CHAPITRE 3

TRAITEMENT DES SIGNAUX ALEATOIRES

1.1. Introduction

Pour un signal déterministe, on peut toujours déterminer ses valeurs futures en connaissant
son expression analytique (modéle mathématique). C’est-a-dire, on peut prédire n’importe
quelle valeur future de ce signal avec précision. Cette propriété n’est pas valide (cette
constatation n’est vraie vraie) pour un signal aléatoire. Ce dernier, possede un caractére non
reproductible dont I’évolution au cours du temps semble étre imprévisible méme si les
phénoménes sont observés dans des situations identiques. Mathématiquement, un signal

aléatoire est considéré comme la réalisation d’un processus aléatoire.

Certaines caractéristiques semblent étre conservées d’un signal a I’autre comme la moyenne, la

variance, la vitesse de variation. Chaque courbe de la figure 3.1 représente un signal aléatoire.
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Figure 3.1 : Processus aléatoire (Processus stochastique)

1.2. Représentation statistique et temporelle d’un processus aléatoire

Un signal aléatoire est une réalisation d’un processus aléatoire (représentation temporelle) et la

valeur prise a un instant donné est une variable aléatoire (représentation statistique).



On définit un processus aléatoire, noté par X (s, t ), comme étant une application, qui a chaque
issue d’une expérience aléatoire fait correspondre une fonctions de la variable t. Donc, ce

dernier étant indexé par la variablet.

Une réalisation particuliere du processus aléatoire sera notée X (t) et désignée par X ;(t) ou
X(s;,t), obtenue pour s = s;. X(s1,t)

Lorsque t est fixé, le processus aléatoire se réduit alors a une simple variable aléatoire.
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Figure 3.2 : Représentation statistique et temporelle d’un processus aléatoire.

1.3. Stationnarité et propriétés statistiques des signaux aléatoires
1.3.1. Statistiques d’un processus aléatoire
a) Densité de probabilité et fonction de répartition

Soit un processus aléatoire X(t) .

- Ordre 1 : En considérant un seul instant ¢, , nous obtenons une v.a notée X(t;) ayant une
fonction de répartition désignée par :
Fy(x,t;) 2 P(X(s,t;) <x) ,x€ER (3.1)
et une densité de probabilité exprimée par :

dFy(x,t;)

,XER
dx X

fX (x, tl) =
(3.2)



La moyenne probabiliste est donnée par :

+o0
Elg(X(s,t)] = [, 9(x) fx(x, t1)dx (33)
Ordre 2 : En considérant deux instants, on obtient un vecteur aléatoire tel que :
X(s,t;) et X(s,t,) sont deus variables aléatoires ayant la fonction de répartition et la

densité de probabilité conjointes suivantes :

Fy(xy, x5, t,t,) 2 P(X(s, t1) < xq1), (X(s,t) <x5),x1,%x, € R? (3.4)

02 Fy (x1, %5, t1, t;)

fx(x1, %0, 84, t5) 2 9x.01, , X1, X5 € R?
(3.5)
)
Fy(xq, %5, t1,t5) = f:: fj;o fx (x1, %2, ty, t3)dx,dx; (3.6)

E[g(X(s,t), X(s, t )] = [0 [77 g(x1, 3) i Gey, %o, £, 8)doydx, — (3.7)

- Ordre n : En considérant les instants t4, t, ...,t, , on obtient n variables aléatoires et les

statistiques précédentes deviennent :

Fy (X1, e, Xy te, oo, ty) 2 P(X(s,t) < X1), .., (X(s,t) < X)) , %1, 00, X €ER™ - (3.8)

L 0%Fx(xq, .0, X, by, s )

fx (1, vy Xy b1, ooy B) , X1, )Xy ERT

0xq ...0x,
(3.9)
)
Fy (X1, e, Xty ey t) = f:: ...fj;ofx(xl, ey Xy, E1y ey £y ) A o dXy, (3.10)

Elg(X(s,ty), ... X(s, t,))] = f_Jr;o f_Jr;o gOg, e, x) fx(Xq, oo X0, ty, v, ) d X o dxy,
(3.11)



Remarques :

- Les équations précédentes concernent les processus aléatoires continus, pour le cas discret
les intégrales deviennent des sommations et le parameétre t sera désigné par n.

- En pratique, on va jusqu’a I’ordre 2.

- La connaissance totale d’un processus aléatoire requiert la connaissance des densités de

probabilités a chaque instant t.

b) Exemple d’un signal aléatoire

Soit un générateur d’un signal sinusoidal , X (s, t) = A(s)cos(wt + 6(s)) avec A et 6 deux
variables aléatoires uniformes sur [0,1] et [0 ,2@] respectivement. La figure 3.3, montre
quatre realisations de ce processus. Chaque realisation représente un signal aléatoire. On

voit que I’amplitude A et la phase initiale 6 de ce signal sont aléatoires.
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Figure 3.3 : Exemple d’un processus aléatoire



c) Moyenne d’un processus aléatoire
- Moyenne : la moyenne d’un processus aléatoire continu X(t) représente le « moment
d’ordre 1 » c.-a-d. les statistiques pour un seul instant t et elle est exprimée par :

e Entemps continu :
my(t) = E[X(s,0)] = [, x(6)fy (x,t) dx (3.12)

e Entemps discret :
mx(n) = E[X(s,n)] = L2 _o x:(n) fx (x;,n) (3.13)
- Moyenne d’ordre 2 :

Dans ce cas on prend deux instants t, et t, et on définit :

e L’autocorrélation pour les deux cas continu et discret respectivement est exprimée par :

Ryx(t1,ty) = E{X(s,t1)X"(s,t;)} = f_+;o f::o x1%;5 fx (X1, X2, t1, t;)dx, dx; (3.14)

Ryx(ny,mp) = E{X(n)X*(ny)} = X2, }!-:o—oo X Xj fx (xi: Xj Ny, nz) (3.15)
La fonction d’autocorrélation mesure le taux de ressemblance entre deux variables aléatoires.

e L’auto-covariance : C’est la moyenne d’ordre centrée

Cxx(t1,tz) = E{(X(s,t;) — mx(t1))(X(s,t2) — my(tz)")}
= Ryx (ty, tz) — my(t;)my"(t;) (3.16)

Pour le cas discret le moment centré d’ordre 2 est exprimé par :

