
CHAPITRE 3 

TRAITEMENT DES SIGNAUX ALEATOIRES 

 

1.1. Introduction    

Pour un signal déterministe, on peut toujours déterminer ses valeurs futures en connaissant 

son expression analytique (modèle mathématique). C’est-à-dire, on peut prédire n’importe 

quelle valeur future de ce signal avec précision. Cette propriété n’est pas valide (cette 

constatation n’est vraie vraie) pour un signal aléatoire. Ce dernier, possède un caractère non 

reproductible dont l’évolution au cours du temps semble être imprévisible même si les 

phénomènes sont observés dans des situations identiques. Mathématiquement, un signal 

aléatoire est considéré comme la réalisation d’un processus aléatoire.  

Certaines caractéristiques semblent être conservées d’un signal à l’autre comme la moyenne, la 

variance, la vitesse de variation. Chaque courbe de la figure 3.1 représente un signal aléatoire. 

 

Figure 3.1 : Processus aléatoire (Processus stochastique) 

 

1.2. Représentation statistique et temporelle d’un processus aléatoire  

Un signal aléatoire est une réalisation d’un processus aléatoire (représentation temporelle) et la 

valeur prise à un instant donné est une variable aléatoire (représentation statistique).  



On définit un processus aléatoire, noté par 𝑋(𝑠, 𝑡 ), comme étant une application, qui à chaque 

issue d’une expérience aléatoire fait correspondre une fonctions de la variable 𝑡. Donc, ce 

dernier étant indexé par la variable𝑡.  

Une réalisation particulière du processus aléatoire sera notée 𝑋(𝑡) et désignée par 𝑋 𝑖(𝑡) ou 

𝑋( 𝑠𝑖 , 𝑡), obtenue pour 𝑠 = 𝑠𝑖. X(s1,t) 

Lorsque 𝑡 est fixé, le processus aléatoire se réduit alors à une simple variable aléatoire.  

 

 Figure 3.2 : Représentation statistique et temporelle d’un processus aléatoire. 

1.3. Stationnarité et propriétés statistiques des signaux aléatoires  

1.3.1. Statistiques d’un processus aléatoire 

a) Densité de probabilité et fonction de répartition 

Soit un processus aléatoire  𝑋(𝑡) .  

- Ordre 1 : En considérant un seul instant 𝑡1 , nous obtenons une v.a notée   𝑋(𝑡1) ayant une 

fonction de répartition désignée par : 

𝐹𝑋(𝑥, 𝑡1) ≜ 𝑃(𝑋(𝑠, 𝑡1) ≤ 𝑥)   , 𝑥 ∈ 𝑅                        (3.1) 

et une densité de probabilité exprimée par : 

𝑓𝑋(𝑥, 𝑡1) ≜
𝑑𝐹𝑋(𝑥, 𝑡1)

𝑑𝑥
   , 𝑥 ∈ 𝑅 

                                (3.2) 

 



La moyenne probabiliste est donnée par : 

 

𝐸[𝑔(𝑋(𝑠, 𝑡1))] = ∫ 𝑔(𝑥)
+∞

−∞
𝑓𝑋(𝑥, 𝑡1)𝑑𝑥          (3.3) 

 

- Ordre 2 : En considérant deux instants, on obtient un vecteur aléatoire tel que : 

𝑋(𝑠, 𝑡1)  et  𝑋(𝑠, 𝑡2) sont deus variables aléatoires ayant la fonction de répartition et la 

densité de probabilité conjointes suivantes : 

 

𝐹𝑋(𝑥1, 𝑥2, 𝑡1, 𝑡2) ≜ 𝑃(𝑋(𝑠, 𝑡1) ≤ 𝑥1), (𝑋(𝑠, 𝑡2) ≤ 𝑥2) , 𝑥1, 𝑥2 ∈ 𝑅
2                        (3.4) 

 

𝑓𝑋(𝑥1, 𝑥2, 𝑡1, 𝑡2) ≜
𝜕2𝐹𝑋(𝑥1, 𝑥2, 𝑡1, 𝑡2)

𝜕𝑥1𝜕𝑥2
   , 𝑥1, 𝑥2 ∈ 𝑅

2 

                                (3.5) 

                                                                     ↕ 

𝐹𝑋(𝑥1, 𝑥2, 𝑡1, 𝑡2) = ∫ ∫ 𝑓𝑋(𝑥1, 𝑥2, 𝑡1, 𝑡2)𝑑𝑥1𝑑𝑥2
+∞

−∞

+∞

−∞
                          (3.6) 

 

𝐸[𝑔(𝑋(𝑠, 𝑡1), 𝑋(𝑠, 𝑡2))] = ∫ ∫ 𝑔(𝑥1, 𝑥2)
+∞

−∞
𝑓𝑋(𝑥1, 𝑥2, 𝑡1, 𝑡2)𝑑𝑥1𝑑𝑥2

+∞

−∞
          (3.7) 

 

 

- Ordre n : En considérant les instants 𝑡1, 𝑡2,… , 𝑡𝑛 , on obtient 𝑛 variables aléatoires et les 

statistiques précédentes deviennent : 

 

𝐹𝑋(𝑥1, … , 𝑥𝑛 , 𝑡1, … , 𝑡𝑛) ≜ 𝑃(𝑋(𝑠, 𝑡1) ≤ 𝑥1),… , (𝑋(𝑠, 𝑡𝑛) ≤ 𝑥𝑛) , 𝑥1, … , 𝑥𝑛 ∈ 𝑅
𝑛     (3.8)              

 

𝑓𝑋(𝑥1, … , 𝑥𝑛, 𝑡1, … , 𝑡𝑛) ≜
𝜕2𝐹𝑋(𝑥1, . . , 𝑥𝑛 , 𝑡1, … , 𝑡𝑛)

𝜕𝑥1…𝜕𝑥𝑛
   , 𝑥1, … , 𝑥𝑛 ∈ 𝑅

𝑛 

                                (3.9) 

                                                                     ↕ 

𝐹𝑋(𝑥1, … , 𝑥𝑛 , 𝑡1, … , 𝑡𝑛) = ∫ …∫ 𝑓𝑋(𝑥1, … , 𝑥𝑛 , 𝑡1, … , 𝑡𝑛)𝑑𝑥1…𝑑𝑥𝑛
+∞

−∞

+∞

−∞
                   (3.10) 

 

𝐸[𝑔(𝑋(𝑠, 𝑡1), … , 𝑋(𝑠, 𝑡𝑛))] = ∫ …∫ 𝑔(𝑥1, … , 𝑥𝑛)
+∞

−∞
𝑓𝑋(𝑥1, … , 𝑥2, 𝑡1, … , 𝑡𝑛)𝑑𝑥1…𝑑𝑥𝑛

+∞

−∞
          

(3.11) 



 

Remarques : 

-  Les équations précédentes concernent les processus aléatoires continus, pour le cas discret 

les intégrales deviennent des sommations et le paramètre t sera désigné par n.  

- En pratique, on va jusqu’à l’ordre 2. 

- La connaissance totale d’un processus aléatoire requiert la connaissance des densités de 

probabilités à chaque instant t. 

 

b) Exemple d’un signal aléatoire 

Soit un générateur d’un signal sinusoïdal , 𝑋(𝑠, 𝑡) = 𝐴(𝑠)cos (𝜔𝑡 + 𝜃(𝑠)) avec 𝐴 et 𝜃  deux 

variables aléatoires uniformes sur [0,1] et [0 ,2π] respectivement. La figure 3.3, montre 

quatre réalisations de ce processus. Chaque réalisation représente un signal aléatoire. On 

voit que l’amplitude 𝐴 et la phase initiale 𝜃 de ce signal sont aléatoires. 

 

 

Figure 3.3 : Exemple d’un processus aléatoire 
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c) Moyenne d’un processus aléatoire  

- Moyenne : la moyenne d’un processus aléatoire continu 𝑋(𝑡) représente le « moment 

d’ordre 1 » c.-à-d. les statistiques pour un seul instant t et elle est exprimée par : 

 En temps continu : 

 𝑚𝑋(𝑡) = 𝐸[𝑋(𝑠, 𝑡)] = ∫ 𝑥(𝑡)𝑓𝑋(𝑥, 𝑡)
∞

−∞
𝑑𝑥                           (3.12) 

  En temps discret :  

   𝑚𝑋(𝑛) = 𝐸[𝑋(𝑠, 𝑛)] = ∑ 𝑥𝑖(𝑛)𝑓𝑋(𝑥𝑖, 𝑛)
∞
𝑖=−∞                         (3.13) 

-  Moyenne d’ordre 2 :  

Dans ce cas on prend deux instants 𝑡1 et 𝑡2 et on définit : 

 L’autocorrélation pour les deux cas continu et discret respectivement est exprimée par : 

𝑅𝑋𝑋(𝑡1, 𝑡2) = 𝐸{𝑋(𝑠, 𝑡1)𝑋
∗(𝑠, 𝑡2)} = ∫ ∫ 𝑥1𝑥2

∗+∞

−∞

+∞

−∞
𝑓𝑋(𝑥1, 𝑥2, 𝑡1, 𝑡2)𝑑𝑥1𝑑𝑥2            (3.14) 

 

𝑅𝑋𝑋(𝑛1, 𝑛2) = 𝐸{𝑋(𝑛1)𝑋
∗(𝑛2)} = ∑ ∑ 𝑥𝑖

+∞
𝑗=−∞

+∞
𝑖=−∞ 𝑥𝑗

∗ 𝑓𝑋(𝑥𝑖, 𝑥𝑗, 𝑛1, 𝑛2)            (3.15) 

La fonction d’autocorrélation mesure le taux de ressemblance entre deux variables aléatoires. 

