CHAPITRE 2

NOTIONS DE VARIABLE ALEATOIRES

2.1. Notions physique des phénomeénes aléatoires

Dans beaucoup d’expériences pratiques, les phénomeénes observés dans des conditions
apparemment identiques présentent des variations imprévisibles. Ces phénomenes sont dits

aléatoires.

On peut citer comme exemples :

- Le bruit de fond d’un récepteur radiophonique.

- Le signal sonore d’un compteur de particules.

- Pour un systeme de communication, non seulement le bruit de fond mais aussi le message
émis par la source, présente un caractére aléatoire pour le destinataire.

- Le signal de parole ne peut étre decrit par une expression analytique exacte (méme en

absence de bruit).

Les phénomenes sont aléatoires ne peuvent pas étre decrits avec des formules
mathématiques. Donc, pour étudier leur évolution, on a recours a des modeles probabilistes. Le
signal observé est représenté par une famille de variables aléatoires indexees par le temps.

Chague variable décrit I’aspect incertain du phénoméne a un instant donné.
2.2. Rappels sur les probabilites et statistiques

Définition 1 : soit (Q, Zp) un espace de probabilité. Une variable aléatoire (v.a) X est une

application mesurable de Q sur Z(voir figure 2.1).

F : ’ensemble de tous les évenements c-a-d Q € #. Q : est une collection d’événements.
B(R) : c-algeébre sur & engendrée par les intervalles de .

X(w) €B(R), XA € Q

(Q, 7) : espace de probabilité (espace des évenements, de mesure).

(R,B(R)) : espace probabilisable(Px : probabilité induite par la v.a X).

Une variable aléatoire est un nombre X (&) attribué a chaque résultat & d'une expérience. Ce

nombre peut étre le gain dans un jeu de hasard, la tension d'une source aléatoire, le colt d'une



composante aléatoire, ou autre grandeur numeérique qui présente un intérét pour la réalisation

de l'expérience.

(Q, 7, p) (#.B(#),Px)

Figure 2.1 : Application mesurable de Q sur #

Exemple 2.1

(a) Dans l'expérience de lancement d’un dé, nous attribuons aux six résultats f; les
nombres X (f;) = 10 i. Donc, on aura :

fi |1 ]2]3 [4 [5]s
X(f) |10]20[30 [40 [50]60

(b) Dans la méme expérience, nous pouvons attribuer le numéro 1 a chaque résultat pair et

le numéro 0 a chaque résultat impair. Ce qui nous donne :

£ |1 [2]3 [4 [5[6
X(f) |0 [1 [0 [1 o |1

Définition 2 : une variable aléatoire X est dite discrete si X(Q) est fini et dénombrable. Dans

le cas ou X(Q) est infini et non dénombrable, la variable aléatoire X est dite continue.
2.2.1. Densité de probabilité

a) Définition : soit une variable aléatoire sur (Q, % p), on appelle densité de X, la fonction

fx(x) telle que:



fx(x) =PX =x), fx(x):R->R

fx(x) =PX =x) =p(w € u:X(w) =x) (2.1)

fx(x) = P(X71(x)) = Px(x)

Exemple 2.2 : on lance une piéce de monnaie.

QO = {pile, face} , Q = c-algébre sur Z. Avec
nombre de cas favorable
p(4) =

nombre de cas possible
, onaura:

p(pile) = p(face) =7
On définit la v.a X tel que :

{X(pile) =0
X(face) =1
La densité de probabilité est : fi (x) = P(X = x) ce qui nous permet de calculer :

fx(0)=P(X=O)=% et fX(1)=p(X=1)=%

En regroupant ces deux cas en une seule formule on obtient :

x=0,1

0 ailleurs

1
fx(x) = { 2 (2.2)

Exemple 2.3. : On lance un Dé bien équilibré a six faces et on définit la variable aléatoire Y

comme suit :

Y = {face n°i}
QO = {facel, face2, face3, face4, face5, face6}

Y
v.a: Q- R, lesvaleurs possibles de Y = {1,2,3,4,5,6} et p(Y = face n°i) = %

La densité de probabilité de Y est :

y=12345,6

ailleurs

(2.3)
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b) Propriétés de la densité de probabilité

La densité de probabilité fx (x) d’une v.a X doit vérifier les propriétés suivantes :

1. fk)=0VxeR
2. {x€eR, fx(x)>0 }=fini oudénombrable

3. Lufx() =1
2.2.2. Fonction de répartition

a) Définition : soit X une variable aléatoire sur (L, &, p), la fonction de répartition est définie

par :
Fy(x) =P(X <x), Fy(x):R-> R

Fy(x) = Px(J=o0,x]) = p(U(x = t),t < x) (2.4)

=D K®

t<x

La fonction de répartition de 1’exemple 2.1 se calcule comme suit :

1
Pour la piece de monnaie, la densité de probabilité est fy (x) = { 2 x=01 ce qui
0 ailleurs
mene & :
Fy(0)=p(X<0)=0 six<0
1
Fx(x)=pX<x)=pX=0) = 3 sio<x<1
Fx(x)=pX<x)=pX=0)+pX=1)=1 six=>1
On regroupe ces trois expressions en une seule :
0 st x<0
Fy(x) = % si0<x<1 (2.5)
1 six=>1

On peut représenter graphiquement fy (x) et Fy(x) de cet exemple comme le montre la figure
2.2.

b) Propriétés de la fonction de répartition

Soit X une variable aléatoire sur (Q, Z, p) et Fx(x) sa fonction de répartition alors :



=

Fx(x) est une fonction croissante.

N

Fyx(x) est continue a droite.
lim Fy(x) =0, lir+n Fy(x) =1
X—+ 00

X—>—00

P{X>x}=1-Fy(x)

w

&

fx(x) 4 Fy(x) 4 .
1/2 A T 12
0 1 X 0 1
(a) (b)
Figure 2.2 : (a) densite de probabilité (b) fonction de répartition.

(0 siy<l1

° sil<y<3
Exemple 2.4 : Soit G une fonction telle que : G (y) = < % si3<y<5
% si 5<y<8

L1 siy>8

1) Montrer que G (y) est une fonction de répartition d’une certaine variable aléatoire Y.
2) Trouver la densité de probabilité f; (y) de Y.

Solution
1) G(y) vérifie les propriétés d’une fonction de répartition : elle est croissante, continue a

droite et ses limites inférieure et supérieure sont égales respectivement a 0 et 1, donc :

1Y telle que Fy (y) = G(y)
2) Calcul de £ (y)

fr(D) =FKD-FQ7) =
fr3) =FB)-F@37) =
fr(8) = Fy(5)-F,(57) =

fr(8) = Fy(8)—Fy(87) =

_= N RS RO -

N[ B[RO~ O
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F ( ) A
fr) a Y ;
1/2 [T 1/2
1/4
L
g |a | T 1/8
£ . T
o' 1 3 5 8 y
(a) (b)
Figure 2.3 : (a) densité de probabilité (b) fonction de répartition

fy (y) est définie pour les points de discontinuité.

(1
— =1,3
3 y
1 =5
) =12 Y=
1 =8
2 Y=
\0 ailleurs

2. 3. Lois de probabilitée usuelles

Dans les sections précédentes, nous avons défini des variables aléatoires a partir
d'expériences connues. Dans cette section, nous considérerons souvent des variables aléatoires
ayant des fonctions de répartition ou de densité spécifiques sans aucune référence a un espace
de probabilité particulier.

2.3.1. Théoréme de I'existence

Pour ce faire, il faut montrer que, étant donné une fonction fy (x) ou son intégrale

Fy (x>=fx fie @) du
(2.6)

On peut construire une expérience et une variable aléatoire X ayant une fonctions de répartition

Fyx (x) ou de densité de probabilité fy (x). Il existe deux types de variables aléatoires :



2. 3.2. Variables aléatoires discrétes

La plus simple parmi I'ensemble discret de variables aléatoires est la variable aléatoire de
Bernoulli qui correspond a n'importe quelle expérience avec seulement deux resultats possibles
: échec ou succeés (pile ou face) comme dans les exemples 2.3.1 (lancer d’une piece de

monnaie).

a) Loi de Bernoulli.

Une variable aléatoire X suit une loi de Bernoulli si elle prend deux valeurs 1 et 0 avec (Fig.

2.2) les probabilités suivantes :

P X =1} =p P X =0}=q=1-p (2.7)

Dans un essai indépendant de n experiences de Bernoulli, p représentant la probabilite de

réussite de chaque expérience, alors que q est celle d’échec.

b) Loi binomiale

X est dite variable aléatoire binomiale avec les paramétres n et p si elle prend les valeurs 0, 1,
2,..,havec:

P{X =k} = Ckp*q™* ;telque: p+q=1etk=012,..,n (2.8)

La fonction de répartition correspondante est une fonction en escalier comme illustré
sur la Fig. 2.4. Une autre distribution étroitement liée a la distribution binomiale est la
distribution de Poisson, qui représente le nombre d'occurrences d'un événement rare dans un
grand nombre d'essais. Des exemples typiques incluent le nombre d'appels téléphoniques
échangeés sur une durée fixe, le nombre de billets gagnés parmi ceux achetés dans une grande

loterie, le nombre d'erreurs d'impression dans un livre, etc.

f‘.{I).i A A Blm“} Fam 3

02 n=9 lp-—-———=======s-a==

0.1k

1 1 [ [ 1 1 1
3 4 5 6 7 8 9 X 01 2 3 4 5 6 7 8 9 x
(a) (b)



Figure 2.4 : Densité de probabilité (a) et fonction de répartition (b) d’une loi binomiale.

c) Loi de poisson
Une variable aléatoire X suit une loi de Poisson de paramétre A, si elle prend les valeurs 0,1,2,

... , 00, avec une densité de probabilité donnée par :

PX=k =e?t  k=012..,0 (29

Avec p, = P{X = k} , il s'ensuit que (voir fig4.21)

e—k)\k—l
Pr-1 _ (k—1)! =1_<
Pk ek A
k!
- Si k<) alors PIX =k -1} < P{X =k},
- Si k>M\,alors PIX=k—1}>P{X =k}
- Si k=Aon aura P{X =k —1}=P{X = k}.