Cxx(ny,ny) = E{[X(ny) — myx(ny)][X(ny) — mx(n,)]"}
= Ryx(ny,n3) — my(n)my"(ny) (3.17)
- Variance

La variance d’une fonction aléatoire est déduite de ’auto corrélation en prenant t; = t, =t

(n; = n, = n) pour les deux cas continu et discret respectivement ce qui donne :

0% (1) = Rxx(t,8) = E{X (5, 0X"(s,)} = E{IX (5, )|?} (3.18)



oz (n) = Ryx(n,n) = E{X(s,m)X*(s,n)} = E{|X(s,n)|*} (3.19)

On peut généraliser les notions citées précédemment pour deux processus aléatoires X(s,t) et

Y(s,t) etonaura:

Fyy (X4, ooy X, Vs oo Vi s 1y vy by B4y ooy Ei)

2 P(X(s,t;) < xq,.,X(s,t,) S x,,Y (s, t1) < yq1, .0 Y (s, ) < Vi) (3.20)

e L’inter-corrélation :

Ryy (t1,t)) = E{X(s,t)Y" (5,60} = [T [ xy* fy(x, 3,1, t,)dxdy (3.21)

Pour le cas discret ’inter-corrélation est donnée par :
Ryy(ny,n,) = E{X(n;)Y"(ny)} (3.22)

e [’inter-covariance :

Ry (ty, ;) = E{(X (s, t;) — my(£))(Y (s, 8,) — my(tz))*}

= Ryy (t1,t2) — my(t1)my*(t;) (3.23)
Cxy(nq,n2) = E{[X(n,) — my(mD][Y (np) — my(ny)]}
= Ryy(ny,n3) — my(ny)m’y(n;) (3.24)

C’est I’inter-corrélation des variables aléatoires centrées.

e Le coefficient de corrélation :

Cxy(t1,t3)
t,ty) = ——
Py (b, t2) ox (t1)oy(tz)
Pt Ttz ox(ny)oy(ny)

(3.25)

o (t) = [7[x(t) — my(©)][x(t) — my(t)]* fx (s, t)dx (3.26)

On appelle fonction de covariance Cx(t,t;) , la fonction des deux variables t; et t, donnée

par :

Cx(ty, ty) = E{[X(t;) — mx(t)][X(t;) — mx (£)]*} = Cx" (2, t1) (3.27)



- Indépendance statistique
On dit qu’un processus aléatoire possede des valeurs indépendantes si :
felx(t1), oo, x(8)] = frlx(€)] X X fy[x(8,)] (3.28)

A tout instant, le futur est indépendant du présent et du passé. En temps discret on garde les

mémes définitions mais avec la notation fy [x(n)].

1.3.2. Stationnarité d’un signal aléatoire

1.3.2.1. Stationnarité au sens strict

Définition 1 : un processus aléatoire est stationnaire si les statistiques sont invariantes dans

le temps.
fx(xl, ...,xn, tl’ ...,tn) = fx(xl, ...,xn, t1+g, sery tTl + S)
vn €N, Vx; ER,, Vt; ER, Ve ER (3.29)

Définition 2 : un processus aléatoire est stationnaire au sens strict d’ordre k, si ceci est vrai

pourn < k.
Cas particuliern =1:

o filx,t) =fy(x,t+e)=fx(x) (3.30)
Preuve : sionpose € = —t alors fy(x,t + &) = fx(x)

o my() = EIX(©O)] = [ xfx(x,t)dx = [ xfy(x)dx (3.31)
Alors, my(t) = my = constante c’est-a-dire la moyenne ne dépend pas du temps.
Cas particuliern =2 :

o fy(xy,xyty,t) = fx(xy, x5t + 6t + &) = fy(xg, x5t — t3) (3.32)
Preuve : sionpose & = —t,, onaura fy(xq, x5, t1,t5) = fx(xq, X5, t; — ty, t; — t3)

=fy (xq, x5, At)

L’autocorrélation :



o Ryx(ty,t;) =E{X({t)X"(t)} = f_:o f::o x1%5 fx (xq, %2, t1 — tp)dxqdx,

= Ryx(t; — t;) = Ryx(7) (3.33)
AVGC T= tl - tz

o ¢(t) = Ryx(t,t) = Ryx(7) (3.34)

Pour qu’un signal aléatoire soit stationnarité au sens strict il faut que les densités de probabilités
conjointes ne dépendent pas de I’instant t; et toutes ses propriétés statistiques soient invariantes

dans le temps.
1.3.2.2. Stationnarité au sens large
Définition 2 : un processus aléatoire est stationnaire au sens large si et seulement si :

e my(t) = my = constante et

o Ryx(ty,t;) = Ryx(t; — t;) = Rxx(7)

De ce fait, la variance est aussi constante puisque : 0Z(t) = Cyxx(t,t) = Cxx(0) = o7
Si X(s,t) est stationnaire au sens strict a ’ordre 2 alors il est stationnaire au sens large mais

I’inverse est généralement faux.

Un processus aléatoire est stationnaire au sens large si ses statistiques d’ordre 1 et 2 (Moyenne,

variance, fonction d’autocorrélation) sont invariantes dans le temps.
1.3.3. Exemples d’application
Exemple 3.1 : Soient deux variables aléatoires P et Q tel que :

Q : on jette une piéce de monnaie (pile ou face).
P : on jette un dé bien équilibré.
Q= piece={0,1} et P=dé={1,2,3,4,5,6}

Soit X(s,t) = P(s) + Q(s).t.
X(s, t) , est-t-il un processus aléatoire ?
Pour répondre a cette question, il faut calculer les statistiques de ce processus.

a) On trace quelques trajectoires de ce processus en utilisant le logiciel Matlab
e P(s;)=3,0(s)) =1=X(sy,t) =3+t
o P(sy) =2,Q(s3) = 0= X(sp,t) = 2
o P(s3)=2,Q(s3)=1= X(s3,t) =2+t



On remarque qu’on obtient une famille de droites aléatoires comme le montre la figure 3.4 ci-

dessous.
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Figure 3.4 : Réalisations du processus aléatoire donné.
Calcul des statistiques de ce processus :

1) Moyenne de X(s,t) :
my (t) = E[X(s,t]) = E[P(s) + Q(s).t] = E[P(s)] + t.E[Q(s)]

P(s) et Q(s) sont deux variables aléatoires discrétes dont les densités de probabilités sont les

suivantes :
loide P loide Q
i 1 2 3 4 5 |5 X; 0 1
fr(v) |16 | 1/6 | 1/6 | 1/6 | 1/6 | 1/6 fx(x) | 12 1/2

2

1 1
E[Q1= ) xifi() =0x5+1x5=1/2
i=1

6
E[P]=Zyl-fy(yi)=1/6><(1+2+3+4+5+6)=21/6

=1



D’ou ;

21 1 1
my (t) =?+Et=§(7+t)

2) Autocorrélation de X(s, t) :
Rxx(ty, t2) = E[X(6)X"(t2)] = E[(P + Q.t)(P + Q.t2)"]
= E[P? + P.Q.t, + P.Q.t; + Q%t;t,]
= E[P?] + (t; + t,)E[P. Q] + t,1t,E[Q?]

