (t, &;) sont observées, une pour chaque
essai (Fig. 4.1).
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Figure 4.1 : Famille de fonctions d’un processus stochastique.

1.2.1. Quelques définitions

- Sit € R (continu), alors X (t) est un processus en temps continu et sit € N (entier), alors
X (t) est un processus a temps discret. Un processus a temps discret est donc une sequence
de variables aléatoires. Une telle séquence sera notée X[n]. Un processus X (t) est a états
discrets si ses valeurs sont dénombrables. Sinon, il s'agit d'un processus a état continu.

- Nous utiliserons la notation X(t)pour représenter un processus stochastique omettant,
comme dans le cas de variables aléatoires, sa dépendance de & Ainsi X(t) a les
interprétations suivantes :

1. C'est une famille (ou un ensemble) de fonctions X (¢, &). Dans cette interprétation, t et

& sont des variables.



2. C'est une fonction temporelle unique (ou un échantillon du processus donné). Dans ce
cas, t est une variable et ¢ est fixe.

3. Sitest fixe et & est variable, alors X(t, &) est une variable aléatoire égale a I'état du
processus donné a l'instant t.

4. Sit et & sont fixes, alors X(t, &) est un nombre.

4.2.2. Quelques exemples de processus stochastiques

Exemple 4.1 : Un exemple physique de processus stochastique est le mouvement de
particules microscopiques en collision avec les molécules d'un fluide (mouvement brownien).
Le processus résultant X (t) concerne les mouvements de toutes les particules (ensemble). Une
seule réalisation X(t,¢&;) de ce processus (Fig. 4.2.a) est le mouvement d'une particule

specifique (échantillon).
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Figure 4.2 : Exemples de processus stochastiques.

Exemple 4.2 : Un autre exemple est la tension X(t) = rcos(wt + ¢) d'un générateur
alternatif d'amplitude aléatoire r et de phase ¢. Dans ce cas, le processus X (t) consiste en une

famille d'ondes sinusoidales pures et un seul échantillon est la fonction (Fig, 4.2.b)

X(t, &) = r(€cos(wt + ¢(S1) (4.1)

Par définition, les deux exemples sont des processus stochastiques. Il existe cependant
une différence fondamentale entre eux. Le premier exemple (régulier) consiste en une famille

de fonctions qui ne peuvent étre décrites en termes d'un nombre fini de parameétres.



De plus, le futur d'un échantillon X(t,&) de X(t) ne peut étre déterminé en fonction de son
passé. Enfin, sous certaines conditions, les statistiques d’un processus régulier X (t) peuvent

étre déterminées en termes d'un seul échantillon.

Le deuxieme exemple (prévisible) consiste en une famille d'ondes sinusoidales pures et il
est completement spécifié en termes de variables aléatoires r et ¢. De plus, si X (¢, &) est connu
pour t < to, alors il est déterminé pour t > to. Enfin, un seul échantillon X(¢t,¢) de X(t) ne
specifie pas les propriétés de l'ensemble du processus car il ne dépend que des valeurs
particulieres r(&) et @(&¢) de r et ¢. Une définition formelle des processus réguliers et

prévisibles est donnée dans les sections qui suivent.
4.3. Statistiques des processus stochastiques
4.3.1. Fonction de répartition et densité de probabilité

Un processus stochastique est une infinité non dénombrable de variables aléatoires, une

pour chaque t. Pour un t spécifique, X (t) est une variable aléatoire de fonction de répartition :

Fx(x,t) = P{X(t) < x)} (4.2)

Cette fonction dépend de t, et elle est égale a la probabilité de I'événement {X(t) < x)}
consistant en tous les résultats t tels que, a l'instant spécifique t, les échantillons X (t,¢) du
processus donné ne dépassent le nombre x. La fonction Fy(x,t) sera appelée la fonction de

répartition du premier ordre du processus X (t). Sa dérivée par rapport a x :

J0Fx(x,
ety = 2058

(4.3)
est la densité de probabilité du premier ordre de X(t).

Si I'expérience est réalisée n fois, alors n fonctions X(t, &;) sont observées, une pour
chaque essai (Fig. 4.1). En notant n;(x) le nombre d'essais tel qu'a I'instant t les ordonnées des

fonctions observées ne dépassent pas x (traits pleins), on conclut que :

(4.4)



La fonction de répartition du second ordre du processus X (t) est la distribution jointe :

Fx(xl, Xo, tl,tZ) = P{X(t1) < X1, X(tz) < xz)} (45)
des variables aléatoires X (t;) et X(t,).

La densité de probabilité correspondante est égale :

02Fy (21, x5, 1 t5)
dx,0x,

fx(xpxz; t1,t2) =
(4.6)
La fonction de répartition du n'*™ ordre du processus X (t) est la distribution jointe

Fy(xq, ..., X, tq, ..., t,) des variables aléatoires X(t,), ..., X(t,).

4.3.2. Propriétés du second ordre

Pour la determination des propriétés statistiques d'un processus stochastique, la
connaissance de la fonction Fy(xy,..., %, t;,...,t,) €St nécessaire pour tout X;, t; et n.
Cependant, pour de nombreuses applications, seules certaines moyennes sont utilisées,
notamment ’espérance de X (t) et de X?2(t). Ces quantités peuvent étre exprimées en termes

de propriétés du second ordre de X(t) définies comme suit :
a) Moyenne

La moyenne n(t) de X(t) est ’espérance de la variable aléatoire X (t) définie comme suit :

n(®) = EX(®)} = [ x fy(x t)dx (4.7)

b) Autocorrélation
L’autocorrélation R(t;,t,) de X (t) est I’espérance du produit X (¢t;)X(t,) donnée par :
R(ty,t;) = E{X(t)X(t)} = [0 [77 %12, f (o1, %, byt )doxydx,  (48)
La valeur de R(t,,t,) sur la diagonale t; = t, = t est la puissance moyenne de X(t) :
E{X?(t)} = R(t,t) (4.9)

L’auto-covariance C(t,,t,) de X(t) est donnée par :



C(ty,t2) = R(ty,t2) —n(t)n(tz) (4.10)

et sa valeur C(t,t) sur la diagonale t; = t, =t est égale & la variance de X(t) :

a% () = E{X* ()} — (E(X(O})? (4.11)

Exemple 4.3 : soit un processus stochastique décrit par le signal déterministe suivant :

X(t) = f(t). Danscecas,ona:

n(t) = E{f(©)} = f(©) R(t1,t;) = EXf (t)f (t2)} = f(t)f (t2)

Exemple 4.4 : Supposons que X (t) est un processus avec :

n(t) =3 R(ty, t,) = 9 + 4e~ 02—tz
Nous déterminerons la moyenne, la variance et la covariance des variables aléatoires
Z = X(5) et W=X(8).
Clairement, E{Z} = n(5) = 3 et E{W} = n(8) = 3. De plus,
E{Z?}=R(5,5) =13 E{W?}=R(8,8) =13
E{Z.W}=R(58) =9+ 4e%6 = 11.195
Variances :
0} = E{Z?}—(E{Z)?=13-32=4 o} = E{W?}—(E(W})2=13-32=4
Ainsi Z et W ont la méme variance o7 = o5 = 02 = 4 et leur covariance est égale a

C(5,8)=E{ZW}—E{Z}.E{W}=11195—-9 = 2,195.
4.3.3. Egalité de deux processus stochastiques

Deux processus stochastiques X (t) et Y (t) sont égaux (partout) si leurs échantillons

respectifs X (t, &) et Y (¢, &)sont identiques pour tout £. De méme, I'égalité :

Z(t) = X(t) + Y(t) signifie que Z(t,&) = X(t, &) + Y (¢, &) pour chaque ¢.



Deux processus sont égaux au sens de la moyenne quadratique (MS :Mean Square) si :

E{IX(©) —Y(®)I?} =0 (4.12)

pour chaque t. L'égalité au sens MS conduit aux conclusions suivantes :

- Onnote A, I'ensemble des résultats ¢ tel que X (¢, &) = Y (t, &) pour un t spécifique, et par
A, I'ensemble des résultats ¢ tel que X (t, &) = Y (¢, €) pour tout t.

- Il résulte que X(t, &) — Y (t,&) = 0 avec probabilité égale a 1 ; d'ou P(4,) = P(S) = 1.1l
ne s'ensuit cependant pas que P(4,) = 1.

- En fait, puisque A, est l'intersection de tous les ensembles A, & mesure que t s'étend sur

tout l'axe, P(A,) pourrait méme étre égal a 0.

4.4, Stationnarités des processus stochastiques
4.4.1. Stationnarité au sens strict.

Un processus stochastique X (t) est dit stationnaire au sens strict (en abrégé SSS) si ses
propriétés statistiques sont invariantes a un décalage dans le temps. Cela signifie que les

processus X (t) et X(t + At) ont les mémes statistiques pour tout At.

e Deux processus X(t) et Y(t) sont dits conjointement stationnaires si les statistiques
conjointes de X(t) et Y(t) sont identiques aux statistiques conjointes de X(t + At) et
Y(t + At) pour tout At.

e Unprocessus complexe Z(t) = X(t) + jY(t) est stationnaire si les processus X (t) et
Y (t) sont conjointement stationnaires. De la définition, il s'ensuit que la densité d'ordre

n d'un processus SSS doit étre, pour tout At, telle que :

fx Oy, e Xty ey ) = fx (X, o, x5 t1 + AL, .0, t, + AL) (4.13)

Il en résulte que fx(x; t) = fx(x; t + At)pour tout At. Donc la densité de premier ordre de

X(t) estindépendante det:

fx (6 6) = fy(x) (4.14)



De méme, fyx(xq,x5; t; + At, t, + At) est indépendante de ¢ pour tout At, et particulierement

pour At = —t,. Ceci méne a la conclusion que :
fx(xl,xz; tl + At, tz + At) = fx(xl,xz; T) T = tl - tz (415)

Ainsi, la densité jointe des variables aléatoires X(t + 1) et X(t) est indépendante de t et est

égale a fy (x4, x2; 7).
4.4.2. Stationnarité au sens large

Un processus stochastique X (t) est appelé stationnaire au sens large (en abrégé SSL) si sa

moyenne est constante :
E{X(t)}=n (4.16)
Et son autocorrélation depend seulementde 7 = t; — t,
EX(t+1)X*(t)}=R() (4.17)

Puisque t est le décalage entre t et t + 7, la fonction R(7)peut étre ecrite sous la forme

symétrique suivante :
R() = E{X(t+Dx"(t -5} (4.18)
On remarque particulierement que :
E{1X(t)I’} = R(0)
Donc la puissance moyenne d’un processus stationnaire est indépendante de t et vaut R(0).
Exemple 4.5 :
Supposons que X (t) est un processus SSL avec la fonction d’autocorrélation suivante :
R(7) = Ae~oll
Nous déterminerons le moment du second ordre de la variable aléatoire X(8) — X(5).
Solution
Onposet, =8 et t, =3 alorsonaurat =t; —t, =8—-5=3
E{[X(8) — X(5)]*} = E{X?(8)} + E{X?(5)} — 2E{X(8)X(5)}

=R(0) + R(0) —2R(3) = 24 — 2Ae™3¢



Remarque :
L’autocorrélation d’un processus stationnaire X (t) peut étre définie comme la puissance

moyenne. Supposant pour simplifier que X(t) est réel, on conclue a partir (4.17) que :
E{[X(t + 1) — X(©)]*} = 2[R(0) — R(7)] (4.19)
A partir de (4.17), il s’en suit que ’auto-covariance d’un processus SSL dépends seulement de
T = tl - tz
C(x) =R()—Inl? (4.20)
Et son coefficient de corrélation est égal a :
r(t) = C(7)/C(0) (4.21)

Donc ; C(t) et r(t) sont respectivement la covariance et le coefficient de corrélation des

variables aléatoires X (t + 1) et X(t).