 L’auto-covariance : C’est la moyenne d’ordre centrée 

 

𝐶𝑋𝑋(𝑡1, 𝑡2) = 𝐸{(𝑋(𝑠, 𝑡1) − 𝑚𝑋(𝑡1))(𝑋(𝑠, 𝑡2) − 𝑚𝑋(𝑡2)
∗)} 

= 𝑅𝑋𝑋(𝑡1, 𝑡2) − 𝑚𝑋(𝑡1)𝑚𝑋
∗(𝑡2)                                                                 (3.16) 

Pour le cas discret le moment centré d’ordre 2 est exprimé par : 

 

     𝐶𝑋𝑋(𝑛1, 𝑛2) = 𝐸{[𝑋(𝑛1) − 𝑚𝑋(𝑛1)][𝑋(𝑛2) − 𝑚𝑋(𝑛2)]
∗}   

    = 𝑅𝑋𝑋(𝑛1, 𝑛2) − 𝑚𝑋(𝑛1)𝑚𝑋
∗(𝑛2)                               (3.17) 

- Variance  

La variance d’une fonction aléatoire est déduite de l’auto corrélation en prenant 𝑡1 = 𝑡2 = 𝑡 

(𝑛1 = 𝑛2 = 𝑛) pour les deux cas continu et discret respectivement ce qui donne : 

𝜎𝑋
2(𝑡) = 𝑅𝑋𝑋(𝑡, 𝑡) = 𝐸{𝑋(𝑠, 𝑡)𝑋∗(𝑠, 𝑡)} = 𝐸{|𝑋(𝑠, 𝑡)|2}                      (3.18) 



𝜎𝑋
2(𝑛) = 𝑅𝑋𝑋(𝑛, 𝑛) = 𝐸{𝑋(𝑠, 𝑛)𝑋∗(𝑠, 𝑛)} = 𝐸{|𝑋(𝑠, 𝑛)|2}                  (3.19) 

On peut généraliser les notions citées précédemment pour deux processus aléatoires 𝑋(𝑠, 𝑡)  et 

𝑌(𝑠, 𝑡) et on aura : 

𝐹𝑋𝑌(𝑥1, … , 𝑥𝑛 , 𝑦1, … , 𝑦𝑚 , 𝑡1, … , 𝑡𝑛 , 𝑡1
′ , … , 𝑡𝑚

′ ) 

≜ 𝑃(𝑋(𝑠, 𝑡1) ≤ 𝑥1, … , 𝑋(𝑠, 𝑡𝑛) ≤ 𝑥𝑛 , 𝑌(𝑠, 𝑡1
′) ≤ 𝑦1, … , 𝑌(𝑠, 𝑡𝑚

′ ) ≤ 𝑦𝑚)        (3.20) 

 

 

 

 L’inter-corrélation : 

 

𝑅𝑋𝑌(𝑡1, 𝑡2) = 𝐸{𝑋(𝑠, 𝑡1)𝑌
∗(𝑠, 𝑡2)} = ∫ ∫ 𝑥𝑦∗

+∞

−∞

+∞

−∞
𝑓𝑋(𝑥, 𝑦, 𝑡1, 𝑡2)𝑑𝑥𝑑𝑦                  (3.21) 

Pour le cas discret l’inter-corrélation est donnée par : 

𝑅𝑋𝑌(𝑛1, 𝑛2) = 𝐸{𝑋(𝑛1)𝑌
∗(𝑛2)}                             (3.22) 

 L’inter-covariance : 

𝑅𝑋𝑌(𝑡1, 𝑡2) = 𝐸{(𝑋(𝑠, 𝑡1) − 𝑚𝑋(𝑡1))(𝑌(𝑠, 𝑡2) − 𝑚𝑌(𝑡2))
∗
} 

= 𝑅𝑋𝑌(𝑡1, 𝑡2) − 𝑚𝑋(𝑡1)𝑚𝑌
∗(𝑡2)                                        (3.23) 

𝐶𝑋𝑌(𝑛1, 𝑛2) = 𝐸{[𝑋(𝑛1) − 𝑚𝑋(𝑛1)][𝑌(𝑛2) − 𝑚𝑌(𝑛2)]} 

    = 𝑅𝑋𝑌(𝑛1, 𝑛2) − 𝑚𝑋(𝑛1)𝑚
∗
𝑌(𝑛2)                                 (3.24) 

C’est l’inter-corrélation des variables aléatoires centrées. 

 Le coefficient de corrélation :   

𝜌𝑋𝑌(𝑡1, 𝑡2) =
𝐶𝑋𝑌(𝑡1, 𝑡2)

𝜎𝑋(𝑡1)𝜎𝑌(𝑡2)
 

           

𝜌𝑋𝑌(𝑛1, 𝑛2) =
𝐶𝑋𝑌(𝑛1, 𝑛2)

𝜎𝑋(𝑛1)𝜎𝑌(𝑛2)
 

                                                                                                                                     (3.25) 

 

                                       𝜎𝑋
2(𝑡) = ∫ [𝑥(𝑡) −𝑚𝑋(𝑡)][𝑥(𝑡) − 𝑚𝑋(𝑡)]

∗∞

−∞
𝑓𝑋(𝑠, 𝑡)𝑑𝑥          (3.26) 

On appelle fonction de covariance  𝐶𝑋(𝑡1, 𝑡2) , la fonction des deux variables  𝑡1 et 𝑡2  donnée 

par : 

𝐶𝑋(𝑡1, 𝑡2) = 𝐸{[𝑋(𝑡1) − 𝑚𝑋(𝑡1)][𝑋(𝑡2) − 𝑚𝑋(𝑡2)]
∗} = 𝐶𝑋

∗(𝑡2, 𝑡1)            (3.27) 



- Indépendance statistique  

On dit qu’un processus aléatoire possède des valeurs indépendantes si : 

 𝑓𝑋[𝑥(𝑡1), … , 𝑥(𝑡𝑛)] = 𝑓𝑋[𝑥(𝑡1)] × …× 𝑓𝑋[𝑥(𝑡𝑛)]                              (3.28)                         

A tout instant, le futur est indépendant du présent et du passé. En temps discret on garde les 

mêmes définitions mais avec la notation   𝑓𝑋[𝑥(𝑛)]. 

 

1.3.2. Stationnarité d’un signal aléatoire 

 

1.3.2.1. Stationnarité au sens strict 

Définition 1 : un processus aléatoire est stationnaire si les statistiques sont invariantes dans 

le temps. 

𝑓𝑋(𝑥1, … , 𝑥𝑛 , 𝑡1, … , 𝑡𝑛) = 𝑓𝑋(𝑥1, … , 𝑥𝑛 , 𝑡1+𝜀 , … , 𝑡𝑛 + 𝜀) 

∀ 𝑛 ∈ ℕ,∀𝑥𝑖 ∈ ℜ, , ∀𝑡𝑗 ∈ ℜ, , ∀𝜀 ∈ ℜ                          (3.29) 

Définition 2 : un processus aléatoire est stationnaire au sens strict d’ordre k, si ceci est vrai 

pour 𝑛 ≤ 𝑘. 

Cas particulier 𝒏 = 𝟏 : 

  𝑓𝑋(𝑥, 𝑡) = 𝑓𝑋(𝑥, 𝑡 + 𝜀) = 𝑓𝑋(𝑥)                                                              (3.30) 

Preuve : si on pose 𝜀 = −𝑡 alors 𝑓𝑋(𝑥, 𝑡 + 𝜀) = 𝑓𝑋(𝑥) 

 𝑚𝑋(𝑡) = 𝐸[𝑋(𝑡)] = ∫ 𝑥𝑓𝑋(𝑥, 𝑡)
∞

−∞
𝑑𝑥 = ∫ 𝑥𝑓𝑋(𝑥)

∞

−∞
𝑑𝑥                         (3.31) 

 Alors, 𝑚𝑋(𝑡) = 𝑚𝑋 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑒   c’est-à-dire la moyenne ne dépend pas du temps. 

Cas particulier 𝒏 = 𝟐 : 

 𝑓𝑋(𝑥1, 𝑥2, 𝑡1, 𝑡2) = 𝑓𝑋(𝑥1, 𝑥2, 𝑡1 + 𝜀, 𝑡2 + 𝜀) = 𝑓𝑋(𝑥1, 𝑥2, 𝑡1 − 𝑡2)         (3.32) 

 Preuve : si on pose   𝜀 = −𝑡2, on aura 𝑓𝑋(𝑥1, 𝑥2, 𝑡1, 𝑡2) = 𝑓𝑋(𝑥1, 𝑥2, 𝑡1 − 𝑡2, 𝑡2 − 𝑡2) 

                                                                                                =𝑓𝑋(𝑥1, 𝑥2, ∆𝑡) 

L’autocorrélation :  



 𝑅𝑋𝑋(𝑡1, 𝑡2) = 𝐸{𝑋(𝑡1)𝑋
∗(, 𝑡2)} = ∫ ∫ 𝑥1𝑥2

∗+∞

−∞

+∞

−∞
𝑓𝑋(𝑥1, 𝑥2, 𝑡1 − 𝑡2)𝑑𝑥1𝑑𝑥2 

= 𝑅𝑋𝑋(𝑡1 − 𝑡2) = 𝑅𝑋𝑋(𝜏)                            (3.33) 

Avec 𝜏 = 𝑡1 − 𝑡2 

 𝜎𝑋
2(𝑡) = 𝑅𝑋𝑋(𝑡, 𝑡) = 𝑅𝑋𝑋(𝜏)                                                                           (3.34) 

Pour qu’un signal aléatoire soit stationnarité au sens strict il faut que les densités de probabilités 

conjointes ne dépendent pas de l’instant 𝑡𝑖 et toutes ses propriétés statistiques soient invariantes 

dans le temps. 

1.3.2.2. Stationnarité au sens large 

          Définition 2 : un processus aléatoire est stationnaire au sens large si et seulement si : 

 𝑚𝑋(𝑡) = 𝑚𝑋 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑒    et 

 𝑅𝑋𝑋(𝑡1, 𝑡2) = 𝑅𝑋𝑋(𝑡1 − 𝑡2) = 𝑅𝑋𝑋(𝜏) 

De ce fait, la variance est aussi constante puisque : 𝜎𝑋
2(𝑡) = 𝐶𝑋𝑋(𝑡, 𝑡) = 𝐶𝑋𝑋(0) = 𝜎𝑋

2                                                              

Si 𝑋(𝑠, 𝑡) est stationnaire au sens strict à l’ordre 2 alors il est stationnaire au sens large mais 

l’inverse est généralement faux. 