Avec ;
E[P.Q] = EIPIE[Q] = S x = =7/4

6

E[P?] = Zyizfy(yi) =1/6x(1+22+324+42+52+6%)=91/6
i=1
& 1 1
E[0?] = ;xizfx(xl-) = 07 x5+ 17 x5 =1/2

Alors,

Ryx(t1,tz) = E[P?] + (t; + t,)E[P. Q] + t;t, E[Q?]

91 7 1
?-l- Z(tl + tz) +Et1t2
3) Lavariance

91 7 1 91 7 1 1 91
02(t) = Ryx(t, t) =€+2><Zt+§t2 =€+Et+§t2 =E<t2+7t+?)

Ce processus n’est pas stationnaire ni au sens strict ni au sens large car les moments d’ordre

1(moyenne) et 2(autocorrélation) dépendent du temps.

Exemple 3.2 :

Soit y(n) une séquence de variables aléatoires gaussiennes non corrélées de moyenne nulle

et de variance unité : o2(n) = 1.

a) Caractériser la sequence (n) .

b) On définit x(n) = y(n) + y(n — 1), déterminer sa moyenne et son autocorrélation.

Caractériser x(n) .



Solution
a) Puisque la non-corrélation implique 1’indépendance (pour la Gaussienne), la séquence
aléatoire y(n) est indépendante. Puisque la moyenne et la variance sont constantes le

processus est stationnaire au sens faible. L’autocorrélation est données par :
Ryy(ny,ny) = 026(ny — ny) = 6(ny —ny)

b) Pour chaque n la moyenne de y(n) est nulle, ce qui implique une moyenne nulle pour x(n)

. Considérons maintenant 1’autocorrélation :

Ryy(ny,ny) = E{x(n)x(ny)} = E{[y(ny) + y(n, — D]ly(ny) + y(n, — D]}
= Ryy(ny,n3) + Ryy(ny,n, — 1) + Ryy(ny — 1,n,) + Ryy(ny —1,n, — 1)
=0%8(n; —ny) +026(n; —n, +1) +026(n; —1—n,) +026(n; — 1 —n, + 1)

=2026(n; —ny) +a26(ny —ny, + 1) + 626(ny —ny, — 1)
Ryy(ny,ny) =26(0)+6(c+1)+6(r—1)

Par conséquent : x(n) est stationnaire au sens large mais c¢’est une séquence aléatoire non

indépendante car x(n) et x(n+ 1) dépendent de y(n)

Exemple 3.3 : Soit le vecteur aléatoire constitué des deux v.a réelles X; (t) et X,(t) définies
par :

X.(t) = cos(wt + @) X, (t) = sin(wt + @)

X1 (t)

¢ est une VA aléatoire uniformément distribuée sur [0, 2m]. Onnote : X(t) = X,
2

La moyenne des fonctions aléatoires est nulle. En effet :

wt+2m
wt

E[X,(D)] = f cos(wt + @) dop = — cos(@)dp =0 avec D =wt+ @

E[X1(t)] = E[Xz(t)] =0
Ainsi, nous n’avons pas besoin de centrer pour calculer la covariance. Cette dernicre est

donnée par :

Gox (61 £)= EX DX (0] = B[ (1] U0 6) K2
Cx,x,(t1,t2)  Cx, x,(t1,t2)

Cxx(ty,ty) =
xx (t1, t2) [szxl(tl'tZ) Cx,x, (t1, t2)



Cx,x, (t1, t2) = E[X1(t) X, (t,)] =E[cos(wt; + p)cos(wt, + @)] = %COS(‘UT)

1,
Cx,x, (t1,t2) = Cx,x, (t1, t;) €t Cy, x, (t1, ;) = —Cx,x, (t1, t2)=— ESIH((UT)

Le fait que la matrice de covariance dépende uniquement de la différence t, —t, montre que

la fonction vectorielle considérée ici est stationnaire au sens large.
1.3.4. Caractéristiques temporelles
a) Moyenne temporelle

Elle est prise sur une réalisation x; du processus aléatoire pour une durée d’observation qui

tend vers ’infini.

i 17
x;(t) = Tll_)rgfj . x;(t)dt
2
(3.35)

b) Autocorrélation temporelle

T
1 (2 .
Rxx(T) = 71]})’1;10?-]-_2 xl'(t)xl' (t - T)dt
2
(3.36)
Ou : * signifie le complexe conjugué.

Propriétés :

e [a matrice de corrélation d’un processus stochastique discret stationnaire est une matrice
de Toeplitz carrée (une matrice carrée est dite de Toeplitz si tous les éléments d’une méme
diagonale ou sous diagonale sont égaux).

e La matrice de corrélation d’un processus stochastique discret stationnaire est généralement
définie positive (une matrice est définie positive si toutes ses valeurs propres sont

positives)

Aussi, pour un processus réel ona:

Cxx(1)=Cxx(—1) (3.37)



1.4. Densite spectrale de puissance

La densité spectrale de puissance, notée DSP représente la répartition de puissance d’un
signal suivant les fréquences. La DSP permet de caractériser les signaux stationnaires gaussiens

et ergodiques.

Les propriétés énergétiques des signaux aléatoires stationnaires sont décrites a 1’aide des
moments d’ordre deux, c¢’est-a-dire des fonctions d’auto et d’inter corrélation, dans le domaine

temporel, et a I’aide des densités spectrales de puissance, dans le domaine de Fourier.

Un signal aléatoire X (t) stationnaire est généralement considéré comme un signal a énergie
infinie mais & puissance moyenne finie. Donc, on ne peut pas calculer sa transformée de Fourier

(probléme de convergence de la série).