De 13, nous concluons que P(X = k) augmente avec k de 0 jusqu’a k < A) et diminue au-dela
de A. SiAest unentier P(X = k)adeux valeurs maximalesa k = A — 1 et k = A. La fonction

de répartition correspondante est également une fonction en marche d'escalier similaire a celle

de la figure 2.4b mais contenant un nombre infini de marches. En résumé, si le rapport % est
k

inférieur a 1, c'est-a-dire que, si k < A, alors a mesure que k augmente ce dernier augmente
pour atteindre son maximum pour k = A. Donc :
- Si A <1, alors py est maximum pour k = 0.
- Si A>1mais non pas un entier, p; augmente avec k, atteignant son maximum pour k =

A
- Sik = Aestunentier, alors py est maximumpour k =A—1et k = A:

La Figure 2.5 montre une densité de probabilité d’une loi de Poisson pour A = 3.

P(x = k) \

L -]
=

Figure 2.5 : densité de probabilité¢ d une loi de Poisson pour A = 3.



Exemple 2.5 : Dans I'expérience des points de Poisson, un résultat s est un ensemble de points
t; ; sur ’axe des temps.

a) Etant donné une constante t,, nous définissons la variable aléatoire { telle que sa valeur
n({) soit égale au nombre de points t; ; dans l'intervalle (0, t,). Clairement, n = k signifie

que le nombre de points dans l'intervalle (0, t,) est égal a k.

e, (o)

Pin=k}=e k!

(2.10)
Ainsi, le nombre de points de Poisson dans un intervalle de longueur t, est une variable aléatoire

qui suit la loi de Poisson de paramétre a = At,, ou A est la densité des points.

b) On note t; le premier point aléatoire a droite du point fixe t, et on définit la variable
aléatoire X comme la distance de t, a t, (Fig. 2 .6a). De la définition, il résulte que :
n(¢) = 0 pour tout ¢. Par conséquent, la fonction de répartition de X est 0 pour x < 0 et

pour x <0 elleestdonnée par Fy(x) =1—e

Preuve :

Comme nous le savons, Fy (x) est égale a la probabilité que X < x, ou x est un nombre
spécifique. Mais X < x signifie qu'il y a au moins un point entre t, et t, + x. Donc 1 — Fx(x)
est égale a la probabilité p, qu'il n'y ait pas de points dans l'intervalle (t, , t, + x). Et puisque

la longueur de cet intervalle est égale & x, (2.10) donne p, = e ™** = 1 — Fy(x)

et la densité de probabilité correspondante est :

fr () = Ae U (x) (2.11)
est une exponentielle (figure 2.6).
d) Loi uniforme discréte.
La variable aléatoire X est dite discréte uniforme si :
PX=k}=> k=12,..,N (2.12)

N
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Figure 2.6 : Expérience des points de Poisson

2. 3.3. Variables aléatoires continues

Une variable aléatoire X est continue si X() est un intervalle dans R (union de
plusieurs intervalles). Une variable aléatoire X est continue, s’il existe une fonction fy (x) de R

dans R* telle que :

VI cR PX €= [ f(x)dx (2.13)

Ou I est un intervalle dans R . La fonction fy (x) , est appelée densité de probabilité de X,

ayant les propriétés suivantes :

fx(x) =0, Jg fx@)dx =1
Parmi les lois de probabilités continues on peut citer :
a) La loi de probabilité uniforme

Une variable aléatoire X est dite uniforme dans I’intervalle [a,b], —c0o < a < b < o0, Si :

1
fX(x):m anSb

0 ailleurs
(2.14)



Figure 2.7 : Densité de probabilité d’une loi uniforme continue sur I’intervalle [a, b]

On écrira X ~ U(a, b). La fonction de répartition de X est donnée par :

|
Q

Fy(x) = a<x<bh (2.15)

x<a

|
Q

oS

b) La loi de probabilité normale

La distribution normale (gaussienne) est I'une des distributions les plus couramment utilisees.
On dit que X est une variable aléatoire normale ou gaussienne de paramétres et c%(u € R, 0 >

0), sisa densité de probabilité est donnée par :

e~ (x-w?/20?

fx (x) =

V2mo?
(2.16)

Il s'agit d'une courbe en forme de cloche (voir Fig.2.8), symétrique par rapport au parametre

et sa fonction de répartition est donnée par :

X —p
o )

X X
Fy (x) = f fx ) dv = f e~W-w?/20% gy, & @ (

2102
(2.17)

ou la fonction
X

1
G(X) :f Ee—UZ/ZJZ dv
(2.18)



est souvent disponible sous forme de table. Puisque fy (x) dépend de deux paramétres p et 62,

la notation X ~» N (u, o) sera utilisée pour représenter la loi Gaussienne de (2.16).

S 4 [ |

b —————————

o , |

a) X~ N(uof b) > N(w,03), of >0}

L e

Figure 2.8 : densité de probabilité de la loi normale (loi Gaussienne).

La constante v2mo? de (2.16) est la constante de normalisation qui maintient l'aire sous fy (x)
a l'unité.
Exercice : Veérifier que cette loi est une densité de probabilité.

Pour répondre a cette question il faut vérifier fyx(x) =0, fR fx(x)dx = 1, ce qui nous

meéne a calculer :

+00

1 2 2

Q :f e~ (x=)%/20% 4,
—w V2mo?

- d
On pose z=xa—”=> dz=7x

Il s’ensuit que :

_2 2 _ 52 2
e~2°/20" gdz = z°/20% {7

+o00 1 1 + oo
Q= f — — f e
0 V2ma? V2mJ_o
Comme cette intégrale n’existe pas on passe aux coordonnées polaires pour la calculer. Nous

allons utiliser la transformation x = rcos6,y = rsin6, de sorte que dx dy = r dr dO et

donc :

1 + oo +o00 _x2+y2
Q% = 2n02f f e 202 dxdy

1

2mo?

r2
fozn f0+oo e 202 rdrdf

uY



__1 2 (T®° - —
=_— X210 J, etdu=1 (2.19)

c) La loi de probabilité normale centrée

Le cas particulier X ~» N(0,1) est désigné comme « variable aléatoire normale centrée ».

Sa densité de probabilité est donnée par :

fe () = e/ (2.20)

La courbe représentative de cette fonction est symétrique par rapport a I’origine (figure 2.9).

La fonction de répartition est exprimée par :

Fy(x) = P(X < x) = jx fo () du

f " ,/—1 w2 g
= —¢e u
—o V2T

(2.21)

Cette intégrale est donnée par une table (voir annexe).

Pour calculer les probabilités d’une loi gaussienne quelconque il faut utiliser la table de la loi

centrée réduite. Le passage vers cette derniére se fait en utilisant le théoreme suivant :

Théoreme : Soit X ~ N(u,02%) alorsY = % ~ N(0,1)

i)

n

Figure 2.9 : Représentation graphique d’une loi normale centrée réduite

Exemple 2.6 Soit X ~ N(2,9)



1) Calculer P(X > 0). 2) Calculer P(—1 < X < 3).

Solution
1) P(x>0)=pP(52>7)

On a la propriété suivante :
Fx(x) =1 — Fx(—x)
Ceci nous permet d’écrire :

P(X_2>_2)— P(X—2<—2)
3 3/ 3 = 3
=1-r(-3) =7 (3)

- Y\ 3/777\3

=0.7454

Cette valeur est donnée par la table de la loi centrée réduite (voir annexe).
2 P(-1<Xx<3)=P(2<2<X?)

—P( 1<X_2<1)

N 3 3
—P(X_2<1) P(X_2< 1)
N 3 3 3

1 =r (L)-
= Fy, (3)-F (D= F, (3)-1+ R Q)
Fy G) et Fy (1) se calculent a partir de la table.

P(-1<X <3)=0.4706

d) Loi de probabilité exponentielle (distribution exponentielle)

On dit que X suit une loi exponentielle de paramétre A si sa densité de probabilité est donnée

par (voir Fig.2.10) :

Ae™™ x>0
= = 2.22
fx () { 0 ailleurs ( )

AT

x

Figure 2.10 : Densité de probabilité d’une loi exponentielle.



La fonction de répartition de cette loi est exprimée par :
X
Fy(x)=P(X <x)= f fx (w) du

x
= f e~ du

0
— _e—}\u |6c:1 _ e—)LX

Fy(x)=1—e™™ (2.23)

Exemple 2.7 : Supposons que la durée de vie d'un appareil ait une distribution exponentielle
avec A= 10 ans. Un appareil usagé est acheté par quelqu'un. Quelle est la probabilité qu'il

n'échoue pas dans les 5 prochaines années ?

Solution

En raison de la propriété «sans mémoire » de la loi exponentielle(le passé n'a pas
d'importance), cela na pas d'importance si l'appareil a été en service pendant de nombreuses
années avant son achat. Par conséquent, si X est la variable aléatoire représentant la durée de

vie de l'appareil et sa durée de vie réelle jusqu'a I'instant présent, alors :

P{X >ty +5|X >t} = P{X >5}=e 310 =75 = 0.368

Exemple 2.8 : Supposons que le temps d'attente qu'un client passe dans un restaurant ait une
distribution exponentielle d'une valeur moyenne de 5 minutes. La probabilité qu'un client passe

plus de 10 minutes dans le restaurant est donnée par :
P{X > 10} = e 5/* = ¢710/5 = ¢72 = 0.1353

En d'autres termes, le passé n'a pas d'importance.

Une généralisation de la distribution exponentielle conduit a la distribution gamma.

e) Loi de probabilitt GAMMA.

X est dite une variable aléatoire gamma avec les parametres a et 3, positifs si :

- X
x® 1 _x

() = {r@pe® " ¥=0 (2.23)
0 ailleurs



ou I'(a) représente la fonction gamma définie comme :

I'(a) = fomx“‘le‘x dx (2.24)

Si « est un entier, I’intégration par parties de I'(a) donne :
ITm)=m-DIrn-1)=Mn-1)! (2.25)

La densité de probabilité gamma a une variété¢ de formes en fonction des valeurs de a et 3.
- Pour a <1, fyx(x) eststrictement décroissant et lin% fx(x) = oo, lim fy(x) >0
X - X — 0O

.y . -1 .
- Pour a > 1, ladensité fy(x) a un mode unique en x = “T avec une valeur maximale

[(a—De1]**
Br (@)

La figure 2.11 montre I’allure de certaines densités de probabilité typiques de la loi gamma.
Certains cas particuliers de la distribution gamma sont largement utilisés et ont des noms
spéciaux. Notons que la variable aléatoire exponentielle definie dans (2.22) est un cas

particulier de distribution gamma avec a = 1.