Deux processus X (t) et Y (t) sont conjointement SSL si chacun est SSL et leur inter-corrélation

dépend seulement de 7 =t; — t,.

Ryy(t) = E{X(t + D)Y* ()} Cxy(1) = Ryy(t) —nxny (4.22)
Si X (t) est un bruit blanc SSL, alorson a:
() =q6(v) (4.23)

Si X (t)est un processus a-dépendant, alors C(t) = 0 pour |z| > a. Dans ce cas, la constante
a est appelée le temps de corrélation de X (t). Ce terme est également utilisé pour des processus

arbitraires et il est défini comme le rapport :

1
T c(0)

T, J, c@dr (4.24)

En général C () # 0 pour tout . Cependant, pour la plupart des processus réguliers :

C(t)-»0 et R(t)-|nl?lorsque 7] - oo.



Remarque : Si un processus est SSS, il est également SSL. L'inverse, cependant, n'est pas vrai

en général.
Exemple 4.6 :

Nous établirons les conditions nécessaires et suffisantes pour la stationnarité du processus

suivant :

X(t) = acos(wt) + bsin(wt) (4.25)
La moyenne de ce processus est égale a :

E{X(t)} = E{a} cos(wt) + E{b}sin(wt)
Cette fonction doit étre indépendante du temps. Donc la condition
E{a} = E{b} =0 (4.26)

est nécessaire pour chaque forme de stationnarité. Nous supposons qu’elle est établie.
Stationnarité au sens large :

Le processus X (t) est SSL si et seulement si les variables aléatoires a et b sont un-corrélées

avec variance égale :
E{ab} =0 E{a?} = E{b?*} =oc? (4.27)
Si ceci est vérifié, alors
R(1) = o%cos(wr) (4.28)
Preuve :
Si X(t) est SSL, alors
E{X?(0)} = E{X(n/2w)} = R(0)

Mais X(0) = a et X(m/2w) = b; donc E{a?} = E{b?}. En utilisant ce qui précede, nous

obtenons :
E{X(t+1)X(t)} = E{lacosw(t+ 1) + bsinw(t + 7)][a cos(wt) + bsin(wt)]}
= 02 cos(wt) + E{ab}sinw (2t + 1) (4.29)

Ceci est indépendant de t seulement si E{ab} = 0 et (4.27) est obtenue.



Si (4.27) est vérifiée, alors, comme nous le voyons de (4.29) (9.65), ’autocorrélation de X (t))

est égale a o2 cos(wT).
Stationnarité au sens strict :

Le processus X (t) est SSS si et seulement si la densité conjointe f(a, b) des variables aléatoires

a et b posséde une symétrie circulaire, c’est-a-dire, i :
f(a,b) = Va2 + b? (4.30)
Preuve :
Si X(t) est SSS, les variables aléatoires
X(0) =a X(r/2w)
et
X(t) = acos(wt) + bsin(wt) X(t+ m/2w) = b cos(wt) — asin(wt)

ont la méme densité conjointe pour chaque t. Par conséquent, f(a, b) doit avoir une symétrie
circulaire. Nous allons maintenant montrer que, si f(a, b) a une symétrie circulaire, alors X (t)

est SSS. Avec T un nombre donné et
a, = acos(wt) + bsin(wt) by, = b cos(t) — asin(t)
On forme le processus
X,(t) = a, cos(wt) + bysin(wt) = X(t+ 1)

Clairement, les statistiques X(t) et X;(t)sont déterminées en fonction des densités jointes
f(a,b) et f(ay, by) des variables aléatoires (a, b) et (a4, b;). Mais ces variables aléatoires ont
la méme densité jointe. Par conséquent, les processus X(t) et X(t + t)ont les mémes

statistiques pour tout .
Corollaire

Si le processus X (t) est SSS et que les variables aléatoires a et b sont indépendantes, alors

elles sont normales.
Exemple 4.7 :

Etant donné une variable aléatoire w de densité f (w) et une variable aléatoire ¢ uniforme dans

l'intervalle [—m, ] et indépendante de w, on forme le processus X (t) tel que :



X(t) = a cos(wt + @) (4.31)

Nous allons montrer que X (t) est SSL avec une moyenne nulle et une autocorrélation exprimee

par :
R() = £ E{cos(wn)} = & Re(®,, (1)) (4.32)

Oou;

@, (1) = E{e/*7} = E{cos(wt)} + jE{sin(wT)} (4.33)
est la fonction caractéristique de w.
Preuve :

E{a cos(wt + @)} = E{E{a cos(wt + ¢)/w}}
De I’'indépendance de w et ¢ , il s’en suit que :
E{a cos(wt + ¢)/w} = cos(wt) E{cosp} — sin(wt) E{sing}

Donc E{X(t)} = 0 car

r 1

1 T
E{cosp} = %.]- cospdp =0 E{sing} = %J- sinpdp =0
-1 -1

En résonant de méme, on obtient E{ cos(2wt + wt + 2¢)} = 0. Et puisque
2 cos[w(t + 1) + @] cos(wt + ¢) = cos(wt) + cos(Rwt + wt + 2¢)

On conclue que :

R(7) = a?E{cos[w(t + 1) + @] cos(wt + @)} = %ZE{COS((A)T)}

En outre, le processus Z(t) = ae’(@®t*9) est SSL avec une moyenne nulle et autocorrélation

exprimee par :
E{Z(t +1)Z*(t)} = a?E{e/*t} = a?D,, (1)
4.4.3. Centrage d’un processus stochastique

Soit un processus X(t) de moyenne 7n(t) et d'auto-covariance Cy(t;,t,), nous formons la

différence suivante :



X(t) =X(@) —n(t) (4.34)
Cette différence est appelée processus centré associé au processus X (t). Notons que :
E{X(©)}=0 Rz (ty, t;) = Cx(ty,t3) (4.35)
Il s'ensuit que si le processus X (t) est stationnaire a covariance, c'est-a-dire si
Cx(ty, t;) = Cx(t; — t,), alors son processus centré X (t) est SSL.
4.4.4. Autres formes de stationnarité.

- Un processus X(t) est asymptotiquement stationnaire si les statistiques des variables
aléatoires X(t; + At),...,X(t, + At) ne dépendent pas de At si ce dernier est grand. Plus
précisément, la fonction f(xy,...,x,, t; + At,...,t, + At) tend vers une limite (qui ne
dépend pas de At) lorsque At — oo. Le signal télégraphique semi-aléatoire en est un
exemple.

- Un processus X(t) est stationnaire du n'*™ ordre si (4.13) n'est pas vérifiée pour tout n,
mais seulement pour n < N.

- Unprocessus X (t) est stationnaire dans un intervalle si (4.13) est Vvérifiée pour chaque t; et
t; + At dans cet intervalle.

- Ondit que X(t) est un processus avec des accroissements stationnaires si ses accroissements
Y(t) = X(t+ h) — X(t) forment un processus stationnaire pour chaque h. Le processus

de Poisson en est un exemple.

4.4.5. Périodicité en moyenne quadratique.
Un processus X (t) est dit périodique au sens MS(Mean Square) si pour chaquetona:
E{IX(t+T) —X(@®)[*)} =0 (4.36)
Il s’ensuit que, pour un t spéecifique et avec une probabilité égalea 1, ona :
X(t+T)—X() (4.37)

Comme nous voyons de (4.37), la moyenne d’un processus MS périodique est périodique. Nous

allons examiner les propriétés de R(ty, t;) :

Un processus X (t) est dit MS périodique si son autocorrélation est doublement périodique,

c¢’est-a-dire, si pour tout entier metn ona:



R(t, + mT,t, + nT) = R(t,, t;) (4.38)

4.4.6. Ergodicité d’un processus stochastique

La propriété d’ergodicité lie les moyennes statistiques (effectuées sur I'espace des réalisations
sous-jacentes a la définition des variables aléatoires qui constituent le processus) et les
moyennes temporelles (effectuées sur les fonctions du temps qui sont les réalisations du

processus).