3.4.1. Théoreme d’Einstein-Wiener—Khintchine

La densité spectrale de puissance (Spectre de puissance) d'un signal aléatoire
stationnaire ergodique est la transformée de Fourier (a temps discret) de sa fonction
d'autocorrélation. Ainsi, la transformée de Fourier de la fonction d’autocorrélation et son

inverse sont donnés par :

Sxx (f) =f Ryx(D)e 2™lT dr
Rxx (1) = [ Sx(F)e?™r* df (3.38)

Dans le cas discret, la DSP s’exprime par :

Sxx(f) = Z Ryx(D)e —2njft

T=—00

+1/2

Ryx(7) = f Sxx(f) e #MITdf

-1/2

+1/2

o¢x = Rxx(0) = f—1/2 Sxx(f) df (3.39)



3.4.2. Propriétés du spectre de puissance

Le spectre de puissance est a valeurs réelles (et non a valeurs complexes comme
lorsqu’on calcule le spectre d’un signal déterministe par TFtd). La densité spectrale de

puissance est positive ou nulle :

Sxx(f) =0 Vf (3.40)

Le spectre de puissance d’un signal a valeurs réelles est pair :

SXX(_f) = Sxx (f) (3-41)

3.4.3. Théoréme de Parseval

Parseval a montré gque la puissance moyenne du signal peut se calculer soit en intégrant
la distribution temporelle de puissance, soit en intégrant sa distribution fréquentielle de

puissance.

Ainsi, la puissance totale du signal est calculée par :
P =7 Sxx(P)df (3.42)
La puissance sur une plage de fréquences est donnée par :
_rth f2
Pr oy, = f—fz Sxx (f) df "'ffl Sxx(f) df (3.43)
On a deux termes car Syx (f) est symétrique comme le montre la figure 3.5 ci-dessous.

ﬂ‘ Sxx (f)

'fl - fz f1 fz f

Figure 3.5 : Spectre de puissance d’un signal.



3.4.4. Interprétation physique des moments statistiques

Dans le cas d’un signal stationnaire ergodique :

my = E[X], correspond a la valeur moyenne (composante continue du signal).

(E[X])?, correspond a la puissance de la composante continue du signal.

- E[X?], correspond a la puissance totale du signal.

a2 , correspond a la puissance des fluctuations autour de la valeur moyenne.
Les trois termes sont liés par la relation suivante :

E[X?] = (E[X])? + o} (3.44)

1.5. Echantillonnage des signaux aléatoires

Un signal aléatoire a temps discret peut étre construit directement a temps discret, ou étre
intrinséquement de nature discréte, ou peut résulter de I’échantillonnage d’un signal aléatoire a

temps continu.

1.5.1. Fonction d’autocorrélation

Soient X, (t) un processus aléatoire continu et X(n) sa version numérique obtenue par

échantillonnage de X,(t) alapériode T, = fi :

e

X(n) = Xq(nT,) (3.45)

On cherche a exprimer les fonctions d’autocorrélation et la densité spectrale de X(n) en

connaissant celles de X,(t) .
Ryy(m,n—m) = E[X(n)X(n —m)] = E[Xa(nTe)Xa((n — m)Te)]
= Ry, (mT,) (3.46)

La fonction d’autocorrélation du signal échantillonné s’obtient donc en échantillonnant

la fonction d’autocorrélation du signal continu.



X(n),n € Z, obtenu par échantillonnage régulier de X, (t) est encore stationnaire au second

ordre si X, (t) Vvérifie cette propriété.
1.5.2. Densité spectrale de puissance

Soit S,(f) la DSP de X,(t) et notons S,(f) celle de X(n). Puisque Ryx(m) =

Ry, (mT,), I'application du théoréme d’échantillonnage donne :
Sa(f) = fo L2 Sa(f + kfe) (3.47)

On remarque que 1’échantillonnage en temps de Ryy (m) entraine la périodisation en fréquence

de S, (f). Le spectre d’un signal aléatoire échantillonné a la période T, = 1/f, est périodique

de période f,.
Si la DSP du signal continu est nulle en dehors de la bande de fréquence [%% ], onaura:
S =feSa(NVf €[22 (348)

2 2

1.6. Filtrage des signaux aléatoires

Dans cette section, on verra comment sont transformés les signaux aléatoires et nous allons
nous interesser au filtrage de signaux aléatoires et leur conséquence sur le signal filtré dans les

domaines temporels et fréquentiels.

On rappelle qu’un filtre est un systeme linéaire invariant dans le temps (stationnaire), que 1’on
peut décrire par une équation différentielle a coefficients constants ou par une intégrale de

convolution.
1.6.1. Filtrage temporel d’un signal aléatoire stationnaire au sens large

Soit X(t) un signal aléatoire stationnaire au sens large de moyenne my et de fonction
d’autocorrélation Ry (7 ), et Y (t) le signal obtenu par filtrage de X (t) par un filtre de réponse

impulsionnelle h(t) (réelle) (voir fig. 3.6).

X(t) Y(t)

> hit)

Figure 3.6 : Filtrage d’un signal aléatoire X(t) par un filtre de réponse impulsionnelle h(t).



Le signal a la sortie du filtre Y (t) s’exprime en fonction de X(t) selon :

e Encontinu:¥(t) = X(t) x h(t) = [ .7 h(DX(t — 1)dr

e Endiscret:Y(n) = X(n) * h(n) = X, h(k)X(n — k)
Les caractéristiques de Y (t) peuvent étre calculées comme suit :
e Moyenne:
E[Y(t)] = E[X(t) *h(t)] = E UwX(t — T)h(r)drl

Elv(®)] = [ E[X(t — D] h(r)dt

Si le processus X (t) est stationnaireona: E[X(t —1)] = E[X(t)] cequiménea:

Ely(®] = [* EX(©] h(D)dr = E[X(©)] [, h(x)dr
Avec : fjooo h(t)dt = H[0] ¢’est la valeur du spectre H(f) pour f = 0.