Sionprend @ = n/2 et f = 2, nous obtenons la variable aléatoire y? (chi-carré) avec n degrés
de liberté. Pour @ = n en (2.23), nous obtenons la fonction de densité gamma pour étre (avec

).

N

At Axnt
-Ax x>0

frG) =< tm=1n1°¢ =

0 ailleurs
(2.26)

En intégrant par parties 1’équation (2.26), on obtient la fonction de répartition correspondante

a la variable aléatoire gamma soit :

n-1

t k
Fy(t) = f frde=1-) (A,f!)

k=0

(2.27)

Si A = nyu, dans (2.26) et (2.27), alors cela correspond a une variable aléatoire Erlangienne.

Ainsi G(n, 1/n#),correspond a une densité de probabilité Erlangienne (E,,).



fx (x)‘

Weae=058=1
fx (x)

=1

\-

@) a=2p=0512

fx (x)

™ |

De=4p=24a=10.g=2

Figure 2.11 : Différentes formes de la densité de probabilité gamma.

Dans ce cas, n = 1 donne une variable aléatoire exponentielle, et n — co donne une densité
de probabilité constante (Fy (t) = 1), pour t > % et zéro ailleurs). Ainsi, ’aléatoire a la
certitude est couvert par la distribution erlangienne car n varie entre 1 et co. De nombreuses

distributions importantes se produisant dans la pratique se situent entre ces deux cas et elles

peuvent étre approximeées par une distribution Erlangienne pour un bon choix de n.



f=x) )

>

Figure 2.12: Densités de probabilités 2 (chi-carré) pourn=2,5, 8 et 10.

f) Loi de probabilité chi carré (CHI-SQUARE)
Une variable aléatoire X suit la loi x2 (n) (chi carré) avec n degrés de liberté si :

xn/2—1 x

fx() = {tjyzz® * *=0

0 ailleurs
(2.28)

La figure 2.12 montre des allures de y2 (n) pour diverses valeurs de n. Si on prend
n = 2 dans (2.27), on obtient une distribution exponentielle. 1l est également possible de
généraliser la variable aléatoire exponentielle de maniére a éviter sa propriété sans mémoire
évoquee précédemment. En réalité, la plupart des appareils se détériorent avec le temps de sorte
gu'un modele exponentiel est inadéquat pour décrire la durée de sa durée de vie et son taux de

défaillance. Dans ce contexte, considérons la fonction de répartition suivante :

Fy(®) =1—e o x>0 AD)20
(2.29)

La densité de probabilité associée est donnée par :

£ (x) = Ax)e o 2O x>0 A) =0
(2.30)



Notons que A (t) = constant, donne lieu a la distribution exponentielle et pour généraliser ca

correspond & :

A(t) = ath? (2.31)
et en substituant (2.31) dans (2.30) , on obtient :
1, —axB
fi(x) = {‘“‘B tem/f x20 (2.32)
0 ailleurs

et elle est connue sous le nom de densité de probabilité de Weibull (voir Fig. 2.13).

FAS)Y S

>
X

Figure. 2.13 : Densité de probabilité de Weibull

Le cas particulier de Weibull avec a« = 1/0%et B = 2 est connu sous le nom de loi de

probabilité de Rayleigh. Ainsi, la loi de Rayleigh a un taux linéaire en (2.31).

2.3.4. Exercices d’application
Exercice 1

Dans l'expérience du lancement d’une piece de monnaie, les probabilités d’avoir pile ou face

sont égales p et g respectivement a. On définit la variable aléatoire X telle que :

X(face) =1  X(pile) = 0.

Trouver sa fonction de répartition Fx(x) = P{X < x} pour tout x de -0 a + 0.
Solution

- Si x<0, alors X(f) =1>x et X(p) = 0>x Donc:



Fy(x)= PX<x}=P{@}=0.

- Si 0<x<1, alors X(f) =1>x et X(p) = 0<x Donc:
Fy(x) = PIX<x}=P{p}=gq.

- Si x=>1, alors X(f) = 1<x et X(p) =0<x Donc:
Fy(x)= PIX<x}=P{f,p}=1.

Flad fix)
'I I

* I
. q F

0 1 X 0 1 X

La figure ci-dessus illustre ’allure de Fy(x) et de fx (x) respectivement.

Exercice 2

Nous allons reprendre I’exemple 2.1 avec la variable aléatoire X (f;) = 10 i de I’expérience
du dé (figure 2.14) t.q :

- L’ensemble {X < 35} concerne les éléments f; , f,, et f5 car
X(f;) < 35 est Vvérifié seulement pour i=1,2,3
- L’ensemble {X < 5} est vide car il n’y a pas de résultat tel que X(f;) < 5.
- L’ensemble {20 < X < 35} concerne les éléments f,, et f; car ceci est Vérifié seulement

pour i=2 ou 3.

- L’ensemble {X = 40} concerne I’élément f, car X(f;) = 40 est vérifié seulement pour
i=4.

L’ensemble {X = 35} est vide car il n’y a pas de résultat tel que X(f;) = 35.

Trouver sa fonction de répartition Fy(x) = P{X < x} pour tout x de -co a + .

A S i A Js A
X X X X X X ) /
¥ e %R T Gk
. x<35
- - ———— , x> 50 -
———
W=x<35

Figure 2.14 : Valeurs possible de X



Solution

Si le dé est équilibré, alors la fonction de répartition de X est une fonction en marche d'escalier

comme le montre la figure 2.15.

Nous notons, en particulier, que :
Fx(100) = PIX <100} =P{S} =1

F(35) = PLX S35} = Plfi o, fi) = 2

F(30.01) = P{X <3001} =P{f, o, fo} =3

Fx(30) = P{X <30} =P{fifo,fa} = %

Fy(29.99) = P{X <2999} =P{f,f,} =2

Sx)

e L

0D 10 20 30 40 50 60 I 0 60 :

Figure 2.15 : fonction de répartition et densité de probabilité de la variable aléatoire
X.

Exercice 3
Un appel téléphonique se produit au hasard dans I'intervalle [0, 1]. Dans cette expérience. Les

résultats sont des distances de temps t entre O et 1 et la probabilité que t soit entre t; et to est

donnée par :

P{tlﬁtStZ}th—tl
On définit la variable aléatoire X telle que :

Xt)=t 0<t<1
Ainsi la variable t a une double signification :

- elle est le résultat de lI'expérience
- et lavaleur correspondante x (t) de la variable aléatoire.

Nous montrerons que la fonction de répartition Fy(x) de X est une rampe comme sur la
figure (2.16 a)



0 T x a X
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Figure 2.16 : Fonction de répartition et densité de probabilité de 2 variables aléatoires.

Solution

- Si x> 1,alors X (t) < x pour chaque résultat. Par conséquent
Fy(x)= PIX<x}=P{0<t<1}=P{S}=1 x>1
- Si 0<x<1, alors X(t) <x pourtouttdans I’intervalle [0, x]. Donc
Fy(x)= PIX<x}=P{0<t<x}=x.
- Si x<0,alors{X <x} ,est’événement impossible car X(t) = 0 pour chaque t.

Donc Fy(x) = P{X <x} = P{@} = 0.

Exercice 4
Supposons qu’une variable aléatoire est tel que X(&) = a pour chaque ¢ de S. Donner sa

fonction de répartition Fy(x) = P{X < x}.
Solution
- Si x> a,alors X (¢) = a < x pour chaque &. Par conséquent ;

Fy(x)= PX<x}=P{S}=1 x=a

- Si x<a,alors{X <x} ,est’événement impossible car X(¢) = a. Donc ;
Fy(x)= P{X <x}=P{@}=0.

Une constante peut étre interprétée comme une variable aléatoire avec une fonction de

répartition U(x — a) comme le montre la figure (2.16 b).



Remarque :

A partir de ’allure de Fy (x)on peut connaitre le type de la variable aléatoire (continu, discret

et mixte) :

- La variable aléatoire X est dite de type continu si sa fonction de répartition est continue.
Dans ce cas Fy (x~) = Fx (x) pour tout X.

- Si Fx (x) est constant sauf pour un nombre fini de discontinuités de sauts (constante par
morceaux), alors X est une variable aléatoire de type discret. Si x; est un tel point de

discontinuité, alorsona: P{X = x;} = Fx (x;) — Fx (x;7) =p;

Par exemple, de la figure 2.16, au point de discontinuité on obtient :
P{X=a}=F;(a)—Fy(a)=1-0=1
Et de la figure 2.2, pour un tel point on aura :

P{X=0}=F;(0)—Fx(07)=q—-0=gq

Exercice 5
Une piéce équiprobable est lancée deux fois et la variable aléatoire X représente le nombre de

faces obtenues. Trouvez Fy(x).

Solution
Dans ce cas

Q = {FF,FP, PF, PP}

X(FF)=2 X(FP)=1 X(PF)=1 XPP)=0
Les valeurs de X sont donc: x = {0,1,2}

- Si x<0, X@)<x}=0=F;(x)=0

- Si
0<x<1  {X(&) <x}={PP}= Fy (x) = P{PP} = P{P}P{P} = %
- Sil<x<?2,
{X(¢) < x}={PP,FP,PF} = Fy (x) = P{PP} + P{FP} + P{PF} = %

- Sixz22,{X@<x}=0=F,x)=1



L’allure de Fy (x) est donnée par la figure 2.17, au point de discontinuité

31 1
P{X_l}_FX(l)_FX(l)_Z_Z_E
Fm‘h

l _______________
7| S—
|
i
14 :
| i -
1 2 x

Figure 2.17 : Fonction de répartition de lav.a X

2.3.5. Relation entre la densité de probabilité et fonction de répartition

La dérivée de la fonction de répartition Fy (x) représente la densité de probabilité

fx (x) de la variable aléatoire X. Donc :

A dFy (x)
fx () £ dx
(2. 33)
Puisque
dFy (x)_l. Fy (x + Ax) — Fy (x)>0
dx  Tax-o Ax -
(2.34)

de la nature monotone non décroissante de Fy (x), il s'ensuit que fy (x) = 0 pour tout x. Si X
est une variable aléatoire de type continu, fy (x)sera une fonction continue. Cependant, si X est
une variable aléatoire de type discret, sa densité de probabilité a la forme générale (Fig. 2.18b)

suivante :

fx () = 2ip; 6(x — x;) (2.35)

ou &(x;) représente les points de sauts de discontinuité dans Fy (x) comme le montre Fig. 2.18.