L ergodicité ajoute encore une liaison supplémentaire entre les caractéristiques statistiques et
temporelles d’un processus. Si on dispose de k réalisations x;(t) d’un processus aléatoire

X (t), on pourrait estimer la moyenne a I’aide de la formule suivante :
~ 1
iy () = - Xio1 0 (O fx (%, 1) (4.39)

e Ergodicité en moyenne

Un processus aléatoire est dit ergodique, si les moyennes temporelles prises sur un temps
suffisamment long, sont voisines avec une probabilité qui tend vers 1 des moyennes statistiques

prises sur ’ensemble de ses réalisations. Et ’on écrit :

T
12 .
E[X] = %E’EIOT _Zxk(t)dt = My
2
(4.40)
Avec T est la durée d’observation du processus.
e Ergodicité en corrélation
La fonction d’autocorrélation d’un processus aléatoire stationnaire X (t) est définie par :
1 T
2
Ryy() =EX®)X(t+ 1)} = Tlim Tf Txk(t)xk(t + 7)dt
2
(4.41)

On dit que le processus aléatoire est ergodique relativement a la fonction d’autocorrélation

lorsque :

1) Il est ergodique en moyenne,



2) La limite de la fonction d’autocorrélation lorsque T tend vers I’infini existe, est certaine, ne

dépend pas de t et est égale a la fonction d’autocorrélation statistique.
Dans ce cas, on dit que ce processus est ergodique au sens large.
Remarques :

- Un processus ergodique au sens large est stationnaire au sens large. L’inverse n’est pas vrai.
- L’ergodicité permet d’estimer les paramétres statistiques a partir des parametres temporels.
- Un processus aléatoire est ergodique si ses moments peuvent étre obtenus comme des

moyennes & partir d'une seule de ses réalisations. Ceci doit étre vrai en particulier pour les

moments d'ordre 1 et 2:

1 1
= jT X(t, 0)dt ——>m, (1) = jT X(t, @)dt ———>m,

1 1
= jT X(t, @)X(t + 7,0)dt——>R, (t,t + 7) = jT X(t, 0)X(t + 7,0)dt ——— R, (7)

—

- Le membre gauche la premiere équation ne dépend pas du temps, et donc que pour que cette
équation puisse étre Vérifiée, il faut que le processus ait une moyenne constante. De la méme
facon, pour que la deuxiéme équation soit possible le processus doit étre stationnaire au
sens large, on aura alors les expressions a droite ; ergodicité — stationnarité. L'affirmation

contraire est fausse.

4.5. Systémes a entrées stochastiques

Etant donné un processus stochastique X (t), nous attribuons selon une régle a chacun de
ses echantillons X (t, &;) une fonction, Y (t,&;) . Nous avons ainsi créé un autre processus tel

que :
Y(t, &) =T[X(®)] (4.42)

dont les échantillons sont les fonctions Y (t,&;). Le processus Y(t) ainsi formé peut étre
considéré comme la sortie d'un systéme (transformation) avec en entrée le processus X(t). Le

systéme est complétement spécifié en termes de l'opérateur T.

- Le systéme est déterministe s'il n'opére que sur la variable t en traitant £ comme parameétre.

Cela signifie que si deux échantillons X(t, &;) et X(t,&,) de I'entrée sont identiques en t,



alors les échantillons correspondants Y(t, &) et Y(t, &;)de la sortie sont également
identiques en t.
- Le systéme est dit stochastique si T opere sur les deux variables t et é. Cela signifie qu'il

existe deux résultats &, et &, tels que X (¢, &;) = X(¢,&,) de maniére identique en t mais

Y(t,§1) #Y(L,$2)

En principe, les statistiques de la sortie d'un systéme peuvent étre exprimées en termes
de statistiques de l'entrée. Cependant, en général, il s'agit d'un probléeme compliqué. Nous

considérons ensuite deux cas particuliers importants.
4.5.1. Systémes sans mémoire

Un systeme est dit sans mémoire si sa sortie est donnée par :

Y(@) = g[X(D)] (4.43)

ou g(x) est une fonction de x. Ainsi, a un instant donne t = t,, la sortie Y (t,) ne dépend que
de X(t;) et non daucune autre valeur passee ou future de X(t). Il s'ensuit que la densité du
premier ordre f, (y; t) de Y(t) peut étre exprimée en fonction de la densité correspondante
fx(x; t) de X(t). Par ailleurs,

EY(0)} = [, g(x) fx (x; t)dx (4.44)

De méme, puisque Y(t;) = g[X(t,)] et Y(t,) = g[X(ty)], la densité du second ordre
fy (V1,25 tq,t;) de Y(t) peut étre déterminée en fonction de la densité correspondante

fx (x1,x2; tq,t;) de X(t). En outre,

EY(t)Y (&)} = [ [ 9(x1) gQe) fixCen, g5 ty, t5)dxydx,  (4.45)

La densité d'ordre n fy (¥4, ..., Yu; t1, -, ty) de Y (t) peut étre déterminée a partir de la densité

correspondante de X (t), ou la transformation sous-jacente est le systeme suivant :
Y(t) = glX(t)], ..., Y (t,) = g[X(t)] (4.46)
- Stationnarité

Supposons que I'entrée d'un systéme sans mémoire est un processus SSS, X(t). On montre

que la sortie résultante Y (t) est également SSS.

Preuve.



Pour déterminer la densité d'ordre n de Y (t), on résout le systeme suivant :
g(xl) = le Jg(xn) = yn (447)
Si ce systeme possede une solution unique, ona :

fx X1y e, Xty oo )
) wuny }t,...,t = 7 [;
fr O s & n) lg'(xq) ... g'(x)]

(4.48)

De la stationnarité de X(t), il s'ensuit que le numérateur dans (4.48) est invariant a un décalage
de l'origine temporelle. Et puisque le dénominateur ne dépend pas de t, nous concluons que le
membre gauche ne change pas si t; est remplacé par t; + At. Par conséquent Y (t) est SSS. On

peut également montrer que cela est vrai méme si (4.47) a plus d'une solution.

Remarques :

I. Si X(t) est stationnaire d'ordre N, alors Y (t) est stationnaire d'ordre N.

2. Si X (t) est stationnaire dans un intervalle, alors Y (t) est stationnaire dans le méme intervalle.

3. Si X(t) est stationnaire SSL, alors Y(t) pourrait ne pas étre stationnaire dans un sens

quelconque.
4.5.1.1. Detecteur a loi quadratique
Un Détecteur a loi quadratique est un systeme sans mémoire dont la sortie est égale a

Y (t) = X?(t). Nous déterminerons ses densités du premier et du second ordre.

- SiY > 0, alors le systéme a les deux solutions ++vY. Enoutre, Y'(x) = +2+/Y ; donc:

1
fry; O =ﬂ[fx(\/_ ;) + fr(=/y t)]

2

- Siy, >0ety, >0, alors le systéme : {yl - x12
Y2 = X3

admet les quatre solutions (+,/y; , /v, ). Enoutre, son jacobéen est égal a +4,/v,y, ;

donc :

1

fry2s th,tr) = 4m2fx(i\/zji YVa; t1,t2)




Ou la somme a quatre termes.

Notons que, si X(t) est SSS, alors fyx(x; t) = fx(x) est indépendante du temps t et
fx(xq, x5 t1,t) = fx(xq,x5; T) dépend seulement de 7=t; —t,. Donc fy(y) est

indépendante du temps t et f, (y,,y,; T) dépend seulement de T = t; — t,.
Exemple 4.8

Supposons que X (t) soit un processus stationnaire normal (sa densité de probabilité est une
gaussienne) avec une moyenne nulle et une autocorrélation Ry (7). Dans ce cas, fyx(x) est

normale avec la variance Ry (0).

Si Y(t) = X%(¢t) (Fig. 4.3), alors E{Y(t)} = Rx(0) et fy(y) = e'ﬁU(y)

On va montrer que :
Ry(7) = R%(0)+2R:%(7) (4.49)
Preuve.

Les variables aléatoires X(t + t) et X(t) sont conjointement normales avec une moyenne

nulle. D'ou :

E{X?(t + 1)X?(t)} = E{X%(t + T)IE{X?(t)}+ 2E*{X(t + D)X (t)}
Et ainsi (4.49) est obtenue.
Notons en particulier que :

E{Y?()} = Ry(0) = 3R3(0) oy = 2RE(0)

f4x) 5H0)

V7L

x(n
> v ;-'-b- - - - 0 5

0 x

Figure 4.3 : Entrée et sortic d’un Détecteur & loi quadratique.
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Figure 4.4 : Entrée et sortie d un limiteur dur.
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4.5.1.2. Limiteur dur (hard limiter)

Un Limiteur dur (hard limiter) est un systeme sans mémoire (Figure 4.4) avec :

gw={7% *Zo (4.50)

Sa sortie Y (¢) prend les valeurs +1 et
P{Y(t) =1} = P{X(t) > 0} = 1 — Fx(0)
P{Y(¢) = -1} = P{X(¢) < 0} = Fx(0)
Donc
E{r()}=1xP{Y(t) =1} -1 x P{Y(t) = —1} = 1 — 2F4(0)
Le produit Y(t + 7)Y (t) estégal a 1si X(t + 7)X(t) > 0 et -1 ailleurs. Donc
Ry(7) = P{X(t + DX(t) >0} — P{X(t + ©)X(t) < 0} (4.51)

Alors, dans le plan des probabilités des variables aléatoires X(t + 7) et X(t), Ry () est égale
aux masses du premier et troisieme quadrant moins les masses du deuxieme et quatrieme

quadrant.
Exemple 4.9

On va montrer que si X(t) est un processus normal stationnaire avec une moyenne nulle, alors

I’autocorrélation de la sortie d’un limiteur dur vaut :

R, (1) = %arcsin z—g; (4.52)

Ce résultat est appelé « loi du arcsinus”

Preuve :



Les variables aléatoires X(t + 1) et X(t) sont conjointement normales avec une moyenne

nulle, variance Ry (0) et coefficient de corrélation 2"53 .D'ou,
X
1 «
P{X(t + 1)X(t) >0} = §+ -
1 «a
P{X(t + D)X()<0}==-——
2 T
Avec ; sina = Rx(®)
Rx(0)
En insérant dans (4.51, nous obtenons :
1 «a 2a
R =4+ |- —— = —
v(7) 2 + (2 n) T

Et (4.52) s’ensuit.
4.5.2. Systémes linéaires
La sortie Y (t), d’un systéme linéaire dont I’entrée est X (t), est donnée par la notation suivante :
Y(t) = LIX(®)] (4.53)
Ceci signifie que :
Lla; X1 (t) + ax X, ()] = a1 L[X1 ()] + a,L[X,(2)] (4.54)
Pour tout a4, a,, X;(t), X, (t).

Ceci est la définition de la linéarite et elle est aussi retenue si les coefficients a, et a, sont des
variables aléatoires car, comme nous avons supposé, le systéme est déterministe, ¢’est-a-dire,

il opére seulement sur la variable t.
Remarques :

- Siun systeme est spécifié par sa structure interne ou par une équation différentielle, alors
(4.54) est verifiée si Y(t) est la réponse a I’état initial. La réponse obtenue dans les
conditions initiales (réponse sans entrée ou réponse a une entrée nulle) ne sera pas
considérée.