Un processus aléatoire est stationnaire au sens large si ses statistiques d’ordre 1 et 2 (Moyenne, 

variance, fonction d’autocorrélation) sont invariantes dans le temps. 

1.3.3. Exemples d’application  

Exemple 3.1 : Soient deux variables aléatoires P et Q tel que : 

Q : on jette une pièce de monnaie (pile ou face). 

P : on jette un dé bien équilibré. 

Q= pièce={0,1}  et  P=dé={1,2,3,4,5,6} 

         Soit 𝑋(𝑠, 𝑡) = 𝑃(𝑠) + 𝑄(𝑠). 𝑡. 

  𝑋(𝑠, 𝑡) , est-t-il un processus aléatoire ? 

Pour répondre à cette question, il faut calculer les statistiques de ce processus.  

a) On trace quelques trajectoires de ce processus en utilisant le logiciel Matlab 

 𝑃(𝑠1) = 3,𝑄(𝑠1) = 1 ⟹ 𝑋(𝑠1, 𝑡) = 3 + 𝑡   

 𝑃(𝑠2) = 2,𝑄(𝑠2) = 0 ⟹ 𝑋(𝑠2, 𝑡) = 2   

 𝑃(𝑠3) = 2,𝑄(𝑠3) = 1 ⟹ 𝑋(𝑠3, 𝑡) = 2 + 𝑡   



On remarque qu’on obtient une famille de droites aléatoires comme le montre la figure 3.4 ci-

dessous. 

 

Figure 3.4 : Réalisations du processus aléatoire donné. 

Calcul des statistiques de ce processus : 

1) Moyenne de 𝑿(𝒔, 𝒕) : 

𝑚𝑋(𝑡) = 𝐸[𝑋(𝑠, 𝑡]) = 𝐸[𝑃(𝑠) + 𝑄(𝑠). 𝑡] =  𝐸[𝑃(𝑠)] + 𝑡. 𝐸[𝑄(𝑠)] 

𝑃(𝑠) et 𝑄(𝑠) sont deux variables aléatoires discrètes dont les densités de probabilités sont les 

suivantes : 

                     loi de P                                                                           loi de Q 

𝑦𝑖 1 2 3 4 5 5 

𝑓𝑌(𝑦𝑖) 1/6 1/6 1/6 1/6 1/6 1/6 

 

𝐸[𝑄] =∑𝑥𝑖

2

𝑖=1

𝑓𝑋(𝑥𝑖) = 0 ×
1

2
+ 1 ×

1

2
= 1/2 

𝐸[𝑃] =∑𝑦𝑖

6

𝑖=1

𝑓𝑌(𝑦𝑖) = 1/6 × (1 + 2 + 3 + 4 + 5 + 6) = 21/6 

1 1.5 2 2.5 3 3.5 4 4.5 5
1

2

3

4

5

6

7

8

9

10

11

𝑥𝑖 0 1 

𝑓𝑋(𝑥𝑖) 1/2 1/2 

X(s1,t) 

X(s3,t) 

X(s2,t) 



D’où ; 

𝑚𝑋(𝑡) =
21

6
+
1

2
𝑡 =

1

2
(7 + 𝑡) 

2) Autocorrélation de 𝑿(𝒔, 𝒕) : 

𝑅𝑋𝑋(𝑡1, 𝑡2) = 𝐸[𝑋(𝑡1)𝑋
∗(, 𝑡2)] = 𝐸[(𝑃 + 𝑄. 𝑡1)(𝑃 + 𝑄. 𝑡2)

∗] 

= 𝐸[𝑃2 + 𝑃. 𝑄. 𝑡2 + 𝑃. 𝑄. 𝑡1 + 𝑄
2𝑡1𝑡2] 

= 𝐸[𝑃2] + (𝑡1 + 𝑡2)𝐸[𝑃. 𝑄] + 𝑡1𝑡2𝐸[𝑄
2] 

Avec ; 

 𝐸[𝑃. 𝑄] = 𝐸[𝑃]𝐸[𝑄] =
1

2
×
21

6
= 7/4 

𝐸[𝑃2] =∑𝑦𝑖
2

6

𝑖=1

𝑓𝑌(𝑦𝑖) = 1/6 × (1 + 2
2 + 32 + 42 + 52 + 62) = 91/6 

𝐸[𝑄2] =∑𝑥𝑖
2

2

𝑖=1

𝑓𝑋(𝑥𝑖) = 0
2 ×

1

2
+ 12 ×

1

2
= 1/2 

Alors, 

 𝑅𝑋𝑋(𝑡1, 𝑡2) = 𝐸[𝑃
2] + (𝑡1 + 𝑡2)𝐸[𝑃. 𝑄] + 𝑡1𝑡2𝐸[𝑄

2] =
91

6
+
7

4
(𝑡1 + 𝑡2) +

1

2
𝑡1𝑡2 

3) La variance 

𝜎𝑋
2(𝑡) = 𝑅𝑋𝑋(𝑡, 𝑡) =

91

6
+ 2 ×

7

4
𝑡 +

1

2
𝑡2 =

91

6
+
7

2
𝑡 +

1

2
𝑡2 =

1

2
(𝑡2 + 7𝑡 +

91

3
) 

Ce processus n’est pas stationnaire ni au sens strict ni au sens large car les moments d’ordre 

1(moyenne) et 2(autocorrélation) dépendent du temps. 

Exemple 3.2 :  

Soit   𝑦(𝑛)   une séquence de variables aléatoires gaussiennes non corrélées de moyenne nulle 

et de variance unité :  𝜎2(𝑛) = 1.  

a) Caractériser la séquence (𝑛) .   

b) On définit 𝑥(𝑛) = 𝑦(𝑛) + 𝑦(𝑛 − 1), déterminer sa moyenne et son autocorrélation. 

Caractériser  𝑥(𝑛)   .  

 



Solution  

a) Puisque la non-corrélation implique l’indépendance (pour la Gaussienne), la séquence 

aléatoire  𝑦(𝑛)  est indépendante. Puisque la moyenne et la variance sont constantes le 

processus est stationnaire au sens faible. L’autocorrélation est données par :  

 

𝑅𝑌𝑌(𝑛1, 𝑛2) = 𝜎
2𝛿(𝑛1 − 𝑛2) = 𝛿(𝑛1 − 𝑛2) 

                         

b) Pour chaque 𝑛 la moyenne de  𝑦(𝑛)  est nulle, ce qui implique une moyenne nulle pour  𝑥(𝑛)   

. Considérons maintenant l’autocorrélation : 

𝑅𝑌𝑌(𝑛1, 𝑛2) = 𝐸{𝑥(𝑛1)𝑥(𝑛2)} = 𝐸{[𝑦(𝑛1) + 𝑦(𝑛1 − 1)][𝑦(𝑛2) + 𝑦(𝑛2 − 1)]} 

                            = 𝑅𝑌𝑌(𝑛1, 𝑛2) + 𝑅𝑌𝑌(𝑛1, 𝑛2 − 1) + 𝑅𝑌𝑌(𝑛1 − 1, 𝑛2) + 𝑅𝑌𝑌(𝑛1 − 1, 𝑛2 − 1) 

= 𝜎2𝛿(𝑛1 − 𝑛2) + 𝜎
2𝛿(𝑛1 − 𝑛2 + 1) + 𝜎

2𝛿(𝑛1 − 1 − 𝑛2) + 𝜎
2𝛿(𝑛1 − 1 − 𝑛2 + 1) 

= 2𝜎2𝛿(𝑛1 − 𝑛2) + 𝜎
2𝛿(𝑛1 − 𝑛2 + 1) + 𝜎

2𝛿(𝑛1 − 𝑛2 − 1) 

 

𝑅𝑌𝑌(𝑛1, 𝑛2) = 2𝛿(𝜏) + 𝛿(𝜏 + 1) + 𝛿(𝜏 − 1) 

 

Par conséquent :  𝑥(𝑛)  est stationnaire au sens large mais c’est une séquence aléatoire non 

indépendante car  𝑥(𝑛)   et  𝑥(𝑛 + 1)  dépendent de 𝑦(𝑛)    .  

 Exemple 3.3 : Soit le vecteur aléatoire constitué des deux v.a réelles  𝑋1(𝑡) et  𝑋2(𝑡) définies 

par : 

𝑋1(𝑡) = cos (𝜔𝑡 + 𝜑)     𝑋2(𝑡) = sin (𝜔𝑡 + 𝜑) 

𝜑   est une VA aléatoire uniformément distribuée sur  [0, 2𝜋]. On note : 𝑋(𝑡) = [
𝑋1(𝑡)

𝑋2(𝑡)
].  

La moyenne des fonctions aléatoires est nulle. En effet : 

E[𝑋1(𝑡)] =
1

2𝜋
∫ cos(𝜔𝑡 + 𝜑)𝑑𝜑 =

1

2𝜋
∫ cos(∅) 𝑑∅ =
𝜔𝑡+2𝜋

𝜔𝑡

2𝜋

0
0        𝑎𝑣𝑒𝑐        ∅ = 𝜔𝑡 + 𝜑 

E[𝑋1(𝑡)] = E[𝑋2(𝑡)] = 0 

Ainsi, nous n’avons pas besoin de centrer pour calculer la covariance.  Cette dernière est 

donnée par : 

𝐶𝑋𝑋(𝑡1, 𝑡2)= E[𝑋(𝑡1)𝑋
𝑇(𝑡2)] = E {[

𝑋1(𝑡1)

𝑋2(𝑡1)
] [𝑋1(𝑡2) 𝑋2(𝑡2)]} 

𝐶𝑋𝑋(𝑡1, 𝑡2) = [
𝐶𝑋1𝑋1(𝑡1, 𝑡2)      𝐶𝑋1,𝑋2(𝑡1, 𝑡2)

𝐶𝑋2𝑋1(𝑡1, 𝑡2)      𝐶𝑋2𝑋2(𝑡1, 𝑡2)
] 



𝐶𝑋1𝑋1(𝑡1, 𝑡2) = E[𝑋1(𝑡1)𝑋1(𝑡2)] =E[cos (𝜔𝑡1 +𝜑)cos (𝜔𝑡2 +𝜑)] =
1

2
cos (𝜔𝜏) 

𝐶𝑋1𝑋1(𝑡1, 𝑡2) = 𝐶𝑋2𝑋2(𝑡1, 𝑡2) et   𝐶𝑋1,𝑋2(𝑡1, 𝑡2) = −𝐶𝑋2𝑋1(𝑡1, 𝑡2)=−
1

2
sin (𝜔𝜏) 

Le fait que la matrice de covariance dépende uniquement de la différence  𝑡1 − 𝑡2  montre que 

la fonction vectorielle considérée ici est stationnaire au sens large.   