De (2. 33), on obtient aussi par intégration :

Fy ) = ["_fx Wdu (2.36)



Puisque Fy (+o) =1, (2.36) mene a:

2 f dxe =1 (2.37)
Ce qui justifie son nom comme fonction de densité.
.F,r.(,r] 4 . | Jix) 4
' Flx)
: Filx) = Flxy)
A A V
. , 4 | S .
Xy F § x' X
(a) (b)

Figure 2.18 : fonction de répartition(a) et densité de probabilité(b) de X.

De plus, a partir de (2.36), nous obtenons également (Fig.2.19):

P{x; <X() <x}=Fx (x) —Fx (x) = f;lz fx (x)dx (2.38)

Ainsi l'aire en dessous de fx (x) dans lintervalle [x,, x,] représente la probabilité que la
variable aléatoire X se trouve dans ce dernier comme dans (2.38). Si la variable aléatoire X est

continue, alors I'ensemble de gauche peut étre remplacé par I'ensemble {x; < X < x,}.

Filx) 4 FALINY

" )

x) X , "*

(a) (k)

Figure 2.19 : Fonction de répartition(a) et densité de probabilité (b) d’une v.a X

Wt



Cependant, si Fy(x) est discontinue en x; ou x,, alors l'intégration doit inclure les impulsions
correspondantes de fy (x). Avec x; = x etx, = x + A x , il résulte de (2.38) que, si X est
de type continu, alors :

P{x <X <x+Ax}=fy (x)Ax (2.39)

Ax est suffisamment petit. Ceci montre que fy (x) peut étre définie par une limite telle que :

P{x <X <x+Ax}
Ax

fX (X) = limAx—>0

(2.40)

2.4. Fonctions de variables aléatoires

Supposons que X soit une variable aléatoire et que g (X) soit une fonction de la variable

réelle X. L'expression:Y = g(X) est une nouvelle variable aléatoire.

Pour un { donné, X (&) est un nombre et g[X(§)] est un autre nombre spécifié en fonction
de X(§) et (X) . Ce nombre est la valeur Y (&) = g[X(¢)] affectée a la variable aléatoire Y.

La fonction de répartition Fy, (y) de la variable aléatoire ainsi formée est la probabilité de

I'événement {Y < y} consistant en tous les résultats ¢ tels que Y (&) = g[X(é€)] < y Ainsi :

Fr () = P{Y = y} = P{g(X) < y} (2.41)

Pour un y spécifique, les valeurs de x telles que g (x) < y forment un ensemble sur I’axe des

x noté R,, . Clairement, g[X(§)] < y si X (&) est un nombre dans I'ensemble R, .D'ou :

Fy () = P{X€ R} (2.42)

Pour que g(x) soit une variable aléatoire, elle doit avoir les propriétés suivantes :



1. Son domaine doit inclure la plage de la variable aléatoire X.

2. Il doit s'agir d'une fonction borélienne, c'est-a-dire, pour tout y, lI'ensemble R, tel que
g(X) <y doit étre constitué par la réunion et l'intersection d'un nombre dénombrable

d'intervalles. Alors seulement {Y < y} est un évenement.

3. Lesévénements {g(X) = +oo} doivent avoir une probabilité nulle.

2.4.1. La fonction de répartition de g(X)

Nous exprimerons la fonction de répartition F,(y) de variable aleatoire Y = g(X) en
fonction de la fonction répartition Fy(x) de variable aléatoire X et de la fonction g (X). Pour
cela, il faut déterminer I'ensemble R, de l'axe des x tel que g(X) <y, et la probabilité que x
soit dans cet ensemble. La méthode sera illustrée par plusieurs exemples. Sauf indication

contraire, on supposera que Fy(x) est continue.

Exemple 2.9 : Nous commencons par la fonction g(x) de la figure 2.20. On voit qu’elle est

comprise entre a et b pour tout x. Cela conduit a la conclusion que :

e Siy>balors g(x) <y pourtout x, donc P{Y <y} =1
e Siy < aalorsil n’existe aucun x telque g(x) < ydoncP{Y <y} =0
Ainsi ;

1 y=b
@00={0 y<a

Avec x; ety; = g(x;) comme indiqué, nous observons que g(x) < y; pour x < x,.D'ou
Fy(y,) = P{x < x1} = Fx(xy)
Finalement nous remarquons que :
gx) <y, six <x', ousi x",<x <x",
D'ou
Fy(y;) = P{x < x'5} + P{x"; <x <x";} = Fx(x'3) + Fx(x"";) — Fx(x"'3)

car les événements {x < x',} et {x", < x < x'",} s'excluent mutuellement.

Exemple 2.10 : Soient X et Y deux variables aléatoires tel que :

Y=aX+b (2.43)



Pour trouver F, (), on doit chercher les valeurs de x telque aX + b < y .

a) Si>0,doncaX + b < ypourX < (y— b)/a (Figure 5-2a). Donc

—b —b
F,(y) =p{x SYT}= FX(yT) a>0
b) Si<0,doncaX + b < ypourX > (y—b)/a (Figure 2.21b). Donc

Fy(y)=P{X2yT_b}=P{X<y_b}=1—Fx(¥) a<0

4 a>0 A a<0
Y =——— y§--- y=b
!<y—f : r I\ *>4
)
e > + / >
\opy O B 0 x
x o2 .
—y <Y
(a) (b)

Figure 2.21 : Représentationde y (@) a >0 (b) a <0
Exemple 2.11 : Soient X et Y deux variables aléatoires tel que :
Y = X2
e Siy=>0,alorsX? < ypour—/y <X <.[y(fig.2.22a). Donc

F0) = P(f5 <X=5) = () —Fx(—5)  ¥>0

e Siy <0, alors il n’existe aucune valeur de x tel que X% < y . Donc



Fy(y)=P{0} =0 y<0
2.4.2. La densité de probabilité de g(X)

Par une dérivation directe de Fy, (y) , on obtient :

fry) = {% (fX(\/;) +fX(‘\/;)) y>0 (2.44)
0

ailleurs

Si fx (x) est une fonction paire, alors (2.44) se réduit a :

) = {5 KV0) (245
4 Fi) Fy
12
! 1
r-
. ]
5 0 § * -1 0 1 * 7o C Y

(@) )

Figure 2.22 : (a) courbe de = x2, (b) fonctions de répartition de X et Y respectivement

En particulier si X ~ N(0,1), pour que

2

fol) = %e%

V2n
(2.46)
et en substituant ceci dans (2.45), on obtient la densité de probabilité de Y = X2 soit :
-y/2
fr) = {ﬁ H(y) TTUm) (2.47)

En comparant ceci avec (2.28), nous remarquons que (2.47) représente une variable aléatoire
- 7 . 1 . . , . .
chi-carrée avec n=1, puisque r (E) = +/m . Donc, si X est une variable aléatoire gaussienne avec

u=0, alors Y = X? représente une variable aléatoire chi-carrée avec un degré de liberté.

Cas particulier : Si X est uniforme dans l'intervalle [—1, 1], alors



(Fig. 2.22b). D'ou

Exemple 2.12 : Considérons la fonction de la figure 2.23

0 —c<x<c
gx)=4{x—-c xX>c (2.48)
x+c x < -—c

Dans ce cas, Fy (v ) est non continue en y = 0 et sa discontinuité est égale a

Fx(c) — Fx(=c).

En outre,
e Siy>0alors P{Y <y}=PX<y+c}=F(y+c)
e Siy<oOalors P{lY <y}=PX<y-—c}=F(y—c)

f1£37) Flx)|
1

Figure 2.23 : (a) courbe de y (b) fonctions de répartition de X et Y respectivement.

Exemple 2.13 : La courbe de g(x) de la figure 2.24 est constante pour x < —b etx > b et est

une droite dans I'intervalle [-b,b]. Avec Y = g(X), il s'ensuit que F,(y ) est discontinue pour
y=g(—b) = —bety = g(b) = b, respectivement. En outre,

e Siy=>b alors g(x) <y pourtoutx ; par conséquent Fy(y) =1
e Si—b<y<b alors g(x) <y pourtoutx <y ;parconséquent Fy(y) = Fx(x)



e Siy < —b alors g(x) <y pouraucun x ; par conséquent F,(y) = 0.

I{I}Ji FJ,'!JJ F,.U'}u.

1;_____,_....- l:/J———

d 4N

- 0 b Y

o
-

Figure 2.24 : (a) courbe de g(x) (b) fonctions de répartition de X et Y respectivement

Exemple 2.14 : Soit Y = X?

a) Si X prend les valeurs 1,2,...,6 avec la probabilité 1/6, alors les valeurs de Y sont : 12,
22,..., 62 avec la méme probabilité de 1/6.

b) Si, cependant, X prend les valeurs -2, -1, 0, 1, 2,3 avec la probabilité 1/6, alors Y prend
les valeurs 0. 1, 4,9 avec probabilités 1/6, 2/6, 2/6, 1/6, respectivement.

2.5. Moments et statistiques d’une variable aléatoire

2.5.1. Moyenne d’une variable aléatoire (Moment d’ordre 1)

a) Variable aléatoire continue

La valeur espérée ou moyenne d’une variable aléatoire X est par définition I’intégrale suivante :

E{X}zf_ xfy(x)dx
(2.49)

Elle peut étre aussi notée par py ou .