Enfin :

E[Y(®)] = E[X(O)]H[0] oumy(t) = H[0]mx (1)

e L’autocorrélation :

Ryy (1) = h(=7) * h(1) * Rxx (1)

1.6.2. Filtrage fréquentiel d’un signal aléatoire stationnaire au sens large

(3.49)

(3.50)

(3.51)

(3.52)

Théoréme : Soit X(t) un signal aléatoire stationnaire au sens large de DSP Syx(f). Soit

Y (t) le signal obtenu en filtrant X (t) par un filtre de réponse impulsionnelle h(t) et de gain

complexe H(f). Alors, la DSP de Y(t), Syy(f), s’exprime en fonction de Syx(f) comme

suit :
Syy(f) = |H(f)|25XX(f)

Et I'inter-spectre de X (t) et Y (t) est donné par :

SYX(f) = H(f)SXX(f)

(3.53)

(3.54)



Exercice d’application :

Soit le signal stationnaire au sens large(SSL) a temps continu, X(t) avec la fonction
d’autocorrélation Ryy(t) = e 10017l + 4 et de moyenne E[X(t)] = 2. Le signal X(t) est

échantillonné a fréquence f; = 100Hz conduisant au signal discret X (n).
a) Donner Ry (k) et E[X(n)] (autocorrélation et moyenne du signal échantillonné X (n))

On donne un systeme avec une réponse impulsionnelle h(n) et le signal échantillonné X (n)

mentionné ci-dessus comme entrée. La sortie est notée Y (n).
b) En supposant que, h(n) = a™u(n), avec u(n) est I’échelon unité discréte, |a| < 1 et
E[Y(t)] = 8. Calculer la constante a.

k
Pour le reste des questions, supposons que Ryy (k) = G)

c) Donner laréponse en amplitude |H (¢)| qui dé-corrélerait complétement le signal X (n).
Supposons maintenant h(n) = §(n — 3)

d) Calculer la fonction d’inter-corrélation Ry, (k) entre I’entrée et la sortie.

e) Calculer la fonction d’autocorrélation Ryy (k) de la sortie.

Solution
Q) E[X(K)]=E[X(®)]=2

Ryx(k) = Ryy (kT,) = e 100kTsl 4 4 avec T, = % = 1/100, on obtient :
Ryx(k) = e~k + 4
b) E[Y(n)] = E[X(n) * h(n)] = E[X;Z o, h(k)X(k — n)]
=E[X(k —n)] T, a*

1 2
my(k) = mx(k)m = =8

Donc ; a=3/4

9 Sy(@) = [H@Six(@) et [H@)| = [53

Sortie décorrélée signifie Ryy (k) = c.56(k)



1
(1> ZI": Sxx () = - (?) 3/4

€. 8(k) = Syy(w) = ¢

c(% — cos(2nw))
3/4

|H(w)| =

d) Ryy(k) = h(k) * Ryx(t) , h(n) = 6(n — 3)

o= > 50-0(3) - ()

e) Un retard ne modifiera pas I’autocorrélation de I’entrée, donc Ryy (k) = Ryx (k).

|[k—3]| |k-3|

Aussi, nous pouvons la calculer par :

Ryy(0) = h* (k)  Rey () = ) h(=D) Ryy Gk = D)

i=—o00
+0o0
- Z §(—i +3) Ryy (k — 0)
i=—o00
|k—3—i]

-2 o= =)

l=—00

Ryy(k) = (l)“€|

2
1.7. Le filtrage adapté : Un exemple d’application

Principe : filtrage de z(t) par le filtre de réponse impulsionnelle h(t) qui maximise le « rapport
signal & bruit » a I’instant T (fin du signal) :

asitp+hit)

- hit)

Vit =T

b Tz

Figure 3.7 : Filtre adapté



Ou ; s(t) : signal déterministe connu, de support [0, T] et b(t) : bruit blanc

1.7.1. Contexte

En sonar ou en radar, on cherche a localiser une « cible » qui peut étre le sol, un batiment,
une interface (en sismique réflexion) ou un avion ennemi (pour les guerriers). Pour cela, on
procede de la fagon suivante : on émet un signal s(t), qui parcourt la distance d jusqu’a la cible,
sur laquelle il est réfléchi en direction d’un récepteur. Le récepteur est souvent couplé a

I’émetteur, et recoit alors le signal atténué, retardé et bruité :
Y(t,w)=as(t—ty) +B(t,w). (3.55)
L’atténuation a est supposée connue ; le bruit additif est en général supposé gaussien, pas

nécessairement blanc, et il s’agit de déterminer le retard t,, correspondant au temps d’aller-

retour, t, = 2d/c.
1.7.2. Maximisation du rapport signal-a-bruit

Considérons simplement pour le moment le modéle suivant :
Y(t,w) =x(t) + B(t,w). (3.56)

L’approche habituelle consiste a rechercher a minimiser 1’effet du bruit d’observation. On
cherche alors a construire un filtre h(t) tel que le rapport signal-a-bruit en sortie soit maximal,
a un instant T, appelé instant de décision. Cet instant T devra étre défini pour que I’observation

ait eté effectuée et que le filtre ait agi.

Notons Z(t, w ) la sortie du filtre de réponse impulsionnelle h(t). On a alors :
Z(t,w)=(h*Y)(t,w)=(h*x)(t) + (h*B)(t,w). (3.57)

On écrit ainsi la sortie comme la somme de la sortie non-bruitée et de la contribution du bruit.

Le rapport signal-a-bruit vaut ainsi ;

__ 1= 0@®)I°
E{|(h = B)(t, @ )|?]}

p (0

(3.58)



Ou; le numérateur représente la puissance instantanée de la sortie non bruitée et le

dénominateur la puissance liée au bruit. On évalue ce rapport signal-a-bruit a ’instant de

décision T.
(= )(D)?
PD= E{|(h * B)(T, w)|2]}

(3.59)

En developpant les produits de convolution, on obtient :

P (T) = | {;5 h(u)x((T — u)du |2
E{| [* h)B(T — u, ) du|?]}

(3.60)

En ce qui concerne tout d’abord le dénominateur, il s’agit 1a de la puissance d’un signal aléatoire

a la sortie d’un filtre, et ’on a donc :

E{|(h* B)(T, )2} = [ Spp(df = o [T Z1H(f)I? df (3.61)

oll 02 est la puissance du bruit d’entrée. L’inégalité de Schwartz permet de majorer le

numeérateur :

|2 hx((T —wydu |2 < [*21h@)2du [*71x (T —w)2du (3.62)

avec égalité lorsque les vecteurs h(u) et x*(T — w) sont colinéaires. L’égalité de Parseval -

Plancherel, qui exprime la conservation du produit scalaire entraine que :

+0oo +00
| meorau=| Horar
On en déduit donc que le rapport signal-a-bruit est majoré selon
[S21(T = w)Pdu By

g2 g2

p(T) <

(3.63)



ou Ey est I’énergie du signal x(t). L égalité est atteinte lorsque h(u) et x*(T — u) sont

colinéaires, c’est-a-dire :
h(u) = kx*(T —u) (3.64)

ou k est une constante arbitraire. Le filtre optimal maximisant le rapport signal-a-bruit en sortie,
a I'instant T, est ainsi le filtre dont la réponse impulsionnelle est la copie retournée et décalée
dans le temps du signal que I’on cherche a retrouver. En ce sens, le filtre est adapté au signal.
La relation de filtrage de Y (t, w) avec une « copie retournée » équivaut en fait a effectuer une

inter-corrélation (au sens déterministe).