- Un systéme est dit invariant dans le temps si sa réponse a X (t + At) est égale a



Y(t + At). Nous allons supposer tout au long de cette section que tous les systemes linéaires
sont invariants. Il est bien connu que la sortie d’un systéme linéaire est une convolution

exprimee par :
Y(£) =X(t) «h(t) = [°._X(t — a)h(a) da (4.55)

Ou ; h(t) = L[5(t)] est sa réponse impulsionnelle. Dans ce qui suit, la plupart des systémes

vont étre spécifiés par (4.55).

- Si X(t) est un processus normal, alors Y (t) il I’est aussi. Ceci est une extension de la
propriété familiére des transformations linéaires des variables aléatoires normales et peut

étre justifié si nous approximons I’intégrale de (4.55) par la somme:
V() = ) X(t - a)h(@) M@
K

- Si X(t) SSS, alors Y(t) est aussi SSS. En effet, comme Y (t + At) = L[X(t + At)] pour
tout At, nous concluons que si les processus X(t) et X(t + At) ont les mémes propriétés
statistiques, il en va de méme pour les processus Y (t) et Y(t + At). Aussi, si X(t) SSL,

les processus X (t) et Y(t) sont conjointement SSL.

Ce qui suit est une explication de la raison d’introduction de la fonction R(tq,t,) dans les
problémes seulement avec la puissance moyenne. Supposons que, X(t) est ’entrée d’un
systéeme linéaire et Y (t) est la sortie résultante. Dans ce qui suit, nous montrerons que la
moyenne de Y (t) peut étre exprimée en fonction de la moyenne de X(t). Cependant, la
puissance moyenne de Y (t) ne peut pas étre connue si seulement E{X?(t)} est donnée. Pour
la détermination de E{Y2(t)}, la connaissance de la fonction R(t;, t,) est exigée, non seulement
sur la diagonale t; = t,, mais pour chaque t, et t,. L’identité suivante est une simple

illustration : E{[X(t;) + X(t;) 1*°} = R(ty, t1) + 2R(ty, t3) + R(t,, t,)
4.5.2.1. Théoréme fondamental des systemes linéaires
Pour tout systeme linéaire ona :
E{LIX(©O]} = LIE{X ()}] (4.56)

En d’autres termes, la moyenne 1y (t) de la sortie Y (t) est égale a la réponse du systéme a la

moyenne 1y (t) de I'entrée (fig.4.5a)

ny(t) = Lnx(t) ] (4.57)
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Figure 4.5 : statistiques d’ordre 1 et 2 de la sortie d’un systéme linéaire a entrée stochastique.

Ceci est une simple extension de la linéarité de valeurs espérées a des opérateurs linéaires
arbitraires. Dans le contexte de (4.55), on peut I’en déduire si on écrit 1’intégrale comme limite

d’une somme. Ceci donne :

E{v(®©} = [* E{X(t — a)}r(a) da = nx(t) * h(t) (4.58)

Interprétation fréquentielle : Au i°™ essai, I’entrée de notre systéme est une fonction X (¢, &;)

donnant comme sortie la fonction Y (¢, ¢;) = L[X(t, &;)]. Pour un grand n on peut écrire :

E{Y(t)} = Y(t, &)+ + Y(t &) _ LIX(t, &N+ -+ L[X(t, ED]

n n

De la linéarité du systéme, il s’ensuit que le dernier terme est égal :

X&)+ + X&)
n

Cela est en concordance avec (4.56) parce que la fraction est presque égale a E{X(t)}.
Remarques :

1. De (4.57), il s’ensuit que si X(t) = X(t) — nx(t) Y(t) = Y(t) —ny(t) donc:

LX)} = LX)} - Liny@®} =Y (@) (4.59)
Alors, la réponse d’un systéme linéaire a un signal d’entrée centré X (t) est égale au signal de
sortie centré Y (t).
2. Supposons que X(t) = f(t) + v(t) avec E{v(t)} = 0. Dans ce cas, E{x(t)} = f(t) ;
donc, ny () = f(¢) = h(?)

Si X(t) est la somme d’un signal déterministe f(t) et d’une composante aléatoire (t) , pour

déterminer la moyenne de la sortie, on peut ignorer v(t) puisque E{v(t)} = 0.



Le théoreme (4.56) peut étre utilisé pour exprimer les moments conjoints de n’importe
quel ordre de la sortie Y (t) d’un systéme linéaire en termes des moments correspondants a
I’entrée. Les cas particuliers suivants sont d’une importance fondamentale dans 1’étude des

systemes linéaires avec des entrées stochastiques.
4.5.2.2. Autocorreélation de sortie

Nous souhaitons exprimer I’autocorrélation Ryy (t;,t,) de la sortie Y (t) d’un systéme
linéaire en fonction de I’autocorrélation Ryy(t;,t,) de I’entrée X (t). Comme nous le verrons
dans la suite, il est plus facile de trouver d’abord la corrélation croisée (inter-corrélation)

Ryy(tq,t,) entre X(t) et Y(t).
Théoreme

a) Ryy(t1,t3) = Ly[Ryx (1, t)] (4.60)

Dans cette notation, L, signifie que le systeme fonctionne avec la variable t,, en traitant t;

comme un paramétre. Dans le contexte de (4.55) ¢a signifie que :

Ryy(t1,t2) = [ Ryx(ts,t; — @)h(a) da (4.61)

b) Ryy(t1,t;) = L1[Rxy (t1,t5)] (4.62)
Dans ce cas, le systéeme fonctionne avec la variable t; etona:
Ryy(ty, t) = [ Ryy(t; — @, t)h(a) da (4.63)
Preuve :
En multipliant (4.53) par X(t;) et en utilisant (4.54), nous obtenons :
XY (@) = L [X ()X ()]
Ou ; L, signifie que le systeme fonctionne avec la variable t. Donc [voir (4.56)]
EX(t)Y(©} = LE{X ()X (®)]]
et (4.60) s’ensuit avec t = t, .La preuve de (4.62) est similaire :

Nous multiplions (4.53) par Y (t,) et utilisons (4.56). Ceci donne :



E{Y ()Y (t)} = L E{X (©)Y (¢2)}]
et (4.62) s’ensuit avec t = t;

Le théoréme précédent est illustré dans la Figure 4.5b : si Ryx(t;,t;) est Pentrée du
systeme donné et le systéme fonctionne avec la variable t,, la sortie est égale a Ryy (t,,t,). Si
Ryy(t1,t,) est I’entrée et le systéme fonctionne avec t;, la sortie est égale a Ryy (ty,t;). En

insérant (4.61) dans (4.63), nous obtenons :

Rt = [ | Rty = at, - (@) h(B)dadp
Ceci exprime directement Ry (t,, t,) en fonction de Ry (t,, t,). Cependant, conceptuellement
et opérationnellement, il est préférable de trouver Ryy (t4, t5).
Exemple 4.10

Un processus stationnaire V (t) avec une autocorrélation Ry, (t) = g&(t) (bruit blanc) est

appliqué at = 0 a un systeme linéaire avec :
h(t) = e CtU(t)
Nous montrons que 1’autocorrélation de la sortie résultante Y (t) est égale a :

Ryy(ty,t;) = % (1 —em2t)ecltz—tal (4.64)

Pour 0 < t; < t,.

Preuve : Nous pouvons utiliser les résultats précédents si nous supposons que 1’entrée du

systeéme est le processus X(t) = V(t)U(t).

Avec cette hypothese, toutes les corrélations sont nulles si t; < 0out, < 0. Pourt; <0 et

t,>0,0na:

Ryx(ty,tz) = E{V(t)V(t)} = q6(t; — t3)

Comme nous voyons de (4.60), Ryy (t;,t,) est égale a la réponse du systeme a g6 (t; — t,)
considérée comme une fonction de t,. Puisque §(t; — t,) = 6(t, — t1) et L[§(t; — ty)] =

h(t; — t,)(invariance dans le temps), nous concluons que :

Rxy(ty,t) = qh(ty — t,) = qe = DY(t; — t,)U ()
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Figure 4.6 : Allure de I’inter-corrélation Ry (¢4, t,)

Dans la Figure 4.6, nous montrons Ryy (t;,t,) comme une fonction de ¢, et t,. En insérant

dans (4.63), nous obtenons :
Rxy(t1,t;) = q fotl ectima-teo=Cady t, < t,

et (4.64) est obtenue. On remarque que :

E(Y(0)) = Ryy(6,0) = 2 (1 — ¢720) = j h?(@)da
0

Corollaire

L’auto-covariance Cyy (t, t,) de Y (¢t) est I’autocorrélation du processus Y (t) = Y (t) — ny(t)
et, comme nous voyons de (4.59), Y(t) est égal a L[X(t)]. En appliquant (4.61 et (4.63 aux

processus centrés X (t) et Y (), nous obtenons :

Cxy (t1, t2) = Cxx (ty, t3) * h(ty)

Cyy (t1, t2) = Cxy(ty, t2) * h(ty) (4.65)
Ou les convolutions sont en t, et t, respectivement.
4.5.2.3. Processus complexes

Les résultats précédents peuvent étre facilement étendus aux processus complexes et

aux systemes avec des valeurs complexes de h(t).
En raisonnant comme dans le cas réel, on obtient :
Rxy(ty,t;) = Ryx(t1,t;) * h*(t,)

Ryy(t1,t2) = Rxy(t1,t3) * h(ty) (4.66)



4.5.2.4. Réponse d’un systéme au bruit blanc

Nous déterminerons la puissance moyenne E {|Y(t)|? } de la sortie d’un systéme piloté

par le bruit blanc (white noise). C’est un cas particulier de (4.66), cependant, en raison de son

importance, il est énoncé comme un théoréme.