Exemple 2.15 : Si X est uniforme sur I’intervalle [x4, x, |, alors fy(x) = ﬁ dans ce
2741

domaine. Par conséquent :

1 *2
E{X} = f xdx
Xy — X1Jy

1

Nous remarquons que, si la ligne verticale x = a est un axe de symétrie de fy (x) alors :



E{X} = a . En particulier, si fx(—x) = fx(x) alors E{X} = 0. Dans I’exemple précédent,

fi (x) est symétrique par rapport a la droite x = 222
b) Variable aléatoire discréte

Dans ce cas I’intégrale de (2.50) peut étre écrite comme une somme. En effet, supposons que

X prenne les valeurs x; avec une probabilité p;. Dans ce cas, ona:

fx(x) = X pi8(x — x;) (2.51)
En substituant dans (2.50) et utilisant I'identité f_J'C: x6(x — x;)dx = x; , on obtient :
E(X}=Yipix; pi=PX=x;} (2.52)
Exemple 2.16 : Si X prend les valeurs 1,2,...,6 avec la probabilité 1/6, alors :
E{X} =%><(1+2+---+6) =3.5

c) Moyenne d’une fonction d’une variable aléatoire

Etant donné une variable aléatoire X et une fonction g(X), nous formons la variable

aléatoire Y = g(X), la moyenne de cette variable aléatoire est donnée par :

E{v} = ["7yf(»)dy (2.53)

Il apparait donc que pour déterminer la moyenne de Y, il faut trouver sa densité de probabilité
fy (¥). Cependant, celle-ci n'est pas nécessaire. E{Y}, peut étre exprimée directement en termes

de fonction g(X) et de la densité fy (x) de X comme le montre le théoréme de base suivant :

Théoréme E{g)} = [ g(x)fy (x)dx (2.54)

Si X est discrete comme dans (2.51), alors (2.54) donne :

E{g(X)} =2 9(x) P(X = x;) (2.55)



Exemple 2.17 : Avec x, un nombre arbitraire et g(x) comme dans la Fig. 2.25, 1’équation
(2.54) donne :

E{g(X)} = f fe(Gdx = Fy(xo)

Cela montre que la fonction de repartition d'une variable aléatoire peut étre exprimée comme

une espérance.

g}
E{g(x)} = Flxo)
1
=
0 o *

Figure 2.25 : Moyenne d’une fonction d’une variable aléatoire

Exemple 2.18 : Dans cet exemple, nous montrons que la probabilité de tout événement A peut
étre exprimee comme une valeur espérée. Pour cela on forme la variable aléatoire X,(zéro, un)

associée a I'événement A ;

X© =1{; g:;‘

Puisque cette variable aléatoire prend les valeurs 1 et 0 avec des probabilités respectives P(A)

et P(A), donne :
E{X,} =1x P(A)+0x P(A) =P(4)
d) La linéarité
De (2.54), il s'ensuit que :
E{a19:(X) + -+ + angn ()} = a1 E{g1 (X))} + - + anE{gn ()}  (2.56)
En particulier, E{ax + b} = aE{x} + b
e) Variable aléatoire complexe

SiZ = X + jY estune variable aléatoire complexe, alors son espérance mathématique est par
définition: E{Z} = E{X} +j E{Y}



De ceci et de (2.54), il s'ensuit que si g(X) = g,(X) + jg,(X) est une fonction complexe de la
variable aléatoire réelle X alors :

E{gQ0} = [77 g0 fx(dx = [77 g, () e ()dx + [77 g2 () fx (x)dx  (2557)
En d'autres termes, (2.54) est vrai méme si g(x) est complexe.
2.5.2. La variance

La moyenne seule ne pourra pas vraiment représenter la densité de probabilité d'une
variable aléatoire. Pour illustrer cela, considérons deux variables aléatoires gaussiennes X; ~»
N (0,1) et X, ~ N (0,3). Les deux ont la méme moyenne u. Cependant, comme le montre
la figure 2.26, leurs densités de probabilité sont assez différentes. Ici, X; est plus concentrée
autour de la moyenne, alors que X, a un étalement plus large. Clairement, il faut au moins un
parametre supplémentaire pour mesurer cet écart autour de la moyenne. Pour une variable
aléatoire X de moyenne U, X — p représente I'écart de la variable aléatoire par rapport a sa
moyenne. Comme cet écart peut étre positif ou négatif, considérons la quantité (X — u)? et sa
valeur moyenne E[(X — p)?]représente I'écart moyen au carré de X autour de sa moyenne. En

Définissant
o 2 E[(X —w)?]>0 (2.58)

Avec g(X) = (X — p)? et en utilisant (2.54), on obtient :

+00 2
o =), x—w f(x)dx >0 (2.59)

La constante positive oZ; est appelée la variance de la variable aléatoire X, et sa racine carrée

positive gy = /E(X —u)? est connue comme [I'écart type de X. Notez que l'écart type
représente la valeur quadratique moyenne de la variable aléatoire X autour de sa moyenne u.

De la définition, il résulte que 0% est la moyenne de la variable aléatoire (X — n)2. Ainsi :
Var{X} = 02 = E{(X —n)?} = E{X? — 2Xn + n? } = E{X?} — 2nE{X} + n?
Par conséquent :
0% = E{X?} — (E(X})? (2.60)

Pour n’importe qu’elle variable aléatoire on a E{X?} = (E{X})?
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Figure 2.26 : Deux variables aléatoires gaussiennes X; ~ N (0,1) et X, ~ N (0,3)

Exemple 2.19 :

Si X est uniforme dans I’intervalle [-cC, c], alorsn = 0 et

1 (¢ c?

2 — E XZ — _j 2 d —__

o {X*} o _Cx x=-
Exemple 2.20 : la densité de la variable aléatoire normale a été exprimée par :

1 —(x-m)?

e 202
oVan

fx(x) =

Jusqu’a présent i et g2 étaient deux constantes arbitraires. On montre ensuite que 7 est bien la

moyenne de X et a2 sa variance.

Preuve. Clairement. fy(x) est symétrique par rapport a la ligne x = n; donc E{X} = n. De

+o00 _(x—_n)z . , \ , . \
plus, f_oo e 202 dx = avV2m, car l'aire de fy(x) est égale a 1. En dérivant par rapport a o,

on obtient :

Yo (x — )2 =G=m)?
f %e 202 dx =21

— 00

o2

En multipliant les deux coOtés par =

, nous concluons que E{(X — n)?} =02 .

Cas discret : Si la variable aléatoire X est de type discret comme en (2.51), alors :

o> =%ipi(x;—n)?* p=PX=x) (2.61)



Exemple 2.21 :

La variable aléatoire X prend les valeurs 1 et 0 avec des probabilitéspetq=1-p

respectivement. Dans ce cas on aura :
E{X}=1xp+0xq=p
E{X*}=12xp+0%2xqg=p
Donc o =E{X*} - (E(X)* =p-p*=p(1-p)=pq
Exemple 2.22 : Une variable aléatoire suivant la loi de Poisson de paramétre A prend les valeurs
0, 1, ... avec les probabilités données par :

Ak
— — oA
PiX=k}=e i

On montre que sa moyenne et sa variance sont toutes deux égales :
E{X}=1 E{X?}=2+1 o2=121 (2.62)

Preuve : On différencie deux fois le développement de Taylor de e?:

b /1k b Ak—l 1 /1k
A o — -
¢ _Zk!_zk Kl _Azkk'
k=0 k=0 k=1
- k=2 1 2k 1 Ak
A _ 2
et = ) k=D =7 ) K= )k
k=1 k=1 k=1
Donc
_ A M
E{X} =e kk! =1
k=1

E{X}=e* kZF=AZ+A
k=1 '
Points de Poisson : le nombre n de points de Poisson dans un intervalle de longueur t, est

une variable aléatoire distribuée de Poisson de parametre a = At, . De la il s'ensuit que :



Cela montre que la densité A de points de Poisson est égale au nombre espéré de points par

unité de temps.

Remarques :

1-

La variance o2d’une variable aléatoire X est une mesure de la dispersion de cette
derniére au tour de sa moyenne m. Son interprétation fréquenticlle relative est la
moyenne de (x; — n)2.

0% =

S|k

X (x; —n)? (2.64)

Ou; x; sont les observations de X. Cette moyenne ne peut etre utilisée comme
estimation de o2que si n est connue. Dans le cas contraire on remplace n par son

estimation ce qui donne :
1 ~ ~ 1
g% = EZ(xi -%)? x= ;Z X; (2.65)
Une mesure plus simple de la dispersion des valeurs de X au tour de n est le premier

moment centré absolu E{|X — n|} estimé par M = %lei -7l

2.5.3. Les moments d’une variable aléatoire

Les grandeurs suivantes sont intéressantes dans I'étude des variables aléatoires :

Moment d’ordre n

my = E{X"} = [72x" fy (X)dx (2.66)

Moment centré d’ordre n

o = E{X =)™ = [ (x = )" fy(x)dx (2.67)

Moments absolus d’ordre n
E{|xI"} E{|X —n|"} (2.68)
Moments généralisés
E{(X — &)™} E{IX — al™} (2.69)

On remarque que :

Donc

R A RDWRARRS



Hn = ZZ_O () mac(=myn*

(2.70)
De la méme fagonona:
my = E((X =) + 01"} = E {520 () e —myknn )
Donc
my = Yo (1) e (2.71)
En particulier, yp =mg=1 my=1n pu, =0 p, =02
Et
3 = mg — 3nm, + 2n° mz = uz +3na® +1n°
2.5.4. Calcul des moments de quelques variables aléatoires usuelles
a) Variable aléatoire normale
Nous montrerons que Si :
fx(x) = ! 6_2(:’22
oV2m
Alors
E{xm} = {(1)3 w.(n—=1o™" " :13k=+211c (2.72)
E{|X|") = {Zkk! o2+t \[2/m n=2k+1 2.73)
1.3..(n—1)o™ n =2k

Les moments impairs de X sont O car fyx(—x) = fx(x) . Pour prouver la partie inférieure de
(2.72, on différencie k fois l'identité.

+ o0
T
_ 2
f e~ dx = |—
o a

Cela donne

13..2k-1) [ =&
Zk (X2k+1

+ o0
_ 2
f x?ke=@x dyx =
— 00



Etavec a = % , On obtient (2.72)
20

Puisque fx(—x) = fy(x),ona:

+00 2

+oo .2
E{|X|2k+1) = 2] X2HLE () dx = f 2kt fag2 gy
0 ovV2mJg

2
=, le résultat sera :
20

Avecy =

2 (202)’<f+°° .
= yeVdy
\ﬁ 20 J,

et il en résulte (2.73). Notons en particulier que :
E{X*} = 30* = 3 E?{X?}
b) Variable aléatoire de Poisson.

