
CHAPITRE 4 

PROCESSUS STOCHASTIQUES 

1.1.Introduction 

Un processus stochastique 𝑋(𝑡) est une famille de variable aléatoire c’est à dire à tout ξ (est 

l'ensemble de tous les résultats expérimentaux) on associe une fonction 𝑋(𝑡, ξ). Ainsi un 

processus stochastique est une famille de fonctions temporelles dépendant du paramètre ξ ou, 

de manière équivalente, une fonction de t(ensemble ℛ de nombres réels) et ξ.  

1.2. Notions de processus stochastiques 

Si l'expérience est réalisée 𝑛 fois, alors 𝑛 fonctions 𝑋(𝑡, 𝜉𝑖 ) sont observées, une pour chaque 

essai (Fig. 4.1). 

 

Figure 4.1 : Famille de fonctions d’un processus stochastique. 

1.2.1. Quelques définitions 

 

- Si 𝑡 ∈  ℛ (continu), alors 𝑋(𝑡) est un processus en temps continu et si 𝑡 ∈  ℕ (entier), alors 

𝑋(𝑡) est un processus à temps discret. Un processus à temps discret est donc une séquence 

de variables aléatoires. Une telle séquence sera notée 𝑋[𝑛]. Un processus 𝑋(𝑡) est à états 

discrets si ses valeurs sont dénombrables. Sinon, il s'agit d'un processus à état continu.  

- Nous utiliserons la notation 𝑋(𝑡)pour représenter un processus stochastique omettant, 

comme dans le cas de variables aléatoires, sa dépendance de ξ. Ainsi 𝑋(𝑡) a les 

interprétations suivantes : 

1. C'est une famille (ou un ensemble) de fonctions 𝑋(𝑡, 𝜉). Dans cette interprétation, 𝑡 et 

𝜉 sont des variables.  



2.  C'est une fonction temporelle unique (ou un échantillon du processus donné). Dans ce 

cas, t est une variable et 𝜉 est fixe.  

3. Si t est fixe et 𝜉 est variable, alors 𝑋(𝑡, 𝜉) est une variable aléatoire égale à l'état du 

processus donné à l'instant t. 

4.   Si 𝑡  𝑒𝑡 𝜉 sont fixes, alors 𝑋(𝑡, 𝜉) est un nombre. 

 

4.2.2. Quelques exemples de processus stochastiques 

Exemple 4.1 : Un exemple physique de processus stochastique est le mouvement de 

particules microscopiques en collision avec les molécules d'un fluide (mouvement brownien). 

Le processus résultant 𝑋(𝑡) concerne les mouvements de toutes les particules (ensemble). Une 

seule réalisation 𝑋(𝑡, 𝜉𝑖) de ce processus (Fig. 4.2.a) est le mouvement d'une particule 

spécifique (échantillon). 

 

 

Figure 4.2 : Exemples de processus stochastiques. 

Exemple 4.2 : Un autre exemple est la tension 𝑋(𝑡) = 𝑟𝑐𝑜𝑠(𝜔𝑡 + 𝜑) d'un générateur 

alternatif d'amplitude aléatoire r et de phase 𝜑. Dans ce cas, le processus 𝑋(𝑡) consiste en une 

famille d'ondes sinusoïdales pures et un seul échantillon est la fonction (Fig, 4.2.b) 

𝑋(𝑡, 𝜉𝑖) = 𝑟(𝜉𝑖)𝑐𝑜𝑠(𝜔𝑡 + 𝜑(𝜉𝑖))                         (4.1) 

 

Par définition, les deux exemples sont des processus stochastiques. Il existe cependant 

une différence fondamentale entre eux. Le premier exemple (régulier) consiste en une famille 

de fonctions qui ne peuvent être décrites en termes d'un nombre fini de paramètres. 



De plus, le futur d'un échantillon 𝑋(𝑡, 𝜉)  de 𝑋(𝑡) ne peut être déterminé en fonction de son 

passé. Enfin, sous certaines conditions, les statistiques d’un processus régulier 𝑋(𝑡) peuvent 

être déterminées en termes d'un seul échantillon. 

Le deuxième exemple (prévisible) consiste en une famille d'ondes sinusoïdales pures et il 

est complètement spécifié en termes de variables aléatoires 𝑟 et 𝜑. De plus, si 𝑋(𝑡, 𝜉) est connu 

pour 𝑡 ≤  𝑡𝑜, alors il est déterminé pour t > to. Enfin, un seul échantillon 𝑋(𝑡, 𝜉) de 𝑋(𝑡) ne 

spécifie pas les propriétés de l'ensemble du processus car il ne dépend que des valeurs 

particulières 𝑟(𝜉) et 𝜑(𝜉) de 𝑟 et 𝜑. Une définition formelle des processus réguliers et 

prévisibles est donnée dans les sections qui suivent. 

4.3. Statistiques des processus stochastiques 

4.3.1. Fonction de répartition et densité de probabilité 

Un processus stochastique est une infinité non dénombrable de variables aléatoires, une 

pour chaque 𝑡. Pour un 𝑡 spécifique, 𝑋(𝑡) est une variable aléatoire de fonction de répartition : 

𝐹𝑋(𝑥, 𝑡) = 𝑃{𝑋(𝑡) ≤ 𝑥)}                                         (4.2) 

 

Cette fonction dépend de t, et elle est égale à la probabilité de l'événement {𝑋(𝑡) ≤ 𝑥)} 

consistant en tous les résultats t tels que, à l'instant spécifique t, les échantillons 𝑋(𝑡, 𝜉) du 

processus donné ne dépassent le nombre 𝑥. La fonction 𝐹𝑋(𝑥, 𝑡) sera appelée la fonction de 

répartition du premier ordre du processus 𝑋(𝑡). Sa dérivée par rapport à 𝑥 : 

 

𝑓𝑋(𝑥, 𝑡) =
𝜕𝐹𝑋(𝑥, 𝑡)

𝜕𝑥
   

                                            (4.3) 

est la densité de probabilité du premier ordre de 𝑋(𝑡). 

Si l'expérience est réalisée 𝑛 fois, alors 𝑛 fonctions 𝑋(𝑡, 𝜉𝑖) sont observées, une pour 

chaque essai (Fig. 4.1). En notant 𝑛𝑖(𝑥) le nombre d'essais tel qu'à l'instant t les ordonnées des 

fonctions observées ne dépassent pas 𝑥 (traits pleins), on conclut que : 

𝐹𝑋(𝑥, 𝑡) ≅
𝑛𝑖(𝑥)

𝑛
   

                 (4.4) 



La fonction de répartition du second ordre du processus 𝑋(𝑡) est la distribution jointe : 

 

𝐹𝑋(𝑥1, 𝑥2, 𝑡1,𝑡2) = 𝑃{𝑋(𝑡1) ≤ 𝑥1, 𝑋(𝑡2) ≤ 𝑥2)}             (4.5) 

des variables aléatoires 𝑋(𝑡1) et 𝑋(𝑡2).  

La densité de probabilité correspondante est égale : 

 

𝑓𝑋(𝑥1, 𝑥2, 𝑡1,𝑡2) =
𝜕2𝐹𝑋(𝑥1, 𝑥2, 𝑡1,𝑡2)

𝜕𝑥1𝜕𝑥2
   

                                       (4.6) 

La fonction de répartition du nieme ordre du processus 𝑋(𝑡) est la distribution jointe  

𝐹𝑋(𝑥1, … , 𝑥𝑛 , 𝑡1, … , 𝑡𝑛)  des variables aléatoires  𝑋(𝑡1), …,  𝑋(𝑡𝑛). 

4.3.2. Propriétés du second ordre 

  Pour la détermination des propriétés statistiques d'un processus stochastique, la 

connaissance de la fonction 𝐹𝑋(𝑥1, … , 𝑥𝑛, 𝑡1, … , 𝑡𝑛)   est nécessaire pour tout 𝑋𝑖, 𝑡𝑖 et 𝑛. 

Cependant, pour de nombreuses applications, seules certaines moyennes sont utilisées, 

notamment l’espérance de 𝑋(𝑡) et de  𝑋2(𝑡). Ces quantités peuvent être exprimées en termes 

de propriétés du second ordre de 𝑋(𝑡) définies comme suit : 

a) Moyenne 

 La moyenne 𝜂(𝑡) de 𝑋(𝑡) est l’espérance de la variable aléatoire 𝑋(𝑡)  définie comme suit : 

𝜂(𝑡) = 𝐸{𝑋(𝑡)} = ∫ 𝑥 
+∞

−∞
𝑓𝑋 (𝑥, 𝑡)𝑑𝑥                   (4.7) 

b) Autocorrélation  

 L’autocorrélation 𝑅(𝑡1, 𝑡2) de 𝑋(𝑡) est l’espérance du produit 𝑋(𝑡1)𝑋(𝑡2) donnée par : 

 𝑅(𝑡1, 𝑡2) = 𝐸{ 𝑋(𝑡1)𝑋(𝑡2)} = ∫ ∫ 𝑥1𝑥2
+∞

−∞

+∞

−∞
𝑓𝑋(𝑥1, 𝑥2, 𝑡1,𝑡2)𝑑𝑥1𝑑𝑥2        (4.8) 

La valeur de 𝑅(𝑡1, 𝑡2) sur la diagonale 𝑡1 = 𝑡2 = 𝑡 est la puissance moyenne de 𝑋(𝑡) : 

𝐸{𝑋2(𝑡)} =  𝑅(𝑡, 𝑡)                                              (4.9) 

L’auto-covariance 𝐶(𝑡1, 𝑡2) de 𝑋(𝑡) est donnée par : 



𝐶(𝑡1, 𝑡2) = 𝑅(𝑡1, 𝑡2) − 𝜂(𝑡1)𝜂(𝑡2)                 (4.10) 

et sa valeur C(t,t)  sur la diagonale 𝑡1 = 𝑡2 = 𝑡  est égale  à la variance de 𝑋(𝑡) : 

𝜎𝑋
2(𝑡) = 𝐸{𝑋2(𝑡)} − (𝐸{𝑋(𝑡)})2                       (4.11) 

.  

Exemple 4.3 : soit un processus stochastique décrit par le signal déterministe suivant : 

 𝑋(𝑡)  =  𝑓(𝑡).  Dans ce cas, on a : 

               𝜂(𝑡) = 𝐸{𝑓(𝑡)} = 𝑓(𝑡)           𝑅(𝑡1, 𝑡2) = 𝐸{𝑓(𝑡1)𝑓(𝑡2)} = 𝑓(𝑡1)𝑓(𝑡2) 

Exemple 4.4 : Supposons que 𝑋(𝑡) est un processus avec : 

 

                           𝜂(𝑡) = 3              𝑅(𝑡1, 𝑡2) = 9 + 4𝑒−0.2|𝑡1−𝑡2| 

 Nous déterminerons la moyenne, la variance et la covariance des variables aléatoires  

𝑍 =  𝑋(5) et  W = X(8). 

Clairement, 𝐸{𝑍} = 𝜂(5) = 3 et  𝐸{𝑊} = 𝜂(8) = 3. De plus, 

         𝐸{𝑍2} = 𝑅(5,5) = 13               𝐸{𝑊2} = 𝑅(8,8) = 13   

 𝐸{𝑍. 𝑊} = 𝑅(5,8) = 9 + 4𝑒−0.6 = 11.195 

Variances : 

 𝜎𝑍
2 = 𝐸{𝑍2}−(𝐸{𝑍})2 = 13 − 32 = 4    𝜎𝑊

2 = 𝐸{𝑊2}−(𝐸{𝑊})2 = 13 − 32 = 4 

Ainsi 𝑍 et 𝑊 ont la même variance 𝜎𝑍
2 = 𝜎𝑊

2 = 𝜎2 = 4  et leur covariance est égale à 

 𝐶(5, 8) = 𝐸{𝑍. 𝑊} − 𝐸{𝑍}. 𝐸{. 𝑊} = 11.195 − 9 =  2,195.  

4.3.3. Egalité de deux processus stochastiques 

Deux processus stochastiques 𝑋(𝑡) et 𝑌(𝑡)  sont égaux (partout) si leurs échantillons 

respectifs 𝑋(𝑡, 𝜉) et 𝑌(𝑡, 𝜉)sont identiques pour tout 𝜉. De même, l'égalité : 

 𝑍(𝑡)  = 𝑋(𝑡)  +  𝑌(𝑡)  signifie que 𝑍(𝑡, 𝜉) = 𝑋(𝑡, 𝜉) + 𝑌(𝑡, 𝜉) pour chaque 𝜉.  

 



Deux processus sont égaux au sens de la moyenne quadratique (MS :Mean Square) si : 

 

𝐸{|𝑋(𝑡) − 𝑌(𝑡)|2} = 0                         (4.12) 

 

pour chaque t. L'égalité au sens MS conduit aux conclusions suivantes : 

- On note 𝐴𝑡 l'ensemble des résultats 𝜉 tel que 𝑋(𝑡, 𝜉) = 𝑌(𝑡, 𝜉) pour un 𝑡 spécifique, et par 

𝐴∞ l'ensemble des résultats 𝜉 tel que 𝑋(𝑡, 𝜉) = 𝑌(𝑡, 𝜉) pour tout 𝑡.  

- Il résulte que 𝑋(𝑡, 𝜉) − 𝑌(𝑡, 𝜉) = 0 avec probabilité égale à 1 ; d'où 𝑃(𝐴𝑡) = 𝑃(𝑆) = 1. Il 

ne s'ensuit cependant pas que 𝑃(𝐴∞) = 1. 

-  En fait, puisque 𝐴∞ est l'intersection de tous les ensembles 𝐴𝑡 à mesure que t s'étend sur 

tout l'axe, 𝑃(𝐴∞) pourrait même être égal à 0. 

 

4.4. Stationnarités des processus stochastiques 

4.4.1. Stationnarité au sens strict. 

Un processus stochastique 𝑋(𝑡) est dit stationnaire au sens strict (en abrégé SSS) si ses 

propriétés statistiques sont invariantes à un décalage dans le temps. Cela signifie que les 

processus 𝑋(𝑡)  et 𝑋(𝑡 + ∆𝑡) ont les mêmes statistiques pour tout ∆𝑡.  

 Deux processus 𝑋(𝑡) et 𝑌(𝑡) sont dits conjointement stationnaires si les statistiques 

conjointes de 𝑋(𝑡) et 𝑌(𝑡)  sont identiques aux statistiques conjointes de  𝑋(𝑡 + ∆𝑡) et 

𝑌(𝑡 + ∆𝑡)   pour tout ∆𝑡. 

 

  Un processus complexe 𝑍(𝑡)  =  𝑋(𝑡)  +  𝑗𝑌(𝑡) est stationnaire si les processus 𝑋(𝑡) et 

𝑌(𝑡) sont conjointement stationnaires. De la définition, il s'ensuit que la densité d'ordre 

n d'un processus SSS doit être, pour tout ∆𝑡, telle que : 

 

 

𝑓𝑋(𝑥1, … , 𝑥𝑛;  𝑡1, … , 𝑡𝑛) = 𝑓𝑋(𝑥1, … , 𝑥𝑛; 𝑡1 + ∆𝑡, … , 𝑡𝑛 + ∆𝑡)       (4.13) 

Il en résulte que 𝑓𝑋(𝑥;  𝑡) = 𝑓𝑋 (𝑥;  𝑡 + ∆𝑡)pour tout ∆𝑡. Donc la densité de premier ordre de 

𝑋(𝑡)  est indépendante de t : 

𝑓𝑋(𝑥;  𝑡) = 𝑓𝑋(𝑥)                                             (4.14) 



De même, 𝑓𝑋(𝑥1, 𝑥2;  𝑡1 + ∆𝑡, 𝑡2 + ∆𝑡) est indépendante de 𝑡 pour tout ∆𝑡, et particulièrement 

pour ∆𝑡 = −𝑡2. Ceci mène à la conclusion que :   

𝑓𝑋(𝑥1, 𝑥2;  𝑡1 + ∆𝑡, 𝑡2 + ∆𝑡) = 𝑓𝑋(𝑥1, 𝑥2;  𝜏)             𝜏 = 𝑡1 − 𝑡2           (4.15) 

Ainsi, la densité jointe des variables aléatoires 𝑋(𝑡 + 𝜏) et 𝑋(𝑡) est indépendante de 𝑡 et est 

égale à 𝑓𝑋(𝑥1, 𝑥2;  𝜏). 