Théoréme : Si I’entrée X (t) d’un systéme linéaire est un bruit blanc avec 1’autocorrélation

Ryx (t1,t2) = q(t)8(ty — t3)
alors
E{Y@®1?}=q@®) * h® = [, q(t — @) In(@)[*da
Preuve
De (4.67, il s’ensuit que :

Ryy(ty,t;) = q(t)6(t, — t1) x h*(ty) = q(t)h*(t, — t1)
Riv(ut) = |t - 'l = (4 - @)l h(@)da

Etavec t; = t, =t, (4.67) est obtenue.
Cas particuliers :

a) SiX(t) est un bruit blanc stationnaire, alors q(t) = q et (4.67 donne :
E{Y2()} =qE ou;E = [ |h(®)|?dt est 'énergie de h(t).

b) Si h(t) est de courte durée par rapport aux variations de q(t), alors

E{Y2(6)} = q() [, |h(a)|? da = Eq(t)

(4.67)

(4.68)

Cette relation justifie le terme « intensité moyenne » utilisée pour décrire la fonction q(t).

c) Si Ryy(t) = qdé() et V(t) est appliqué au systeme a t = 0, alors q(t) = qU(t) et (4.67)

donne :

E(V2(0)} = q f Ih(@)I? da

4.5.2.5. Différentiateurs

Un différentiateur est un systeme linéaire dont la sortie est la dérivée de I’entrée c’est a dire

LX) =X'(t) .



Nous pouvons, donc, utiliser les résultats précédents pour trouver la moyenne et

’autocorrélation de X'(t).
De (4.57), il s’en suit que :

nx'(t) = Lnx(®)] = nx(t) (4.69)
De la méme fagon [voir (4.60)]

ORyx (t1,ty)
Ryx'(t1,t;) = Ly[Ryx(t1,t,)] = e85 Az

at,
(4.70)
car, dans ce cas, L, signifie la différentiation par rapport a t,. Finalement,
ORyy (t1,t5)
Ryrxr(t1,t2) = Li[Ryxi (1, t5)] = XXT”
1
(4.71)
En combinant (4.70) et (4.71), nous obtenons :
0%Ryx (ty,t5)
Ry (t1,t2) = “otot,
(4.72)
Processus Stationnaire : Si X(t) est SSL, alors ny (t) est constante; donc :
E{X'(t)} =0 (4.73)
En plus, comme Ryx(t,,t,) = Ryx(7), nous concluons avec T = t; — t, que
ORxx(t; —t) B dRyx (7) 0%Ryx(t; — t;) B d?Ryx (1)
at, B dr at,0t, B dr?
Donc
Ryx' (1) = —R'xx(7) Ryrx1 (1) = —R"xx (1) (4.74)

4.5.2.6. Equations différentielles

Une équation différentielle déterministe avec une excitation aléatoire est de la forme suivante :

a, Y™ () + -+ a,Y () = X(t) (4.75)



Ou, les coefficients a; sont des constantes données et I’excitation X(t) est un processus
stochastique. Nous allons considérer sa solution Y (t) en supposant que les conditions initiales
sont nulles. Avec cette hypothese, Y (t) est unique (réponse a I’état zéro) et satisfit la condition
de la linéarité (4.54).

Nous pouvons, donc, interpréter Y (t) comme la sortie d’un systéme linéaire spécifié par (4.75).
En général, la détermination des statistiques complétes de Y (t) est compliqué. Dans ce qui suit,

nous évaluons seulement ses moments du second ordre en utilisant les résultats précédents.
La sortie Y (t) de ce systéeme est un processus avec les conditions initiales nulles vérifiant (4.75).
a) La moyenne :

Comme nous le savons [voir (4.57)] la moyenne ny(t) de Y (t) est la sortie de L avec I’entrée

Nx (t). Donc elle vérifie I’équation

a0 () + - + agny () = nx (t) (4.76)
et les conditions initiales sont :
_ _ (n-1) _
M (0)=--=ny (t)=0 (4.77)

Ce résultat peut étre établi directement par :
Ey® ()} =n2® (4.78)

Prenant I’espérance des deux membres de (4.75) et utilisant (4.78), nous obtenons (4.76).

L’équation (4.77) vient de (4.78) car Y¥)(0) = 0 par hypothése.
b) La corrélation.
Pour déterminer Ryy (t,, t,), nous utilisons (4.60).
Ryy (t1,t2) = Ly[Ryx (t1, t2)]
Dans ce cas, L, signifie que Ryy (t;, t,) vérifie I’équation différentielle suivante :

anRXY(tli tZ)

an ETS + -+ agRxy (t1, t2) = Ryx(t1,t2)
2

(4.79)

avec les conditions initiales ;



0" Ry (4,0) 0

Ryy (t;,0) = -
XY( 1 ) at;l—l
(4.80)
De la méme maniéré, puisque [voir (4.62)]
Ryy(t1,t2) = Lq[Rxy(ty,t2)]
Nous concluons comme précédemment que :
0" Ryy(t1,t;)
n =g + -+ aoRyy (1, t2) = Rxy(t1, t2)
1
(4.81)
0" "Ryy (0, t;)
Ryy(0,t,) = - = =0
YY( 2) at{l_l
(4.82)

Ces resultats peuvent étre établis directement :
de (4.79), il s’en suit que : X(t)[a, Y™ (t,) + - + agY ()] = X(t)X(t,)
Ceci donne (4.79) car

0% Ryy (t1,t2)

EX(t)Y® ()} = =2
2

De méme, (4.81) est une conséquence de 1’identité suivante :
[anY ™ (t1) + -+ + aoY ()] Y (t,) = X(t)Y(t,)

Car

0% Ryy (t1,t,)

E{Y® (t)Y(ty) } = 3tk

Finalement, les valeurs espérées de X(t,)Y® (0) =0 et Y® (0)Y(t,) = 0donne (4.80)
et (4.82).

4.5.2.7. L’intégrale d’un processus stochastique

L’intégrale S = f: X(t)dt , d'un processus stochastique X (t) est une variable aléatoire S et sa

valeur S(&) pour un essai spécifique ¢ est l'aire sous la courbe X(t, &) dans l'intervalle [a, b].



En interprétant ce qui précéde comme une intégrale de Riemann, on conclut de la linéarité des

espérances que :
ns = E(S} = [T E(X(©)}dt = [ n(t) dt (4.83)

A -y . b b .- N
De la méme maniére. Puisque, S? = fa fa X(t)X(t,)dt; dt, , nous concluons, en utilisant a

nouveau la linéarité des espérances, que :

E(s?) = [0 [P EX(t)X(e)}dt, dt; (4.84)

Exemple 4.11
On va déterminer l'autocorrélation R (t;, t,) du processus X (t) = r cos(wt + ).

Nous supposons que les variables aléatoires r et ¢ sont indéependantes et ¢ est uniforme dans

I'intervalle [—m, 7r]. En utilisant des identités trigonométriques simples, nous trouvons :
1
E{X(t)X(t,)} = EE{rZ}E{cosw(tl —t,) + cos(wty + wt, + 2¢)}

Et puisque
1 +1
E{cos(wt; + wt, + 2¢)} = E_]. cos(wt; + wt, + 2¢)dep =0
-1

On conclut que :

R(t;, t,) = %E{rz}cosa)(t1 —t,) (4.85)

Exemple 4.12

L’intégrale Y = fot V(a)da peut étre considérée comme la sortie d’un systéme linéaire avec
X() = V()U(t) et réponse impulsionnelle h(t) = U (t). Si, en plus, V(t) est un bruit blanc
avec une intensité moyenne q(t), alors X(t) est un bruit blanc avec une intensité moyenne

q(U(t), et (4.67) donne :

t

B2} = 40U * U = [ a@da

0



Exemple 4.13
SiX(t)est SSLet S = [ X(t)de alors ;
o = [ 1 C(ty — ty)dtdt, = [°, (2T — [tDC(D)de (4.86)
La derniére égalité s’en suit avec T = t; — t, (Voir Fig. 4.7) ; les détails, cependant, sont omis.
Cas particuliers :
a) SiC(t) =qdé(r),alorsona:
2T

g =q (2T — |7])6(z)dT = 2Tq

—-2T

b) Si X(t) est un processus a-dépendant et a « T alors :

2T a
o2 = [ @r-pkhc@adr=2r j C()dr
—2T -a
T T 2T
f f C(t, — t)dtydt, = | @T = le)c(@)dr
-TJ-T =2T

Ceci montre que, dans I'évaluation de la variance de S, un processus a-dépendant avec un

a < T, peut étre remplacé par du bruit blanc avec g = f_aa C(1) dr.

4 o(r)

7~ |

Figure 4.7 : Evaluation de I’intégrale d’un processus stochastique.



4.6. Exemples de processus stochastiques

Dans cette section, on expose les processus stochastiques les plus connus et les plus utilisés

pour décrire les phénoménes aléatoires rencontrés dans la nature.
4.6.1. Processus de Poisson.

Un processus de Poisson est régit par la loi de probabilité discrete dite de « Poisson ».
Pour établir un tel processus, on introduit la notion de points de Poisson qui sont spécifiés par

les propriétés suivantes :

P; : Le nombre n(t,, t,) des points t; dans un intervalle (¢, t,) de longueur t = t; — t, est une

variable aléatoire de Poisson de paramétre At tel que :

e At (ﬂt)k

P(n(ts, ) = k) = —

(4.86)

P, : Si les intervalles [t,t,] et [t3,t.] ne se chevauchent pas, alors les variables aléatoires
n(ty, t,) et n(ts, t,) sont indépendantes. En utilisant les points t;, on forme le processus
stochastique X (t) = n(0,t), illustré a la figure 4.8a. Il s'agit d'un processus a I'état discret
constitué d'une famille de fonctions en escalier croissantes avec des discontinuités aux points

t;.