Les moments d'une variable aléatoire suivant la loi de Poisson sont fonctions du parameétre A :

ma() = E(X"} = e 5 knt (2.74)

(D) = E{((X = )"} = e A Bl - D" (275)

Nous montrerons qu'ils satisfont aux équations récursives suivantes :
M1 (D) = A[my, (1) + my (A)] (2.76)

1 (D) = Anpn 1 (D) + up (D] (2.77)

Preuve : En différenciant (2.74) par rapport a A, on obtient :

M) = e Ay ki e-Aye g oy Ll ()
n k=0 k! k=0 k! n 1 n+1

et (2.76) est trouvée. Et de la méme fagon, a partir de (2.76),il s’en suit :

Ak—l

k k
(D) = —e A T g (k — D" — ne ok — D" A b e A B ok — i



En fixant k = (k — 1) + A dans la derniere somme, on obtient u, = —u,,—nu,_, +% et

(Un+1 + Auy,) €t (2.77) est obtenue. Les équations précédentes conduisent a la détermination
récursive des moments m,, et w,. En partant des moments connus m; = A, etu, =0, et u, =
A [voir (2.62)], on obtient :

m,=AA+1) et my=AA2+21+21+1)=23+322+ 21
py = Ay + 2p1) = A
2.5.5. Estimation de la moyenne et de la variance de g(x).
a) La moyenne
La moyenne de la variable aléatoire Y = g(X) est donnée par :
E{g(0} = [7. 9GO f(0)dx (2.78)

Par conséquent, pour sa détermination, la connaissance de fx(x) est requise. Cependant, si X
est concentrée pres de sa moyenne, alors E{g(X)} peut étre exprimée en fonction des moments
U, de X. Supposons tout d'abord que fy (x) soit négligeable en dehors d'un intervalle [n — &, +

€] et dans lequel, g(x) = g(n). Dans ce cas, (2.78) donne :
ElgX)} = g [ fr()dx = g(n) (2.78b)
Cette estimation peut étre améliorée si g(X) est approximée par un polyndme.
g0 = g +g' MG =) + -+ g™ () &L (2.78¢)
En insérant dans (2.78) on obtient :
E{g0} = g() +g" ()% + -+ g™ () L2 (2.79)
En particulier, si g(x) est approximée par une parabole, alors :
ny = E(@COY = g) + 9" ()% (2.80)

Et si elle est approximée par une droite, alors n, = g(n). Cela montre que la pente de g(x) n'a
aucun effet sur i, ; cependant, comme nous le montrons ensuite, cela affecte la variance o ;
deY.

b) La variance : Nous retenons que l'estimation du premier ordre de o7 est donnée par :



oy = 1g'(m*o?

(2.81)

Exemple 2.23 : Une tension E = 120 V est branchée aux bornes d'une résistance dont la valeur

est une variable aléatoire r uniforme entre 900 et 1100 Q. En utilisant (2.79) et (2.80), nous

allons estimer la moyenne et la variance du courant résultant : I=E/r
Clairement, E(r) =n = 103, 0% = &303 avec g(r) = E/r ,ona:

g(n) =0.12 g'™M=-12x10"5 g"™ =24x107°
Donc,
E{i} = 0.12 + 0.00044 07 = 48 x 1076A?
2.5.6. Fonction caractéristique
La fonction caractéristique d'une variable aléatoire est par définition I'intégrale :

Oy (@) = [ fr(x)el**dx
Cette fonction est maximale a origine car fy (x) = 0.
|Dy(w)] < Dyx(0) =1
Sion remplace jw par s, I’intégrale résultante est :
Ox(s) = [1 fy(edx  Dy(jo) = Oy(w)
est la fonction génératrice de moment de X.
La fonction suivante :
Y(w) =Indy(w) =¥(w)
est la seconde fonction caractéristique de X
On voit clairement que :
Oy (w) = E{e/¥*} et dy(s) = E{e"*}

EneffetsiY = aX + b alors @y (w) = e/ Oy (aw)

Car  Efei) = Efefo@ o) = oibop(eiur)

(2.82)

(2.83)

(2.84)

(2.85)

(2.86)



Exemple 2.24 : La fonction caractéristique d’une variable aléatoire X suivant une loi

N(n,o)est égale a :

dy(w)=e {jnw - %azwz} (2.87)
Preuve :
La variable aléatoire Z = (X —n)/o est une loi N(0,1) et sa fonction caractéristique est égale
a:

1 [t
(I)Z(S)=\/T_nf es? e=2°/2dz

2 1 2
Avec ;sz—==—-(z—5)?+=
2 2 2

On conclue que :

+ oo 1
d,(s) = esz/zf —— e (972 47 = ¢5%/2
z(5) T
(2.88)
Et puisque X = 0Z + n; (2.87) s’en suit a partir de (2.86) et (2.88) avec = jw .

e Formule d'inversion

Comme on le voit dans (2.82), ®(w) est la transformée de Fourier de fy (x). Par conséquent,
les propriétés des fonctions caracteristiques sont essentiellement les mémes que les propriétés

des transformées de Fourier. Notons en particulier que fy (x)peut s'exprimer en fonction de
Dy (w) :

fr@) = - [ Ox(w) e ¥ d (2.89)
e Théoreme du moment
En dérivant (2.84) n fois, on obtient :
O™ (s) = E{X"es*}
Donc ,

®M™(0) = E{X"} =m,, (2.90)



Ainsi les dérivées de @ (s) a l'origine sont égales aux moments de X. Ceci justifie I'appellation

« fonction moment » donnée a ®(s). En particulier,
O'(0)=m; =7 " (0) =m, = n? + o2 (2.91)
Remarque :

En développant ®(s) en une série proche de I'origine et en utilisant (2.90), on obtient :
D(s) = Tp_p—s™ (2.92)

Ceci n'est valable que si tous les moments sont finis et que la série converge absolument au
voisinage de s = 0. Puisque fy (x) peut étre déterminée en fonction de ®(s), (2.92) montre que,
dans les conditions indiquees, la densité d'une variable aléatoire est déterminée de maniére

unique si tous ses moments sont connus.

Exemple 2.25 : Nous allons déterminer la fonction des moments et les moments d'une variable

Cb+1

r(b+1)

aléatoire X qui suit une loi gamma telle que: fy (x) = yx?~te~*U(x) y =

De (2.82), il s’en suit que :

b

0o 1 yr(b) c
O(s) =y [, xP7te (N dx = (cr—s)b = oo (2.93)
En dérivant par rapport a s et prenant s=0, on obtient :
b(b+1)..b+n—-1
OBAREALD RS
Avec n=1etn=2, celadonne:
_b 24 _ b(b+1) 2 _ b
E{X} = . E{X*} = —= 0" = (2.94)
La densité exponentielle est un cas spécial obtenu avec b=1, c=A
— —Ax _ A -1 2 -1
fx(x) = e U (x) d(s) = — E{X} = - 0% = (2.95)

Exemple 2.26 : Densité Chi carrée : Enprenantb = m/2etc = 1/2 dans (2.93), on obtient

la fonction du moment de la densité du chi carré y?(m) :



D(s) = Jufw E{X}=m  ¢2=2m (2.96)

2.5.7. Les cumulants

Les cumulants A,, de la variable aléatoire X sont par définition les dérivées de sa seconde

fonction de moment ¥ (s):

arw(o) _

0 = (2.97)

De (2.85), on voit clairement que ¥ (0) = 1,=0.
Donc: W(s)=A;s +%/12$2 + -+ %Ansn + -
On retient :

M=n A, = o2 (2.98)
Preuve :
Puisque, ® = e*¥,onconclue que : &' =¥’ e? Q" =[P+ (¥)?]e?
Avec s=0, ceci donne : ®'(0) = ¥'(0) = m, ®"(0) =" (0) + ('11”(0))2 = m, et

(2.98) est obtenue.

Type discret : Supposons que X soit une variable aléatoire de type discret prenant les valeurs

x; avec une probabilité p;. Dans ce cas, (2.82) donne :
Dy(w) = X; p; /% (2.99)

Ainsi @y (w) est une somme d'exponentielles. La fonction moment de x peut étre définie
comme dans (2.84). Cependant, si X ne prend que des valeurs entiéres, alors une définition en

termes de transformations z est préférable.
2.5.8. Fonction génératrice de moments.

Si X est une variable aléatoire de type treillis prenant des valeurs entiéres, alors sa fonction

génératrice de moment est par définition la somme :

r(z) = E{z"} =Y}2 PX =n}z" =312  p,z" (2.100)



Ainsi r(1/z) est la transformée en z ordinaire de la séquence p,, = P{X = n}. Avec ®y(w)

comme dans (2.99) , ceci donne :

+00
Ox(@) =r(e/) =) pein

n=-oo
Donc @ (w) est la transformée de Fourier discrete(DFT) de la série {p,,}, et
Y(s) = Inr(e®)
Théoreme du moment : En dérivant (2.100) k fois, on obtient :
) =EXX—-1)..(X —k+ 1)zxk}
Avec z=1, ceci donne :
D) =FEXX-1)..(X-k+1)}
On remarque que r(1) = 1 et
(D) =E{X} 1'®=E{X?}-E{X}

Exemple 2.27

a) SiX prend les valeurs 0 et 1 avec P{X = 1} = p et P{X = 0} = q, alors

r(z) =pz+q r'(1))=E{X}=p r'"(1) =E{X?}-E{X}=0

b) Si X suit une loi binomiale B(m, p) donnée par :
pp=P{X=n}= (le)p"qm"" 0<n<m
Alors
m -
r(z) = Xnso (n)p"qm "zt = (pz+ ™
et r'(1) =mp r'’ (1) = m(m — 1)p?
par conséquent :
E{X}=mp o%=mpq
Exemple 2.28 : Si X suit une loi de poisson de paramétre A , t.q :

n

PiX=n}=e?*~ n=01,..

n!

Alors

r(z) =e Y, ?\"i—! = eAMz-1)

(2.101)

(2.102)

(2.103)

(2.104)

(2.105)

(2.106)



Dans ce cas (voir (2.101),ona ¥(s) =A(eS—1) P'0)=A Ww'(0)=2Aet (2.98)
donne E{X}=A oa%2=A.