4.4.2. Stationnarité au sens large  

Un processus stochastique 𝑋(𝑡) est appelé stationnaire au sens large (en abrégé SSL) si sa 

moyenne est constante : 

𝐸{𝑋(𝑡)} = 𝜂                                (4.16) 

Et son autocorrélation dépend seulement de 𝜏 = 𝑡1 − 𝑡2 

𝐸{𝑋(𝑡 + 𝜏)𝑋∗(𝑡)} = 𝑅(𝜏)                                 (4.17) 

Puisque 𝜏 est le décalage entre  𝑡 et 𝑡 + 𝜏, la fonction 𝑅(𝜏)peut être écrite sous la forme 

symétrique suivante : 

 𝑅(𝜏) = 𝐸 {𝑋(𝑡 +
𝜏

2
)𝑋∗(𝑡 −

𝜏

2
)}                                          (4.18) 

On remarque particulièrement que :  

𝐸{|𝑋(𝑡)|2} = 𝑅(0) 

Donc la puissance moyenne d’un processus stationnaire est indépendante de t et vaut 𝑅(0). 

Exemple 4.5 : 

Supposons que 𝑋(𝑡) est un processus SSL avec la fonction d’autocorrélation suivante : 

𝑅(𝜏) = 𝐴𝑒−𝛼|𝜏| 

Nous déterminerons le moment du second ordre de la variable aléatoire 𝑋(8) − 𝑋(5). 

Solution 

On pose 𝑡1 = 8  et  𝑡2 = 3 alors on aura 𝜏 = 𝑡1 − 𝑡2 = 8 − 5 = 3 

𝐸{[𝑋(8) − 𝑋(5)]2} = 𝐸{𝑋2(8)} + 𝐸{𝑋2(5)} − 2𝐸{𝑋(8)𝑋(5)} 

                                                          = 𝑅(0) + 𝑅(0) − 2 𝑅(3) = 2𝐴 − 2𝐴𝑒−3𝛼 



Remarque : 

L’autocorrélation d’un processus stationnaire 𝑋(𝑡) peut être définie comme la puissance 

moyenne. Supposant pour simplifier que 𝑋(𝑡) est réel, on conclue à partir (4.17) que : 

𝐸{[𝑋(𝑡 + 𝜏) − 𝑋(𝑡)]2} = 2[𝑅(0) − 𝑅(𝜏)]         (4.19) 

A partir de (4.17), il s’en suit que l’auto-covariance d’un processus SSL dépends seulement de 

𝜏 = 𝑡1 − 𝑡2 

𝐶(𝜏) = 𝑅(𝜏) − |𝜂|2                                (4.20)  

Et son coefficient de corrélation est égal à : 

𝑟(𝜏) = 𝐶(𝜏)/𝐶(0)                 (4.21)  

Donc ; 𝐶(𝜏) et 𝑟(𝜏) sont respectivement la covariance et le coefficient de corrélation des 

variables aléatoires 𝑋(𝑡 + 𝜏) et 𝑋(𝑡). 

Deux processus 𝑋(𝑡) et 𝑌(𝑡) sont conjointement SSL si chacun est SSL et leur inter-corrélation 

dépend seulement de  𝜏 = 𝑡1 − 𝑡2. 

 

𝑅𝑋𝑌(𝜏) = 𝐸{𝑋(𝑡 + 𝜏)𝑌∗(𝑡)}      𝐶𝑋𝑌(𝜏) =  𝑅𝑋𝑌(𝜏) − 𝜂𝑋𝜂𝑌
∗          (4.22)  

Si 𝑋(𝑡) est un bruit blanc SSL, alors on a : 

𝐶(𝜏) = 𝑞𝛿(𝜏)                                    (4.23)  

Si 𝑋(𝑡)est un processus a-dépendant, alors 𝐶(𝜏)  =  0 pour |𝜏| > 𝑎. Dans ce cas, la constante 

a est appelée le temps de corrélation de 𝑋(𝑡). Ce terme est également utilisé pour des processus 

arbitraires et il est défini comme le rapport :  

𝜏𝑐 =
1

𝐶(0)
∫ 𝐶(𝜏)

∞

0
𝑑𝜏                                     (4.24) 

 

En général 𝐶 (𝜏)  ≠ 0 pour tout 𝜏. Cependant, pour la plupart des processus réguliers : 

 𝐶 (𝜏) → 0     et       𝑅 (𝜏) → |𝜂|2 lorsque     |𝜏| → ∞.                                                     



Remarque : Si un processus est SSS, il est également SSL. L'inverse, cependant, n'est pas vrai 

en général.  

Exemple 4.6 : 

Nous établirons les conditions nécessaires et suffisantes pour la stationnarité du processus 

suivant : 

𝑋(𝑡) = 𝑎 cos(𝜔𝑡) + 𝑏𝑠𝑖𝑛(𝜔𝑡)                                                      (4.25)  

La moyenne de ce processus est égale à : 

𝐸{𝑋(𝑡)} = 𝐸{𝑎} cos(𝜔𝑡) + 𝐸{𝑏}𝑠𝑖𝑛(𝜔𝑡) 

Cette fonction doit être indépendante du temps. Donc la condition 

 𝐸{𝑎} = 𝐸{𝑏} = 0                                               (4.26)  

est nécessaire pour chaque forme de stationnarité. Nous supposons qu’elle est établie. 

Stationnarité au sens large : 

Le processus 𝑋(𝑡) est SSL si et seulement si les variables aléatoires a et b sont un-corrélées 

avec variance égale : 

𝐸{𝑎𝑏} = 0    𝐸{𝑎2} = 𝐸{𝑏2} = 𝜎2                                                 (4.27)  

Si ceci est vérifié, alors 

𝑅(𝜏) = 𝜎2cos (𝜔𝜏)                                             (4.28)   

Preuve :  

Si  𝑋(𝑡) est SSL, alors 

𝐸{𝑋2(0)} = 𝐸{𝑋2(𝜋/2𝜔)} = 𝑅(0) 

Mais 𝑋(0) = 𝑎 et 𝑋(𝜋/2𝜔) = 𝑏 ; donc 𝐸{𝑎2} = 𝐸{𝑏2}. En utilisant ce qui précède, nous 

obtenons : 

𝐸{𝑋(𝑡 + 𝜏)𝑋(𝑡)} = 𝐸{[𝑎 cos 𝜔(𝑡 + 𝜏) + 𝑏𝑠𝑖𝑛𝜔(𝑡 + 𝜏)][𝑎 cos(𝜔𝑡) + 𝑏𝑠𝑖𝑛(𝜔𝑡)]}  

= 𝜎2 cos(𝜔𝜏) + 𝐸{𝑎𝑏}𝑠𝑖𝑛𝜔(2𝑡 + 𝜏)                                                    (4.29)   

Ceci est indépendant de t seulement si 𝐸{𝑎𝑏} = 0 et (4.27) est obtenue. 



Si (4.27) est vérifiée, alors, comme nous le voyons de (4.29) (9.65), l’autocorrélation de 𝑋(𝑡)) 

est égale à 𝜎2 cos(𝜔𝜏). 

Stationnarité au sens strict : 

Le processus 𝑋(𝑡) est SSS si et seulement si la densité conjointe 𝑓(𝑎, 𝑏) des variables aléatoires 

a et b possède une symétrie circulaire, c’est-à-dire, si : 

𝑓(𝑎, 𝑏) = √𝑎2 + 𝑏2                                                     (4.30)  

Preuve : 

Si  𝑋(𝑡) est SSS, les variables aléatoires 

𝑋(0) = 𝑎           𝑋(𝜋/2𝜔)  

et 

𝑋(𝑡) = 𝑎 cos(𝜔𝑡) + 𝑏𝑠𝑖𝑛(𝜔𝑡)      𝑋(𝑡 + 𝜋/2𝜔) = 𝑏 cos(𝜔𝑡) − 𝑎𝑠𝑖𝑛(𝜔𝑡) 

ont la même densité conjointe pour chaque 𝑡. Par conséquent, 𝑓(𝑎, 𝑏) doit avoir une symétrie 

circulaire. Nous allons maintenant montrer que, si 𝑓(𝑎, 𝑏) a une symétrie circulaire, alors 𝑋(𝑡) 

est SSS. Avec 𝜏 un nombre donné et 

𝑎1 = 𝑎 cos(𝜔𝜏) + 𝑏𝑠𝑖𝑛(𝜔𝜏)      𝑏1 = 𝑏 cos(𝜏) − 𝑎𝑠𝑖𝑛(𝜏) 

On forme le processus 

𝑋1(𝑡) = 𝑎1 cos(𝜔𝑡) + 𝑏1𝑠𝑖𝑛(𝜔𝑡) =  𝑋(𝑡 + 𝜏) 

Clairement, les statistiques 𝑋(𝑡) et 𝑋1(𝑡)sont déterminées en fonction des densités jointes 

𝑓(𝑎, 𝑏) et 𝑓(𝑎1, 𝑏1) des variables aléatoires (𝑎, 𝑏) et (𝑎1, 𝑏1). Mais ces variables aléatoires ont 

la même densité jointe. Par conséquent, les processus 𝑋(𝑡) et 𝑋(𝑡 + 𝜏)ont les mêmes 

statistiques pour tout 𝜏. 

Corollaire  

Si le processus 𝑋(𝑡) est SSS et que les variables aléatoires 𝑎 et  𝑏 sont indépendantes, alors 

elles sont normales. 

Exemple 4.7 : 

Étant donné une variable aléatoire 𝜔 de densité 𝑓(𝜔) et une variable aléatoire 𝜑 uniforme dans 

l'intervalle [−𝜋, 𝜋] et indépendante de 𝜔, on forme le processus 𝑋(𝑡) tel que : 



𝑋(𝑡) = 𝑎 cos (𝜔𝑡 + 𝜑)                                                (4.31)  

Nous allons montrer que 𝑋(𝑡) est SSL avec une moyenne nulle et une autocorrélation exprimée 

par : 

𝑅(𝜏) =
𝑎2

2
𝐸{cos (𝜔𝜏)} =

𝑎2

2
𝑅𝑒(Ф𝜔(𝜏))                 (4.32)  

Où ; 

Ф𝜔(𝜏) = 𝐸{𝑒𝑗𝜔𝜏} = 𝐸{cos (𝜔𝜏)} + 𝑗𝐸{𝑠𝑖𝑛(𝜔𝜏)}            (4.33)  

est la fonction caractéristique de 𝜔. 

Preuve :  

𝐸{𝑎 cos (𝜔𝑡 + 𝜑)} = 𝐸{𝐸{𝑎 cos (𝜔𝑡 + 𝜑)/𝜔}} 

De l’indépendance de 𝜔 et  𝜑 , il s’en suit que : 

𝐸{𝑎 cos (𝜔𝑡 + 𝜑)/𝜔} = cos(𝜔𝑡) 𝐸{𝑐𝑜𝑠𝜑} − sin(𝜔𝑡) 𝐸{𝑠𝑖𝑛𝜑} 

Donc 𝐸{𝑋(𝑡)} = 0 car  

𝐸{𝑐𝑜𝑠𝜑} =
1

2𝜋
∫ 𝑐𝑜𝑠𝜑𝑑𝜑 = 0

𝜋

−𝜋

     𝐸{𝑠𝑖𝑛𝜑} =
1

2𝜋
∫ 𝑠𝑖𝑛𝜑𝑑𝜑 = 0

𝜋

−𝜋

 

En résonant de même, on obtient  𝐸{ cos (2𝜔𝑡 + 𝜔𝜏 + 2𝜑)} = 0. Et puisque 

 2 cos[𝜔(𝑡 + 𝜏) + 𝜑] cos(𝜔𝑡 + 𝜑) = cos(𝜔𝜏) +  cos (2𝜔𝑡 + 𝜔𝜏 + 2𝜑) 

On conclue que : 

R(𝜏) = 𝑎2E{cos[𝜔(𝑡 + 𝜏) + 𝜑] cos(𝜔𝑡 + 𝜑)} =
𝑎2

2
𝐸{𝑐𝑜𝑠(𝜔𝜏)} 

En outre, le processus 𝑍(𝑡) = 𝑎𝑒𝑗(𝜔𝑡+𝜑) est SSL avec une moyenne nulle et autocorrélation 

exprimée par : 

𝐸{𝑍(𝑡 + 𝜏)𝑍∗(𝑡)} = 𝑎2𝐸{𝑒𝑗𝜔𝑡 } = 𝑎2Ф𝜔(𝜏) 

4.4.3. Centrage d’un processus stochastique 

 Soit un processus 𝑋(𝑡) de moyenne 𝜂(𝑡) et d'auto-covariance 𝐶𝑋(𝑡1, 𝑡2), nous formons la 

différence suivante : 



𝑋̅(𝑡) = 𝑋(𝑡) − 𝜂(𝑡)                                       (4.34)  

Cette différence est appelée processus centré associé au processus 𝑋(𝑡). Notons que : 

𝐸{𝑋̅(𝑡)} = 0            𝑅𝑋̅(𝑡1, 𝑡2) = 𝐶𝑋(𝑡1, 𝑡2)              (4.35) 

Il s'ensuit que si le processus 𝑋(𝑡) est stationnaire à covariance, c'est-à-dire si  

 𝐶𝑋(𝑡1, 𝑡2) = 𝐶𝑋(𝑡1 − 𝑡2), alors son processus centré 𝑋̅(𝑡) est SSL. 

4.4.4. Autres formes de stationnarité.  

- Un processus 𝑋(𝑡) est asymptotiquement stationnaire si les statistiques des variables 

aléatoires 𝑋(𝑡1  +  ∆𝑡), . . . , 𝑋(𝑡𝑛  +  ∆𝑡) ne dépendent pas de ∆𝑡 si ce dernier est grand. Plus 

précisément, la fonction 𝑓(𝑥1, … , 𝑥𝑛, 𝑡1  +  ∆𝑡, . . . , 𝑡𝑛  + ∆𝑡) tend vers une limite (qui ne 

dépend pas de ∆𝑡) lorsque ∆𝑡 → ∞. Le signal télégraphique semi-aléatoire en est un 

exemple.  

- Un processus 𝑋(𝑡) est stationnaire du nieme ordre si (4.13) n'est pas vérifiée pour tout 𝑛, 

mais seulement pour 𝑛 ≤ 𝑁.  

- Un processus 𝑋(𝑡) est stationnaire dans un intervalle si (4.13) est vérifiée pour chaque 𝑡𝑖 et 

𝑡𝑖 + ∆𝑡  dans cet intervalle. 

- On dit que 𝑋(𝑡) est un processus avec des accroissements stationnaires si ses accroissements 

𝑌(𝑡) =  𝑋(𝑡 +  ℎ)  −  𝑋(𝑡) forment un processus stationnaire pour chaque ℎ. Le processus 

de Poisson en est un exemple. 

 

4.4.5. Périodicité en moyenne quadratique. 

 Un processus 𝑋(𝑡) est dit périodique au sens MS(Mean Square)  si pour chaque t on a : 

𝐸{|𝑋(𝑡 + 𝑇) − 𝑋(𝑡)|2} = 0                         (4.36)  

 Il s’ensuit que, pour un 𝑡 spécifique et avec une probabilité égale à 1, on a : 

𝑋(𝑡 + 𝑇) − 𝑋(𝑡)                                       (4.37)  

Comme nous voyons de (4.37), la moyenne d’un processus MS périodique est périodique. Nous 

allons examiner les propriétés de 𝑅(𝑡1, 𝑡2) : 

Un processus 𝑋(𝑡) est dit MS périodique si son autocorrélation est doublement périodique, 

c’est-à-dire, si pour tout entier 𝑚 et 𝑛 on a : 



𝑅(𝑡1 + 𝑚𝑇, 𝑡2 + 𝑛𝑇) = 𝑅(𝑡1, 𝑡2)                                   (4.38)  

4.4.6. Ergodicité d’un processus stochastique 

La propriété d’ergodicité lie les moyennes statistiques (effectuées sur l'espace des réalisations 

sous-jacentes à la définition des variables aléatoires qui constituent le processus) et les 

moyennes temporelles (effectuées sur les fonctions du temps qui sont les réalisations du 

processus). 

L’ergodicité ajoute encore une liaison supplémentaire entre les caractéristiques statistiques et 

temporelles d’un processus. Si on dispose de 𝑘  réalisations  𝑥𝑘(𝑡) d’un processus aléatoire  

𝑋(𝑡), on pourrait estimer la moyenne à l’aide de la formule suivante : 

𝑚̂𝑋(𝑡) =
1

𝐾
∑ 𝑥𝑘(𝑡)𝑓𝑋(𝑥, 𝑡)𝐾

𝑘=1                        (4.39) 

  Ergodicité en moyenne   

Un processus aléatoire est dit ergodique, si les moyennes temporelles prises sur un temps 

suffisamment long, sont voisines avec une probabilité qui tend vers 1 des moyennes statistiques 

prises sur l’ensemble de ses réalisations.  Et l’on écrit : 

𝐸[𝑋] = lim
𝑇→∞

1

𝑇
∫ 𝑥𝑘(𝑡)𝑑𝑡

𝑇
2

−
𝑇
2

= 𝑚̂𝑋  

            (4.40) 

Avec 𝑇 est la durée d’observation du processus. 