En effet,
z(t) = f+ooh(u)y(t —u)du = j+oox*(T —u)y(t —u)du
= f_+;° x*(T+v)y(t+v)dv = fj;o x*(T —t+v)y(v)dv (3.65)
soit
z(t) = Ry, (T —1t). (3.66)

Le récepteur optimal consiste donc a calculer I’inter-corrélation entre le signal regu y(t) et le

signal espéré x(t). On parle alors souvent de récepteur a corrélation.
1.7.3. Application en Sonar-Radar

Dans le développement précédent, on a supposé connaitre x(t). Or, dans le contexte sonar-
radar, le signal a détecter est as(t — t,), oU a et t, sont inconnus. On utilisera le filtre adapté
as(t),soit: h(t) =ks*(T —t).

Dans ce cas, la sortie du filtre est, en terme d’inter-corrélation, R,;(T — t). En reprenant

y(t) = as(t — ty) + b(t), on obtient :

2(t) = Rys(T —t) = aRys(T +to —t) + Rps(T —t).  (3.67)

L’effet du filtrage est alors de minimiser le terme de « bruit » R, (T — t). Par ailleurs,

on sait que I’autocorrélation est maximale en 0. Dans notre cas de figure, la sortie z(t) sera



maximale pourt = T + t,. A partir de ce maximum, on peut alors déduire la valeur du retard

to et la valeur du facteur d’échelle a. Le choix du signal s est important : on cherchera a ce

qu’il présente un pic d’autocorrélation Ry trés prononcé, afin de localiser facilement le

maximum et permettre éventuellement la détection simultanée de plusieurs échos.

1.7.4. Filtre de Wiener

Est un filtrage optimal qui permet d’extraire un signal noyé dans le bruit comme le

montre la figure ci-dessous.

Figure 3.8 : Modélisation d’un signal noyé dans le bruit.

Ou;

x(t): Signal inconnu ou aléatoire.

z(t) : Signal bruite.
b(t) : Bruit aléatoire.

x(t) et b(t) sont des processus aléatoires stationnaires, centrés, non corrélés.

+

== F(i}

x(t) + bt}

a) Filtrage « optimal » du bruit : le filtre de Wiener est le filtre de réponse impulsionnelle

h(t) tel que :

Avec, [(x(t) — x(t))?] est minimum.

U]

Figure 3.9 : Schéma de principe d’un filtre de Wiener.

£(t)

Hif}

z(t) * h(t)

-~
Ly

Elxl

(3.68)



La réponse en fréquence du filtre de Wiener est :

0 N
H(f)‘sx(f>+sb<f>‘1+§bgg

(3.69)

b) Propriétés du filtre de Wiener :

- Il est non causal (3 une version causale).

- Il permet de reconstituer x(t) a partir de z(t) en éliminant au mieux le bruit sans trop
distordre le signal.

- Si les signaux ne sont pas centrés (de moyennes non nulles), il faut préalablement soustraire
les moyennes E[x] et E[b].Si, E[b] = 0, E[x] peut étre estimée par moyennage du signal
dégradé : E[x] = E[z].

- Sile bruit est blanc S, (f) = constante.

- Généralisation du filtre de Wiener aux signaux non stationnaires : filtre de Kalman.

c) Filtrage de Wiener d’un signal bruité tel que :

- Lesignal x(n) est inconnu : fonction porte.

- Bruit blanc gaussien discret de variance a7 .
Le modele utilisé pour I’autocorrélation du signal est : Ry (k) = aZp!¥l, p =0.99.

L’expression du filtre de Wiener discret est :

Sx(2) _ oz (1—p?)
Sx(2) +S,(2) c2(1—p2) +0f(1—pz~ 1)1 — pz)

H(z) =
(3.70)

1.8. Estimation statistique et estimation spectrale

La description d’un signal aléatoire X (t) passe par la détermination de ses caractéristiques

statistiques (moments, D.S.P, etc.).

En pratique, on ne dispose souvent que d’une seule réalisation du signal, sur une durée

d’observation finie. Lorsque le signal est stationnaire ergodique ses caractéristiques peuvent



alors étre approchées par des moyennes temporelles sur des intervalles temporels finis : on parle

d’« estimation ».
On pose donc ici le probléme de I’estimation des caractéristiques statistiques d’un signal a

partir de 1’observation d’une réalisation du signal : sur une fenétre de durée T (signal a temps

continu) ; sur une suite de N échantillons (signal a temps discret).

HEY

1 ah i :1 JLal \
IRULEAANE (/R rFATIVR I W
L1} I / [ Wen
= S T F

Figure 3.10 : Realisations d’un signal aléatoire a) continu, b) discret

1.8.1. Estimation paramétrique

L’estimation statistique paramétrique concerne la détermination des paramétres d’un

modeéle statistique particulier (par exemple le parameétre A d’un processus de Poisson, la

moyenne et la variance d’un processus gaussien, etc.).

a) Caractéristiques d’un estimateur

|
denb e prabe koLt

/ de ﬁ.n.l

s
J
.__f'
— -
= B

| £(Bs) B

Figure 3.11 : densité de probabilité d’un estimateur.

On considére un estimateur @y d’une grandeur @ caractérisant un signal aléatoire discret
X(n, w) (moment d’ordre n, fonction d’autocorrélation, parametre d’une loi statistique, etc.)

Oy est une variable aléatoire dépendant des échantillons de X (n, w) sur {0,...,N — 1}.