On peut utiliser la méthode de la fonction caractéristique pour établir le théoréme de De Moivre-
Laplace suivant :

Théoréeme de De Moivre-Laplace

Soit X ~ B(n,p) , alors de (2.100, on obtient la fonction caractéristique de la variable

binomiale suivante : @y (w) = (pe/® +q)"

Et définissons

(2.107)

Ceci donne :

Oy(@) = Efero) =c  Nmi o < “ >
w) = Eje =e n
Y X r—npq

-npw

n
=e /\/nP <pe vnpq 4 CI>

Jjwq —jpw
= | pe vnrq + qe

0w q*w o 1 w
_1 1+ jq +z_<1q >
Jnpaq anq i k! \ /npq

00 n
pw w 1 (—jpw
+q<1_1p P +z_'< jp >>I
/npq anq k3k

w? n 2
= (1 - 5{1 + (Z)(n)}) - e @ /2  lorsque n — oo (2.104)

n
VnPQ>

k=2 koo ok
Puisque  @(n) « 22,‘3;3%(1/—;) % — 0 lorsque n — oo,

En comparant (2.104) avec (2.84), on conclue que lorsque n — oo, la variable aléatoire Y tend

vers la loi normle centrée, ou de (2.103), X tend vers N (np, npq).

L'exemple suivant est d'intérét historique, car il a d'abord été proposé et résolu par De Moivre.



Exemple 2.29 : Un événement A se produit dans une série d'essais indépendants avec une
probabilité constante p. Si A se produit au moins r fois de suite, nous l'appelons une série de

longueur r. Trouvez la probabilité d'obtenir une séquence de longueur r pour A en n essais.
Solution

Soit P, la probabilité de I'événement X,, qui représente une séquence de longueur r pour A dans
n essais. Une série de longueur r dans n + 1 essais ne peut se produire que de deux manieres
mutuellement exclusives : soit il y a une série de longueur r dans les n premiers essais, soit une
série de longueur r n'est obtenue que dans les r derniers essais des n + 1 essais et pas avant.
Ainsi ;

Xn+1 = Xn U Bnyq (2.105)
Ou;
B,,+1 ={Pas de série de longueur r pour A dans les premiers n — r essais}nN{A ne se produit

pasdansle (n — r + l)éeme essai}nN{Série de longueur r pour A dans les r derniers essais}

Bpi1 =X, NANANAN..NA

r

2.6. Séquences de variables aléatoires
2.6. 1. Concept général : Un vecteur aléatoire est exprimeé par :
X = [X1, ., Xn] (2.106)

dont les composantes X; sont des variables aléatoires. La probabilité que X se trouve dans une

région D de I'espace a n dimensions est égale aux masses de probabilité dans D :

P{X €D}= [ fx(X) dX X=[X1,.... %] (2.107)
Oou;
92Fx (%1, n
feX) = f Gy, ) = X (2.108)

Est la densité jointe des variables aléatoires X; et leur fonction de répartition conjointe est

donnée par :

Fx(X) = Fx(xl,...,xn) S P{Xl S Xl, ...,Xn S xn} (2109)



Si on remplace dans Fy(x; ....,x;) certaines variables par co, on obtient la fonction de
répartition conjointe des variables restantes. Si on integre fy (x; ...., x,) par rapport a certaines

variables, on obtient la densité jointe des variables restantes. Par exemple :
FX(xl, x3) = Fx(x1,°°; X3, 00)

fX(xl, X3) = fj:,o fj:,o fX(xl,xZ, X3, x4,) dxde4 (2110)

2.6.2. Transformation d’un vecteur aléatoire

Etant donné k fonctions g,(X), ...,gx(X) avec X =[X,,...,X,] , on forme les variables

aléatoires suivantes :

V1=9:(X), .Y = g (X) (2.111)

Les statistiques de ces variables aléatoires peuvent étre déterminées en fonction des statistiques
de X.

1) Si k < n, alors nous pourrions d'abord déterminer la densité jointe des n variables
aleatoires Y, ..., Yy, Xy 41, ..., X, puis utiliser la généralisation de (2.110) pour éliminer les
X.

2) Sik > n, alors les variables aléatoires Y, 4, ..., Y, peuvent étre exprimées en termes de
Yi,...,Y,. Dans ce cas, les masses dans l'espace k sont singuliéeres et peuvent étre
déterminées en fonction de la densité jointe de Y3, ..., Y;,. Il suffit donc de supposer que k =
n. Pour trouver la densité f, (4, ...,v,) du vecteur aléatoire [Y;,...,Y,], pour un ensemble

spécifique de nombres y;, ..., y,,0n résout le systéme suivant :

91(X) =y1, 0, gn(X) = (2.112)

Si ce systeme n'a pas de solution, alors fy (y4,...,v,) = 0. S'il a une solution unique
X =[xq,...,x,],alorsona:

_ fx (1,00, x0)

frasyn) = TGy x|

(2.113)

Ou;



09 0g:

: | ox, " o,
J(xq G iy
ox, —~ 0x,

(2.114)

est le jacobéen de la transformation (2.112) .S'il a plusieurs solutions, alors on ajoute les termes

correspondants.
2.6.3. L’indépendance

Les variables aléatoires X3, ..., X, sont dites (mutuellement) indépendantes si les événements

{X; <x.},...,{X, < x,}sont indépendants. Il s’en suit que :
Fy(xq,..., %) = Fx(xq) X Fy(x3) X ... X Fy(x,)

fxQeq,ooxn) = fre(xg) X fir(x2) X oo X fx (x) (2.115)

Exemple 2.30 : Etant donné n variables aléatoires indépendantes X; de densités respectives

fx;(x:), on forme les variables aléatoires t .q :
YL=X1++Xk k=1,...,n

Nous déterminerons la densité jointe de X,,. Le systeme

xl =y1,x1+x2 = yz,...,xl‘l' "'+xn :yn

a une solution unique xp =y, —yr_1 1<k <n et son jacobien est égal a 1. D'ou
[voir(2.113) et (2.115) .

FOnay) = fr, O fr, 02 = Y1) oo fr, O — Yn-1) (2.116)

De (2.115), il s'ensuit que tout sous-ensemble de I'ensemble X; est un ensemble de variables
aléatoires indépendantes. Supposons, par exemple que, fx (x1, x5 ,x3) = fx(x1) fx (x3) fx(x3).

En intégrant par rapport a x5, on obtient fy (xq, x5 ) = fx (x1) fx (x2).

Ceci montre que les variables aléatoires X; et X, sont indépendantes. Attention, cependant, si
les variables aléatoires X; sont indépendantes deux a deux, elles ne sont pas nécessairement

indépendantes. Par exemple, il est possible que :



fx (e, xa) = fx(x)fx () o fe(x,x3) = fir(x) fx (3) et fy(xp, x5 ) = fir(x2) fir (x3) mais
fx (e, x2,x3) # fy () fx (x2) fx(x3)

On peut montrer que si les variables aléatoires X; sont indépendantes, alors Y; =

g1(Xy), ... Yn = g,(X,,) sont aussi indépendantes.
2.6.4. Expériences indépendantes et essais répétés.

Supposons que, S™ =S, X ... X S, est une expérience combinée et les variables aléatoires

X; ne dépendent que des résultats &i de S; tel que:
Xi(&1 & &) = Xi(&) i=1,.,n (2.117)

Si les expériences S; sont indépendantes, alors les variables aléatoires X; sont indépendantes.

Le cas particulier suivant est intéressant :

Supposons que, X est une variable aléatoire définie sur une expérience S qui est effectuée n

fois générant ’expérience :

S =8, X..x§,. Dans cette derniére, on défile les variables aléatoires X; selon (2.117). Il
s'ensuit que la fonction de répartition Fx,(x;) de X; est égale a la fonction de répartition Fy (x)
de la variable aléatoire X. Ainsi, si une expérience est effectuée n fois, les variables aléatoires
X; déefinies comme en (2.117) sont indépendantes et ont la méme fonction Fy (x). Ces variables

aléatoires sont appelées i.i.d. (indépendantes et identiqguement distribuées).

Exemple 31 : (statistiques d'ordre)

Les statistiques d'ordre des variables aléatoires X; ; sont n variables aléatoires Y
définies comme suit : Pour un résultat spécifique &, les variables aléatoires X; prennent les
valeurs X;(&;). En ordonnant ces nombres, on obtient la séquence X,;(§) < -+ < X, (&) <

-+ < X, (&) et on définit la variable aléatoire Y telle que :

Y1(§) = X4(§) < -+ <Y (§) = X (§) < -+ < ¥ (§) = X, (§) (2.118)

On note que, pour un i spécifique, les valeurs X; (&) de X; occupent des emplacements différents
dans l'ordre ci-dessus selon les changements de ¢. Nous retiendrons que la densité fy, (i) de

la k°™ statistique Y} est donnée par :

n!

frieid) = mka_l(Y)[l — WM™ K O) (2.119)



Ou, Fx (x) est la fonction de répartition des variables aléatoires X;(i.i.d) et fy (x) est leur densité
de probabilité. Pour Prouver cela (voir [1]).

Cas particulier. Si les variables aléatoires X; sont exponenticlles avec le parameétre A telle que

fr(@) =2e™U(x)  Fx(x) = (1 —e™™)U(x), alors fy, (y) = nke ™ U (y).

c'est-a-dire que leur minimum Y; est également exponentiel avec le paramétre nA.

X, X, X,

| L "
H H ————— ! !_ H ----- -+-|—
b § ¥y L y + dy ¥a

Figure 2.27 : statistiques d'ordre des variables aléatoires X;

Exemple 2.32 : Un systeme est constitué de m composants et le temps de défaillance du iéme

composant est une variable aléatoire X; de distribution Fy (x). Ainsi, 1 — Fy (t) = P{X; > t}

est la probabilité que le ieme composant soit bon au temps t. On note que n(t) est le nombre

de composants qui sont bons a l'instant t. Clairement, n(t) = n; + -+ + ny,

1 X, >t

Ou n; = {
Donc la moyenne E{n(t)} = n(t) est donnée par : n(t) =1 — Fy, (t) + -+ 1 —Fx_(t)
On supposera que les variables aléatoires X; ont la méme distribution F(t). Dans ce cas, on a :

n(t) = m[1— F(t)]

Taux d'échec : Ladifférence n(t) — n(t + dt) est le nombre d'échecs attendu dans l'intervalle

(t.t + dt). Ladérivée —n'® = mf(t) de —n(t) est le taux de défaillance. Le rapport

n®  f(0)
n(t) 1—F(t)

B(t) = —
(2.120)

est appelé le taux de chute relatif attendu. La fonction B(t) peut également étre interprétée
comme le taux de défaillance conditionnelle de chaque composant du systéeme. En supposant
que le systéme est mis en service a t = 0, nous avons n(0) = m ; donc n(0) = E{n(0)} = m.