 Ergodicité en corrélation   

La fonction d’autocorrélation d’un processus aléatoire stationnaire  𝑋(𝑡) est définie par :  

 

𝑅𝑋𝑋(𝜏) = 𝐸{𝑋(𝑡)𝑋(𝑡 + 𝜏)} = lim
𝑇→∞

1

𝑇
∫ 𝑥𝑘(𝑡)𝑥𝑘(𝑡 + 𝜏)𝑑𝑡

𝑇
2

−
𝑇
2

 

             (4.41) 

On dit que le processus aléatoire est ergodique relativement à la fonction d’autocorrélation 

lorsque :  

1) Il est ergodique en moyenne,  



2) La limite de la fonction d’autocorrélation lorsque T tend vers l’infini existe, est certaine, ne 

dépend pas de 𝑡  et est égale à la fonction d’autocorrélation statistique.   

Dans ce cas, on dit que ce processus est ergodique au sens large.   

 Remarques :  

- Un processus ergodique au sens large est stationnaire au sens large. L’inverse n’est pas vrai. 

- L’ergodicité permet d’estimer les paramètres statistiques à partir des paramètres temporels. 

- Un processus aléatoire est ergodique si ses moments peuvent être obtenus comme des 

moyennes à partir d'une seule de ses réalisations. Ceci doit être vrai en particulier pour les 

moments d'ordre 1 et 2: 
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- Le membre gauche la première équation ne dépend pas du temps, et donc que pour que cette 

équation puisse être vérifiée, il faut que le processus ait une moyenne constante. De la même 

façon, pour que la deuxième équation soit possible le processus doit être stationnaire au 

sens large, on aura alors les expressions à droite ; ergodicité   stationnarité. L'affirmation 

contraire est fausse. 

 

4.5. Systèmes à entrées stochastiques 

Étant donné un processus stochastique 𝑋(𝑡), nous attribuons selon une règle à chacun de 

ses échantillons 𝑋(𝑡, 𝜉𝑖 ) une fonction, 𝑌(𝑡, 𝜉𝑖) . Nous avons ainsi créé un autre processus tel 

que : 

 𝑌(𝑡, 𝜉𝑖) = 𝑇[𝑋(𝑡)]                            (4.42) 

dont les échantillons sont les fonctions 𝑌(𝑡, 𝜉𝑖). Le processus 𝑌(𝑡) ainsi formé peut être 

considéré comme la sortie d'un système (transformation) avec en entrée le processus  𝑋(𝑡). Le 

système est complètement spécifié en termes de l'opérateur T.  

- Le système est déterministe s'il n'opère que sur la variable 𝑡 en traitant 𝜉 comme paramètre. 

Cela signifie que si deux échantillons 𝑋(𝑡, 𝜉1) et 𝑋(𝑡, 𝜉2) de l'entrée sont identiques en 𝑡, 



alors les échantillons correspondants 𝑌(𝑡, 𝜉1) et 𝑌(𝑡, 𝜉2)de la sortie sont également 

identiques en 𝑡.  

- Le système est dit stochastique si T opère sur les deux variables 𝑡 et 𝜉. Cela signifie qu'il 

existe deux résultats 𝜉1 et 𝜉2 tels que 𝑋(𝑡, 𝜉1) = 𝑋(𝑡, 𝜉2) de manière identique en 𝑡 mais  

𝑌(𝑡, 𝜉1) ≠ 𝑌(𝑡, 𝜉2)  

En principe, les statistiques de la sortie d'un système peuvent être exprimées en termes 

de statistiques de l'entrée. Cependant, en général, il s'agit d'un problème compliqué. Nous 

considérons ensuite deux cas particuliers importants. 

4.5.1. Systèmes sans mémoire 

Un système est dit sans mémoire si sa sortie est donnée par : 

𝑌(𝑡) = 𝑔[𝑋(𝑡)]                                     (4.43) 

où 𝑔(𝑥) est une fonction de 𝑥. Ainsi, à un instant donné 𝑡 = 𝑡1, la sortie 𝑌(𝑡1) ne dépend que 

de 𝑋(𝑡1) et non d'aucune autre valeur passée ou future de 𝑋(𝑡). Il s'ensuit que la densité du 

premier ordre 𝑓𝑌(𝑦;  𝑡) de 𝑌(𝑡) peut être exprimée en fonction de la densité correspondante 

𝑓𝑋(𝑥;  𝑡) de 𝑋(𝑡). Par ailleurs, 

𝐸{𝑌(𝑡)} = ∫ 𝑔(𝑥)
∞

−∞
𝑓𝑋(𝑥;  𝑡)𝑑𝑥                       (4.44)  

De même, puisque  𝑌(𝑡1) = 𝑔[𝑋(𝑡1)] et 𝑌(𝑡2) = 𝑔[𝑋(𝑡2)], la densité du second ordre 

𝑓𝑌(𝑦1, 𝑦2;  𝑡1, 𝑡2) de 𝑌(𝑡) peut être déterminée en fonction de la densité correspondante 

𝑓𝑋(𝑥1, 𝑥2;  𝑡1, 𝑡2) de 𝑋(𝑡). En outre, 

𝐸{𝑌(𝑡1)𝑌(𝑡2)} = ∫ ∫ 𝑔(𝑥1)
∞

−∞

∞

−∞
𝑔(𝑥2)𝑓𝑋(𝑥1, 𝑥2;  𝑡1, 𝑡2)𝑑𝑥1𝑑𝑥1          (4.45)  

La densité d'ordre n  𝑓𝑌(𝑦1, … , 𝑦𝑛; 𝑡1, … , 𝑡𝑛) de 𝑌(𝑡) peut être déterminée à partir de la densité 

correspondante de 𝑋(𝑡), où la transformation sous-jacente est le système suivant : 

 𝑌(𝑡1) = 𝑔[𝑋(𝑡1)], … , 𝑌(𝑡𝑛) = 𝑔[𝑋(𝑡𝑛)]                       (4.46)  

- Stationnarité 

 Supposons que l'entrée d'un système sans mémoire est un processus SSS,  𝑋(𝑡). On montre 

que la sortie résultante 𝑌(𝑡) est également SSS. 

Preuve.  



Pour déterminer la densité d'ordre 𝑛 de 𝑌(𝑡), on résout le système suivant : 

𝑔(𝑥1) = 𝑦1, … , 𝑔(𝑥𝑛) = 𝑦𝑛                              (4.47)  

Si ce système possède une solution unique, on a : 

𝑓𝑌(𝑦1, … , 𝑦𝑛; 𝑡1, … , 𝑡𝑛) =
𝑓𝑋(𝑥1, … , 𝑥𝑛; 𝑡1, … , 𝑡𝑛)

|𝑔′(𝑥1) … 𝑔′(𝑥𝑛)|
 

               (4.48)      

De la stationnarité de 𝑋(𝑡),  il s'ensuit que le numérateur dans (4.48) est invariant à un décalage 

de l'origine temporelle. Et puisque le dénominateur ne dépend pas de t, nous concluons que le 

membre gauche ne change pas si 𝑡𝑖 est remplacé par 𝑡𝑖 + ∆𝑡. Par conséquent 𝑌(𝑡) est SSS. On 

peut également montrer que cela est vrai même si (4.47) a plus d'une solution. 

Remarques : 

 l. Si 𝑋(𝑡) est stationnaire d'ordre N, alors 𝑌(𝑡) est stationnaire d'ordre N.  

2. Si 𝑋(𝑡) est stationnaire dans un intervalle, alors 𝑌(𝑡) est stationnaire dans le même intervalle. 

 3. Si 𝑋(𝑡) est stationnaire SSL, alors 𝑌(𝑡) pourrait ne pas être stationnaire dans un sens 

quelconque. 

4.5.1.1. Détecteur à loi quadratique  

 Un Détecteur à loi quadratique est un système sans mémoire dont la sortie est égale à  

 𝑌(𝑡) = 𝑋2(𝑡). Nous déterminerons ses densités du premier et du second ordre. 

-  Si 𝑌 >  0, alors le système  a les deux solutions ±√𝑌. En outre, 𝑌′(𝑥) = ±2√𝑌 ; donc : 

𝑓𝑌(𝑦;  𝑡) =
1

2√𝑦
[𝑓𝑋(√𝑦;  𝑡) + 𝑓𝑌(−√𝑦;  𝑡)] 

- Si 𝑦1 > 0 et 𝑦2 > 0 , alors le système :   {
𝑦1 = 𝑥1

2

𝑦2 = 𝑥2
2              

admet les quatre solutions (±√𝑦1  , ±√𝑦2  ). En outre, son jacobéen est égal à ±4√𝑦1𝑦2   ; 

donc : 

𝑓𝑌(𝑦1, 𝑦2;  𝑡1, 𝑡2) =
1

4√𝑦1𝑦2

∑ 𝑓𝑋(±√𝑦1, ±√𝑦2;  𝑡1, 𝑡2) 



Où la somme a quatre termes. 

Notons que, si 𝑋(𝑡) est SSS, alors 𝑓𝑋(𝑥;  𝑡) = 𝑓𝑋(𝑥) est indépendante du temps 𝑡 et 

𝑓𝑋(𝑥1, 𝑥2;  𝑡1, 𝑡2) = 𝑓𝑋(𝑥1, 𝑥2;  𝜏) dépend seulement de 𝜏 = 𝑡1 − 𝑡2. Donc 𝑓𝑌(𝑦) est 

indépendante du temps 𝑡 et 𝑓𝑌(𝑦1, 𝑦2;  𝜏) dépend seulement de 𝜏 = 𝑡1 − 𝑡2. 

Exemple 4.8 

Supposons que 𝑋(𝑡) soit un processus stationnaire normal (sa densité de probabilité est une 

gaussienne) avec une moyenne nulle et une autocorrélation 𝑅𝑋(𝜏). Dans ce cas, 𝑓𝑋(𝑥) est 

normale avec la variance 𝑅𝑋(0). 

 Si  𝑌(𝑡) = 𝑋2(𝑡) (Fig. 4.3), alors 𝐸{𝑌(𝑡)}  =  𝑅𝑋(𝑂) et  𝑓𝑌(𝑦) =
1

√2𝜋𝑅𝑋(0)
𝑒

−
𝑦

2𝑅𝑋(0)𝑈(𝑦) 

On va montrer que : 

 𝑅𝑌(𝜏)  =  𝑅𝑋
2(𝑂)+2𝑅𝑋

2(𝜏)                                               (4.49)  

Preuve.  

Les variables aléatoires 𝑋(𝑡 +  𝜏) et 𝑋(𝑡) sont conjointement normales avec une moyenne 

nulle. D'où : 

𝐸{𝑋2(𝑡 +  𝜏)𝑋2(𝑡)} = 𝐸{𝑋2(𝑡 +  𝜏)}𝐸{𝑋2(𝑡)} + 2𝐸2{𝑋(𝑡 +  𝜏)𝑋(𝑡)} 

Et ainsi (4.49) est obtenue. 

Notons en particulier que : 

𝐸{𝑌2(𝑡)} = 𝑅𝑌(0) =  3𝑅𝑋
2(𝑂)         𝜎𝑌

2 = 2𝑅𝑋
2(𝑂) 

 

Figure 4.3 : Entrée et sortie d’un Détecteur à loi quadratique. 



 

Figure 4.4 : Entrée et sortie d’un limiteur dur. 

4.5.1.2. Limiteur dur (hard limiter) 

Un Limiteur dur (hard limiter)  est un système sans mémoire (Figure 4.4) avec : 

𝑔(𝑥) = {
1      𝑥 > 0

−1     𝑥 < 0   
                              (4.50)   

Sa sortie 𝑌(𝑡) prend les valeurs ±1 et 

𝑃{𝑌(𝑡) = 1} = 𝑃{𝑋(𝑡) > 0} = 1 − 𝐹𝑋(0) 

𝑃{𝑌(𝑡) = −1} = 𝑃{𝑋(𝑡) < 0} = 𝐹𝑋(0) 

Donc  

𝐸{𝑌(𝑡)} = 1 × 𝑃{𝑌(𝑡) = 1} − 1 × 𝑃{𝑌(𝑡) = −1} = 1 − 2𝐹𝑋(0) 

Le produit  𝑌(𝑡 +  𝜏)𝑌(𝑡) est égal à 1 si 𝑋(𝑡 +  𝜏)𝑋(𝑡) > 0 et -1 ailleurs. Donc 

𝑅𝑌(𝜏) = 𝑃{𝑋(𝑡 +  𝜏)𝑋(𝑡) > 0} − 𝑃{𝑋(𝑡 +  𝜏)𝑋(𝑡) < 0}                    (4.51)   

Alors, dans le plan des probabilités des variables aléatoires 𝑋(𝑡 +  𝜏) et 𝑋(𝑡), 𝑅𝑌(𝜏) est égale 

aux masses du premier et troisième quadrant moins les masses  du deuxième et quatrième 

quadrant. 

Exemple 4.9 

On va montrer que si 𝑋(𝑡) est un processus normal stationnaire avec une moyenne nulle, alors 

l’autocorrélation de la sortie d’un limiteur dur vaut : 

𝑅𝑌(𝜏) =
2

𝜋
𝑎𝑟𝑐𝑠𝑖𝑛

𝑅𝑋(𝜏)

𝑅𝑋(0)
                                    (4.52)    

Ce résultat est appelé « loi du  𝑎𝑟𝑐𝑠𝑖𝑛𝑢𝑠" 

Preuve : 



Les variables aléatoires 𝑋(𝑡 +  𝜏) et 𝑋(𝑡) sont conjointement normales avec une moyenne 

nulle, variance 𝑅𝑋(0) et coefficient de corrélation  
𝑅𝑋(𝜏)

𝑅𝑋(0)
 . D'où , 

𝑃{𝑋(𝑡 +  𝜏)𝑋(𝑡) > 0} =
1

2
+

𝛼

𝜋
 

𝑃{𝑋(𝑡 +  𝜏)𝑋(𝑡) < 0} =
1

2
−

𝛼

𝜋
 

Avec ;   𝑠𝑖𝑛𝛼 =
𝑅𝑋(𝜏)

𝑅𝑋(0)
 

 

En insérant dans (4.51, nous obtenons : 

𝑅𝑌(𝜏) =
1

2
+

𝛼

𝜋
− (

1

2
−

𝛼

𝜋
) =

2𝛼

𝜋
 

Et (4.52) s’ensuit. 

4.5.2. Systèmes linéaires  

La sortie 𝑌(𝑡), d’un système linéaire dont l’entrée est  𝑋(𝑡), est donnée par la notation suivante : 

𝑌(𝑡) = 𝐿[𝑋(𝑡)]                                                        (4.53)    

Ceci signifie que : 

𝐿[𝑎1𝑋1(𝑡) + 𝑎2𝑋2(𝑡)] = 𝑎1𝐿[𝑋1(𝑡)] + 𝑎2𝐿[𝑋2(𝑡)]         (4.54)  

Pour tout 𝑎1, 𝑎2, 𝑋1(𝑡), 𝑋2(𝑡). 

Ceci est la définition de la linéarité et elle est aussi retenue si les coefficients 𝑎1 et 𝑎2 sont des 

variables aléatoires car, comme nous avons supposé, le système est déterministe, c’est-à-dire, 

il opère seulement sur la variable 𝑡. 

Remarques : 

- Si un système est spécifié par sa structure interne ou par une équation différentielle, alors 

(4.54) est vérifiée si 𝑌(𝑡) est la réponse à l’état initial. La réponse obtenue dans les 

conditions initiales (réponse sans entrée ou réponse à une entrée nulle) ne sera pas 

considérée. 

- Un système est dit invariant dans le temps si sa réponse à 𝑋(𝑡 +  ∆𝑡) est égale à 



  𝑌(𝑡 +  ∆𝑡). Nous allons supposer tout au long de cette section que tous les systèmes linéaires 

sont invariants. Il est bien connu que la sortie d’un système linéaire est une convolution 

exprimée par : 

𝑌(𝑡) = 𝑋(𝑡) ∗ ℎ(𝑡) = ∫ 𝑋(𝑡 − 𝛼)ℎ(𝛼)
∞

−∞
𝑑𝛼                     (4.55) 

Où ; ℎ(𝑡) = 𝐿[𝛿(𝑡)] est sa réponse impulsionnelle. Dans ce qui suit, la plupart des systèmes 

vont être spécifiés par (4.55).  