1.3.4. Caractéristiques temporelles   

a) Moyenne temporelle 

Elle est prise sur une réalisation 𝑥𝑖 du processus aléatoire pour une durée d’observation   qui 

tend vers l’infini. 

𝑥̅𝑖(𝑡) = lim
𝑇→∞

1

𝑇
∫ 𝑥𝑖(𝑡)𝑑𝑡
+
𝑇
2

−
𝑇
2

 

                                           (3.35) 

b) Autocorrélation temporelle 

𝑅𝑋𝑋(𝜏) = lim
𝑇→∞

1

𝑇
∫ 𝑥𝑖(𝑡)𝑥𝑖

∗(𝑡 − 𝜏)𝑑𝑡
+
𝑇
2

−
𝑇
2

 

                    (3.36) 

Où : * signifie le complexe conjugué.   

Propriétés :  

 La matrice de corrélation d’un processus stochastique discret stationnaire est une matrice 

de Toeplitz carrée (une matrice carrée est dite de Toeplitz si tous les éléments d’une même 

diagonale ou sous diagonale sont égaux).  

 La matrice de corrélation d’un processus stochastique discret stationnaire est généralement 

définie positive (une matrice est définie positive si toutes ses valeurs propres sont 

positives)  

Aussi, pour un processus réel on a : 

 𝐶𝑋𝑋(𝜏)=𝐶𝑋𝑋(−𝜏)                            (3.37) 

 

 



1.4. Densité spectrale de puissance  

La densité spectrale de puissance, notée DSP représente la répartition de puissance d’un 

signal suivant les fréquences. La DSP permet de caractériser les signaux stationnaires gaussiens 

et ergodiques.  

Les propriétés énergétiques des signaux aléatoires stationnaires sont décrites à l’aide des 

moments d’ordre deux, c’est-à-dire des fonctions d’auto et d’inter corrélation, dans le domaine 

temporel, et à l’aide des densités spectrales de puissance, dans le domaine de Fourier. 

Un signal aléatoire 𝑋(𝑡) stationnaire est généralement considéré comme un signal à énergie 

infinie mais à puissance moyenne finie. Donc, on ne peut pas calculer sa transformée de Fourier 

(problème de convergence de la série).  

 

3.4.1. Théorème d’Einstein-Wiener–Khintchine  

  La densité spectrale de puissance (Spectre de puissance) d'un signal aléatoire 

stationnaire ergodique est la transformée de Fourier (à temps discret) de sa fonction 

d'autocorrélation.  Ainsi, la transformée de Fourier de la fonction d’autocorrélation et son 

inverse sont donnés par : 

 

𝑆𝑋𝑋(𝑓) = ∫ 𝑅𝑋𝑋(𝜏)𝑒
−2𝜋𝑗𝑓𝜏

∞

−∞

𝑑𝜏 

𝑅𝑋𝑋(𝜏) = ∫ 𝑆𝑋𝑋(𝑓)𝑒
2𝜋𝑗𝑓𝜏∞

−∞
𝑑𝑓                                         (3.38) 

Dans le cas discret, la DSP s’exprime par : 

𝑆𝑋𝑋(𝑓) = ∑ 𝑅𝑋𝑋(𝜏)

+∞

𝜏=−∞

𝑒−2𝜋𝑗𝑓𝜏 

𝑅𝑋𝑋(𝜏) = ∫ 𝑆𝑋𝑋(𝑓)
+1/2

−1/2

𝑒−2𝜋𝑗𝑓𝜏𝑑𝑓 

𝜎𝑋𝑋
2 = 𝑅𝑋𝑋(0) = ∫ 𝑆𝑋𝑋(𝑓)

+1/2

−1/2
𝑑𝑓                                       (3.39) 

 



3.4.2. Propriétés du spectre de puissance  

Le spectre de puissance est à valeurs réelles (et non à valeurs complexes comme 

lorsqu’on calcule le spectre d’un signal déterministe par TFtd). La densité spectrale de 

puissance est positive ou nulle : 

𝑆𝑋𝑋(𝑓) ≥ 0     ∀ 𝑓               (3.40) 

Le spectre de puissance d’un signal à valeurs réelles est pair :  

𝑆𝑋𝑋(−𝑓) = 𝑆𝑋𝑋(𝑓)          (3.41) 

3.4.3. Théorème de Parseval 

  Parseval a montré que la puissance moyenne du signal peut se calculer soit en intégrant 

la distribution temporelle de puissance, soit en intégrant sa distribution fréquentielle de 

puissance. 

Ainsi, la puissance totale du signal est calculée par : 

𝑃 = ∫ 𝑆𝑋𝑋(𝑓)
+∞

−∞
𝑑𝑓                                           (3.42) 

La puissance sur une plage de fréquences est donnée par : 

𝑃𝑓1→𝑓2 = ∫ 𝑆𝑋𝑋(𝑓)
+𝑓1

−𝑓2
𝑑𝑓 +∫ 𝑆𝑋𝑋(𝑓)

𝑓2

𝑓1
𝑑𝑓                                          (3.43) 

On a deux termes car 𝑆𝑋𝑋(𝑓) est symétrique comme le montre la figure 3.5 ci-dessous. 

 

 

 

 

 

 

Figure 3.5 : Spectre de puissance d’un signal. 
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3.4.4. Interprétation physique des moments statistiques 

Dans le cas d’un signal stationnaire ergodique : 

-  𝑚𝑋 = E[X] , correspond à la valeur moyenne (composante continue du signal). 

- (E[X])2, correspond à la puissance de la composante continue du signal. 

- E[X2], correspond à la puissance totale du signal. 

- 𝜎𝑋
2  , correspond à la puissance des fluctuations autour de la valeur moyenne. 

Les trois termes sont liés par la relation suivante : 

E[X2] = (E[X])2 + 𝜎𝑋
2                             (3.44) 

 

1.5.    Echantillonnage des signaux aléatoires 

Un signal aléatoire à temps discret peut être construit directement à temps discret, ou être 

intrinsèquement de nature discrète, ou peut résulter de l’échantillonnage d’un signal aléatoire à 

temps continu. 

1.5.1. Fonction d’autocorrélation 

Soient 𝑋𝑎(𝑡)  un processus aléatoire continu et 𝑋(𝑛) sa version numérique obtenue par 

échantillonnage de  𝑋𝑎(𝑡)  à la période 𝑇𝑒 =
1

𝑓𝑒
 : 

   𝑋(𝑛) = 𝑋𝑎(𝑛𝑇𝑒)                     (3.45) 

On cherche à exprimer les fonctions d’autocorrélation et la densité spectrale de 𝑋(𝑛) en 

connaissant celles de  𝑋𝑎(𝑡) . 

𝑅𝑋𝑋(𝑛, 𝑛 − 𝑚) = 𝐸[𝑋(𝑛)𝑋(𝑛 − 𝑚)] = 𝐸[𝑋𝑎(𝑛𝑇𝑒)𝑋𝑎((𝑛 − 𝑚)𝑇𝑒)] 

       = 𝑅𝑋𝑎(𝑚𝑇𝑒)                                       (3.46) 

La fonction d’autocorrélation du signal échantillonné s’obtient donc en échantillonnant 

la fonction d’autocorrélation du signal continu. 



𝑋(𝑛), 𝑛 ∈ 𝑍, obtenu par échantillonnage régulier de 𝑋𝑎(𝑡) est encore stationnaire au second 

ordre si 𝑋𝑎(𝑡) vérifie cette propriété.  

1.5.2. Densité spectrale de puissance 

Soit 𝑆𝑎(𝑓) la DSP de 𝑋𝑎(𝑡) et notons 𝑆𝑛(𝑓) celle de 𝑋(𝑛). Puisque 𝑅𝑋𝑋(𝑚) =

𝑅𝑋𝑎(𝑚𝑇𝑒), l’application du théorème d’échantillonnage donne : 

𝑆𝑛(𝑓) = 𝑓𝑒  ∑ 𝑆𝑎(𝑓 + 𝑘𝑓𝑒)
+∞
𝑘=−∞                       (3.47) 

On remarque que l’échantillonnage en temps de 𝑅𝑋𝑋(𝑚) entraine la périodisation en fréquence 

de 𝑆𝑛(𝑓). Le spectre d’un signal aléatoire échantillonné à la période 𝑇𝑒 = 1/𝑓𝑒  est périodique 

de période 𝑓𝑒 . 

Si la DSP du signal continu est nulle en dehors de la bande de fréquence [
−𝑓𝑒 

2
,
𝑓𝑒  

2
 ], on aura : 

𝑆𝑛(𝑓) = 𝑓𝑒  𝑆𝑎(𝑓) ∀ 𝑓  ∈  [
−𝑓𝑒 

2
,
𝑓𝑒 

2
 ]                    (3.48) 

1.6. Filtrage des signaux aléatoires 

Dans cette section, on verra comment sont transformés les signaux aléatoires et nous allons 

nous intéresser au filtrage de signaux aléatoires et leur conséquence sur le signal filtré dans les 

domaines temporels et fréquentiels. 