En résolvant (2.120) pour n(t), on obtient :

n(t) = m.exp {— fot,[?(r)dr} (2.121)



Exemple 2.33 : Nous mesurons un objet de longueur 1 avec n instruments de précisions
variables. Les résultats des mesures sont n variables aléatoires avec : X; =n+v;, E{v;} =
O et E{Viz} == O-iz

ou v; sont les erreurs de mesure que nous supposons indépendantes avec une moyenne nulle.
Nous déterminerons I'estimation linéaire sans biais, a variance minimale, de 1. Cela signifie ce

qui suit : Nous souhaitons trouver n constantes «; telle que la somme 7 = a; X; + - + a, X,

soit une variable aléatoire avec une moyenne E{fj} = a1 E{X;} + -+ a,E{X,,} = n et une
variance V = a?of + -+ + a2o? minimale. Donc notre probléme est de minimiser la somme

précédente sous la contrainte suivante :
a,+-t+a, =1 (2.122)
Pour résoudre ce probléme, on remarque que V = a0 + -+ a2o? — A(ay + -+ a, — 1)

pour tout M(multiplieur de Lagrange).

.. .oV A
Donc V est minimale si Pyl 20 —2=0 alors a; = Py
i i

En insérant dans (2.122) et résolvant pour A, on obtient ,

X1y X0

A 1 . 012+ +a,%
EZV: 1 1 donc 7N = 1 1
Stttz R e}

o} 02 o} o2

(2.123)

Illustration : La tension E d'un générateur est mesurée trois fois. Nous listons ici les résultats

x; des mesures, les écarts types o; ; des erreurs de mesure, et I’estimation £ de E obtenue &
partir de (2.123):

x; = 98.6,98.8, 98.9 o; = 0.20,0.25, 0.28

X X X
Yo.04t 00625 */0.0784
1 1 1

/0.0at+ 700625+ 0.0784

E = =98.73



2.6.5. Indépendance du groupe
On dit que le groupe Gy des variables aléatoires X, ..., X;, est indépendant du groupe

Gy des variables aléatoires Y3, ..., Y, si :

fXY(xlﬁ X Y1, '"J.Vn) = fX(le "'an)fY(yll "'lyn) (2124)

Par intégration convenable, on conclut de (2.124) que tout sous-groupe de Gy est indépendant
de tout sous-groupe de Gy . En particulier, les variables aléatoires X; et Y; sont indépendantes

pour tout i et j.

Supposons que S est une expérience combinée S; X S, , les variables aléatoires X; ne
dépendent que des issues de S, et les variables aléatoires Y; ne dépendent que des issues de S2.

Si les expériences S; et S, sont indépendantes, alors les groupes Gy et Gy sont indépendants.

Notons enfin que si les variables aléatoires Z,,, ne dépendent que des variables aléatoires
X; de Gy et les variables aléatoires W, ne dépendent que des variables aléatoires Y; de Gy, alors

les groupes G, et Gy, sont indépendants.

2.6.6. Variables aléatoires complexes

Les statistiques de la variable aléatoire Z; =X, +jY4,..,Z, =X, +jY, sont
déterminées en fonction de la densité jointe fyy (x4, ..., Xn, Y1, ---, ¥n) d€S 2n variables aléatoires

X; etY;. On dit que les variables aléatoires complexes Z; sont indépendantes si

Sy (€1, s X, V1o o V) = Sy (01, ¥1) o fry (G vn) - (2.125)

2.6.7. Moyenne et covariance

La moyenne de g(X3, ..., X,,) est donnée par :

fjozo fjozo gy, e, x) f(xq, o, x)dxy odx,  (2.126)

Si les variables aléatoires Z; = X; + jY;  sont complexes, alors la moyenne de g(Z4, ..., Z,)

est donnée par :

+ o0 + o0
f f 9(zy, i Zp) FX1 oy Xy Vg ooy V) AXq o d Yy,



A partir de ceci, il s’en suit que (linéarité) :

E{algl(X) + ot amgm(X)} = alE{gl(X)} + ot amE{gm(X)}

pour tout vecteur aléatoire X réel ou complexe.

2.6.8. Matrices de corrélation et de covariance
a) La covariance

La matrice de C;; de deux variables aléatoires complexes X; et X; est définie par :

Cij = E{X; —n) (X7 —n7)} = E{X. X7} — E(XXJE{X}} (2.127)
et la variance de X; est donnée par :

02 = Cy = E{IX, — I} = EUX,|2} - |EGXI? (2.128)

Les variables aléatoires X; sont dites (mutuellement) un-corrélées si C;; = 0 pour tout = j .

Dans ce cas, Si
X=X +-+X, alors of=ci+...+0? (2.129)
Exemple 2.34 :

. . . S 1 = 1 > et
Les variables aléatoires X ==>",x; et V=—Y" (x; —X)? sont par définition la
n n-1

moyenne et la variance de I'échantillon de X; respectivement. Nous allons le montrer, si les
variables aléatoires X; sont un-corrélées avec la méme moyenne E {X;} = n et la variance

o? = o2 alors
E{X}=n of =0%/n (2.130)
Et

E{V} = o2 (2.131)

Preuve : La premiere équation de (2.130) découle de la linéarité des valeurs espérées et la
seconde de (2.131) :



— 1 1
E{X} =Yl E{x;} =1 0f =5 Xi102 =0?/n

pour prouver (2.131), on observe que :

_ 1
E{X;—mX-n)}= EE{(XL- -MIE - +-+ X, — ]}

1 o?
= EE{(XL' -mMX; —n)}= .

Car les variables aléatoires X; et X; sont un-corrélées par hypothese. Donc ;

— _ 2 2 _1
E{(Xi_X)2}=E{[(Xi_n)—(X—n]2}=02+%—2%=nn 2

et (2.131) est obtenue.

Si les variables aléatoires X, ..., X,,, sont indépendantes, elles ne sont pas non plus corrélées.

Si les variables aléatoires Z; = X; + jY; et Z, = X, + jY, sont indépendantes, alors

[y (X1,%2, y1,¥2) = fx(x1,%2)fy(¥1,¥2). D'ol
+00 +00
f f 717, fxy (X1, X2, ¥1,Y2)dx1dx,dy;dy,

+00 400 +00 ~+00
= f_oo f_oo zq fxy (X1, y1)dx1dy, f_oo f_oo Z; fxy (X2, y2)dx,dy, (2.132)

Celadonne E{Z,Z5;} = E{Z,}E{Z;} donc, Z, et Z, ne sont pas corrélées. Notons enfin que si

les variables aléatoires X; sont indépendantes, alors :

E{g1(X1) ... gn(Xn)} = E{g:(X1)} ... E{gn (X;)} (2.133)

De la méme facon, si les groupes X, ..., X,, et Y3, ..., Y, sont indépendantes, alors :

E{g(Xy, ..., X )h(Y1, ... Y)Y = E{g(Xy, ..., X )IE{R(Yy, ..., i)}
b) La matrice de corrélation

Rll e Rln
On introduit les matrices R, =

Cll e Cln
Co=| o
Ry, .. Ry,

Coy o Con

OU;R; =EX;X;}=R; Cj=R;—nmn=Cj

La premiére est la matrice de corrélation du vecteur aléatoire X = [X;, ..., X,,] et la seconde sa

matrice de covariance. Clairement, ona: R, = E{XTX*}.



Ou, XT est la transposée de X (vecteur colonne). Nous discuterons des propriétés de la matrice
R,, et de son déterminant A,,. Les propriétés de C,, sont similaires car elle représente la matrice

de corrélation des variables aléatoires « centrées » X; —n;.
Théoréme : La matrice R,, est définie non négative. Cela signifie que :
Q=2;;a;a; R;j = AR,A* 2 0 (2.134)
Ou ; At est le transposé du conjugué complexe du vecteur A = [ay...., a,].
Preuve : Il découle facilement de la linéarité des valeurs espérées.
E{la, X, + -+ a, Xp1?} = X j a;a} E{X, X7} (2.135)

SiQ >0 pourtout A # 0 (2.134), alors R,, est appelée « définie positive ». La différence entre

Q = 0etQ > O0estliee a la notion de dépendance linéaire.
c) Définition : Les variables aléatoires X; sont dites linéairement indépendantes si :
E{la X, + -+ a,X,1?} >0 (2.136)
pour tout A # 0. Dans ce cas [voir ((2.135)], leur matrice de corrélation R,, est définie positive.
Les variables aléatoires X ; sont dites linéairement dépendantes si
a X+ +a, X, =0 (2.137)

pour certains A # 0. Dans ce cas, le Q correspondant vaut 0 et la matrice R,, est singuliéere [voir
aussi (2.138]. De la définition, il s’en suit que, si les variables aléatoires X; sont linéairement

indépendantes, alors tout sous-ensemble est également linéairement indépendant.

d) Le déterminant de la corrélation

Le déterminant A,est réel car R;; = R;; . Nous allons montrer qu'il est aussi non négatif
A,=0 (2.138)

avec égalité si seulement si les variables aléatoires X; sont linéairement dépendantes. L'inégalité
familiere A,= R{1R,, — R%, = 0 est un cas particulier [voir (6-169)]. Supposons d'abord que

les variables aléatoires X; soient linéairement indépendantes.
Nous retenons que, dans ce cas, le déterminant A,, et tous ses principaux mineurs sont positifs

A>0  k<n (2.139)



2.7. Conclusion

Dans ce chapitre on a introduit les concepts essentiels des modéles probabilistes afin d’aborder
I’inférence statistique : définition d’un événement aléatoire, des probabilités discrétes ou
continues, et de la notion d’indépendance en probabilités. Apres avoir défini la notion de
variable aléatoire, celles de lois les plus utilisées sont décrites : discrétes de Bernoulli,
binomiales, géométrique, de Poisson ; continues uniforme, exponentielle, Gamma, normale, du
chi-deux. Espérance et variance d’une variable aléatoires sont définies, avant de signaler le
théoréme de central limite qui nous donne de fagon informelle une estimation précise de I’erreur

que I’on commet en approchant I’espérance mathématique par la moyenne arithmétique.