- Si  𝑋(𝑡) est un processus normal, alors 𝑌(𝑡) il l’est aussi. Ceci est une extension de la 

propriété familière des transformations linéaires des variables aléatoires normales et peut 

être justifié si nous approximons l’intégrale de (4.55) par la somme: 

𝑌(𝑡𝑖) ≅ ∑ 𝑋(𝑡𝑖 − 𝛼𝑘)ℎ(𝛼𝑘)

𝑘

∆(𝛼) 

- Si  𝑋(𝑡) SSS, alors  𝑌(𝑡) est aussi SSS. En effet, comme  𝑌(𝑡 + ∆𝑡) = 𝐿[𝑋(𝑡 + ∆𝑡)]  pour 

tout ∆𝑡, nous concluons que si les processus 𝑋(𝑡) et  𝑋(𝑡 + ∆𝑡) ont les mêmes propriétés 

statistiques, il en va de même pour les processus 𝑌(𝑡) et  𝑌(𝑡 + ∆𝑡). Aussi, si  𝑋(𝑡) SSL, 

les processus  𝑋(𝑡) et  𝑌(𝑡) sont conjointement SSL.  

Ce qui suit est une explication de la raison d’introduction de la fonction 𝑅(𝑡1, 𝑡2) dans les 

problèmes seulement avec la puissance moyenne. Supposons que, 𝑋(𝑡)  est l’entrée d’un 

système linéaire et 𝑌(𝑡) est la sortie résultante. Dans ce qui suit, nous montrerons que la 

moyenne de 𝑌(𝑡) peut être exprimée en fonction de la moyenne de 𝑋(𝑡). Cependant, la 

puissance moyenne de 𝑌(𝑡) ne peut pas être connue si seulement  𝐸{𝑋2(𝑡)} est donnée. Pour 

la détermination de 𝐸{𝑌2(𝑡)}, la connaissance de la fonction 𝑅(𝑡1, 𝑡2) est exigée, non seulement 

sur la diagonale 𝑡1 = 𝑡2, mais pour chaque 𝑡1 et 𝑡2. L’identité suivante est une simple 

illustration :  𝐸{[𝑋(𝑡1) + 𝑋(𝑡2) ]2} = 𝑅(𝑡1, 𝑡1) + 2𝑅(𝑡1, 𝑡2) + 𝑅(𝑡2, 𝑡2) 

4.5.2.1.Théorème fondamental des systèmes linéaires 

Pour tout système linéaire on a : 

𝐸{𝐿[𝑋(𝑡)]} = 𝐿[𝐸{𝑋(𝑡)}]                (4.56)  

En d’autres termes, la moyenne 𝜂𝑌(𝑡) de la sortie 𝑌(𝑡) est égale à la réponse du système à la 

moyenne 𝜂𝑋(𝑡) de l’entrée (fig.4.5a) 

𝜂𝑌(𝑡) = 𝐿[𝜂𝑋(𝑡) ]                                               (4.57)  



 

Figure 4.5 : statistiques d’ordre 1 et 2 de la sortie d’un système linéaire à entrée stochastique. 

Ceci est une simple extension de la linéarité de valeurs espérées à des opérateurs linéaires 

arbitraires. Dans le contexte de (4.55), on peut l’en déduire si on écrit l’intégrale comme limite 

d’une somme. Ceci donne :  

𝐸{𝑌(𝑡)} = ∫ 𝐸{𝑋(𝑡 − 𝛼)}ℎ(𝛼)
∞

−∞
𝑑𝛼 = 𝜂𝑋(𝑡) ∗ ℎ(𝑡)                         (4.58)  

Interprétation fréquentielle : Au ième essai, l’entrée de notre système est une fonction 𝑋(𝑡, 𝜉𝑖)   

donnant comme sortie la fonction 𝑌(𝑡, 𝜉𝑖) = 𝐿[𝑋(𝑡, 𝜉𝑖)]. Pour un grand 𝑛 on peut écrire : 

𝐸{𝑌(𝑡)} ≅
𝑌(𝑡, 𝜉1) + ⋯ + 𝑌(𝑡, 𝜉𝑛)

𝑛
=

𝐿[𝑋(𝑡, 𝜉1)] + ⋯ + 𝐿[𝑋(𝑡, 𝜉𝑛)]

𝑛
 

De la linéarité du système, il s’ensuit que le dernier terme est égal :  

𝐿 [   
𝑋(𝑡, 𝜉1) + ⋯ + 𝑋(𝑡, 𝜉𝑛)

𝑛
] 

Cela est en concordance avec (4.56) parce que la fraction est presque égale à  𝐸{𝑋(𝑡)}. 

Remarques : 

1. De (4.57), il s’ensuit que si 𝑋̅(𝑡) = 𝑋(𝑡) − 𝜂𝑋(𝑡)  𝑌̅(𝑡) = 𝑌(𝑡) − 𝜂𝑌(𝑡) donc : 

 

𝐿{𝑋̅(𝑡)} = 𝐿{𝑋(𝑡)} − 𝐿{𝜂𝑋(𝑡)} = 𝑌̅(𝑡)            (4.59)  

Alors, la réponse d’un système linéaire à un signal d’entrée centré 𝑋̅(𝑡) est égale au signal de 

sortie centré 𝑌̅(𝑡). 

2. Supposons que 𝑋(𝑡) = 𝑓(𝑡) + 𝑣(𝑡)  avec 𝐸{𝑣(𝑡)} = 0. Dans ce cas, 𝐸{𝑥(𝑡)} = 𝑓(𝑡) ; 

donc, 𝜂𝑌(𝑡) = 𝑓(𝑡) ∗ ℎ(𝑡) 

Si 𝑋(𝑡) est la somme d’un signal déterministe 𝑓(𝑡) et d’une composante aléatoire (𝑡) , pour 

déterminer la moyenne de la sortie, on peut ignorer 𝑣(𝑡)  puisque  𝐸{𝑣(𝑡)} = 0. 



Le théorème (4.56) peut être utilisé pour exprimer les moments conjoints de n’importe 

quel ordre de la sortie 𝑌(𝑡) d’un système linéaire en termes des moments correspondants à 

l’entrée. Les cas particuliers suivants sont d’une importance fondamentale dans l’étude des 

systèmes linéaires avec des entrées stochastiques.  

4.5.2.2. Autocorrélation de sortie 

Nous souhaitons exprimer l’autocorrélation 𝑅𝑌𝑌(𝑡1, 𝑡2) de la sortie 𝑌(𝑡) d’un système 

linéaire en fonction de l’autocorrélation 𝑅𝑋𝑋(𝑡1, 𝑡2) de l’entrée 𝑋(𝑡). Comme nous le verrons 

dans la suite, il est plus facile de trouver d’abord la corrélation croisée (inter-corrélation) 

𝑅𝑋𝑌(𝑡1, 𝑡2) entre 𝑋(𝑡) et 𝑌(𝑡). 

Théorème  

a)                                   𝑅𝑋𝑌(𝑡1, 𝑡2) = 𝐿2[𝑅𝑋𝑋(𝑡1, 𝑡2)]                                                    (4.60)    

 

Dans cette notation, 𝐿2 signifie que le système fonctionne avec la variable 𝑡2, en traitant 𝑡1 

comme un paramètre. Dans le contexte de (4.55) ça signifie que : 

 

𝑅𝑋𝑌(𝑡1, 𝑡2) = ∫ 𝑅𝑋𝑋(𝑡1, 𝑡2 − 𝛼)ℎ(𝛼)
∞

−∞
𝑑𝛼                         (4.61) 

 

b)                             𝑅𝑌𝑌(𝑡1, 𝑡2) = 𝐿1[𝑅𝑋𝑌(𝑡1, 𝑡2)]                                                 (4.62) 

Dans ce cas, le système fonctionne avec la variable 𝑡1 et on a : 

𝑅𝑌𝑌(𝑡1, 𝑡2) = ∫ 𝑅𝑋𝑌(𝑡1 − 𝛼, 𝑡2)ℎ(𝛼)
∞

−∞
𝑑𝛼                          (4.63)  

Preuve :  

En multipliant (4.53) par 𝑋(𝑡1) et en utilisant (4.54), nous obtenons : 

𝑋(𝑡1)𝑌(𝑡) = 𝐿𝑡[𝑋(𝑡1)𝑋(𝑡)] 

Où ; 𝐿𝑡 signifie que le système fonctionne avec la variable 𝑡. Donc [voir (4.56)] 

𝐸{𝑋(𝑡1)𝑌(𝑡)} = 𝐿𝑡[𝐸{𝑋(𝑡1)𝑋(𝑡)}] 

et (4.60) s’ensuit avec 𝑡 = 𝑡2 .La preuve de (4.62) est similaire : 

 Nous multiplions (4.53) par 𝑌(𝑡2) et utilisons (4.56). Ceci donne : 



𝐸{𝑌(𝑡)𝑌(𝑡2)} = 𝐿𝑡[𝐸{𝑋(𝑡)𝑌(𝑡2)}] 

et  (4.62) s’ensuit avec 𝑡 = 𝑡1 

Le théorème précèdent est illustré dans la Figure 4.5b : si  𝑅𝑋𝑋(𝑡1, 𝑡2)  est l’entrée du 

système donné et le système fonctionne avec la variable 𝑡2, la sortie est égale à 𝑅𝑋𝑌(𝑡1, 𝑡2). Si  

𝑅𝑋𝑌(𝑡1, 𝑡2)  est l’entrée et le système fonctionne avec 𝑡1, la sortie est égale à 𝑅𝑌𝑌(𝑡1, 𝑡2). En 

insérant (4.61) dans (4.63), nous obtenons :  

𝑅𝑌𝑌(𝑡1, 𝑡2) = ∫ ∫ 𝑅𝑋𝑋(𝑡1 − 𝛼, 𝑡2 − 𝛽)ℎ(𝛼)
∞

−∞

∞

−∞

ℎ(𝛽)𝑑𝛼𝑑𝛽 

Ceci exprime directement 𝑅𝑌𝑌(𝑡1, 𝑡2) en fonction de 𝑅𝑋𝑋(𝑡1, 𝑡2). Cependant, conceptuellement 

et opérationnellement, il est préférable de trouver 𝑅𝑋𝑌(𝑡1, 𝑡2). 

Exemple 4.10 

Un processus stationnaire 𝑉(𝑡) avec une autocorrélation 𝑅𝑉𝑉(𝜏) = 𝑞𝛿(𝜏) (bruit blanc) est 

appliqué à t = 0 à un système linéaire avec : 

ℎ(𝑡) = 𝑒−𝑐𝑡𝑈(𝑡) 

Nous montrons que l’autocorrélation de la sortie résultante 𝑌(𝑡) est égale à : 

𝑅𝑌𝑌(𝑡1, 𝑡2) =
𝑞

2𝑐
(1 − 𝑒−2𝑐𝑡)𝑒−𝑐|𝑡2−𝑡1|                            (4.64)  

Pour 0 < 𝑡1 < 𝑡2. 

Preuve :  Nous pouvons utiliser les résultats précédents si nous supposons que l’entrée du 

système est le processus  𝑋(𝑡) = 𝑉(𝑡)𝑈(𝑡). 

Avec cette hypothèse, toutes les corrélations sont nulles si 𝑡1 < 0 ou 𝑡2 < 0. Pour 𝑡1 < 0 et 

𝑡2 > 0, on a : 

𝑅𝑋𝑋(𝑡1, 𝑡2) = 𝐸{𝑉(𝑡1)𝑉(𝑡2)} = 𝑞𝛿(𝑡1 −  𝑡2) 

Comme nous voyons de (4.60), 𝑅𝑋𝑌(𝑡1, 𝑡2) est égale à la réponse du système à 𝑞𝛿(𝑡1 −  𝑡2) 

considérée comme une fonction de 𝑡2. Puisque 𝛿(𝑡1 −  𝑡2) = 𝛿(𝑡2 −  𝑡1) et 𝐿[𝛿(𝑡1 −  𝑡2)] =

ℎ(𝑡1 −  𝑡2)(invariance dans le temps), nous concluons que : 

𝑅𝑋𝑌(𝑡1, 𝑡2) = 𝑞ℎ(𝑡1 −  𝑡2) = 𝑞𝑒−𝑐(𝑡1− 𝑡2)𝑈(𝑡1 −  𝑡2)𝑈(𝑡1) 



 

Figure 4.6 : Allure de l’inter-corrélation  𝑅𝑋𝑌(𝑡1, 𝑡2) 

Dans la Figure 4.6, nous montrons  𝑅𝑋𝑌(𝑡1, 𝑡2) comme une fonction de 𝑡1 et 𝑡2. En insérant 

dans (4.63), nous obtenons : 

 𝑅𝑋𝑌(𝑡1, 𝑡2) = 𝑞 ∫ 𝑒𝑐(𝑡1−𝛼− 𝑡2)𝑒−𝑐𝛼𝑑𝛼       𝑡1 <  𝑡2  
𝑡1

0
 

et (4.64) est obtenue. On remarque que : 

𝐸{𝑌2(𝑡)} = 𝑅𝑌𝑌(𝑡, 𝑡) =
𝑞

2𝑐
(1 − 𝑒−2𝑐𝑡) = ∫ ℎ2(𝛼)𝑑𝛼

𝑡

0

 

Corollaire 

L’auto-covariance 𝐶𝑌𝑌(𝑡1, 𝑡2) de 𝑌(𝑡) est l’autocorrélation du processus 𝑌̅(𝑡) = 𝑌(𝑡) − 𝜂𝑌(𝑡) 

et, comme nous voyons de (4.59), 𝑌̅(𝑡)  est égal à 𝐿[𝑋̅(𝑡)]. En appliquant (4.61 et (4.63 aux 

processus centrés 𝑋̅(𝑡) et 𝑌̅(𝑡), nous obtenons : 

𝐶𝑋𝑌(𝑡1, 𝑡2) = 𝐶𝑋𝑋(𝑡1, 𝑡2) ∗ ℎ(𝑡2) 

𝐶𝑌𝑌(𝑡1, 𝑡2) = 𝐶𝑋𝑌(𝑡1, 𝑡2) ∗ ℎ(𝑡1)                                        (4.65)  

Où les convolutions sont en 𝑡1 et 𝑡2 respectivement. 

4.5.2.3. Processus complexes 

 Les résultats précédents peuvent être facilement étendus aux processus complexes et 

aux systèmes avec des valeurs complexes de ℎ(𝑡).  

En raisonnant comme dans le cas réel, on obtient : 

                                                          𝑅𝑋𝑌(𝑡1, 𝑡2) = 𝑅𝑋𝑋(𝑡1, 𝑡2) ∗ ℎ∗(𝑡2) 

𝑅𝑌𝑌(𝑡1, 𝑡2) = 𝑅𝑋𝑌(𝑡1, 𝑡2) ∗ ℎ(𝑡1)                               (4.66)  

 



4.5.2.4. Réponse d’un système au bruit blanc 

Nous déterminerons la puissance moyenne 𝐸 {|𝑌(𝑡)|2 } de la sortie d’un système piloté 

par le bruit blanc (white noise). C’est un cas particulier de (4.66), cependant, en raison de son 

importance, il est énoncé comme un théorème.  

Théorème : Si l’entrée 𝑋(𝑡) d’un système linéaire est un bruit blanc avec l’autocorrélation  

𝑅𝑋𝑋(𝑡1, 𝑡2) = 𝑞(𝑡1)𝛿(𝑡1 −  𝑡2) 

alors  

𝐸 {|𝑌(𝑡)|2 } = 𝑞(𝑡) ∗ |ℎ(𝑡)|2 = ∫ 𝑞(𝑡 − 𝛼)
∞

−∞
|ℎ(𝛼)|2𝑑𝛼            (4.67) 

Preuve  

De (4.67, il s’ensuit que : 

𝑅𝑋𝑌(𝑡1, 𝑡2) = 𝑞(𝑡1)𝛿(𝑡2 −  𝑡1) ∗ ℎ∗(𝑡2) = 𝑞(𝑡1)ℎ∗(𝑡2 −  𝑡1) 

𝑅𝑌𝑌(𝑡1, 𝑡2) = ∫ 𝑞(𝑡1 − 𝛼)ℎ∗[𝑡2 −  (𝑡1 − 𝛼)]
∞

−∞

ℎ(𝛼)𝑑𝛼 

Et avec 𝑡1 =  𝑡2 = 𝑡, (4.67) est obtenue. 