L’estimateur O est dit non biaisé si :

Le biais de I’estimateur est défini par :
b[6y] = E[6y] — O (3.72)
La variance de I’estimateur est définie par :
a?(0y) = E[(By — E(Ox))?] (3.73)

L’erreur quadratique moyenne (eqm) de I’estimateur est définie par :
eqm(0y) = E [(@N - @)2] =02 (0y) si b(Oy)=0 (3.74)

Un bon estimateur doit présenter un biais et une variance les plus faibles possibles. Un
estimateur @, de @ est dit “efficace” si son biais est nul et si sa variance est plus faible que
celle de tout autre estimateur de 6.

Un estimateur est dit « consistant » si sa variance et son biais tendent vers 0 lorsque le nombre

d’échantillons N augmente. Cette propriété est fortement souhaitée.

lim b(Gy)=0  lim o2(6y) =0 (3.75)

N—-+o N—-+o

Dans la pratique il est parfois difficile de concilier un biais nul avec une variance faible. On
préférera alors un estimateur légérement biaisé, mais de variance faible, a un estimateur non

biaisé, mais présentant une variance importante.
b) Exemple : Estimation de la valeur moyenne statistique

On se pose le probléme de I’estimation de la valeur moyenne statistique d’un signal aléatoire
stationnaire ergodique X (n, ). On considére le cas particulier d’un bruit blanc discret X (n, w)

de moyenne non nulle my et de variance o5.

A estimer : my = E[X(n, w)], en observant une seule réalisation de N échantillons de ce bruit
H{X(0,w), X1, w),...,X(N — 1,w)}.

On considére les deux estimées suivantes pour la moyenne statistique :



., ~ 1 _ ..
- estimée 1 : My = YN-3X(n,w)  moyenne empirique
e estimée 2: M, = X(0, w) premier échantillon

Les estimateurs M, et M, dépendent tous deux de I’épreuve w. Ce sont donc des variables

aléatoires dont on souhaite connaitre les caractéristiques statistiques (moyenne, variance, etc.).

Pour mesurer la qualité de cet estimateur, on utilise les notions de « biais » et de « variance ».

L’estimateur devra posséder les propriétés suivantes :

d) Estimateur sans biais : « en moyenne » 1’estimateur M; doit donner la vraie valeur du
paramétre : E[M;] = my

e) Le biais b de I’estimateur M; est: b(M;) = E[M;] — my

f) Variance faible : la dispersion des valeurs de M; autour de sa valeur moyenne doit
rester faible, ce qui garantit en général d’avoir, suite a une mesure, une valeur proche

de la bonne valeur : ¢ 2 [M;] = E[(M; — E(M;))?] . Cette valeur doit &tre faible.
Les 2 estimateurs sont non biaisés (biais=0) car ona: E[M,]| = my; E[M;] = my

L’estimateur M, est meilleur et sa variance tend vers 0 quand on augmente le nombre N

d’échantillons : o 2[M,] = C;V—’z‘ ; 02[M,] = a?

1.8.2. Estimation non paramétrique

L’estimation des caractéristiques statistiques générales (moment d’ordre n, D.S.P) est dite
non paramétrique. Le probléme de I’estimation spectrale (ou analyse spectrale) est d’estimer la
D.S.P. S x(f) d’un signal aléatoire X (t) a partir d’une réalisation de ce signal sur une fenétre
d’observation finie.

Deux familles d’approches sont actuellement employées :

- Les approches dites « classiques » qui reposent sur la T.F. du signal ou sur la T.F. de sa
fonction d’autocorrélation.

- Les approches « modernes » s’appuyant sur une modélisation paramétrique de la D.S.P. :
Modeéles autorégressifs, ARMA, méthode de Prony, de Capon, de Pisarenko, etc.

L’estimation du spectre de puissance (Estimation spectrale des signaux aléatoires) par les
méthodes basées sur un modele non paramétrique a partir d’un nombre fini de données N peut

se faire avec :



1.8.2.1. Le périodogramme

C’est un estimateur de la D.S.P. qui consiste a calculer le module au carré de la T.F. de
Xr (1)
(considéré comme un signal déterministe) (Schuster 1898) et il est exprimé par :

- Cas continu :

2
fenHz, Sy enW.Hz 1 (3.76)

T
+= .
J #X(®)e 2™ dt
2

$r(f) =1

- Casdiscret :

2

N-1
> Xeye 2
k=0

5 1
Sn(f) = N
(3.77)
f en cycles/échantillon, Sy en W (cycles/échantillon)™ . Sy (f) est périodique de période 1.

a) Exemple : Dans le cas d’un signal discret obtenu par échantillonnage d’un signal

analogique a la fréquence f, = 1/T, (figure 3.12), la formule précédente devient :

2

N-1
z X(kT,)e~J2mTef
k=0

SN(f) = %
(3.78)

i S ln)

My AL

(a) (b)

Figure 3.12 : (a) signal discret obtenu par échantillonnage d’un signal analogique.

(b) Sa densité spectrale estimée par periodogramme.



Pour le calcul numérique sur ordinateur, f étant une variable continue doit étre discrétisée. On

calcule la T.F.D. qui consiste a échantillonner Sy (f) sur une période par :

n
f=yf n=0..,N-1

2

§N(n) = SAN (%fe) = %

N-1

_igpkn
ZX(kTe)e 2y
k=0

(3.79)

Le calcul se fait par la Transformée de Fourier Rapide (FFT).

Abscisse : échelle des fréquences dans le cas d’une utilisation de la FFT : pour I’échantillon n,

ona la fréquence : f =~ ;.

b) Propriétés du périodogramme
Le périodogramme est un estimateur biaise de la d.s.p. mais il est asymptotiqguement non
biaisé :
Jim b(3:(N) =0 lim b(Sy(f)) =0
Par contre sa variance ne diminue pas lorsque T (ou N) — +oo (estimateur non consistant).

On montre que sa variance ne dépend pratiqguement pas de T ou N:

o 2(5:(N) < ISx ()12 a2(B3n(H) x ISk (F)I?

La variance est constante (en fonction de T (ou N)) et est maximale pour les pics du spectre

de X. Le périodogramme est donc un mauvais estimateur spectral.

1.8.2.2. Le corrélogramme

C’est un estimateur de la D.S.P. qui consiste a calculer la T.F. d’une estimée de la fonction

d’autocorrélation de X (t).