Pour un t spécifique, X(t) est une variable aléatoire de Poisson de parametre At ; par

conséquent : E{X(t)} = n(t) = At.
Son autocorrélation vaut :

Aty + A%t t, ty =>t,
Aty + A%ty t, ti <t,

R(t,,t) = { (487

Ou I’équivalent qui est : C(tq,t;) = Amin(ty, t,) = At,U(t, —t) + At,U(t; — ty)



X(1)4 Poisson process X()} Telegraph signal
1
1F
jj o ¥ ‘:—-—"ﬁ-ﬂﬂ—i; ¥ 5 3  ; . '
4 I_.-.l
(a) &)

Figure 4.8 : Processus stochastique de Poisson X(t) = n(0,t)

Preuve : Ce qui précede est vrai pour t; = t,(statistiques de la loi de Poisson), on a:

E{X?2(t)} = At + A%t? (4.88)

Puisque R(ty,t;) = R(t,, ty) , il suffit de prouver (4.87) pour t; < t,. Les variables
aléatoires X (t,) et X(t,) — X(t,) sont indépendants car les intervalles [0, t;] et [ t;, t,] ne se
chevauchent pas. En outre, ce sont des distributions de Poisson de paramétres At; et A(t, — t;)

respectivement. D'ou

EX(t)[X(t) = X))} = EX ()} EIX (&) — X(t)} = A1 A(E, — 1)

En utilisant ’identité

X(t1)X(t2) = X(t1)[X(t1) + X(tz) - X(t1)]

Nous concluons de ce qui précéde et de (4.88) que :

R(ty,ty) = Aty + A2t %+ At A(t, — t7)
et (4.87) est obtenue.

a) Cas non uniforme



Si les points t; ont une densité non uniforme A(t), alors les résultats précédents sont toujours
valables & condition que le produit A(t, — t;) soit remplacé par l'intégrale de A(t) de t; at,.
Ainsi
EX(®)} = [ M(a) da (4.89)
Et

R(ty, t;) = [;" A(t) dt [1 +[;2 A0 dt] t, <t (4.90)

Exemple 4.14 : signal télégraphique

En utilisant les points de Poisson t;, on forme un processus X (t) tel que X(t) = 1 si le nombre
de points dans l'intervalle [0, t] est pair, et X(t) = —1 si ce nombre est impair (Fig.4.8b. En
notant p (k) la probabilité que le nombre de points dans l'intervalle [0,t] soit égal a k, nous

concluons que [voir (4.86)] que :

PX(t) = 1} = p(0) + p(2) + ---

At)?
— e—/lt [1 +%+ l = e_AtCOSh(/lt)

PX(t) = -1} = p(1) + p(3) + -

=eM [At + ();L?s + l = e Msinh(At)
D'ou
E{X(t)} = e *[cos(At) — sinh(At)] = e~2H (4.91)

Pour déterminer R(t,,t;), on note que, si t=1t;, —t, >0 et X(t,) = 1,alors X(t;) = 1

si le nombre de points dans l'intervalle [t; — t,] est pair. D'ou
P{X(t)) =1|X(t,) =1} =e*Mcosh(At) T=t,—¢t,
En multipliant par P{X(t,) = 1}, on obtient :
P{X(t)) = 1,X(t,) = 1} = e * cosh(At)e 2 cosh(At,)

De la méme facon,



P{X(t)) = —1,X(t,) = —1} = e * cosh(At)e "%z sinh(At,)
P{X(t)) = 1,X(t,) = —1} = e * sinh(At)e~**2 sinh(At,)

P{X(t)) = —1,X(t,) = 1} = e * sinh(At)e 2 cosh(At,)

Puisque le produit X (t;) X(t,) est égal a 1 ou -1, nous concluons en omettant les détails que :
R(tl, tz) = e_ZAltl_tZI (492)

Ce processus est appelé signal télégraphique semi-aléatoire car sa valeur X(0) = 1 at=0n'est
pas aléatoire. Pour supprimer cette certitude, nous formons le produit Y(t) = a X(t) ou a est
une variable aléatoire indépendante de X (t) et prenant les valeurs + 1 et -1 avec une probabilité

égale 1/2. Le processus Y (t) ainsi formé est appelé signal télégraphique aléatoire. Puisque

E{a} =0 et E{a?} = 1, la moyenne de Y(t) est égal a E{a}E{x(t)} =0 et son

autocorrélation est donnée par :
E{Y (t)) Y(t2)} = E{@®}E{X (t,) X(t;)} = e72A0r~tel

On note que lorsque t — oo les processus X (t) et Y (t) ont des statistiques asymptotiquement

égales.
b) Somme de deux processus de Poisson

Si X;(t) et X,(t) représentent deux processus de Poisson indépendants avec les parametres
At et A,t, respectivement, il s'ensuit facilement que leur somme X, (t) + X, (t) est aussi un

processus de Poisson de paramétre (4; + 4,)t.
c) Différence de deux processus de Poisson

Qu'en est-il de la différence de deux processus de Poisson indépendants ? Que dire de la

fonction de répartition d'un tel processus ?

Posons :
Y () = X, () — X, (t) (4.93)

Alors

PIY(D) =n} = ) PUXL(D) = n+ KIPUX(D) = K}
k=0



_ ie_“ O™, G
B (n+k)! (k)!

k=0

— o~Qaid)t (ﬂ)n/z (&)™
Ay i k!'(n+k)!

/
= oGt ()" G TE) n=0,41,.. (4.9)

Ou;
. © (x/z)n+2k
(O £ Yo o (4.95)
représente la fonction de Bessel modifiée d'ordre n. De (4.88) et (4.93) , il s'ensuit que :

Ainsi, la différence de deux processus de Poisson indépendants n'est pas un processus de
Poisson. Cependant, il est facile de montrer qu'une sélection aléatoire a partir d'un processus de

Poisson donne un processus de Poisson !
d) Sélection aléatoire des points de Poisson

Soit X(t) ~» P(At) représentant un processus de Poisson de parametre At comme
précédemment, et supposons que chaque occurrence de X(t) soit étiquetée indéependamment
avec la probabilité p. Soit encore Y (t) le nombre total d'événements marques dans l'intervalle

[0, t] et soit Z(t) le nombre total d'événements non marqués dans [0, t]. Puis

Y(t) ~» P(Apt) Z(t) ~» P(Apt) (4.97)
Ou;qg=1-p
Preuve. Soit A,, représente les « n événements se produisant dans [0,t] et k d'entre eux sont
étiquetés ». Puis

P(A,) = P{ k événements sont étiquetés|X(t) = n}

_ (Z) pkqn-k e"“@

n!

De plus, I'événement {Y (t) = k} représente l'union mutuellement exclusive des événements

Ay, Agyq, ... DONC :



tel que :

k r
ot (Ap t) z(/l qt)
e G _ ape @0" g5 (4.98)
k! k!
représente un processus de Poisson de parametre A,t. De méme, les événements non marqués

Z(t) forment un processus de Poisson indépendant avec le parametre 4,t.

Exemple 4.15

Si les clients arrivent a un guichet de poste selon un processus de Poisson avec le
parametre At, et la probabilité qu'un client soit un homme est de p, alors les clients masculins
forment un processus de Poisson de parametre A, ¢, et les clients féminins forment un processus
de Poisson indépendant de parametre A,t (pour une sélection déterministe de points de

Poisson.)

On montre que la probabilité conditionnelle d'un sous-ensemble d'un événement de Poisson est

en fait binomiale.

e) Points de Poisson points et la loi binomiale :

Considérons, pour t; < t, , la probabilité conditionnelle suivante :
P{X(t)) = k|X(ty) = n}

_P{X(t1) = k|X(t,) = n}

P{X(t) = n}
B P{X(t;) = k,N(t;,t,) =n—k}
B P{X(ty,) = n}
e M1(Aty)* e A=t [A(t,_t,) ]k n!
k! (n—k)! e M2 (At,)"

:(Z)(%)k( —z—:)"_k 'v(nz—z) k=012, ..,n (4.99)



ce qui prouve I’affirmation précédente. En particulier, soit k = n = 1 ,et soit A le sous-

intervalle au début d'un intervalle de longueur T. Alors de (4.99), on obtient :

P{N(d) = kIN(t,t+T) = 1} =

~| B>

Mais I'événement {N (A) = 1} est équivalenta{t < t; < t + A}, ou; t;désigne l'instant d'arrivée

aléatoire. La derniére expression représente donc :

P{{t<t;<t+ M}IN(tEt+T) = 1}

SN

(4.100)

C'est-a-dire, étant donné qu'une seule occurrence de Poisson a eu lieu dans un intervalle de
longueur T. La densité de probabilité conditionnelle de Il'instant d'arrivée correspondant est
uniforme dans cet intervalle. En dautres termes, une arrivée de Poisson est également
susceptible de se produire n'importe ou dans un intervalle T, étant donné qu'une seule

occurrence a eu lieu dans cet intervalle.

Plus généralementsit; <t, < -+ < tn < T represente les n instants d'arrivee d'un processus

de Poisson dans I'intervalle [0, T], alors la fonction de répartition conditionnelle jointe de

t; <t, <--< tn jusquaceque X(T) = nsesimplifieen:
P{t; < x1,t; < xp, o, ty < x| X(T) = n}

P{t; < xq,t; < xp, ., ty < x,|X(T) = n}
P{X(T) = n}

- (/1T) Z 1_[ Ay L A(xl xl 1)]
e—AT

{mqmy,..my} i=

! — — X,_{\Mn
- Z my! m?! emy! (%)ml (xz T xl)m2 (#)m

{mymay,..mp

(4.101)

avec x, = 0. La sommation porte sur tous les entiers non négatifs {mljmz,..,mn} pour
lesquels my+m,+..+m, = netm;+m,+..+m;, > k = 1,2,...,n — 1. Laformule ci-dessus
en (4.101) représente la distribution de n points indépendants classés par ordre croissant ; dont

chacun est uniformément réparti sur l'intervalle [0,T]. Il s'ensuit qu'un processus de Poisson



X (t) distribue des points au hasard sur l'intervalle infini [0,c0]. De la méme maniere que la

variable aléatoire uniforme distribue des points dans un intervalle fini.
Exemple 4.16 : Impulsions de Poisson

Sil’entrée X (t) d’un différentiateur est un processus de Poisson, la sortie résultante Z(t) est

un train d’impulsions (Fig.4.9)
Zt) =26 (t—t) (4.102)
On mentionne que, Z(t) est un processus stationnaire avec une moyenne
Ny =4 (4.103)
et une autocorrélation
Rz, (1) = 22 4+ 26(7) (4.104)
Preuve :

La premiére équation s’en suit de (4.69) car ny(t) = At. Pour prouver la seconde, nous

observons que [voir(4.87)]

RXX (tll tz) = /12 tltZ + ){min(tl, tz) (4105)
x(1) ' Redt), 1) R«tﬂ*
=0 Ay
=L bttt .
e d - s - -
0 y | a 0 Y ot 7
(a) ®)

Figure 4.9 : Dérivation d’un processus de poisson
Et comme Z(t) = X'(t), (4.70) donne :

Ryx(ty,t3)

2, = A%t + AU(ty, t,)

Rzz(ty,t;) =



Le graphe de cette fonction est donné par la Fig. 4.9b, ou la variable indépendante est t,.
Comme nous voyons, elle est discontinue en t; = t, et sa dérivée par rapport t; contient
I’impulsion A8(t; — t;). Ceci donne [voir (4.71)] :

Rxz(ty,t3)

— 92 _
Ge =N — )

Rzz(ty,t;) =

4.6.2. Processus gaussien

I1'y a plusieurs facons de définir un processus gaussien (normal). On présente ici deux de ces
définitions :
e Définition 1 : Un P.S. est gaussien si toute combinaison linéaire (de coefficients qui ne
sont pas identiquement nuls) est une variable aléatoire gaussienne.

e Définition 2:Un P.S. est gaussien si ses densités d'ordre n sont conjointement

gaussiennes, pour toutes valeurs de n.