Cas particuliers : 

a) Si 𝑋(𝑡) est un bruit blanc stationnaire, alors 𝑞(𝑡) = 𝑞 et (4.67 donne : 

𝐸{𝑌2(𝑡)} = 𝑞𝐸    où ; 𝐸 = ∫ |ℎ(𝑡)|2∞

−∞
𝑑𝑡  est l’énergie de ℎ(𝑡). 

b) Si ℎ(𝑡) est de courte durée par rapport aux variations de 𝑞(𝑡), alors 

                                        𝐸{𝑌2(𝑡)} ≅ 𝑞(𝑡) ∫ |ℎ(𝛼)|2∞

−∞
𝑑𝛼 = 𝐸𝑞(𝑡)                  (4.68)  

Cette relation justifie le terme « intensité moyenne » utilisée pour décrire la fonction  𝑞(𝑡). 

c) Si  𝑅𝑉𝑉(𝜏) = 𝑞𝛿(𝜏) et 𝑉(𝑡) est appliqué au système à 𝑡 = 0, alors 𝑞(𝑡) = 𝑞𝑈(𝑡) et (4.67) 

donne : 

𝐸{𝑌2(𝑡)} = 𝑞 ∫ |ℎ(𝛼)|2
𝑡

−∞

𝑑𝛼 

4.5.2.5. Différentiateurs 

Un différentiateur est un système linéaire dont la sortie est la dérivée de l’entrée   c’est à dire   

𝐿{𝑋(𝑡)] = 𝑋′(𝑡) . 



 Nous pouvons, donc, utiliser les résultats précédents pour trouver la moyenne et 

l’autocorrélation de  𝑋′(𝑡).  

De (4.57), il s’en suit que : 

𝜂𝑋′(𝑡)  =  𝐿[𝜂𝑋(𝑡)]  =  𝜂𝑋
′ (𝑡)                          (4.69)  

De la même façon [voir (4.60)]  

𝑅𝑋𝑋′ (𝑡1, 𝑡2) =  𝐿2[𝑅𝑋𝑋(𝑡1, 𝑡2)]  =  
𝜕𝑅𝑋𝑋(𝑡1, 𝑡2)

𝜕𝑡2
   

         (4.70)  

car, dans ce cas, 𝐿2 signifie la différentiation par rapport à 𝑡2. Finalement,  

𝑅𝑋′𝑋′(𝑡1, 𝑡2) =  𝐿1[𝑅𝑋𝑋′(𝑡1, 𝑡2)]  =  
𝜕𝑅𝑋𝑋′ (𝑡1, 𝑡2)

𝜕𝑡1
   

                   (4.71)  

 

En combinant (4.70) et (4.71), nous obtenons : 

𝑅𝑋′𝑋′(𝑡1, 𝑡2) =  
𝜕2𝑅𝑋𝑋(𝑡1, 𝑡2)

𝜕𝑡1𝜕𝑡2
   

                                 (4.72)  

Processus Stationnaire : Si 𝑋(𝑡) est  SSL, alors 𝜂𝑋(𝑡) est constante; donc :  

𝐸{𝑋′(𝑡)}  =  0                                                    (4.73)  

En plus, comme  𝑅𝑋𝑋(𝑡1, 𝑡2) = 𝑅𝑋𝑋(𝜏), nous concluons avec 𝜏 = 𝑡1 − 𝑡2 que 

𝜕𝑅𝑋𝑋(𝑡1 − 𝑡2)

𝜕𝑡2
= −

𝑑𝑅𝑋𝑋(𝜏)

𝑑𝜏
             

𝜕2𝑅𝑋𝑋(𝑡1 − 𝑡2)

𝜕𝑡1𝜕𝑡2
= −

𝑑2𝑅𝑋𝑋(𝜏)

𝑑𝜏2
 

Donc 

𝑅𝑋𝑋′ (𝜏) = −𝑅′𝑋𝑋(𝜏)           𝑅𝑋′𝑋′(𝜏) = −𝑅′′𝑋𝑋(𝜏)                    (4.74)  

4.5.2.6. Equations différentielles 

Une équation différentielle déterministe avec une excitation aléatoire est de la forme suivante : 

𝑎𝑛𝑌(𝑚)(𝑡) + ⋯ + 𝑎0𝑌(𝑡) = 𝑋(𝑡)                                (4.75)  



Où, les coefficients 𝑎𝑘 sont des constantes données et l’excitation  𝑋(𝑡) est un processus 

stochastique. Nous allons considérer sa solution 𝑌(𝑡) en supposant que les conditions initiales 

sont nulles. Avec cette hypothèse, 𝑌(𝑡) est unique (réponse à l’état zéro) et   satisfît la condition 

de la linéarité (4.54).  

Nous pouvons, donc, interpréter 𝑌(𝑡) comme la sortie d’un système linéaire spécifié par (4.75). 

En général, la détermination des statistiques complètes de 𝑌(𝑡) est compliqué. Dans ce qui suit, 

nous évaluons seulement ses moments du second ordre en utilisant les résultats précédents.  

La sortie 𝑌(𝑡) de ce système est un processus avec les conditions initiales nulles vérifiant (4.75). 

a) La moyenne : 

Comme nous le savons [voir (4.57)] la moyenne 𝜂𝑌(𝑡) de  𝑌(𝑡) est la sortie de 𝐿 avec l’entrée 

𝜂𝑋(𝑡). Donc elle vérifie l’équation   

𝑎𝑛𝜂𝑌
(𝑛)(𝑡) + ⋯ + 𝑎0𝜂𝑌(𝑡) = 𝜂𝑋(𝑡)                      (4.76) 

et les conditions initiales sont : 

𝜂𝑌(0) = ⋯ = 𝜂𝑌
(𝑛−1)(𝑡) = 0                                 (4.77) 

Ce résultat peut être établi directement par :  

𝐸 {𝑌(𝑘) (𝑡) } =  𝜂𝑌
(𝑘)(𝑡)                                           (4.78)  

Prenant l’espérance des deux membres de (4.75) et utilisant (4.78), nous obtenons (4.76). 

L’équation (4.77) vient de (4.78) car 𝑌(𝑘)(0) = 0 par hypothèse. 

b) La corrélation. 

 Pour déterminer   𝑅𝑋𝑌(𝑡1, 𝑡2), nous utilisons (4.60). 

𝑅𝑋𝑌(𝑡1, 𝑡2) = 𝐿2[𝑅𝑋𝑋(𝑡1, 𝑡2)] 

Dans ce cas,  𝐿2 signifie que 𝑅𝑋𝑌(𝑡1, 𝑡2) vérifie l’équation différentielle suivante : 

𝑎𝑛

𝜕𝑛𝑅𝑋𝑌(𝑡1, 𝑡2)

𝜕𝑡2
𝑛 + ⋯ + 𝑎0𝑅𝑋𝑌(𝑡1, 𝑡2) = 𝑅𝑋𝑋(𝑡1, 𝑡2) 

               (4.79) 

avec les conditions initiales ; 



𝑅𝑋𝑌(𝑡1, 0) = ⋯ =
𝜕𝑛−1𝑅𝑋𝑌(𝑡1, 0)

𝜕𝑡2
𝑛−1 = 0 

                 (4.80) 

De la même maniéré, puisque  [voir (4.62)] 

 𝑅𝑌𝑌(𝑡1, 𝑡2) =  𝐿1[𝑅𝑋𝑌(𝑡1, 𝑡2)]   

Nous concluons comme précédemment que : 

𝑎𝑛

𝜕𝑛𝑅𝑌𝑌(𝑡1, 𝑡2)

𝜕𝑡1
𝑛 + ⋯ + 𝑎0𝑅𝑌𝑌(𝑡1, 𝑡2) = 𝑅𝑋𝑌(𝑡1, 𝑡2) 

               (4.81) 

𝑅𝑌𝑌(0, 𝑡2) = ⋯ =
𝜕𝑛−1𝑅𝑌𝑌(0, 𝑡2)

𝜕𝑡1
𝑛−1 = 0 

                      (4.82) 

Ces résultats peuvent être établis directement : 

 de (4.79), il s’en suit que :  X(t1)[𝑎𝑛𝑌(𝑛)(𝑡2) + ⋯ + 𝑎0𝑌(𝑡2)] = X(t1)X(t2)                       

Ceci donne (4.79) car  

𝐸 {X(t1)𝑌(𝑘) (𝑡2) } =  
𝜕𝑘𝑅𝑋𝑌(𝑡1, 𝑡2)

𝜕𝑡2
𝑘  

De même, (4.81) est une conséquence de l’identité suivante : 

[𝑎𝑛𝑌(𝑛)(𝑡1) + ⋯ + 𝑎0𝑌(𝑡1)]Y(t2) = X(t1)Y(t2) 

Car  

𝐸 {𝑌(𝑘) (𝑡1)Y(t2) } =  
𝜕𝑘𝑅𝑌𝑌(𝑡1, 𝑡2)

𝜕𝑡1
𝑘  

Finalement, les valeurs espérées de X(t1)𝑌(𝑘) (0) = 0     𝑒𝑡     𝑌(𝑘) (0)Y(t2) = 0 donne  (4.80) 

et  (4.82).  

4.5.2.7. L’intégrale d’un processus stochastique 

L’intégrale  𝑆 = ∫ 𝑋(𝑡)𝑑𝑡
𝑏

𝑎
 , d'un processus stochastique 𝑋(𝑡) est une variable aléatoire 𝑆 et sa 

valeur 𝑆(𝜉) pour un essai spécifique 𝜉 est l'aire sous la courbe 𝑋(𝑡, 𝜉) dans l'intervalle [𝑎, 𝑏]. 



En interprétant ce qui précède comme une intégrale de Riemann, on conclut de la linéarité des 

espérances que : 

𝜂𝑆 = 𝐸{𝑆} = ∫ 𝐸{𝑋(𝑡)}
𝑏

𝑎
𝑑𝑡 = ∫ 𝜂(𝑡)

𝑏

𝑎
𝑑𝑡              (4.83) 

De la même manière. Puisque, 𝑆2 = ∫ ∫ 𝑋(𝑡1)𝑋(𝑡2)𝑑𝑡1
𝑏

𝑎

𝑏

𝑎
 𝑑𝑡2 , nous concluons, en utilisant à 

nouveau la linéarité des espérances, que : 

 

𝐸{𝑆2} = ∫ ∫ 𝐸{𝑋(𝑡1)𝑋(𝑡2)}𝑑𝑡1
𝑏

𝑎

𝑏

𝑎
 𝑑𝑡2                   (4.84)  

 

Exemple 4.11 

On va déterminer l'autocorrélation 𝑅 (𝑡1, 𝑡2) du processus 𝑋(𝑡) = 𝑟 cos (𝜔𝑡 + 𝜑). 

 Nous supposons que les variables aléatoires 𝑟 et 𝜑 sont indépendantes et 𝜑 est uniforme dans 

l'intervalle [−𝜋, 𝜋]. En utilisant des identités trigonométriques simples, nous trouvons : 

𝐸{𝑋(𝑡1)𝑋(𝑡2)} =
1

2
𝐸{𝑟2}𝐸{𝑐𝑜𝑠𝜔(𝑡1 − 𝑡2) + cos (𝜔𝑡1 + 𝜔𝑡2 + 2𝜑)} 

Et puisque  

𝐸{cos (𝜔𝑡1 + 𝜔𝑡2 + 2𝜑)} =
1

2𝜋
∫ cos (𝜔𝑡1 + 𝜔𝑡2 + 2𝜑)𝑑𝜑

+𝜋

−𝜋

= 0 

On conclut que : 

𝑅(𝑡1, 𝑡2) =
1

2
𝐸{𝑟2}𝑐𝑜𝑠𝜔(𝑡1 − 𝑡2)                        (4.85) 

Exemple 4.12 

L’intégrale 𝑌 = ∫ 𝑉(𝛼)𝑑𝛼
𝑡

0
  peut être considérée comme la sortie d’un système linéaire avec 

𝑋(𝑡)  =  𝑉(𝑡)𝑈(𝑡) et réponse impulsionnelle ℎ(𝑡)  =  𝑈 (𝑡). Si, en plus, 𝑉(𝑡) est un bruit blanc 

avec une intensité moyenne 𝑞(𝑡), alors 𝑋(𝑡)  est un bruit blanc avec une intensité moyenne 

𝑞(𝑡)𝑈(𝑡), et  (4.67) donne : 

𝐸{𝑌2(𝑡)}  =  𝑞(𝑡)𝑈(𝑡)  ∗  𝑈(𝑡)  =  ∫ 𝑞(𝛼)𝑑𝛼 
𝑡

0

 

 



Exemple 4.13 

Si 𝑋(𝑡) est  SSL et  𝑆 = ∫ 𝑋(𝑡)𝑑𝑡
𝑇

−𝑇
 alors ; 

𝜎𝑆
2 = ∫ ∫ 𝐶(𝑡1 − 𝑡2

𝑇

−𝑇

𝑇

−𝑇
)𝑑𝑡1𝑑𝑡2 = ∫ (2𝑇 − |𝜏|)𝐶(𝜏)𝑑𝜏

2𝑇

−2𝑇
          (4.86)  

La dernière égalité s’en suit avec 𝜏 = 𝑡1 − 𝑡2 (voir Fig. 4.7) ; les détails, cependant, sont omis.  

Cas particuliers :  

a) Si 𝐶(𝜏) = 𝑞𝛿(𝜏), alors on a : 

𝜎𝑆
2 = 𝑞 ∫ (2𝑇 − |𝜏|)𝛿(𝜏)𝑑𝜏

2𝑇

−2𝑇

= 2𝑇𝑞 

b) Si 𝑋(𝑡) est un processus a-dépendant et 𝑎 ≪ 𝑇 alors :  

𝜎𝑆
2 = ∫ (2𝑇 − |𝜏|)𝐶(𝜏)𝑑𝜏

2𝑇

−2𝑇

≅ 2𝑇 ∫ 𝐶(𝜏)𝑑𝜏
𝑎

−𝑎

 

∫ ∫ 𝐶(𝑡1 − 𝑡2)𝑑𝑡1𝑑𝑡2

𝑇

−𝑇

𝑇

−𝑇

= ∫ (2𝑇 − |𝜏|)𝐶(𝜏)𝑑𝜏
2𝑇

−2𝑇

 

Ceci montre que, dans l'évaluation de la variance de S, un processus a-dépendant avec un 

 𝑎 ≪ 𝑇,  peut être remplacé par du bruit blanc avec 𝑞 = ∫ 𝐶(𝜏)
𝑎

−𝑎
𝑑𝜏. 

 

Figure 4.7 : Evaluation de l’intégrale d’un processus stochastique. 

 



4.6. Exemples de processus stochastiques 

Dans cette section, on expose les processus stochastiques les plus connus et les plus utilisés 

pour décrire les phénomènes aléatoires rencontrés dans la nature. 

4.6.1. Processus de Poisson.  

Un processus de Poisson est régit par la loi de probabilité discrète dite de « Poisson ». 

Pour établir un tel processus, on introduit la notion de points de Poisson qui sont spécifiés par 

les propriétés suivantes : 

𝑃𝑖 : Le nombre 𝑛(𝑡1, 𝑡2) des points 𝑡𝑖 dans un intervalle (𝑡1, 𝑡2) de longueur 𝑡 = 𝑡1 − 𝑡2 est une 

variable aléatoire de Poisson de paramètre 𝜆𝑡 tel que : 

 

𝑃{𝑛(𝑡1, 𝑡2) = 𝑘} =
𝑒−𝜆𝑡(𝜆𝑡)𝑘

𝑘!
 

                           (4.86) 

 

𝑃2 : Si les intervalles [𝑡1, 𝑡2] et [𝑡3, 𝑡4] ne se chevauchent pas, alors les variables aléatoires 

𝑛(𝑡1, 𝑡2) et 𝑛(𝑡3, 𝑡4) sont indépendantes. En utilisant les points 𝑡𝑖, on forme le processus 

stochastique  𝑋(𝑡) = 𝑛(0, 𝑡), illustré à la figure 4.8a. Il s'agit d'un processus à l'état discret 

constitué d'une famille de fonctions en escalier croissantes avec des discontinuités aux points 

𝑡𝑖.  

Pour un 𝑡 spécifique, 𝑋(𝑡) est une variable aléatoire de Poisson de paramètre 𝜆𝑡 ; par 

conséquent :  𝐸{𝑋(𝑡)} = 𝜂(𝑡) = 𝜆𝑡. 