Cas continu :

+00
gT(f) = f ﬁT(T) e /2"t dy

(1772 T -
Rr(D) = { %f(z_M)X(”z)XG—g)dt ol <T
\ 0 |t| >T
(3.80)



- Casdiscret :

(D= . Ry e

k=—o0
Avec ;

N—|k|-1

1
Ry(k)={ N Z) X)X (n + k) k| <N -1

0 k| >N -1
(3.81)

- Relation avec le périodogramme :

Si X(t) est réel, le corrélogramme et le périodogramme coincident. Les propriétés du
correlogramme sont donc les mémes que celles du périodogramme (sont mauvaises). Pour
améliorer ces propriétés on a recours a des versions « lissées » ou « moyennees » de ces

estimateurs.
3.9. Bruit blanc

Un processus aléatoire (t) , faiblement stationnaire, est appelé bruit blanc s’il posséde des

valeurs dé-corrélées, soit :

Rxx (1) = 076(1) (3.82)

OU Ryx (1) est la fonction de covariance de X et g , sa variance. Ceci dit, la DSP d’un bruit

blanc est donnée par :

Sxx(f) = U)% (3.83)

Alors, un bruit blanc est tout processus aléatoire stationnaire au sens large dont la DSP est
uniformément distribuée sur f = ]—oo,+oo[. S’il n’est pas a bande limitée sa puissance est

infinie.



1G(f)] Ry (1)
g2 TF inﬁﬁ(r)

Figure 3.14 : Densité spectrale et fonction d’autocorrélation d’un bruit blanc.

OU Ryx(t) =0 pour 7+ 0 quiveut dire que deux échantillons prisat et t+¢& sont

indépendants. Le processus est dit sans mémoire.

3.9.1. Bruit blanc a bande limitée

Un signal aléatoire est considéré comme étant un bruit blanc a bande limitée s’il satisfait la

condition suivante :
Sxx (f) = o pour f € [—b,+b] (3.84)

La fonction d’autocorrélation est telle que :

Ryx (1) = 202 bsinc(t) pour f € [—b, +b] (3.85)
N Syx(f) AR.(T)
alb
oy
. > ~, N,
+b f N N 5 f_d\ﬁ./ T
L 1
b b

Figure 3.15 : Densité spectrale et fonction d’autocorrélation d’un bruit blanc a bande limitée.



3.9.2.

Quelques correspondances entre Corrélation-DSP

Processus X(t) Corrélation R, (1) DSP Syx(f)
a.X(t) |al?. Ry (7) lal®. 5. ()
X0 —d?R, (1)
() =— T‘f (2rf)%. 5.0
drX(t) (—1)"d?"Ry(7) 2
(n) = n
A (t) - E-![”- d'l’zn (z.ﬂ'f) ' S"T'T(fj
X(t).et2mifot Ry (7). et2mifot Sxx (f £ fo)

3.10. Modéles de représentation des processus stochastiques

Pour pouvoir traiter, estimer et prédire un processus stochastique nous devons d’abord le
modéliser. Pour y parvenir, nous devons exploiter le principe d’innovation ou la représentation
de Wold.

3.10.1. Représentation de Wold

Considérons un filtre linéaire causal de transmittance

H(z) = Z h,z™"
n=0

Si on excite I’entrée de ce filtre par un bruit blanc W (n) de puissance o2, la sortie sera un
processus stationnaire X (n) dont laDSP est : Syx(f) = a2.|H(f)|%. On dit que la séquence
W (n) constitue la séquence des innovations de X(n) et H(z) la réponse impulsionnelle du

filtre d’innovation. De méme, si X(n) est un signal stationnaire traversant un filtre de

transmittance , hous obtenons en sortie un bruit blanc. Alors, L(z) est le filtre de

1
H(z)
blanchiment tandis que w(n) est appelé processus d’innovation associé¢ a X(n) .

w(n) X(n) w(n)

— H(z)

— L(z) S —

Filtre d’innovation Filtre de blanchiment

Figure 3.16 : Représentation de Wold



3.10.2. Modéles stochastiques (AR, MA, ARMA)

Dans cette représentation on considere un filtre lineaire causal ayant une fonction de
transfert décrite par :

H(Z) = B(Z) = Zzg bkz_k
1+A(z) 1+%,_, bez7*
(3.86)
Alors, le signal de sortie est donné par :
p q
X(n) + Z @ X(n—k) = Z bew(n — k)

k=1 k=0

(3.87)

a) Processus Autorégressif (AR)

Un processus autorégressif est caractérisé par B(z) = 1, et donc par I’équation aux

différences suivante :

X(n)+ z:_lakX(n —k) =w(n)

(3.88)

On peut également représenter ce processus par le schéma de la figure 3.17 suivante :

W) X(n)

Bruit blanc

Processus AR

=
a, |
Y Y
3
Z_l
w
z—.‘l
ﬂp -t
v

Figure 3.17 : Filtre générateur d’un processus AR.



b) Processus & moyenne mobile (MA : Moving Average)

C’est un processus autorégressif qui est caractérisé par (z) = 1, ce qui s’exprime par :

X(n) = zzzobkw(n — k)

(3.89)
Ce processus est décrit par la figure 3.18 ci-dessous :
Win) » z1 »l -1 >eose » z—1
Bruit blanc
Y h 4 b v
by b, b, ese by b,
)\ X{.’!}
N "\ e

Processus NA

Figure 3.18 : Filtre générateur du processus MA

Remarque : le processus autorégressif a moyenne mobile ARMA , n’est que le processus

général décrit au début.

3.11. Conclusion

Dans ce chapitre, nous avons décrit les signaux aléatoires (variables aléatoires qui
évoluent au cours du temps) d’une maniére statistique et temporelle. La stationnarité et les
propriétés statistiques (moyenne, autocorrélation, variance, etc.) de tels signaux sont formulées
par des expressions mathématiques. Ensuite, on s’est intéressé a la représentation de ces signaux
dans le domine fréquentiel. Des grandeurs et opérations fondamentales (densité spectrale de
puissance, échantillonnage, filtrage, estimation statistique et spectrale,..) concernant les
processus stochastiques, ont été abordées. En particulier, les propriétés des signaux
stationnaires au sens large (obtenus par des filtres générateurs excités par un bruit blanc) sont
étudiées. Aussi, des méthodes d’estimation statistique et spectrale du spectre de puissance des

signaux aléatoires sont exposees.

Enfin, une famille de modéles autorégressifs a été présentée pour permettre de calculer et de

représenter les filtres générateurs.