En adoptant la deuxiéme définition, un processus X(t) est dit normal, si les variables
aléatoires X (t,), ..., X(t,) sont conjointement normales (gaussiennes) pour tout n et t4, ..., t,.
Les statistiques d'un processus normal sont complétement déterminées en fonction de la

moyenne n(t) et de l'auto-covariance C(t,, t;).

En effet, puisque E{X(t)} =n(t) aZ(t) = C(t,t), on conclut que la densité du
premier ordre fy(x.t) de X(t) est la densité normale N[n(t),/C(t.t)]. De méme, puisque la
fonction r(t4, t,) dans (4.114) est le coefficient de corrélation des variables aléatoires X (¢t;) et

X(t), ladensité du second ordre fy (xq, x5; tq,t;) de X(t) est la densité conjointement normale

suivante :

N[n(ty), n(ty); \/C(tp ty), \/C(tz: t2);r(t1,t2)] (4.106)

La fonction caractéristique d'ordre n du processus X (t) est donnée par :

exp {j Zin(t)w; — > Lok €t 1) w0} (4.107)

Son inverse fx (x4, ..., Xp; tq, ..., ty) €st la densité d'ordre n de X(t)



4.6.2.1. Théoréme d'existence

Etant donné une fonction arbitraire n(t) et une fonction de densité de probabilité
C(t;,t;), on peut construire un processus normal de moyenne 7n(t) et dauto-covariance
C(ty,t;). Ceci s'ensuit si on utilise en (4.107) les fonctions données n(t) et C(t,, t,). L'inverse
de la fonction caractéristique résultante est une densité car la fonction C(t,, t,) est une densité
de probabilité par hypothése.

4.6.2.2. Les propriétés générales d'un processus stochastique

Les propriéetes statistiques d'un processus stochastique réel X(t) sont complétement

déterminées par sa fonction de répartition d’ordre n :

F(xXq, ey Xy ty,y s ty) = PLX(t1) < x4, .., X () < x3} (4.108)

Les statistiques conjointes de deux processus réels X (t) et Y(t) sont déterminees a partir de la

fonction de répartition conjointe des variables aléatoires suivantes :

X(ty), .. X(t,),Y(t"),..,.Y({t' )

Le processus complexe Z(t) = X(t) + jY(t) est spécifié en termes de statistiques conjointes
des processus réels X(t) et Y(t). Un processus vectoriel (processus a n dimensions) est une

famille de n processus stochastiques.
e Corrélation et covariance.

L'autocorreélation d'un processus X(t), réel ou complexe, est par définition la moyenne du

produit X(t,)X*(t,). Cette fonction sera notée R(t,,t,) ou Ry(t,t;) OU Ryx(ty,t;). Ainsi,

Ryx(t1,ty) = E{X(t)X*(t,)} (4.109)

ou le terme conjugué est associé a la deuxiéme variable dans Ryy (t;,t,). Il en résulte que

R(ty,t;) = R*(ty,t3) (4.110)

Notons, en outre, que ;



Ryx(t,0) = E{IX(O)*[} (4.111)

Les deux dernieres équations sont des cas particuliers de cette propriété : L'autocorrélation
Ry (t,, t,) d'un processus stochastique X (t) est une fonction définie positive, c'est-a-dire pour

tout a; et aj ona:
Xij@aj R(t, ) 2 0 (4.112)

Ceci résulte de 1’identité suivante :

Z a; X (t;)

l

2

= Z a;a; E{X(t)X*(t;)}

]

0<E

Exemple 4.17

a) Si X(t) = ae/®t  alors
R(ty,t;) = E{aej“’tla*e‘j“’tZ} = E{|a|2}ejw(t1—tz)

b) Supposant que les variables a; sont un-corrélées avec une moyenne nulle et une

X(t) = Z a;el@it

i

variance o7. Si

Alors (4.109) donne :
R(t,t,) = Z o2eioiti=t)

i

e L’auto-covariance d’un processus
L’auto-covariance C(t,, t,) d’un processus X (t) est la covariance des variables aléatoires X (t)
et X(t,) exprimée par :
C(ty,ty) = R(ty,t2) —n(t)n"(t2) (4.113)

Dans (4.113) , n(t) = E{X(t)} est la moyenne de X(t). Le coefficient de corrélation du

processus X (t) est le rapport suivant :

C(tli tz)
\/C(tli tl)C(tZJ tZ)

7/'(tl' tz) =



(4.114)

Remarque : L’auto-covariance C(t;,t,) d’un processus X(t) est l’autocorrélation du

processus centré X(t) = X(t) — n(t).

Le coefficient de corrélation r(t;,t,) de X(t) est ’autocovariance du processus normalisé

X()/JC(t,b).
[r(ty, t,)] <1 r(t,t) =1

Exemple 4.18
Si S= ffX(t)dt alors S—n, = ff)?(t)dt

Ou; X(t) = X(t) — nx(b).

En utilisant (4.84), nous concluons que :

b rb
ai = E{l S —nsI*} = [, J, Cx(ty, tz)dt,dt,
L’inter-corrélation de deux processus X (t) et Y (t)est la fonction suivante :
Ryy(ty,t;) = E{X(t))Y"(t,)} = R*yx(ty,t3)

De la méme maniére, I’inter covariance entre deux processus est définie par :

Cxy (t1,t5) = E{X(t)Y* ()} — nx (t)ny (t2)
= Ryy (t1,t2) — nx(t)ny (t,)

Deux processus sont dits (mutuellement) orthogonaux si :

Ry, (t,,t,) = 0 pourtoutt, ett,

Ils sont un-corrélés si :

Cxy(ty,t;) = 0 pourtout t, et t,

(4.115)

(4.116)

(4.117)

(4.118)

(4.119)

(4.120)



4.6.2.3. Processus a-dépendants

En général, les valeurs X(t;) et X(t,) d'un processus stochastique X(t) sont
statistiquement dépendantes pour tout t; et t,. Cependant, dans la plupart des cas, cette

dépendance diminue au fur et a mesure que |t; — t,| — oo. Ceci conduit au concept suivant :

Un processus stochastique X (t) est dit a-dépendant si toutes ses valeurs X (t) pourt < t, et

pourt > t, + a sont indépendantes les unes des autres. De I3, il s'ensuit que :

C(t;,t;) =0 pour [t; —t,| >a (4.121)

Un processus X(t) est appelé a-dépendant de la corrélation si son autocorreélation
satisfait (4.121). Clairement, si X(t) a-dépendant de la corrélation, alors toute combinaison
linéaire de ses valeurs pour t < t, n'est pas corrélée avec toute combinaison lineaire de ses

valeurs pourt > t, + a.
4.6.2.4. Bruit blanc

On dira qu'un processus V (t) est un bruit blanc si ses valeurs V(t;) et V(t;) ne sont pas

corrélées pour tout ¢; et ¢; # t; c.-a-d. C(t;,t;) =0 ¢t #¢;

Comme nous l'expliquons plus tard, l'auto-covariance d'un processus de bruit blanc non trivial

doit étre de la forme suivante :
C(ty,ty) = q(t1)6(t; — ty) qt) =0 (4.122)

Si les variables aléatoires V (t;) et V(t;) sont non seulement non corrélées mais aussi

indépendantes, alors V(t) sera appelé strictement bruit blanc. Sauf indication contraire, on

supposera que la moyenne d'un processus de bruit blanc est identiqguement 0.
Exemple 4.19
Supposons que V (t) est un bruit blanc et
X(@®) = [, v(a)da (4.123)

En insérant (4.122) dans (4.123) , on obtient :



EX?O} = [, [, a@)d( 6 — t)dtd ty = [[q(t)dt,  (4.124)

Car
t
j §(t;—ty)dt, =1 pour0< t; <t
0

Exemple 4.20

Supposons que X(t) est processus normal avec :

n(t) =3 C(ty, t,) = 4e~02Iti—t2l

a) Trouver la probabilité que X (5) < 2.
Clairement, X(5) est une variable aléatoire normale de moyenne n(5) = 3 et de variance
C(5,5) = 4. Donc :

P{X(5)<2}=G (— %) = 0.309

b) Trouver la probabilité que |X(8) — X(5)| < 1.
La différence S = X(8) — X(5) est une variable aléatoire normale de moyenne
n(8) —n(5) = 3 — 3 = 0 et de variance

€(8,8) + C(5,5) —2C(8,5) = 8(1 — e~ %) = 3.608.

Donc ;

P{IX(8) — X(5)| < 1} = 2G (— %) =04

4.6.3. Processus de Markov

Les processus de Markov jouent un réle important dans la théorie du traitement du signal, parce
qu'ils conduisent, dans beaucoup de circonstances, a des filtres de mémoire finie. On présente

ici uniquement la définition pour des processus discrets (ensemble T dénombrable).

4.6.3.1. Définition

Un processus X(t),t € T est de Markov si

pX(k+1)/X(k)X(k—1)--=pX(k+1)/X(k) (4.125)



L'équation (4.125) décrit de facon formelle la propriété suivante :
Le futur et le passé sont conditionnellement indépendants, étant donné le présent.

Quand les variables aléatoires X(k) sont discrétes, définies dans un méme ensemble
dénombrable N, on appelle le processus de Markov une chaine de Markov. Ces processus sont

complétement caractérisés par :

e Ladistribution de leur valeur initiale :
e L’ensemble de probabilités conditionnelles :
p{X(0) = a;/X(k — 1) = a;} = p;;(k),V a;,a; EN (4.127)

AVEC ;

Zp?=1 et Zpij(k)=1,\7’j,\7’k=1,2,---
i i

Si les probabilités p;;(k) = p;; ne dépendent pas de I’instant k considéré, on dira qu’il s’agit

d’une chaine de Markov de probabilité de transition stationnaire.