 Son autocorrélation vaut : 

𝑅(𝑡1, 𝑡2) = {
𝜆𝑡2 + 𝜆2𝑡1𝑡2         𝑡1 ≥ 𝑡2

𝜆𝑡1 + 𝜆2𝑡1𝑡2         𝑡1 ≤ 𝑡2

                           (4.87)  

 

Ou l’équivalent qui est : 𝐶(𝑡1, 𝑡2) = 𝜆 min(𝑡1, 𝑡2) = 𝜆 𝑡1𝑈(𝑡2 − 𝑡1) + 𝜆 𝑡2𝑈(𝑡1 − 𝑡2) 

 

 



 

Figure 4.8 : Processus stochastique de Poisson  𝑋(𝑡) = 𝑛(0, 𝑡) 

 

Preuve : Ce qui précède est vrai pour 𝑡1 = 𝑡2(statistiques de la loi de Poisson), on a : 

 

𝐸{𝑋2(𝑡)} =  𝜆𝑡 + 𝜆2𝑡2                                       (4.88) 

 

Puisque  𝑅(𝑡1, 𝑡2) = 𝑅(𝑡2, 𝑡1) , il suffit de prouver (4.87) pour 𝑡1  < 𝑡2. Les variables 

aléatoires 𝑋(𝑡1) et 𝑋(𝑡2) − 𝑋(𝑡1) sont indépendants car les intervalles [0,  𝑡1] et [ 𝑡1,  𝑡2] ne se 

chevauchent pas. En outre, ce sont des distributions de Poisson de paramètres 𝜆𝑡1 et 𝜆(𝑡2 − 𝑡1)  

respectivement. D'où 

 

𝐸{𝑋(𝑡1)[𝑋(𝑡2) − 𝑋(𝑡1)]} = 𝐸{𝑋(𝑡1)} 𝐸{𝑋(𝑡2) − 𝑋(𝑡1)} = 𝜆𝑡1𝜆(𝑡2 − 𝑡1) 

En utilisant l’identité 

𝑋(𝑡1)𝑋(𝑡2) = 𝑋(𝑡1)[𝑋(𝑡1) + 𝑋(𝑡2) − 𝑋(𝑡1)] 

 

Nous concluons de ce qui précède et de (4.88) que : 

 

𝑅(𝑡1, 𝑡2) = 𝜆𝑡1 + 𝜆2𝑡1
2+ 𝜆𝑡1𝜆(𝑡2 − 𝑡1) 

et (4.87) est obtenue. 

a) Cas non uniforme 



Si les points 𝑡𝑖 ont une densité non uniforme λ(t), alors les résultats précédents sont toujours 

valables à condition que le produit 𝜆(𝑡2 − 𝑡1) soit remplacé par l'intégrale de λ(t) de 𝑡1  à 𝑡2. 

Ainsi 

𝐸{𝑋(𝑡)} = ∫ 𝜆(𝛼)
𝑡

0
𝑑𝛼                       (4.89)  

Et  

     𝑅(𝑡1, 𝑡2) = ∫ 𝜆(𝑡)
𝑡1

0
𝑑𝑡 [1 + ∫ 𝜆(𝑡)

𝑡2

0
𝑑𝑡]           𝑡1 ≤ 𝑡2             (4.90) 

 

Exemple 4.14 : signal télégraphique  

En utilisant les points de Poisson 𝑡𝑖, on forme un processus 𝑋(𝑡) tel que 𝑋(𝑡) = 1 si le nombre 

de points dans l'intervalle [0, 𝑡] est pair, et 𝑋(𝑡) = −1 si ce nombre est impair (Fig.4.8b. En 

notant 𝑝(𝑘) la probabilité que le nombre de points dans l'intervalle [0, 𝑡]  soit égal à 𝑘, nous 

concluons que [voir (4.86)] que : 

𝑃{𝑋(𝑡) = 1} = 𝑝(0) + 𝑝(2) + ⋯ 

= 𝑒−𝜆𝑡 [1 +
(𝜆𝑡)2

2!
+ ⋯ ] = 𝑒−𝜆𝑡cosh (𝜆𝑡) 

𝑃{𝑋(𝑡) = −1} = 𝑝(1) + 𝑝(3) + ⋯ 

= 𝑒−𝜆𝑡 [𝜆𝑡 +
(𝜆𝑡)3

3!
+ ⋯ ] = 𝑒−𝜆𝑡sinh (𝜆𝑡) 

 

D'où 

 𝐸{𝑋(𝑡)} = 𝑒−𝜆𝑡[cos(𝜆𝑡) − sinh(𝜆𝑡)] = 𝑒−2𝜆𝑡                     (4.91)  

Pour déterminer 𝑅(𝑡1, 𝑡2), on note que, si   𝜏 = 𝑡1 − 𝑡2 > 0  et 𝑋(𝑡2)  =  1, alors 𝑋(𝑡1)  =  1     

si le nombre de points dans l'intervalle [𝑡1 − 𝑡2] est pair. D'où 

𝑃{𝑋(𝑡1) = 1|𝑋(𝑡2) = 1} = 𝑒−𝜆𝑡 cosh(𝜆𝑡)    𝜏 = 𝑡1 − 𝑡2       

En multipliant par 𝑃{𝑋(𝑡2) = 1}, on obtient : 

𝑃{𝑋(𝑡1) = 1, 𝑋(𝑡2) = 1} = 𝑒−𝜆𝑡 cosh(𝜆𝑡)𝑒−𝜆𝑡2 cosh(𝜆𝑡2)          

De la même façon, 



𝑃{𝑋(𝑡1) = −1, 𝑋(𝑡2) = −1} = 𝑒−𝜆𝑡 cosh(𝜆𝑡)𝑒−𝜆𝑡2 sinh(𝜆𝑡2)          

𝑃{𝑋(𝑡1) = 1, 𝑋(𝑡2) = −1} = 𝑒−𝜆𝑡 sinh(𝜆𝑡)𝑒−𝜆𝑡2 sinh(𝜆𝑡2)          

𝑃{𝑋(𝑡1) = −1, 𝑋(𝑡2) = 1} = 𝑒−𝜆𝑡 sinh(𝜆𝑡)𝑒−𝜆𝑡2 cosh(𝜆𝑡2)          

 

Puisque le produit 𝑋(𝑡1) 𝑋(𝑡2) est égal à 1 ou -1, nous concluons en omettant les détails que :  

𝑅(𝑡1, 𝑡2) = 𝑒−2𝜆|𝑡1−𝑡2|                        (4.92) 

Ce processus est appelé signal télégraphique semi-aléatoire car sa valeur 𝑋(0) = 1 à t = 0 n'est 

pas aléatoire. Pour supprimer cette certitude, nous formons le produit 𝑌(𝑡) = 𝒂 𝑋(𝑡) où a est 

une variable aléatoire indépendante de 𝑋(𝑡) et prenant les valeurs + 1 et -1 avec une probabilité 

égale 1/2. Le processus 𝑌(𝑡) ainsi formé est appelé signal télégraphique aléatoire. Puisque 

 𝐸{𝑎}  = 0  et  𝐸{𝑎2}  =  1, la moyenne de 𝑌(𝑡) est égal à 𝐸{𝑎}𝐸{𝑥(𝑡)}  = 0 et son 

autocorrélation est donnée par : 

𝐸{𝑌(𝑡1) 𝑌(𝑡2)} = 𝐸{𝑎2}𝐸{𝑋(𝑡1) 𝑋(𝑡2)} = 𝑒−2𝜆|𝑡1−𝑡2|  

On note que lorsque 𝑡 → ∞ les processus 𝑋(𝑡) et 𝑌(𝑡) ont des statistiques asymptotiquement 

égales. 

b) Somme de deux processus de Poisson 

Si 𝑋1(𝑡)  et 𝑋2(𝑡)  représentent deux processus de Poisson indépendants avec les paramètres 

𝜆1𝑡 et 𝜆2𝑡, respectivement, il s'ensuit facilement  que  leur somme 𝑋1(𝑡) + 𝑋2(𝑡) est aussi un 

processus de Poisson de paramètre  (𝜆1 + 𝜆2)𝑡.  

c) Différence de deux processus de Poisson 

Qu'en est-il de la différence de deux processus de Poisson indépendants ? Que dire de la 

fonction de répartition d'un tel processus ?  

Posons : 

𝑌(𝑡) = 𝑋1(𝑡) − 𝑋2(𝑡)                            (4.93)  

Alors  

𝑃{𝑌(𝑡) = 𝑛} = ∑ 𝑃{𝑋1(𝑡) = 𝑛 + 𝑘}𝑃{𝑋2(𝑡) = 𝑘}

∞

𝑘=0

          



= ∑ 𝑒−𝜆1𝑡  
(𝜆1𝑡)𝑛+𝑘

(𝑛 + 𝑘)!

∞

𝑘=0

 𝑒−𝜆2𝑡  
(𝜆2𝑡)𝑘

(𝑘)!
         

= 𝑒−(𝜆1+𝜆2)𝑡 (
𝜆1

𝜆2
)

𝑛/2

 ∑
(𝑡√𝜆1𝜆2)𝑛+𝑘

𝑘! (𝑛 + 𝑘)!

∞

𝑘=0

 

= 𝑒−(𝜆1+𝜆2)𝑡 (
𝜆1

𝜆2
)

𝑛/2

𝐼|𝑛|(2√𝜆1𝜆2𝑡)   𝑛 = 0, ±1, …     (4.94)  

Où ; 

𝐼𝑛(𝑥) ≜ ∑
(𝑥/2)𝑛+2𝑘

𝑘!(𝑛+𝑘)!

∞
𝑘=0                                                 (4.95)  

représente la fonction de Bessel modifiée d'ordre n. De (4.88) et (4.93) , il s'ensuit que : 

𝐸{𝑌(𝑡)} = (𝜆1 − 𝜆2)𝑡    𝑉𝑎𝑟{𝑌(𝑡)} = (𝜆1 + 𝜆2)𝑡                       (4.96)  

Ainsi, la différence de deux processus de Poisson indépendants n'est pas un processus de 

Poisson. Cependant, il est facile de montrer qu'une sélection aléatoire à partir d'un processus de 

Poisson donne un processus de Poisson ! 

d) Sélection aléatoire des points de Poisson 

 Soit 𝑋(𝑡) ↝ 𝑃(𝜆 𝑡) représentant un processus de Poisson de paramètre 𝜆 𝑡 comme 

précédemment, et supposons que chaque occurrence de 𝑋(𝑡) soit étiquetée indépendamment 

avec la probabilité p. Soit encore 𝑌(𝑡) le nombre total d'événements marqués dans l'intervalle 

[0, 𝑡] et soit 𝑍(𝑡) le nombre total d'événements non marqués dans [0, 𝑡]. Puis 

𝑌(𝑡) ↝ 𝑃(𝜆 𝑝𝑡)              𝑍(𝑡) ↝ 𝑃(𝜆 𝑝𝑡)                        (4.97)  

Où ; 𝑞 = 1 − 𝑝  

Preuve. Soit 𝐴𝑛 représente les « n événements se produisant dans [0, 𝑡]  et k d'entre eux sont 

étiquetés ». Puis 

𝑃(𝐴𝑛) = 𝑃{ 𝑘 événements sont étiquetés|X(t) = n} 

= (
𝑛
𝑘

) 𝑝𝑘𝑞𝑛−𝑘  𝑒−𝜆𝑡
(𝜆𝑡)𝑛

𝑛!
 

De plus, l'événement {𝑌(𝑡)  =  𝑘} représente l'union mutuellement exclusive des événements 

𝐴𝑘, 𝐴𝑘+1, …. Donc : 



{𝑌(𝑡)  =  𝑘} = ⋃ 𝐴𝑛

∞

𝑛=𝑘

 

tel que : 

𝑃{𝑌(𝑡)  =  𝑘} = ∑ 𝑃(𝐴𝑛) = 𝑒−𝜆𝑡 ∑
(𝜆𝑡)𝑛

𝑘! (𝑛 − 𝑘)!

∞

𝑛=𝑘

∞

𝑛=𝑘

𝑝𝑘𝑞𝑛−𝑘 

= 𝑒−𝜆𝑡
(𝜆𝑝𝑡)𝑘

𝑘!
∑

(𝜆𝑞𝑡)𝑟

𝑟!

∞

𝑟=0

      

= 𝑒−𝜆(1−𝑞)𝑡 (𝜆𝑝𝑡)𝑘

𝑘!
= 𝑒−𝜆𝑝𝑡 (𝜆𝑝𝑡)𝑘

𝑘!
       𝑘 = 0,1,2, …      (4.98)  

représente un processus de Poisson de paramètre 𝜆𝑝𝑡. De même, les événements non marqués 

𝑍(𝑡) forment un processus de Poisson indépendant avec le paramètre 𝜆𝑞𝑡.  

 Exemple 4.15 

Si les clients arrivent à un guichet de poste selon un processus de Poisson avec le 

paramètre 𝜆𝑡, et la probabilité qu'un client soit un homme est de 𝑝, alors les clients masculins 

forment un processus de Poisson de paramètre 𝜆𝑝𝑡, et les clients féminins forment un processus 

de Poisson indépendant de paramètre 𝜆𝑞𝑡 (pour une sélection déterministe de points de 

Poisson.) 

On montre que la probabilité conditionnelle d'un sous-ensemble d'un événement de Poisson est 

en fait binomiale. 

e) Points de Poisson points et la loi binomiale : 

Considérons, pour  𝑡1 < 𝑡2 , la probabilité conditionnelle suivante : 

𝑃{𝑋(𝑡1)  =  𝑘|𝑋(𝑡2)  =  𝑛} 

=
𝑃{𝑋(𝑡1)  =  𝑘|𝑋(𝑡2)  =  𝑛}

𝑃{𝑋(𝑡2)  =  𝑛}
 

=
𝑃{𝑋(𝑡1)  =  𝑘, 𝑁(𝑡1, 𝑡2) = 𝑛 − 𝑘}

𝑃{𝑋(𝑡2)  =  𝑛}
 

=
𝑒−𝜆𝑡1(𝜆𝑡1)𝑘

𝑘!

𝑒−𝜆(𝑡2−𝑡1) [𝜆(𝑡2−𝑡1)]𝑛−𝑘

(𝑛 − 𝑘)!
 

𝑛!

𝑒−𝜆𝑡2 (𝜆𝑡2)𝑛
 

= (
𝑛
𝑘

) (
𝑡1

𝑡2
)

𝑘

(1 −
𝑡1

𝑡2
)

𝑛−𝑘

   ↝ (𝑛,
𝑡1

𝑡2
)   𝑘 = 0,1,2, … , 𝑛                (4.99)  

 



ce qui prouve l’affirmation précédente. En particulier, soit 𝑘 =  𝑛 =  1 ,et soit ∆ le sous-

intervalle au début d'un intervalle de longueur 𝑇. Alors de (4.99), on obtient : 

𝑃{𝑁(∆)  =  𝑘|𝑁(𝑡, 𝑡 + 𝑇)  =  1} =
∆

𝑇
 

Mais l'événement {𝑁(∆) = 1} est équivalent à{𝑡 < 𝑡𝑖 < 𝑡 +  ∆}, où; 𝑡𝑖désigne l'instant d'arrivée 

aléatoire. La dernière expression représente donc : 

𝑃{{𝑡 < 𝑡𝑖 < 𝑡 +  ∆}|𝑁(𝑡, 𝑡 + 𝑇)  =  1} =
∆

𝑇
                   (4.100)  

 

C'est-à-dire, étant donné qu'une seule occurrence de Poisson a eu lieu dans un intervalle de 

longueur T. La densité de probabilité conditionnelle de l'instant d'arrivée correspondant est 

uniforme dans cet intervalle. En d'autres termes, une arrivée de Poisson est également 

susceptible de se produire n'importe où dans un intervalle T, étant donné qu'une seule 

occurrence a eu lieu dans cet intervalle. 

Plus généralement si 𝑡1 < 𝑡2 < ⋯ <  tn <  T  représente les n instants d'arrivée d'un processus 

de Poisson dans l'intervalle [0, 𝑇], alors  la fonction de répartition conditionnelle jointe de  

  𝑡1 < 𝑡2 < ⋯ <  tn  jusqu'à ce que 𝑋(𝑇)  =  𝑛 se simplifie en : 

𝑃{𝑡1 ≤ 𝑥1, 𝑡2 ≤ 𝑥2, … , 𝑡𝑛 ≤ 𝑥𝑛|𝑋(𝑇) = 𝑛} 

=
𝑃{𝑡1 ≤ 𝑥1, 𝑡2 ≤ 𝑥2, … , 𝑡𝑛 ≤ 𝑥𝑛|𝑋(𝑇) = 𝑛}

𝑃{𝑋(𝑇) = 𝑛}
 

=
1

𝑒−𝜆𝑇 (𝜆𝑇)𝑛

𝑛!

∑ ∏ 𝑒−𝜆(𝑥𝑖−𝑥𝑖−1)
[𝜆(𝑥𝑖 − 𝑥𝑖−1)]𝑚𝑖

𝑚𝑖!

𝑛

𝑖=1{𝑚1,𝑚2,..,𝑚𝑛}

 

= ∑
𝑛!

𝑚1! 𝑚2! … 𝑚𝑛!
{𝑚1,𝑚2,..,𝑚𝑛}

(
𝑥1

𝑇
)

𝑚1

(
𝑥2 − 𝑥1

𝑇
)

𝑚2

… (
𝑥𝑛 − 𝑥𝑛−1

𝑇
)

𝑚𝑛

 

      (4.101)  

 

avec 𝑥0  =  0. La sommation porte sur tous les entiers non négatifs {𝑚1,𝑚2, . . , 𝑚𝑛} pour 

lesquels 𝑚1+𝑚2+. . +𝑚𝑛 = 𝑛 et 𝑚1+𝑚2+. . +𝑚𝑘 ≥ 𝑘 =  1,2, . . . , n − 1. La formule ci-dessus 

en (4.101) représente la distribution de n points indépendants classés par ordre croissant ; dont 

chacun est uniformément réparti sur l'intervalle [0, 𝑇]. Il s'ensuit qu'un processus de Poisson 



𝑋(𝑡) distribue des points au hasard sur l'intervalle infini [0, ∞].  De la même manière que la 

variable aléatoire uniforme distribue des points dans un intervalle fini. 