On rappelle qu’un filtre est un système linéaire invariant dans le temps (stationnaire), que l’on 

peut décrire par une équation différentielle à coefficients constants ou par une intégrale de 

convolution. 

1.6.1. Filtrage temporel d’un signal aléatoire stationnaire au sens large  

Soit 𝑋(𝑡) un signal aléatoire stationnaire au sens large de moyenne 𝑚𝑋 et de fonction 

d’autocorrélation 𝑅𝑋𝑋(𝜏 ), et 𝑌(𝑡) le signal obtenu par filtrage de 𝑋(𝑡) par un filtre de réponse 

impulsionnelle ℎ(𝑡) (réelle) (voir fig. 3.6). 

 

Figure 3.6 : Filtrage d’un signal aléatoire X(t) par un filtre de réponse impulsionnelle h(t). 



Le signal à la sortie du filtre  𝑌(𝑡) s’exprime en fonction de 𝑋(𝑡) selon : 

 En continu : 𝑌(𝑡) = 𝑋(𝑡) ∗ ℎ(𝑡) = ∫ ℎ(𝜏)𝑋(𝑡 − 𝜏)𝑑𝜏
+∞

_∞
 

 En discret : 𝑌(𝑛) = 𝑋(𝑛) ∗ ℎ(𝑛) = ∑ ℎ(𝑘)𝑋(𝑛 − 𝑘)𝑘   

Les caractéristiques de 𝑌(𝑡)  peuvent être calculées comme suit : 

 Moyenne : 

𝐸[𝑌(𝑡)] = 𝐸[𝑋(𝑡) ∗ ℎ(𝑡)] = 𝐸 [∫ 𝑋(𝑡 − 𝜏)ℎ(𝜏)𝑑𝜏
∞

−∞

] 

𝐸[𝑌(𝑡)] = ∫ 𝐸[𝑋(𝑡 − 𝜏)]
∞

−∞
ℎ(𝜏)𝑑𝜏                (3.49) 

Si le processus 𝑋(𝑡) est stationnaire on a :    𝐸[𝑋(𝑡 − 𝜏)] = 𝐸[𝑋(𝑡)]    ce qui mène à :         

𝐸[𝑌(𝑡)] = ∫ 𝐸[𝑋(𝑡)]
∞

−∞
ℎ(𝜏)𝑑𝜏 = 𝐸[𝑋(𝑡)] ∫ ℎ(𝜏)𝑑𝜏

∞

−∞
               (3.50) 

Avec : ∫ ℎ(𝜏)𝑑𝜏
∞

−∞
= 𝐻[0]           c’est la valeur du spectre 𝐻(𝑓) pour 𝑓 = 0. 

Enfin :           

 𝐸[𝑌(𝑡)] = 𝐸[𝑋(𝑡)]𝐻[0] ou 𝑚𝑌(𝑡) = 𝐻[0]𝑚𝑋(𝑡)                 (3.51) 

 

 L’autocorrélation : 

𝑅𝑌𝑌(𝜏) = ℎ(−𝜏) ∗ ℎ(𝜏) ∗ 𝑅𝑋𝑋(𝜏)                           (3.52) 

1.6.2. Filtrage fréquentiel d’un signal aléatoire stationnaire au sens large 

 

Théorème : Soit 𝑋(𝑡) un signal aléatoire stationnaire au sens large de DSP 𝑆𝑋𝑋(𝑓). Soit 

𝑌(𝑡) le signal obtenu en filtrant 𝑋(𝑡) par un filtre de réponse impulsionnelle ℎ(𝑡) et de gain 

complexe H(f). Alors,  la DSP de 𝑌(𝑡), 𝑆𝑌𝑌(𝑓), s’exprime en fonction de 𝑆𝑋𝑋(𝑓) comme 

suit : 

𝑆𝑌𝑌(𝑓) = |𝐻(𝑓)|
2𝑆𝑋𝑋(𝑓)                            (3.53) 

Et l’inter-spectre de 𝑋(𝑡) et 𝑌(𝑡) est donné par : 

𝑆𝑌𝑋(𝑓) = 𝐻(𝑓)𝑆𝑋𝑋(𝑓)                                 (3.54) 

 



Exercice d’application : 

Soit le signal stationnaire au sens large(SSL) à temps continu, 𝑋(𝑡) avec la fonction 

d’autocorrélation 𝑅𝑋𝑋(𝜏) = 𝑒
−100|𝜏| + 4 et de moyenne 𝐸[𝑋(𝑡)] = 2. Le signal 𝑋(𝑡) est 

échantillonné à fréquence 𝑓𝑠 = 100𝐻𝑧 conduisant au signal discret 𝑋(𝑛). 

a) Donner 𝑅𝑋𝑋(𝑘) et 𝐸[𝑋(𝑛)] (autocorrélation et moyenne du signal échantillonné 𝑋(𝑛)) 

On donne un système avec une réponse impulsionnelle ℎ(𝑛) et le signal échantillonné 𝑋(𝑛) 

mentionné ci-dessus comme entrée. La sortie est notée 𝑌(𝑛). 

b) En supposant que, ℎ(𝑛) = 𝑎𝑛𝑢(𝑛), avec 𝑢(𝑛) est l’échelon unité discrète, |𝑎| < 1 et  

𝐸[𝑌(𝑡)] = 8. Calculer la constante a. 

Pour le reste des questions, supposons que 𝑅𝑋𝑋(𝑘) = (
1

2
)
𝑘

 

c) Donner la réponse en amplitude |𝐻(𝜑)| qui dé-corrélerait complètement le signal  𝑋(𝑛). 

Supposons maintenant ℎ(𝑛) = 𝛿(𝑛 − 3) 

d) Calculer la fonction d’inter-corrélation  𝑅𝑋𝑌(𝑘) entre l’entrée et la sortie. 

e) Calculer la fonction d’autocorrélation  𝑅𝑌𝑌(𝑘) de la sortie. 

 

Solution 

a) 𝐸[𝑋(𝑘)] = 𝐸[𝑋(𝑡)] = 2 

𝑅𝑋𝑋(𝑘) = 𝑅𝑋𝑋(𝑘𝑇𝑠) = 𝑒
−100|𝑘𝑇𝑠| + 4    avec  𝑇𝑠 =

1

𝑓𝑠
= 1/100 , on obtient : 

𝑅𝑋𝑋(𝑘) = 𝑒
−|𝑘| + 4 

b) 𝐸[𝑌(𝑛)] = 𝐸[𝑋(𝑛) ∗ ℎ(𝑛)] = 𝐸[∑ ℎ(𝑘)𝑋(𝑘 − 𝑛)+∞
𝑘=−∞ ] 

                                              = 𝐸[𝑋(𝑘 − 𝑛)]∑ 𝑎𝑘+∞
𝑘=0  

𝑚𝑌(𝑘) = 𝑚𝑋(𝑘).
1

1 − 𝑎
=

2

1 − 𝑎
= 8 

Donc ; a=3/4 

c)  𝑆𝑌𝑌(𝜔) = |𝐻(𝜔)|
2𝑆𝑋𝑋(𝜔)     et    |𝐻(𝜔)| = √

𝑆𝑌𝑌(𝜔)

𝑆𝑋𝑋(𝜔)
 

Sortie décorrélée   signifie  𝑅𝑌𝑌(𝑘) = 𝑐. 𝛿(𝑘) 



(
1

2
)
𝑘
𝑇𝐹
→ 𝑆𝑋𝑋(𝜔) =

1 − (
1
2)
2

1 + (
1
2
)
2

− 2(
1
2
) cos (2𝜋𝜔)

=
3/4

5
4 − cos (2𝜋𝜔)

 

 

𝑐. 𝛿(𝑘)
𝑇𝐹
→ 𝑆𝑌𝑌(𝜔) = 𝑐 

|𝐻(𝜔)| = √
𝑐(
5
4 − cos

(2𝜋𝜔))

3/4
 

d) 𝑅𝑋𝑌(𝑘) = ℎ(𝑘) ∗ 𝑅𝑋𝑋(𝜏) , ℎ(𝑛) = 𝛿(𝑛 − 3) 

𝑅𝑋𝑌(𝑘) =  ∑𝛿(𝑗 − 3)

+∞

𝑗=0

(
1

2
)
|𝑘−3|

= (
1

2
)
|𝑘−3|

 

e) Un retard ne modifiera pas l’autocorrélation de l’entrée, donc  𝑅𝑌𝑌(𝑘) = 𝑅𝑋𝑋(𝑘). 

Aussi, nous pouvons la calculer par : 

𝑅𝑌𝑌(𝑘) = ℎ
∗(−𝑘) ∗ 𝑅𝑋𝑌(𝑘) = ∑ ℎ(−𝑖)

+∞

𝑖=−∞

𝑅𝑋𝑌(𝑘 − 𝑖) 

= ∑ 𝛿(−𝑖 + 3)

+∞

𝑖=−∞

𝑅𝑋𝑌(𝑘 − 𝑖) 

= ∑ 𝛿(−𝑖 + 3)

+∞

𝑖=−∞

= (
1

2
)
|𝑘−3−𝑖|

= (
1

2
)
|𝑘|

 

                                                    𝑅𝑌𝑌(𝑘) = (
1

2
)
|𝑘|

 

1.7. Le filtrage adapté : Un exemple d’application  

Principe : filtrage de 𝑧(𝑡) par le filtre de réponse impulsionnelle ℎ(𝑡) qui maximise le « rapport 

signal à bruit » à l’instant 𝑇 (fin du signal) : 

 

                                                                            Figure 3.7 : Filtre adapté 



Où ; s(t) : signal déterministe connu, de support [0,𝑇] et 𝑏(𝑡) : bruit blanc 

 

1.7.1.  Contexte 

En sonar ou en radar, on cherche à localiser une « cible » qui peut être le sol, un bâtiment, 

une interface (en sismique réflexion) ou un avion ennemi (pour les guerriers). Pour cela, on 

procède de la façon suivante : on émet un signal 𝑠(𝑡), qui parcourt la distance 𝑑 jusqu’à la cible, 

sur laquelle il est réfléchi en direction d’un récepteur. Le récepteur est souvent couplé à 

l’émetteur, et reçoit alors le signal atténué, retardé et bruité : 

 𝑌(𝑡,𝜔 ) = 𝑎𝑠(𝑡 − 𝑡0) + 𝐵(𝑡, 𝜔 ).                                 (3.55) 

L’atténuation 𝑎 est supposée connue ; le bruit additif est en général supposé gaussien, pas 

nécessairement blanc, et il s’agit de déterminer le retard 𝑡0, correspondant au temps d’aller-

retour, 𝑡0 =  2𝑑/𝑐. 