La probabilité pour que la chaine prenne la valeur X (k) = a; a I’instant k, sachant que sa valeur

a I’instant n est X(n) = a; , est donnée par :

pij(k,n) = p{X (k) = a;/X(n) = a;} = Xg piq (k, P)pg;(r, 1) (4.128)

ou r est un instant quelconque pris entre k et n. La formule de (4.128) est connue par le nom
d’équation de Chapman Kolmogorov, et joue un role fondamental dans I’étude des processus

Markov.

Pour des chaines avec des transitions stationnaires, la probabilité dépend uniquement de la

distance entre les deux instants considérés :
pij(k —n) = p{X(k) = a;/X(n) = aj} = X pig(k — pg;(r — n) (4.129)

Sionpose, m=k—rets=r—n(k—n=m+s), onobtient :

pij(m + s) = X4 Dig(M)py;(s) (4.130)



Considérons maintenant le cas ou I’ensemble de valeurs prises par la chaine est fini.

Soit P la matrice M x M dont les entrées sont les valeurs de la probabilité de transition de la

chaine :

pll le
p_ (4.131)

le pMM

Alors, la densité de transition P, formée par les valeurs de la probabilité de transition en n

étapes, est donnée par la puissance n de la matrice P :

pP™M =p" (4.132)

Les équations précedentes permettent le calcul de la loi de probabilité pour n’importe quel

instant k :
p? =p{X(k) = a;} = P™Mp” (4.133)
(k)
1
En définissant, p comme étant le vecteur p® = [ : |, on obtient I"équation suivante :
k
0
p) = pyp0) = prny©) (4.134)

4.6.3.2. Fermeture et ensembles fermés
On dit que I’état a; peut étre atteint a partir de I’état a;, s’il existe un n >0 tel que : pi(jn) >0,
o Définitions

- Un sous ensemble C de I’espace d’états N est fermé si aucun état en dehors de C ne peut
étre atteint a partir d’un état dans C. Soit B un sous ensemble arbitraire de N. On appelle
fermeture de B le plus petit sous ensemble de N contenant B qui est fermé. Si la fermeture
d’un élément a; de N coincide avec a;, alors on dit que I’état a; est absorbant.

- Une chaine de Markov est irréductible si le seul sous ensemble fermé de N est N.



- Le sous ensemble C est fermé si et seulement si :

pij=0,a,¢Ca;€C (4.135)

Dans ce cas, on peut éliminer toutes les lignes et colonnes correspondantes aux états en dehors
de C, et la matrice résultante est encore une probabilité de transition pour une chaine réduite,

qui a pour espace d’états N.
Exemple 4.21

Considérons une chaine de Markov avec la matrice de transition suivante :

(4.136)

_U
Il
O 0o oo ok oo o
O O N U1 O OO w o
O 4 O O O O O w o
U1 O O O O O O O U
O O 0O 0O yo o w o
O o F oo oo oo
O O P oo oo oo
O 0O 0o o oo kP oo
W O O O O O o o

[
L

Remarques concernant cette matrice :

- On a9 lignes et 9 colonnes, donc on a 9 états dans la chaine de Markov et cette matrice
donne les probabilités de transitions entre ces états.

- L’état 7 ne peut conduire qu’a lui-méme. Il s’agit donc d’un état absorbant : si la chaine
rentre dans cet état, elle y restera toujours.

- L’état 6 peut conduire a lui-méme ou a I’état 7. Donc, C, = {e,,e, } €st un ensemble fermé.

- L’état 1 ne peut conduire qu’a I’état 4, et que celui-ci ne peut conduire qu’a 1 de nouveau
ou a 9. Finalement, 1’état 9 peut de nouveau conduire a 1 ou rester dans le méme état.
L’ensemble C, = {e,,e,,e, }CONstitue donc un ensemble fermé.

- L’état 2 ne peut conduire qu’aux états 6 ou 7. C, = {e,,e,, e, } st donc aussi un ensemble
fermé.
- Les autres ensembles fermés de cette chaine sont :

C4 2{62,63,66,67,68}, Cs 2{62,65,66,87}-



- En changeant la numérotation des états (6, 7, 2, 5, 3, 8,1,4,9) permet d’écrire la matrice de

transition de cette chaine de la forme suivante :

(4.137)

-
Il
O OO0 0o o0 o o o k-
O 0O 0 0o o oo o k-
O O O O O O w vl v
O O OO O gy w O o
O OO0 4O o w o o
O O 0O o P oo oo
o P oo o oo oo
o O ;1 ©O O O o o o
WO O oo o o o

Si une chaine a un sous ensemble fermé de dimension r, alors on peut toujours réordonner les
états de facon a écrire sa matrice de transition sous la forme suivante :

_|Q v
P—{O v} (4.138)

ou la matrice Q, est de dimension r X r et V est une matrice carrée de dimension M — r. Dans
ce cas, on verifie facilement que :

_ Qn Un
P — : V"] (4.139)

Ceci indique qu’on peut étudier séparément I’évolution des états dans un ensemble fermé et

dans son complément.

4.6.3.3. Autres définitions

a) Un état a; admet une période T > 1, si pl.(?) = 0,n # kT, e T est le plus grand entier avec
cette propriété.

b) Soit fij(") la probabilité pour que, depuis I’état i, le premier retour a I’état j soit obtenu aprés

(0 _

n étapes. Par définition, fij 0. Alors, la probabilité pour que la chaine retourne a i apres

avoir passé par j est donnée par :
fi => " (4.140)

n=1
et le nombre moyen d’étapes nécessaires (temps moyen de récurrence) pour y retourner est



Hij = z nfij(n) (4.141)
n=1

Quand fij =1, les fij(n) représentent une loi de probabilité, et on I’appelle la distribution du

premier temps de passage.

c) Un état a; est permanent si fij =1 et transitoire si fij <1. Un état persistant (permanent)

est dit nul si son temps moyen de récurrence est infini. Un état apériodique persistant et non
nul est dit : ergodique.

4.7.  Statistiques d’ordre supérieur (Moments Généraux).

Les moments de tout ordre de la sortie Y(t) d’un systéme linéaire peuvent étre
exprimés en fonction des moments correspondants a I’entrée X (t). Comme illustration, nous
allons déterminer le moment du troisieme ordre Ryyy (t1,t5, t3) = E {Y,(t)Y,(t)Y5(t)} de
Y (t) en fonction du moment du troisiéme ordre Ryyx (4, t,, t3) de X(t). En procédant comme

dans (4.60), nous obtenons :
E {X(t)X(£)Y (t5)} = L3[E {X (t)X (£2)X (¢3)3]
= [ Ryxx(ts, t, ts —)R()dy (4.142)
E {X(t)Y(£)Y (t3)} = Lo [E {X (t) X ()Y (£3)3]
= [0, Ruxy (b1, t, — B, t)R(B)AB (4.143)
E{Y(t)Y ()Y (t3)} = Ly [E {X(£)Y (¢)Y (¢3)3]
= |7 Ryyy(t; — @, ty, t3)h(a)da (4.144)
On remarque que pour I’évaluation de Ryyy(tq, t,, t3) en des instants spécifiques t,, t, et t5 ,

la fonction Ryyx(ty,t,,t3) doit étre connue pour tout t,, t, et ts.
4.7.1. Accroissements non corrélés et indépendants

Si les accroissements X (t,) — X(t;) et X(t,) — X(t3} d'un processus X (t) sont non corrélés
(indépendants) pourtoutt; < t, < t; < t,,alorsondit que X(t) est un processus avec des

accroissements non corrélés (indépendants). Le processus de Poisson est un processus a



accroissements indépendants. L'intégrale (4.123) du bruit blanc est un processus avec des

accroissements non corrélés.
4.7.2. Processus indépendants

Si deux processus X (t) et Y (t) sont tels que les variables aléatoires X (t,), ..., X(t,,) et
Y(t'y),..,Y(t',) sont indépendantes l'une de l'autre, alors ces processus sont appelés
indépendants.

4.7.3. Processus ponctuel et renouvelable

Un processus ponctuel est un ensemble de points aléatoires t; ; sur l'axe du temps. A
chaque processus ponctuel on peut associer un processus stochastique X (t) égal au nombre de
points t; dans l'intervalle [0,t]. Un exemple est le processus de Poisson. A chaque processus

ponctuel ¢; on peut associer une suite de variables aléatoires Z,, telle que :

Zl = tl ZZ = tz - tll ...,Zn = tTl - tn—l (4145)

Ou ; t, est le premier point aléatoire a droite de l'origine. Cette séquence est appelée processus
de renouvellement. Un exemple est I'histoire de la vie des ampoules qui sont remplacées des
qu'elles tombent en panne. Dans ce cas, Z; est le temps total de fonctionnement de la i
ampoule et t; est le temps de sa panne. Nous avons ainsi établi une correspondance entre les
trois concepts suivants (Fig.4.10) : (a) un processus ponctuel t;, (b) un processus stochastique
a états discrets X(t) croissant par pas unitaires aux points t; , ( €) un processus de

renouvellement constitué des variables aléatoires Z; ettelque : t, = Z; +...+ Z,.

X))

-

t,, : Processus ponctuel.

X, : Processus a états discrets

' | . Z,, . Processus de renouvellement
~ L

1k t, =27, + -+ 7,
— S VS VIR VI VI
0 |
2o S
t - ty

Figure 4.10 : processus ponctuel et renouvelable



4.8. Conclusion

Dans ce chapitre, nous avons commencé par présenter les notions de processus
stochastiques. Ensuite, un rappel sur les stationnarités au sens large, au sens strict et de

I’ergodicité est donné.

Les statistiques de la sortie d'un systeme, a entrée stochastiques, peuvent étre exprimées en
termes de statistiques de l'entrée. Une analyse de la réponse d’un tel systéme a été faite en
examinant des opérateurs fondamentaux tels que: la dérivée, I’intégrale et d’autres

transformations lin€aires d’un processus stochastiques stationnaire.

On ne peut pas terminer ce cours sans donner des exemples de processus stochastiques les plus
rencontrés pour décrire les phénomenes aléatoires existant dans la nature. Parmi les fameux
processus stochastiques, nous avons mentionné : le processus de Poisson, le processus gaussien

et le processus de Markov.

Avant de cloturer ce chapitre, nous avons présenté des statistiques d’ordre supérieur concernant

les processus stochastiques.



	Ceci indique qu’on peut étudier séparément l’évolution des états dans un ensemble fermé et dans son complément.