Exemple 4.16 :   Impulsions de Poisson  

Si l’entrée   𝑋(𝑡) d’un différentiateur est un processus de Poisson, la sortie résultante  𝑍(𝑡) est 

un train d’impulsions (Fig.4.9)  

𝑍(𝑡) = ∑ 𝛿𝑖 (𝑡 − 𝑡𝑖)                          (4.102)  

 On mentionne que, 𝑍(𝑡)  est un processus stationnaire avec une moyenne 

          𝜂𝑍 = 𝜆                                       (4.103)  

et une autocorrélation  

     𝑅𝑍𝑍(𝜏) = 𝜆2 + 𝜆𝛿(𝜏)                             (4.104)  

Preuve :  

La première équation s’en suit de (4.69) car 𝜂𝑋(𝑡) = 𝜆𝑡. Pour prouver la seconde, nous 

observons que [voir(4.87)] 

𝑅𝑋𝑋(𝑡1, 𝑡2) = 𝜆2𝑡1𝑡2 + 𝜆min (𝑡1, 𝑡2)                      (4.105)  

 

 

Figure 4.9 : Dérivation d’un processus de poisson 

Et comme 𝑍(𝑡) = 𝑋′(𝑡), (4.70) donne : 

𝑅𝑍𝑍(𝑡1, 𝑡2) =
𝑅𝑋𝑋(𝑡1, 𝑡2)

𝜕𝑡2
= 𝜆2𝑡1 + 𝜆U (𝑡1, 𝑡2) 



Le graphe de cette fonction est donné par la Fig. 4.9b, où la variable indépendante est 𝑡1. 

Comme nous voyons, elle est discontinue en 𝑡1 = 𝑡2 et sa dérivée par rapport 𝑡1 contient 

l’impulsion  𝜆δ(𝑡1 − 𝑡2). Ceci donne [voir (4.71)] : 

𝑅𝑍𝑍(𝑡1, 𝑡2) =
𝑅𝑋𝑍(𝑡1, 𝑡2)

𝜕𝑡1
= 𝜆2 + 𝜆δ (𝑡1 − 𝑡2) 

 

4.6.2. Processus gaussien  

Il y a plusieurs façons de définir un processus gaussien (normal). On présente ici deux de ces 

définitions : 

 Définition 1 : Un P.S. est gaussien si toute combinaison linéaire (de coefficients qui ne 

sont pas identiquement nuls) est une variable aléatoire gaussienne. 

 Définition 2 : Un P.S. est gaussien si ses densités d'ordre n sont conjointement 

gaussiennes, pour toutes valeurs de n. 

En adoptant la deuxième définition, un processus 𝑋(𝑡) est dit normal, si les variables 

aléatoires 𝑋(𝑡1), … , 𝑋(𝑡𝑛) sont conjointement normales (gaussiennes) pour tout 𝑛 et 𝑡1, . . . , 𝑡𝑛. 

Les statistiques d'un processus normal sont complètement déterminées en fonction de la 

moyenne 𝜂(𝑡) et de l'auto-covariance 𝐶(𝑡1, 𝑡2).  

En effet, puisque  𝐸{𝑋(𝑡)} = 𝜂(𝑡)         𝜎𝑋
2(𝑡) = 𝐶(𝑡, 𝑡), on conclut que la densité du 

premier ordre 𝑓𝑋(𝑥. 𝑡) de 𝑋(𝑡) est la densité normale 𝑁[𝜂(𝑡), √𝐶(𝑡. 𝑡)]. De même, puisque la 

fonction 𝑟(𝑡1, 𝑡2) dans (4.114) est le coefficient de corrélation des variables aléatoires 𝑋(𝑡1) et 

𝑋(𝑡2), la densité du second ordre 𝑓𝑋(𝑥1, 𝑥2;  𝑡1, 𝑡2) de 𝑋(𝑡) est la densité conjointement normale 

suivante : 

𝑁[𝜂(𝑡1), 𝜂(𝑡2); √𝐶(𝑡1, 𝑡1), √𝐶(𝑡2, 𝑡2); 𝑟(𝑡1, 𝑡2)]        (4.106)  

La fonction caractéristique d'ordre n du processus 𝑋(𝑡) est donnée par : 

 

𝑒𝑥𝑝 {𝑗 ∑ 𝜂(𝑡𝑖)𝜔𝑖𝑖 −
1

2
∑ 𝐶(𝑡𝑖 , 𝑡𝑘)𝑖,𝑘 𝜔𝑖𝜔𝑘}                  (4.107)  

 

Son inverse 𝑓𝑋(𝑥1, … , 𝑥𝑛;  𝑡1, … , 𝑡𝑛) est la densité d'ordre 𝑛 de 𝑋(𝑡) 



 

4.6.2.1. Théorème d'existence 

Étant donné une fonction arbitraire 𝜂(𝑡) et une fonction de densité de probabilité 

𝐶(𝑡1, 𝑡2), on peut construire un processus normal de moyenne 𝜂(𝑡) et d'auto-covariance 

𝐶(𝑡1, 𝑡2). Ceci s'ensuit si on utilise en (4.107) les fonctions données 𝜂(𝑡) et 𝐶(𝑡1, 𝑡2). L'inverse 

de la fonction caractéristique résultante est une densité car la fonction 𝐶(𝑡1, 𝑡2) est une densité 

de probabilité par hypothèse. 

 

4.6.2.2. Les propriétés générales d'un processus stochastique 

Les propriétés statistiques d'un processus stochastique réel 𝑋(𝑡)  sont complètement 

déterminées par sa fonction de répartition d’ordre n : 

 

𝐹(𝑥1, … , 𝑥𝑛; 𝑡1, … , 𝑡𝑛) = 𝑃{𝑋(𝑡1) ≤ 𝑥1, … , 𝑋(𝑡𝑛) ≤ 𝑥𝑛}            (4.108) 

Les statistiques conjointes de deux processus réels 𝑋(𝑡) et 𝑌(𝑡) sont déterminées à partir  de la 

fonction de répartition conjointe des variables aléatoires suivantes : 

𝑋(𝑡1), … , 𝑋(𝑡𝑛), 𝑌(𝑡′1), … , 𝑌(𝑡′𝑚)  

Le processus complexe 𝑍(𝑡)  =  𝑋(𝑡)  +  𝑗𝑌(𝑡) est spécifié en termes de statistiques conjointes 

des processus réels 𝑋(𝑡) et 𝑌(𝑡). Un processus vectoriel (processus à n dimensions) est une 

famille de n processus stochastiques. 

 Corrélation et covariance.  

L'autocorrélation d'un processus 𝑋(𝑡), réel ou complexe, est par définition la moyenne du 

produit 𝑋(𝑡1)𝑋∗(𝑡2). Cette fonction sera notée 𝑅(𝑡1, 𝑡2) ou 𝑅𝑋(𝑡1, 𝑡2) ou 𝑅𝑋𝑋(𝑡1, 𝑡2). Ainsi, 

𝑅𝑋𝑋(𝑡1, 𝑡2) = 𝐸{𝑋(𝑡1)𝑋∗(𝑡2)}                              (4.109)  

où le terme conjugué est associé à la deuxième variable dans 𝑅𝑋𝑋(𝑡1, 𝑡2). Il en résulte que 

 

𝑅(𝑡1, 𝑡2) = 𝑅∗(𝑡1, 𝑡2)                                                 (4.110)  

Notons, en outre, que ; 



 

𝑅𝑋𝑋(𝑡, 𝑡) = 𝐸{|𝑋(𝑡)2|}                                     (4.111)  

Les deux dernières équations sont des cas particuliers de cette propriété : L'autocorrélation 

𝑅𝑋𝑋(𝑡1, 𝑡2) d'un processus stochastique 𝑋(𝑡) est une fonction définie positive, c'est-à-dire pour 

tout 𝑎𝑖 et 𝑎𝑗 on a : 

∑ 𝑎𝑖𝑎𝑗
∗

𝑖,𝑗 𝑅(𝑡𝑖, 𝑡𝑗) ≥ 0             (4.112)  

Ceci résulte de l’identité suivante :  

0 ≤ 𝐸 {|∑ 𝑎𝑖𝑋(𝑡𝑖)

𝑖

|

2

} = ∑ 𝑎𝑖𝑎𝑗
∗

𝑖,𝑗

𝐸{𝑋(𝑡𝑖)𝑋∗(𝑡𝑗)} 

 

 Exemple 4.17 

a) Si  𝑋(𝑡) = 𝑎𝑒𝑗𝜔𝑡  , alors 

𝑅(𝑡1, 𝑡2) = 𝐸{𝑎𝑒𝑗𝜔𝑡1 𝑎∗𝑒−𝑗𝜔𝑡2} = 𝐸{|𝑎|2}𝑒𝑗𝜔(𝑡1−𝑡2) 

b) Supposant que les variables 𝑎𝑖 sont un-corrélées avec une moyenne nulle et une 

variance 𝜎𝑖
2. Si  

𝑋(𝑡) = ∑ 𝑎𝑖𝑒𝑗𝜔𝑖𝑡

𝑖

 

Alors  (4.109) donne : 

𝑅(𝑡1, 𝑡2) = ∑ 𝜎𝑖
2𝑒𝑗𝜔𝑖(𝑡1−𝑡2)

𝑖

 

 L’auto-covariance d’un processus  

L’auto-covariance 𝐶(𝑡1, 𝑡2) d’un processus 𝑋(𝑡) est la covariance des variables aléatoires 𝑋(𝑡1) 

et 𝑋(𝑡2) exprimée par : 

𝐶(𝑡1, 𝑡2) = 𝑅(𝑡1, 𝑡2) − 𝜂(𝑡1)𝜂∗(𝑡2)         (4.113)  

Dans (4.113) , 𝜂(𝑡) = 𝐸{𝑋(𝑡)} est la moyenne de 𝑋(𝑡). Le coefficient de corrélation du 

processus  𝑋(𝑡) est le rapport suivant : 

𝑟(𝑡1, 𝑡2) =
𝐶(𝑡1, 𝑡2)

√𝐶(𝑡1, 𝑡1)𝐶(𝑡2, 𝑡2)
 



                (4.114)  

Remarque : L’auto-covariance 𝐶(𝑡1, 𝑡2) d’un processus 𝑋(𝑡) est l’autocorrélation du 

processus centré 𝑋̅(𝑡) = 𝑋(𝑡) − 𝜂(𝑡). 

Le coefficient de corrélation 𝑟(𝑡1, 𝑡2) de 𝑋(𝑡) est l’autocovariance du processus normalisé 

𝑋(𝑡)/√𝐶(𝑡, 𝑡). 

|𝑟(𝑡1, 𝑡2)| ≤ 1           𝑟(𝑡, 𝑡) = 1              (4.115)  

Exemple 4.18 

Si    𝑆 = ∫ 𝑋(𝑡)𝑑𝑡
𝑏

𝑎
  alors    𝑆 − 𝜂𝑠 = ∫ 𝑋̅(𝑡)𝑑𝑡

𝑏

𝑎
  

Où ; 𝑋̅(𝑡) = 𝑋(𝑡) − 𝜂𝑋(𝑡).  

En utilisant (4.84), nous concluons que : 

  

𝜎𝑆
2 = 𝐸{| 𝑆 − 𝜂𝑠|2} = ∫ ∫ 𝐶𝑋(𝑡1, 𝑡2)𝑑𝑡1𝑑𝑡2

𝑏

𝑎

𝑏

𝑎
                       (4.116)  

 

L’inter-corrélation de deux processus 𝑋(𝑡) et 𝑌(𝑡)est la fonction suivante : 

 

𝑅𝑋𝑌(𝑡1, 𝑡2) = 𝐸{𝑋(𝑡1)𝑌∗(𝑡2)} = 𝑅∗
𝑌𝑋(𝑡1, 𝑡2)           (4.117)  

 

De la même manière, l’inter covariance entre deux processus est définie par : 

𝐶𝑋𝑌(𝑡1, 𝑡2) = 𝐸{𝑋(𝑡1)𝑌∗(𝑡2)} − 𝜂𝑋(𝑡1)𝜂𝑌
∗ (𝑡2) 

= 𝑅𝑋𝑌(𝑡1, 𝑡2) − 𝜂𝑋(𝑡1)𝜂𝑌
∗ (𝑡2)                            (4.118)  

 

Deux processus sont dits (mutuellement) orthogonaux si : 

𝑅𝑋𝑌(𝑡1, 𝑡2) = 0   pour tout 𝑡1 et 𝑡2                     (4.119)  

 

Ils sont un-corrélés si : 

𝐶𝑋𝑌(𝑡1, 𝑡2) = 0   pour tout 𝑡1 et 𝑡2                     (4.120)  



 

 

4.6.2.3. Processus a-dépendants  

En général, les valeurs 𝑋(𝑡1) et 𝑋(𝑡2) d'un processus stochastique 𝑋(𝑡)  sont 

statistiquement dépendantes pour tout 𝑡1 et 𝑡2. Cependant, dans la plupart des cas, cette 

dépendance diminue au fur et à mesure que |𝑡1 − 𝑡2| → ∞. Ceci conduit au concept suivant :  

Un processus stochastique 𝑋(𝑡) est dit a-dépendant si toutes ses valeurs  𝑋(𝑡) pour 𝑡 < 𝑡0  et 

pour 𝑡 > 𝑡0 + 𝑎  sont indépendantes les unes des autres. De là, il s'ensuit que : 

 

𝐶(𝑡1, 𝑡2) = 0   pour  |𝑡1 − 𝑡2| > 𝑎                        (4.121)  

Un processus 𝑋(𝑡) est appelé a-dépendant de la corrélation si son autocorrélation 

satisfait (4.121). Clairement, si 𝑋(𝑡) a-dépendant de la corrélation, alors toute combinaison 

linéaire de ses valeurs pour 𝑡 < 𝑡0  n'est pas corrélée avec toute combinaison linéaire de ses 

valeurs pour 𝑡 > 𝑡0 + 𝑎.  

4.6.2.4. Bruit blanc  

On dira qu'un processus 𝑉(𝑡) est un bruit blanc si ses valeurs 𝑉(𝑡𝑖) et 𝑉(𝑡𝑗)  ne sont pas 

corrélées pour tout 𝑡𝑖 et 𝑡𝑗 ≠ 𝑡𝑖 c.-à-d.  𝐶(𝑡𝑖, 𝑡𝑗) = 0     𝑡𝑗 ≠ 𝑡𝑖   

Comme nous l'expliquons plus tard, l'auto-covariance d'un processus de bruit blanc non trivial 

doit être de la forme suivante : 

𝐶(𝑡1, 𝑡2) = 𝑞(𝑡1)𝛿( 𝑡1 − 𝑡2)             𝑞(𝑡) ≥ 0                     (4.122)  

Si les variables aléatoires 𝑉(𝑡𝑖) et 𝑉(𝑡𝑗) sont non seulement non corrélées mais aussi 

indépendantes, alors 𝑉(𝑡) sera appelé strictement bruit blanc. Sauf indication contraire, on 

supposera que la moyenne d'un processus de bruit blanc est identiquement 0. 

Exemple 4.19 

Supposons que 𝑉(𝑡) est un bruit blanc et  

𝑋(𝑡) = ∫ 𝑣(𝛼)𝑑𝛼
𝑡

0
                    (4.123)  

En insérant (4.122) dans (4.123) , on obtient : 



𝐸{𝑋2(𝑡)} = ∫ ∫ 𝑞(𝑡1)𝛿( 𝑡1 − 𝑡2)𝑑𝑡2𝑑
𝑡

0

𝑡

0
𝑡1 = ∫ 𝑞(𝑡1)𝑑𝑡1

𝑡

0
           (4.124)  

Car  

∫ 𝛿( 𝑡1 − 𝑡2)𝑑𝑡2 = 1    𝑝𝑜𝑢𝑟 0 <  𝑡1 < 𝑡
𝑡

0

 

Exemple 4.20 

Supposons que 𝑋(𝑡) est processus normal avec : 

𝜂(𝑡) = 3               𝐶(𝑡1, 𝑡2) = 4𝑒−0.2|𝑡1− 𝑡2| 

 

a) Trouver la probabilité que 𝑋(5) ≤ 2. 