1.7.2.  Maximisation du rapport signal-à-bruit 

Considérons simplement pour le moment le modèle suivant : 

𝑌(𝑡, 𝜔 ) = 𝑥(𝑡) + 𝐵(𝑡,𝜔 ).                                (3.56) 

L’approche habituelle consiste à rechercher à minimiser l’effet du bruit d’observation. On 

cherche alors à construire un filtre ℎ(𝑡) tel que le rapport signal-à-bruit en sortie soit maximal, 

à un instant 𝑇, appelé instant de décision. Cet instant 𝑇 devra être défini pour que l’observation 

ait été effectuée et que le filtre ait agi. 

Notons 𝑍(𝑡, 𝜔 ) la sortie du filtre de réponse impulsionnelle ℎ(𝑡). On a alors : 

𝑍(𝑡,𝜔 ) = (ℎ ∗ 𝑌)(𝑡,𝜔 ) = (ℎ ∗ 𝑥)(𝑡) + (ℎ ∗ 𝐵)(𝑡,𝜔 ).          (3.57) 

On écrit ainsi la sortie comme la somme de la sortie non-bruitée et de la contribution du bruit. 

Le rapport signal-à-bruit vaut ainsi ; 

𝜌 (𝑡) =
|(ℎ ∗ 𝑥)(𝑡)|2

𝐸{|(ℎ ∗ 𝐵)(𝑡, 𝜔 )|2]}
   

                                        (3.58) 



Où;  le numérateur représente la puissance instantanée de la sortie non bruitée et le 

dénominateur la puissance liée au bruit. On évalue ce rapport signal-à-bruit à l’instant de 

décision T. 

𝜌 (𝑇) =
|(ℎ ∗ 𝑥)(𝑇)|2

𝐸{|(ℎ ∗ 𝐵)(𝑇, 𝜔 )|2]}
   

                                     (3.59) 

En développant les produits de convolution, on obtient : 

𝜌 (𝑇) =
| ∫ ℎ(𝑢)𝑥((𝑇 − 𝑢)𝑑𝑢
+∞

−∞
|2

𝐸{| ∫ ℎ(𝑢)𝐵(𝑇 − 𝑢, 𝜔 )
+∞

−∞
𝑑𝑢|2]}

   

                      (3.60) 

. 

En ce qui concerne tout d’abord le dénominateur, il s’agit là de la puissance d’un signal aléatoire 

à la sortie d’un filtre, et l’on a donc : 

𝐸{|(ℎ ∗ 𝐵)(𝑇,𝜔 )|2]} = ∫ 𝑆𝐵𝐵(𝑓)𝑑𝑓 = 𝜎
2+∞

−∞
∫ |𝐻(𝑓)|2
+∞

−∞
𝑑𝑓            (3.61) 

où 𝜎2 est la puissance du bruit d’entrée. L’inégalité de Schwartz permet de majorer le 

numérateur : 

| ∫ ℎ(𝑢)𝑥((𝑇 − 𝑢)𝑑𝑢
+∞

−∞
|2 ≤ ∫ |ℎ(𝑢)|2𝑑𝑢

+∞

−∞
∫ |𝑥∗(𝑇 − 𝑢)|2𝑑𝑢
+∞

−∞
            (3.62) 

 

avec égalité lorsque les vecteurs ℎ(𝑢) et  𝑥∗(𝑇 − 𝑢) sont colinéaires. L’égalité de Parseval -

Plancherel, qui exprime la conservation du produit scalaire entraîne que : 

∫ |ℎ(𝑢)|2𝑑𝑢
+∞

−∞

= ∫ |𝐻(𝑓)|2
+∞

−∞

𝑑𝑓 

On en déduit donc que le rapport signal-à-bruit est majoré selon 

𝜌 (𝑇) ≤
∫ |𝑥∗(𝑇 − 𝑢)|2𝑑𝑢
+∞

−∞

𝜎2
=
𝐸𝑋
𝜎2

 

                    (3.63) 

 



où 𝐸𝑋  est l’énergie du signal 𝑥(𝑡). L’égalité est atteinte lorsque ℎ(𝑢) et 𝑥∗(𝑇 − 𝑢) sont 

colinéaires, c’est-à-dire : 

 ℎ(𝑢) = 𝑘𝑥∗(𝑇 − 𝑢)                               (3.64) 

où 𝑘 est une constante arbitraire. Le filtre optimal maximisant le rapport signal-à-bruit en sortie, 

à l’instant 𝑇, est ainsi le filtre dont la réponse impulsionnelle est la copie retournée et décalée 

dans le temps du signal que l’on cherche à retrouver. En ce sens, le filtre est adapté au signal. 

La relation de filtrage de 𝑌(𝑡,𝜔) avec une « copie retournée » équivaut en fait à effectuer une 

inter-corrélation (au sens déterministe).  

En effet,  

𝑧(𝑡) = ∫ ℎ(𝑢)𝑦(𝑡 − 𝑢)𝑑𝑢
+∞

−∞

= ∫ 𝑥∗(𝑇 − 𝑢)𝑦(𝑡 − 𝑢)𝑑𝑢
+∞

−∞

 

= ∫ 𝑥∗(𝑇 + 𝜈)𝑦(𝑡 + 𝜈)𝑑𝜈 = ∫ 𝑥∗(𝑇 − 𝑡 + 𝜈)𝑦(𝜈)𝑑𝜈
+∞

−∞

+∞

−∞
           (3.65) 

soit 

 𝑧(𝑡) = 𝑅𝑦𝑥(𝑇 − 𝑡).                                                      (3.66) 

 

Le récepteur optimal consiste donc à calculer l’inter-corrélation entre le signal reçu 𝑦(𝑡) et le 

signal espéré   𝑥(𝑡). On parle alors souvent de récepteur à corrélation. 

1.7.3. Application en Sonar-Radar 

Dans le développement précédent, on a supposé connaître 𝑥(𝑡). Or, dans le contexte sonar-

radar, le signal à détecter est 𝑎𝑠(𝑡 − 𝑡0), où 𝑎 et 𝑡0 sont inconnus. On utilisera le filtre adapté 

à 𝑠(𝑡), soit :   ℎ(𝑡) = 𝑘𝑠∗(𝑇 − 𝑡). 

 Dans ce cas, la sortie du filtre est, en terme d’inter-corrélation,  𝑅𝑦𝑠(𝑇 − 𝑡). En reprenant 

𝑦(𝑡) = 𝑎𝑠(𝑡 − 𝑡0) + 𝑏(𝑡), on obtient : 

𝑧(𝑡) = 𝑅𝑦𝑠(𝑇 − 𝑡) = 𝑎𝑅𝑠𝑠(𝑇 + 𝑡0 − 𝑡) + 𝑅𝑏𝑠(𝑇 − 𝑡).        (3.67) 

 

L’effet du filtrage est alors de minimiser le terme de « bruit » 𝑅𝑏𝑠(𝑇 − 𝑡). Par ailleurs, 

on sait que l’autocorrélation est maximale en 0. Dans notre cas de figure, la sortie z(t) sera 



maximale pour 𝑡 = 𝑇 + 𝑡0. À partir de ce maximum, on peut alors déduire la valeur du retard 

𝑡0 et la valeur du facteur d’échelle 𝑎. Le choix du signal 𝑠 est important : on cherchera à ce 

qu’il présente un pic d’autocorrélation 𝑅𝑠𝑠 très prononcé, afin de localiser facilement le 

maximum et permettre éventuellement la détection simultanée de plusieurs échos.  

1.7.4. Filtre de Wiener 

Est un filtrage optimal qui permet d’extraire un signal noyé dans le bruit comme le 

montre la figure ci-dessous.  

 

 

Figure 3.8 : Modélisation d’un signal noyé dans le bruit.  

 

 

Où ;  

  𝑥(𝑡): Signal inconnu ou aléatoire.  

𝑧(𝑡) : Signal bruité. 

 𝑏(𝑡) : Bruit aléatoire. 

 𝑥(𝑡) et 𝑏(𝑡) sont des processus aléatoires stationnaires, centrés, non corrélés.  

a) Filtrage « optimal » du bruit : le filtre de Wiener est le filtre de réponse impulsionnelle 

ℎ(𝑡) tel que : 

 𝑥̂(𝑡)  =  𝑧(𝑡)  ∗  ℎ(𝑡)                                     (3.68) 

Avec,    [(𝑥(𝑡)  −  𝑥ˆ(𝑡))2 ]  est minimum. 

 

Figure 3.9 : Schéma de principe d’un filtre de Wiener. 



 

La réponse en fréquence du filtre de Wiener est : 

𝐻(𝑓) =
𝑆𝑋(𝑓)

𝑆𝑋(𝑓) + 𝑆𝑏(𝑓)
=

1

1 +
𝑆𝑏(𝑓)
𝑆𝑋(𝑓)

 

                                       (3.69) 

b) Propriétés du filtre de Wiener : 

- Il est non causal (∃ une version causale). 

- Il permet de reconstituer 𝑥(𝑡) à partir de 𝑧(𝑡) en éliminant au mieux le bruit sans trop 

distordre le signal. 

- Si les signaux ne sont pas centrés (de moyennes non nulles), il faut préalablement soustraire 

les moyennes 𝐸[𝑥] et  𝐸[𝑏]. Si,  𝐸[𝑏]  =  0, 𝐸[𝑥] peut être estimée par moyennage du signal 

dégradé : 𝐸[𝑥]  ≅ 𝐸[𝑧].  