Clairement, 𝑋(5) est une variable aléatoire normale de moyenne 𝜂(5) = 3 et de variance 

𝐶(5, 5) = 4. Donc : 

𝑃{𝑋(5) ≤ 2} = 𝐺 (−
1

2
) = 0.309 

b) Trouver la probabilité que  |𝑋(8) − 𝑋(5)| ≤ 1. 

La différence 𝑆 = 𝑋(8) − 𝑋(5) est une variable aléatoire normale de moyenne 

 𝜂(8) − 𝜂(5) = 3 − 3 = 0 et de variance 

 𝐶(8, 8) + 𝐶(5, 5) − 2𝐶(8, 5) = 8(1 − 𝑒−0.6) = 3.608.  

Donc ; 

𝑃{|𝑋(8) − 𝑋(5)| ≤ 1} = 2𝐺 (−
1

1.9
) = 0.4 

4.6.3. Processus de Markov 

Les processus de Markov jouent un rôle important dans la théorie du traitement du signal, parce 

qu'ils conduisent, dans beaucoup de circonstances, à des filtres de mémoire finie. On présente 

ici uniquement la définition pour des processus discrets (ensemble T dénombrable). 

4.6.3.1. Définition 

Un processus 𝑋(𝑡), 𝑡 ∈ 𝑇   est de Markov si 

 

𝑝(𝑋(𝑘 + 1)/𝑋(𝑘)𝑋(𝑘 − 1) ⋯ = 𝑝(𝑋(𝑘 + 1)/𝑋(𝑘)                 (4.125) 



 

L'équation (4.125) décrit de façon formelle la propriété suivante : 

 Le futur et le passé sont conditionnellement indépendants, étant donné le présent. 

Quand les variables aléatoires 𝑋(𝑘) sont discrètes, définies dans un même ensemble 

dénombrable N, on appelle le processus de Markov une chaine de Markov. Ces processus sont 

complètement caractérisés par : 

 La distribution de leur valeur initiale : 

  𝑝{𝑋(0) = 𝑎𝑖} = 𝑝𝑖
0 , ∀ 𝑎𝑖 ∈ 𝑁              (4.126) 

 L’ensemble de probabilités conditionnelles : 

 

  𝑝{𝑋(0) = 𝑎𝑖/𝑋(𝑘 − 1) = 𝑎𝑗} = 𝑝𝑖𝑗(𝑘), ∀ 𝑎𝑖 , 𝑎𝑗 ∈ 𝑁              (4.127) 

Avec ; 

∑  𝑝𝑖
0 = 1

𝑖

  𝑒𝑡   ∑ 𝑝𝑖𝑗(𝑘) = 1

𝑖

, ∀𝑗, ∀𝑘 = 1,2, ⋯ 

 

Si les probabilités 𝑝𝑖𝑗(𝑘) = 𝑝𝑖𝑗   ne dépendent pas de l’instant k considéré, on dira qu’il s’agit 

d’une chaine de Markov de probabilité de transition stationnaire.  

La probabilité pour que la chaine prenne la valeur 𝑋(𝑘) = 𝑎𝑖  à l’instant k, sachant que sa valeur 

à l’instant n est  𝑋(𝑛) = 𝑎𝑗 , est donnée par : 

𝑝𝑖𝑗(𝑘, 𝑛) = 𝑝{𝑋(𝑘) = 𝑎𝑖/𝑋(𝑛) = 𝑎𝑗} = ∑ 𝑝𝑖𝑞(𝑘, 𝑟)𝑝𝑞𝑗(𝑟, 𝑛)𝑞               (4.128) 

 

où r est un instant quelconque pris entre k et n. La formule de (4.128) est connue par le nom 

d’équation de Chapman Kolmogorov, et joue un rôle fondamental dans l’étude des processus 

Markov.  

Pour des chaines avec des transitions stationnaires, la probabilité dépend uniquement de la 

distance entre les deux instants considérés : 

𝑝𝑖𝑗(𝑘 − 𝑛) = 𝑝{𝑋(𝑘) = 𝑎𝑖/𝑋(𝑛) = 𝑎𝑗} = ∑ 𝑝𝑖𝑞(𝑘 − 𝑟)𝑝𝑞𝑗(𝑟 − 𝑛)𝑞               (4.129) 

Si on pose,  𝑚 = 𝑘 − 𝑟 et 𝑠 = 𝑟 − 𝑛 (𝑘 − 𝑛 = 𝑚 + 𝑠), on obtient : 

 

𝑝𝑖𝑗(𝑚 + 𝑠) = ∑ 𝑝𝑖𝑞(𝑚)𝑝𝑞𝑗(𝑠)𝑞               (4.130) 



 

Considérons maintenant le cas où l’ensemble de valeurs prises par la chaine est fini. 

 Soit P la matrice 𝑀 × 𝑀 dont les entrées sont les valeurs de la probabilité de transition de la 

chaine : 



















MMM

M

pp

pp

1

111

P                                                   (4.131) 

 

Alors, la densité de transition )(nP , formée par les valeurs de la probabilité de transition en n 

étapes, est donnée par la puissance n de la matrice P : 

nn PP )(                                  (4.132) 

 

Les équations précédentes permettent le calcul de la loi de probabilité pour n’importe quel 

instant 𝑘 : 

 

𝑝𝑖
(𝑘)

= 𝑝{𝑋(𝑘) = 𝑎𝑖} = 𝑃𝑖
(𝑛)

𝑝𝑗
(0)

                              (4.133) 

 En définissant, 𝑝(𝑘) comme étant le vecteur  𝑝(𝑘) = [
𝑝1

(𝑘)

⋮

𝑝𝑀
(𝑘)

] , on obtient l´équation suivante : 

 

𝑝(𝑘) = 𝑷(𝒌)𝑝(0) = 𝑷𝒏𝑝(0)                                           (4.134) 

 

4.6.3.2. Fermeture et ensembles fermés 

On dit que l’état 𝑎𝑖 peut être atteint à partir de l’état 𝑎𝑗, s’il existe un 0n  tel que : 0)( n

ijp . 

 Définitions  

 

- Un sous ensemble C de l’espace d’états N est fermé si aucun état en dehors de C ne peut 

être atteint à partir d’un état dans C. Soit B un sous ensemble arbitraire de N. On appelle 

fermeture de B le plus petit sous ensemble de N contenant B qui est fermé. Si la fermeture 

d’un élément 𝑎𝑖 de N coïncide avec 𝑎𝑖, alors on dit que l’état 𝑎𝑖 est absorbant. 

- Une chaine de Markov est irréductible si le seul sous ensemble fermé de N est N. 



- Le sous ensemble C est fermé si et seulement si : 

 

𝑝𝑖𝑗 = 0, 𝑎𝑖 ∉ 𝑪, 𝑎𝑗 ∈ 𝑪                         (4.135) 

 

Dans ce cas, on peut éliminer toutes les lignes et colonnes correspondantes aux états en dehors 

de C, et la matrice résultante est encore une probabilité de transition pour une chaîne réduite, 

qui a pour espace d’états N.  

Exemple 4.21 

Considérons une chaîne de Markov avec la matrice de transition suivante : 

 





































3.00005.000

0000007.00

00.1.10002.0

00000005.0

00007.0000

00000000.1

0.10000000

00003.03.3.0

7.00005.000

P               (4.136) 

 

Remarques concernant cette matrice : 

- On a 9 lignes et 9 colonnes, donc on a 9 états dans la chaine de Markov et cette matrice 

donne les probabilités de transitions entre ces états. 

- L’état 7 ne peut conduire qu’à lui-même. Il s’agit donc d’un état absorbant : si la chaîne 

rentre dans cet état, elle y restera toujours. 

- L’état 6 peut conduire à lui-même où a l’état 7. Donc,  761 ,eeC  est un ensemble fermé. 

- L’état 1 ne peut conduire qu’à l’état 4, et que celui-ci ne peut conduire qu’à 1 de nouveau 

ou à 9. Finalement, l’état 9 peut de nouveau conduire à 1 ou rester dans le même état. 

L’ensemble  9412 ,, eeeC  constitue donc un ensemble fermé.  

- L’état 2 ne peut conduire qu’aux états 6 ou 7.  7623 ,, eeeC   est donc aussi un ensemble 

fermé. 

- Les autres ensembles fermés de cette chaine sont : 

                                        876324 ,,,, eeeeeC  ,  76525 ,,, eeeeC  . 



- En changeant la numérotation des états (6, 7, 2, 5, 3, 8,1,4,9) permet d’écrire la matrice de 

transition de cette chaîne de la forme suivante : 





































3.5.0000000

00.1000000

7.5.0000000

00007.0000

000.100000

000007.000

00003.3.3.00

0000005.00

0000002..1.1

P                  (4.137) 

 

Si une chaîne a un sous ensemble fermé de dimension r, alors on peut toujours réordonner les 

états de façon à écrire sa matrice de transition sous la forme suivante : 











V

UQ

0
P                                    (4.138) 

où la matrice Q, est de dimension 𝑟 × 𝑟 et V est une matrice carrée de dimension 𝑀 − 𝑟. Dans 

ce cas, on vérifie facilement que : 

𝐏(𝑛) = [
𝑄𝑛  𝑈𝑛

0     𝑉𝑛]                               (4.139) 

Ceci indique qu’on peut étudier séparément l’évolution des états dans un ensemble fermé et 

dans son complément. 

 

4.6.3.3. Autres définitions  

 

a) Un état 𝑎𝑖 admet une période 𝑇 > 1,  si 𝑝𝑖𝑗
(𝑛)

= 0, 𝑛 ≠ 𝑘𝑇, e T est le plus grand entier avec 

cette propriété. 

 

 

b) Soit 
)(n

ijf la probabilité pour que, depuis l’état i,  le premier retour à l’état j soit obtenu après 

n étapes. Par définition, 0)0( ijf . Alors, la probabilité pour que la chaîne retourne à i après 

avoir passé par j est donnée par : 







1

)(

n

n

ijij ff                                          (4.140) 

et le nombre moyen d’étapes nécessaires (temps moyen de récurrence) pour y retourner est 









1

)(

n

n

ijij nf                                         (4.141) 

Quand ijf =1, les 
)(n

ijf représentent une loi de probabilité, et on l’appelle la distribution du 

premier temps de passage. 

 

c) Un état 𝑎𝑖 est permanent si ijf =1 et transitoire si ijf <1. Un état persistant (permanent) 

est dit nul si son temps moyen de récurrence est infini. Un état apériodique persistant et non 

nul est dit : ergodique. 

 

4.7. Statistiques d’ordre supérieur (Moments Généraux). 

 Les moments de tout ordre de la sortie  𝑌(𝑡) d’un système linéaire peuvent être 

exprimés en fonction des moments correspondants à l’entrée 𝑋(𝑡). Comme illustration, nous 

allons déterminer le moment du troisième ordre  𝑅𝑌𝑌𝑌(𝑡1, 𝑡2, 𝑡3) = 𝐸 {𝑌1(𝑡)𝑌2(𝑡)𝑌3(𝑡)}  de 

𝑌(𝑡) en fonction du moment du troisième ordre 𝑅𝑋𝑋𝑋(𝑡1, 𝑡2, 𝑡3) de 𝑋(𝑡). En procédant comme 

dans (4.60), nous obtenons : 

𝐸 {𝑋(𝑡1)𝑋(𝑡2)𝑌(𝑡3)} = 𝐿3[𝐸 {𝑋(𝑡1)𝑋(𝑡2)𝑋(𝑡3)}] 

= ∫ 𝑅𝑋𝑋𝑋(𝑡1, 𝑡2, 𝑡3 − 𝛾)ℎ(𝛾)𝑑𝛾
∞

−∞
             (4.142)  

𝐸 {𝑋(𝑡1)𝑌(𝑡2)𝑌(𝑡3)} = 𝐿2[𝐸 {𝑋(𝑡1)𝑋(𝑡2)𝑌(𝑡3)}] 

= ∫ 𝑅𝑋𝑋𝑌(𝑡1, 𝑡2 − 𝛽, 𝑡3)ℎ(𝛽)𝑑𝛽
∞

−∞
             (4.143)  

𝐸 {𝑌(𝑡1)𝑌(𝑡2)𝑌(𝑡3)} = 𝐿1[𝐸 {𝑋(𝑡1)𝑌(𝑡2)𝑌(𝑡3)}] 

= ∫ 𝑅𝑋𝑌𝑌(𝑡1 − 𝛼, 𝑡2, 𝑡3)ℎ(𝛼)𝑑𝛼
∞

−∞
            (4.144)  

On remarque que pour l’évaluation de  𝑅𝑌𝑌𝑌(𝑡1, 𝑡2, 𝑡3) en des instants spécifiques 𝑡1, 𝑡2 𝑒𝑡 𝑡3 , 

la  fonction  𝑅𝑋𝑋𝑋(𝑡1, 𝑡2, 𝑡3) doit être connue pour tout 𝑡1, 𝑡2 𝑒𝑡 𝑡3. 

4.7.1. Accroissements non corrélés et indépendants  

Si les accroissements 𝑋(𝑡2)  −  𝑋(𝑡1) et 𝑋(𝑡4)  −  𝑋(𝑡3} d'un processus 𝑋(𝑡) sont non corrélés 

(indépendants) pour tout 𝑡1  <  𝑡2  <  𝑡3  <  𝑡4 , alors on dit que 𝑋(𝑡) est un processus avec des 

accroissements non corrélés (indépendants). Le processus de Poisson est un processus à 



accroissements indépendants. L'intégrale (4.123) du bruit blanc est un processus avec des 

accroissements non corrélés.  

4.7.2. Processus indépendants  

Si deux processus 𝑋(𝑡) et 𝑌(𝑡) sont tels que les variables aléatoires 𝑋(𝑡1), … , 𝑋(𝑡𝑛) et 

𝑌(𝑡′1), … , 𝑌(𝑡′𝑛) sont indépendantes l'une de l'autre, alors ces processus sont appelés 

indépendants.  

 

4.7.3. Processus ponctuel et renouvelable 

Un processus ponctuel est un ensemble de points aléatoires 𝑡𝑖  ; sur l'axe du temps. A 

chaque processus ponctuel on peut associer un processus stochastique 𝑋(𝑡) égal au nombre de 

points 𝑡𝑖 dans l'intervalle  [0, 𝑡]. Un exemple est le processus de Poisson. A chaque processus 

ponctuel 𝑡𝑖 on peut associer une suite de variables aléatoires 𝑍𝑛 telle que : 

                   𝑍1 = 𝑡1    𝑍2 = 𝑡2 − 𝑡1, … , 𝑍𝑛 = 𝑡𝑛 − 𝑡𝑛−1          (4.145)  

Où ; 𝑡1 est le premier point aléatoire à droite de l'origine. Cette séquence est appelée processus 

de renouvellement. Un exemple est l'histoire de la vie des ampoules qui sont remplacées dès 

qu'elles tombent en panne. Dans ce cas, 𝑍𝑖 est le temps total de fonctionnement de la ième 

ampoule et 𝑡𝑖 est le temps de sa panne. Nous avons ainsi établi une correspondance entre les 

trois concepts suivants (Fig.4.10) : (a) un processus ponctuel 𝑡𝑖, (b) un processus stochastique 

à états discrets 𝑋(𝑡) croissant par pas unitaires aux points 𝑡𝑖 , ( c) un processus de 

renouvellement constitué des variables aléatoires 𝑍𝑖 et tel que :  𝑡𝑛  =  𝑍1 + . . . + 𝑍𝑛. 

 

Figure 4.10 : processus ponctuel et renouvelable 

𝑡𝑛  : Processus ponctuel. 

𝑋𝑛  : Processus à états discrets  

𝑍𝑛  : Processus de renouvellement 

𝑡𝑛 = 𝑍1 + ⋯ + 𝑍𝑛 

 



 

 

4.8. Conclusion 

Dans ce chapitre, nous avons commencé par présenter les notions de processus 

stochastiques. Ensuite, un rappel sur les stationnarités au sens large, au sens strict et de 

l’ergodicité est donné. 

Les statistiques de la sortie d'un système, à entrée stochastiques, peuvent être exprimées en 

termes de statistiques de l'entrée. Une analyse de la réponse d’un tel système a été faite en 

examinant des opérateurs fondamentaux tels que : la dérivée, l’intégrale et d’autres 

transformations linéaires d’un processus stochastiques stationnaire.  

On ne peut pas terminer ce cours sans donner des exemples de processus stochastiques les plus 

rencontrés pour décrire les phénomènes aléatoires existant dans la nature. Parmi les fameux 

processus stochastiques, nous avons mentionné : le processus de Poisson, le processus gaussien 

et le processus de Markov. 

Avant de clôturer ce chapitre, nous avons présenté des statistiques d’ordre supérieur concernant 

les processus stochastiques. 

 


	Ceci indique qu’on peut étudier séparément l’évolution des états dans un ensemble fermé et dans son complément.