- Si le bruit est blanc 𝑆𝑏 (𝑓)  =  𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑒.  

- Généralisation du filtre de Wiener aux signaux non stationnaires : filtre de Kalman. 

 

c) Filtrage de Wiener d’un signal bruité tel que : 

- Le signal 𝑥(𝑛) est inconnu : fonction porte. 

- Bruit blanc gaussien discret de variance  𝜎𝑏
2  . 

Le modèle utilisé pour l’autocorrélation du signal est :  𝑅𝑋(𝑘) = 𝜎𝑋
2𝜌|𝑘|,  𝜌 = 0.99 . 

L’expression du filtre de Wiener discret  est : 

𝐻(𝑧) =
𝑆𝑋(𝑧)

𝑆𝑋(𝑧) + 𝑆𝑏(𝑧)
=

𝜎𝑋
2(1 − 𝜌2)

𝜎𝑋
2(1 − 𝜌2) + 𝜎𝑏

2(1 − 𝜌𝑧−1)(1 − 𝜌𝑧)
 

        (3.70) 

1.8. Estimation statistique et estimation spectrale 

La description d’un signal aléatoire 𝑋(𝑡) passe par la détermination de ses caractéristiques 

statistiques (moments, D.S.P, etc.).  

En pratique, on ne dispose souvent que d’une seule réalisation du signal, sur une durée 

d’observation finie. Lorsque le signal est stationnaire ergodique ses caractéristiques peuvent 



alors être approchées par des moyennes temporelles sur des intervalles temporels finis : on parle 

d’« estimation ».  

On pose donc ici le problème de l’estimation des caractéristiques statistiques d’un signal à 

partir de l’observation d’une réalisation du signal : sur une fenêtre de durée T (signal à temps 

continu) ; sur une suite de N échantillons (signal à temps discret). 

 

 

Figure 3.10 : Réalisations d’un signal aléatoire  a) continu, b) discret. 

1.8.1. Estimation paramétrique  

L’estimation statistique paramétrique concerne la détermination des paramètres d’un 

modèle statistique particulier (par exemple le paramètre λ d’un processus de Poisson, la 

moyenne et la variance d’un processus gaussien, etc.). 

a) Caractéristiques d’un estimateur 

 

Figure 3.11 : densité de probabilité d’un estimateur. 

On considère un estimateur 𝛩̂𝑁 d’une grandeur 𝛩 caractérisant un signal aléatoire discret 

𝑋(𝑛,𝜔) (moment d’ordre n, fonction d’autocorrélation, paramètre d’une loi statistique, etc.). 

𝛩̂𝑁 est une variable aléatoire dépendant des échantillons de 𝑋(𝑛,𝜔) sur {0, . . . , 𝑁 −  1}. 



L’estimateur 𝛩̂𝑁 est dit non biaisé si : 

𝐸[𝛩̂𝑁] =  𝛩                                               (3.71) 

Le biais de l’estimateur est défini par : 

𝑏[𝛩̂𝑁] = 𝐸[𝛩̂𝑁] −  𝛩                                 (3.72) 

La variance de l’estimateur est définie par : 

𝜎 2 (𝛩̂𝑁)  =  𝐸[(𝛩̂𝑁  −  𝐸(𝛩̂𝑁))
2]                 (3.73) 

L’erreur quadratique moyenne (eqm) de l’estimateur est définie par : 

𝑒𝑞𝑚(𝛩̂𝑁) =  𝐸 [(𝛩̂𝑁  −  𝛩)
2
] = 𝜎 2 (𝛩̂𝑁)   𝑠𝑖   𝑏(𝛩̂𝑁) = 0           (3.74) 

Un bon estimateur doit présenter un biais et une variance les plus faibles possibles. Un 

estimateur 𝛩̂𝑁 de 𝛩 est dit “efficace" si son biais est nul et si sa variance est plus faible que 

celle de tout autre estimateur de 𝛩. 

Un estimateur est dit « consistant » si sa variance et son biais tendent vers 0 lorsque le nombre 

d’échantillons N augmente. Cette propriété est fortement souhaitée. 

 

 lim
𝑁→+∞

𝑏(𝛩̂𝑁) = 0       lim
𝑁→+∞

𝜎 2 (𝛩̂𝑁) = 0                 (3.75) 

Dans la pratique il est parfois difficile de concilier un biais nul avec une variance faible. On 

préfèrera alors un estimateur légèrement biaisé, mais de variance faible, à un estimateur non 

biaisé, mais présentant une variance importante. 

b) Exemple : Estimation de la valeur moyenne statistique 

On se pose le problème de l’estimation de la valeur moyenne statistique d’un signal aléatoire 

stationnaire ergodique 𝑋(𝑛, 𝜔). On considère le cas particulier d’un bruit blanc discret 𝑋(𝑛,𝜔) 

de moyenne non nulle 𝑚𝑋 et de variance 𝜎𝑋
2.  

A estimer :  𝑚𝑋 = 𝐸[X(n,ω)], en observant une seule réalisation de N échantillons de ce bruit 

: {𝑋(0, 𝜔), 𝑋(1, 𝜔), . . . , 𝑋(𝑁 −  1, 𝜔)}. 

On considère les deux estimées suivantes pour la moyenne statistique : 



    • estimée 1 : 𝑀̂1 =
1

𝑁
 ∑ 𝑋(𝑛,𝜔)𝑁−1
𝑛=0        moyenne empirique 

     • estimée 2 :  𝑀̂2 = 𝑋(0, 𝜔)                           premier  échantillon 

Les estimateurs 𝑀̂1 et 𝑀̂2 dépendent tous deux de l’épreuve ω. Ce sont donc des variables 

aléatoires dont on souhaite connaître les caractéristiques statistiques (moyenne, variance, etc.). 

Pour mesurer la qualité de cet estimateur, on utilise les notions de « biais » et de « variance ». 

L’estimateur devra posséder les propriétés suivantes : 

d) Estimateur sans biais : « en moyenne » l’estimateur 𝑀̂𝑖 doit donner la vraie valeur du 

paramètre : 𝐸[𝑀̂𝑖]  =  𝑚𝑋  

e) Le biais b de l’estimateur 𝑀̂𝑖 est :  𝑏(𝑀̂𝑖 )  =  𝐸[𝑀̂𝑖] − 𝑚𝑋                      

f) Variance faible : la dispersion des valeurs de 𝑀̂𝑖  autour de sa valeur moyenne doit 

rester faible, ce qui garantit en général d’avoir, suite à une mesure, une valeur proche 

de la bonne valeur :  𝜎 2 [𝑀̂𝑖]  =  𝐸[(𝑀̂𝑖  −  𝐸(𝑀̂𝑖 ))
2] . Cette valeur doit être faible. 

Les 2 estimateurs sont non biaisés (biais=0) car on a :  𝐸[𝑀̂1] =  𝑚𝑋 ;  𝐸[𝑀̂2] =  𝑚𝑋 

L’estimateur 𝑀̂1 est meilleur et sa variance tend vers 0 quand on augmente le nombre N 

d’échantillons : 𝜎 2[𝑀̂1]  =
𝜎𝑋
2

𝑁
  ;  𝜎 2[𝑀̂2]  = 𝜎𝑋

2                   

1.8.2. Estimation non paramétrique 

L’estimation des caractéristiques statistiques générales (moment d’ordre n, D.S.P) est dite 

non paramétrique. Le problème de l’estimation spectrale (ou analyse spectrale) est d’estimer la 

D.S.P. 𝑆 𝑋(𝑓) d’un signal aléatoire 𝑋(𝑡) à partir d’une réalisation de ce signal sur une fenêtre 

d’observation finie. 

 Deux familles d’approches sont actuellement employées : 

- Les approches dites « classiques » qui reposent sur la T.F. du signal ou sur la T.F. de sa 

fonction d’autocorrélation. 

- Les approches « modernes » s’appuyant sur une modélisation paramétrique de la D.S.P. : 

Modèles autorégressifs, ARMA, méthode de Prony, de Capon, de Pisarenko, etc.  

L’estimation du spectre de puissance (Estimation spectrale des signaux aléatoires) par les 

méthodes basées sur un modèle non paramétrique à partir d’un nombre fini de données N peut 

se faire avec : 



1.8.2.1. Le périodogramme 

C’est un estimateur de la D.S.P. qui consiste à calculer le module au carré de la T.F. de 

𝑋𝑇  (𝑡) 

(considéré comme un signal déterministe) (Schuster 1898) et il est exprimé par : 

- Cas continu : 

𝑆̂𝑇(𝑓) =
1

𝑇
|∫ 𝑋(𝑡)𝑒−𝑗2𝜋𝑓𝑡𝑑𝑡
+
𝑇

2

−
𝑇

2

|

2

 𝑓 𝑒𝑛 𝐻𝑧, 𝑆̂𝑇 𝑒𝑛 𝑊.𝐻𝑧
−1                       (3.76) 

- Cas discret : 

𝑆̂𝑁(𝑓) =
1

𝑁
|∑ 𝑋(𝑘)𝑒−𝑗2𝜋𝑘𝑓
𝑁−1

𝑘=0

|

2

 

              (3.77) 

f en cycles/échantillon, 𝑆̂𝑁 en W (cycles/échantillon)−1 . 𝑆̂𝑁(𝑓) est périodique de période 1. 

a) Exemple : Dans le cas d’un signal discret obtenu par échantillonnage d’un signal 

analogique à la fréquence  𝑓𝑒  =  1/𝑇𝑒 (figure 3.12) , la formule précédente devient : 

 

𝑆̂𝑁(𝑓) =
1

𝑁
|∑ 𝑋(𝑘𝑇𝑒)𝑒

−𝑗2𝜋𝑇𝑒𝑓

𝑁−1

𝑘=0

|

2

 

                         (3.78) 

 

(a)                                                                         (b) 

Figure 3.12 : (a) signal discret obtenu par échantillonnage d’un signal analogique. 

(b)  Sa densité spectrale estimée par periodogramme. 

 



Pour le calcul numérique sur ordinateur, f étant une variable continue doit être discrétisée. On 

calcule la T.F.D. qui consiste à échantillonner 𝑆̂𝑁(𝑓) sur une période par : 

𝑓 =  
𝑛

𝑁
𝑓𝑒       𝑛 =  0, . . . , 𝑁 –  1 

𝑆̂𝑁(𝑛) = 𝑆̂𝑁 (
𝑛

𝑁
𝑓𝑒) =

1

𝑁
|∑ 𝑋(𝑘𝑇𝑒)𝑒

−𝑗2𝜋
𝑘𝑛
𝑁

𝑁−1

𝑘=0

|

2

 

                               (3.79) 

Le calcul se fait par la Transformée de Fourier Rapide (FFT).  

 Abscisse : échelle des fréquences dans le cas d’une utilisation de la FFT : pour l’échantillon n, 

on a la fréquence : 𝑓 =
𝑛

𝑁
𝑓𝑒 . 

b) Propriétés du périodogramme 

- Le périodogramme est un estimateur biaisé de la d.s.p. mais il est asymptotiquement non 

biaisé : 

                        lim
𝑇→+∞

𝑏(𝑆̂𝑇(𝑓)) = 0       lim
𝑁→+∞

𝑏(𝑆̂𝑁(𝑓)) = 0 

- Par contre sa variance ne diminue pas lorsque 𝑇 (ou 𝑁) → +∞ (estimateur non consistant). 

On montre que sa variance ne dépend pratiquement pas de 𝑇 ou 𝑁:  

 

𝜎 2(𝑆̂𝑇(𝑓)) ∝ |𝑆𝑋(𝑓)|
2      𝜎 2(𝑆̂𝑁(𝑓)) ∝ |𝑆𝑋(𝑓)|

2 

La variance est constante (en fonction de 𝑇 (ou 𝑁)) et est maximale pour les pics du spectre 

de 𝑋. Le périodogramme est donc un mauvais estimateur spectral. 

 

1.8.2.2. Le corrélogramme 

C’est un estimateur de la D.S.P. qui consiste à calculer la T.F. d’une estimée de la fonction 

d’autocorrélation de 𝑋(𝑡). 

- Cas continu :  

𝑆̂𝑇(𝑓) = ∫ 𝑅̂𝑇(𝜏)
+∞

−∞

𝑒−𝑗2𝜋𝑓𝜏𝑑𝜏 

𝑅̂𝑇(𝜏) =

{
 

 1

𝑇
∫ 𝑋 (𝑡 +

𝜏

2
)

𝑇
2
−
|𝜏|
2

−(
𝑇
2
−
|𝜏|
2
)

𝑋 (
𝑡

2
−
𝜏

2
)𝑑𝑡    |𝜏| ≤ 𝑇

                                         0                         |𝜏| > 𝑇

    

          (3.80) 



 

- Cas discret :  

𝑆̂𝑁(𝑓) = ∑ 𝑅̂𝑁(𝑘)

+∞

𝑘=−∞

𝑒−𝑗2𝜋𝑘𝑓  

Avec ; 

𝑅̂𝑁(𝑘) = {
1

𝑁
 ∑ 𝑋(𝑛)𝑋(𝑛 + 𝑘)

𝑁−|𝑘|−1

𝑛=0

                   |𝑘| ≤ 𝑁 − 1

                                         0                         |𝑘| > 𝑁 − 1

    

     (3.81) 

 

- Relation avec le périodogramme : 

Si 𝑋(𝑡) est réel, le corrélogramme et le périodogramme coïncident. Les propriétés du 

corrélogramme sont donc les mêmes que celles du périodogramme (sont mauvaises).  Pour 

améliorer ces propriétés on a recours à des versions « lissées » ou « moyennées » de ces 

estimateurs. 

3.9. Bruit blanc   

Un processus aléatoire (𝑡) ,  faiblement stationnaire, est appelé bruit blanc s’il possède des 

valeurs dé-corrélées, soit : 

𝑅𝑋𝑋(𝜏) = 𝜎𝑋
2𝛿(𝜏)                                           (3.82) 

Où  𝑅𝑋𝑋(𝜏)  est la fonction de covariance de 𝑋  et 𝜎𝑋
2   , sa variance. Ceci dit, la DSP d’un bruit 

blanc est donnée par : 

  𝑆𝑋𝑋(𝑓) = 𝜎𝑋
2                                                      (3.83) 

Alors, un bruit blanc est tout processus aléatoire stationnaire au sens large dont la DSP est 

uniformément distribuée sur  𝑓 = ]−∞,+∞[. S’il n’est pas à bande limitée sa puissance est 

infinie.   



 

Figure 3.14 : Densité spectrale et fonction d’autocorrélation d’un bruit blanc. 

Où   𝑅𝑋𝑋(𝜏) = 0 pour  𝜏 ≠ 0   qui veut dire que deux échantillons pris à 𝑡  et  𝑡 + 𝜀    sont 

indépendants. Le processus est dit sans mémoire.  

 

3.9.1. Bruit blanc à bande limitée   

Un signal aléatoire est considéré comme étant un bruit blanc à bande limitée s’il satisfait la 

condition suivante : 

𝑆𝑋𝑋(𝑓) = 𝜎𝑋
2 pour 𝑓 ∈  [−𝑏,+𝑏]                               (3.84) 

La fonction d’autocorrélation est telle que : 

𝑅𝑋𝑋(𝜏) = 2𝜎𝑋
2 𝑏𝑠𝑖𝑛𝑐(𝜏)  pour 𝑓 ∈  [−𝑏, +𝑏]                 (3.85) 

 

 

Figure 3.15 : Densité spectrale et fonction d’autocorrélation d’un bruit blanc à bande limitée. 



3.9.2. Quelques correspondances entre Corrélation-DSP   

 

3.10.  Modèles de représentation des processus stochastiques  

Pour pouvoir traiter, estimer et prédire un processus stochastique nous devons d’abord le 

modéliser. Pour y parvenir, nous devons exploiter le principe d’innovation ou la représentation 

de Wold.    

3.10.1.  Représentation de Wold   

Considérons un filtre linéaire causal de transmittance   

𝐻(𝑧) =∑ ℎ𝑛𝑧
−𝑛

∞

𝑛=0
 

Si on excite l’entrée de ce filtre par un bruit blanc  𝑊(𝑛) de puissance 𝜎2, la sortie sera un 

processus stationnaire  𝑋(𝑛) dont la DSP est :   𝑆𝑋𝑋(𝑓) = 𝜎
2. |𝐻(𝑓)|2. On dit que la séquence  

𝑊(𝑛) constitue la séquence des innovations de   𝑋(𝑛) et  𝐻(𝑧)  la réponse impulsionnelle du 

filtre d’innovation. De même, si 𝑋(𝑛) est un signal stationnaire traversant un filtre de 

transmittance   
1

𝐻(𝑧)
 , nous obtenons en sortie un bruit blanc. Alors, 𝐿(𝑧) est le filtre de 

blanchiment tandis que  𝑤(𝑛) est appelé processus d’innovation associé à  𝑋(𝑛) . 

 

                    Filtre d’innovation                                          Filtre de blanchiment 

Figure 3.16 : Représentation de Wold 



3.10.2.  Modèles stochastiques (AR, MA, ARMA)   

Dans cette représentation on considère un filtre linéaire causal ayant une fonction de 

transfert décrite par : 

𝐻(𝑧) =
𝐵(𝑧)

1 + 𝐴(𝑧)
=

∑ 𝑏𝑘𝑧
−𝑘𝑞

𝑘=0

1 + ∑ 𝑏𝑘𝑧−𝑘
𝑝
𝑘=1

 

                             (3.86) 

Alors, le signal de sortie est donné par : 

𝑋(𝑛) +∑ 𝑎𝑘𝑋(𝑛 − 𝑘)
𝑝

𝑘=1
=∑ 𝑏𝑘𝑤(𝑛 − 𝑘)

𝑞

𝑘=0
 

                   (3.87) 

a) Processus Autorégressif (AR)  

Un processus autorégressif est caractérisé par  𝐵(𝑧) = 1 , et donc par l’équation aux 

différences suivante : 

𝑋(𝑛) +∑ 𝑎𝑘𝑋(𝑛 − 𝑘)
𝑝

𝑘=1
= 𝑤(𝑛) 

                         (3.88) 

On peut également représenter ce processus par le schéma de la figure 3.17 suivante : 

 

Figure 3.17 : Filtre générateur d’un processus AR. 



b) Processus à moyenne mobile (MA : Moving Average)  

C’est un processus autorégressif qui est caractérisé par (𝑧) = 1 , ce qui s’exprime par : 

𝑋(𝑛) =∑ 𝑏𝑘𝑤(𝑛 − 𝑘)
𝑞

𝑘=0
 

                                       (3.89) 

Ce processus est décrit par la figure 3.18 ci-dessous : 

 

Figure 3.18 : Filtre générateur du processus MA 

Remarque : le processus autorégressif à moyenne mobile ARMA , n’est que le processus 

général décrit au début.   

 

3.11. Conclusion   

 

Dans ce chapitre, nous avons décrit les signaux aléatoires (variables aléatoires qui 

évoluent au cours du temps) d’une manière statistique et temporelle. La stationnarité et les 

propriétés statistiques (moyenne, autocorrélation, variance, etc.) de tels signaux sont formulées 

par des expressions mathématiques. Ensuite, on s’est intéressé à la représentation de ces signaux 

dans le domine fréquentiel. Des grandeurs et opérations fondamentales (densité spectrale de 

puissance, échantillonnage, filtrage, estimation statistique et spectrale,..) concernant les 

processus stochastiques, ont été abordées. En particulier, les propriétés des signaux 

stationnaires au sens large (obtenus par des filtres générateurs excités par un bruit blanc) sont 

étudiées. Aussi, des méthodes d’estimation statistique et spectrale du spectre de puissance des 

signaux aléatoires sont exposées. 

 Enfin, une famille de modèles autorégressifs a été présentée pour permettre de calculer et de 

représenter les filtres générateurs.  



 


