
CHAPITRE 2 

NOTIONS DE VARIABLE ALEATOIRES 

2.1. Notions physique des phénomènes aléatoires   

Dans beaucoup d’expériences pratiques, les phénomènes observés dans des conditions 

apparemment identiques présentent des variations imprévisibles. Ces phénomènes sont dits 

aléatoires. 

On peut citer comme exemples : 

- Le bruit de fond d’un récepteur radiophonique. 

- Le signal sonore d’un compteur de particules. 

- Pour un système de communication, non seulement le bruit de fond mais aussi le message 

émis par la source, présente un caractère aléatoire pour le destinataire. 

- Le signal de parole ne peut être décrit par une expression analytique exacte (même en 

absence de bruit). 

Les phénomènes sont aléatoires ne peuvent pas être décrits avec des formules 

mathématiques. Donc, pour étudier leur évolution, on a recours à des modèles probabilistes. Le 

signal observé est représenté par une famille de variables aléatoires indexées par le temps. 

Chaque variable décrit l’aspect incertain du phénomène à un instant donné.  

2.2. Rappels sur les probabilités et statistiques 

Définition 1 : soit (Ω, ℱ,p) un espace de probabilité. Une variable aléatoire (v.a) X est une 

application mesurable de   Ω sur ℛ(voir figure 2.1). 

ℱ : l’ensemble de tous les évènements c-à-d  Ω € ℱ .   Ω : est une collection d’évènements.  

B(ℛ) : σ-algèbre sur  ℛ engendrée par les intervalles de ℛ. 

X(ω) € B(ℛ) , X-1(A) €  Ω       

(Ω, ℱ) : espace de probabilité (espace des évènements, de mesure). 

(ℛ,B(ℛ)) : espace probabilisable(PX  : probabilité induite par la v.a X). 

Une variable aléatoire est un nombre 𝑋 (𝜉) attribué à chaque résultat 𝜉 d'une expérience. Ce 

nombre peut être le gain dans un jeu de hasard, la tension d'une source aléatoire, le coût d'une 



composante aléatoire, ou autre grandeur numérique qui présente un intérêt pour la réalisation 

de l'expérience. 

 

                                                         

 

 

 

  

 

 

 

Figure 2.1 : Application mesurable de   Ω sur ℛ 

 

Exemple 2.1 

(a) Dans l'expérience de lancement d’un dé, nous attribuons aux six résultats 𝑓𝑖 les 

nombres 𝑋(𝑓𝑖) = 10 𝑖. Donc, on aura : 

 

𝑓𝑖 1 2 3 4 5 6 

𝑋(𝑓𝑖) 10 20 30 40 50 60 

 

(b) Dans la même expérience, nous pouvons attribuer le numéro 1 à chaque résultat pair et 

le numéro 0 à chaque résultat impair. Ce qui nous donne : 

 

𝑓𝑖 1 2 3 4 5 6 

𝑋(𝑓𝑖) 0 1 0 1 0 1 

 

Définition 2 : une variable aléatoire X est dite discrète si X(Ω) est fini et dénombrable. Dans 

le cas où X(Ω) est infini et non dénombrable, la variable aléatoire X est dite continue.   

2.2.1. Densité de probabilité 

a) Définition : soit une variable aléatoire sur  (Ω, ℱ, p) , on appelle densité de X, la fonction 

𝑓𝑋(𝑥)     telle que :                         

                               (Ω, ℱ, p)                              (ℛ,B(ℛ),PX) 

 

                                                         X                           A 

                                         ω                                                         X(ω)                                                       

                                      X-1(A)                      X-1 

 

 



𝑓𝑋(𝑥) = 𝑃(𝑋 = 𝑥),   𝑓𝑋(𝑥): ℝ → ℝ 

𝑓𝑋(𝑥) = 𝑃(𝑋 = 𝑥) = 𝑝(𝜔 ∈  Ω: X(ω) = x)                           (2.1) 

𝑓𝑋(𝑥) = 𝑃(𝑋
−1(𝑥)) = 𝑃𝑋(𝑥) 

 

Exemple 2.2 : on lance une pièce de monnaie. 

 Ω = {𝑝𝑖𝑙𝑒, 𝑓𝑎𝑐𝑒} , Ω = σ-algèbre sur ℱ.   Avec      

𝑝(𝐴) =
𝑛𝑜𝑚𝑏𝑟𝑒 𝑑𝑒 𝑐𝑎𝑠 𝑓𝑎𝑣𝑜𝑟𝑎𝑏𝑙𝑒

𝑛𝑜𝑚𝑏𝑟𝑒 𝑑𝑒 𝑐𝑎𝑠  𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒
 

    ,   on aura : 

                               𝑝(𝑝𝑖𝑙𝑒) =  𝑝(𝑓𝑎𝑐𝑒) =
1

2
 

On définit la v.a X tel que : 

 {
𝑋(𝑝𝑖𝑙𝑒) = 0

𝑋(𝑓𝑎𝑐𝑒) = 1
     

 La densité de probabilité est : 𝑓𝑋(𝑥) = 𝑃(𝑋 = 𝑥) ce qui nous permet de calculer : 

𝑓𝑋(0) = 𝑃(𝑋 = 0) =
1

2
    et     𝑓𝑋(1) = 𝑃(𝑋 = 1) =

1

2
    

En regroupant ces deux cas en une seule formule on obtient : 

𝑓𝑋(𝑥) = {
  
1

2
         𝑥 = 0,1

0  𝑎𝑖𝑙𝑙𝑒𝑢𝑟𝑠
                                  (2.2) 

Exemple 2.3. : On lance un Dé bien équilibré à six faces et on définit la variable aléatoire Y 

comme suit : 

𝑌 = {𝑓𝑎𝑐𝑒 𝑛0𝑖} 

Ω = { 𝑓𝑎𝑐𝑒1, 𝑓𝑎𝑐𝑒2, 𝑓𝑎𝑐𝑒3, 𝑓𝑎𝑐𝑒4, 𝑓𝑎𝑐𝑒5, 𝑓𝑎𝑐𝑒6} 

v.a : Ω
𝑌
→  ℝ, les valeurs possibles de 𝑌 = {1,2,3,4,5,6} et 𝑝(𝑌 = 𝑓𝑎𝑐𝑒 𝑛0𝑖) =

1

6
 

 

La densité de probabilité de Y est : 

 

𝑓𝑌(𝑦) = {
  
1

6
         𝑦 = 1,2,3,4,5,6

0                     𝑎𝑖𝑙𝑙𝑒𝑢𝑟𝑠
                                  (2.3) 

 

 



b) Propriétés de la densité de probabilité 

La densité de probabilité 𝑓𝑋(𝑥) d’une v.a X doit vérifier les propriétés suivantes :  

1. 𝑓𝑋(𝑥) ≥ 0  ∀ 𝑥 ∈ ℝ  

2. {𝑥 ∈ ℝ, 𝑓𝑋(𝑥) > 0  } = 𝑓𝑖𝑛𝑖 𝑜𝑢 𝑑é𝑛𝑜𝑚𝑏𝑟𝑎𝑏𝑙𝑒 

3. ∑ 𝑓𝑋(𝑥) = 1𝑥  

2.2.2. Fonction de répartition  

a) Définition : soit X une variable aléatoire sur  (Ω, ℱ, p) , la fonction de répartition est définie 

par :  

𝐹𝑋(𝑥) = 𝑃(𝑋 ≤ 𝑥),   𝐹𝑋(𝑥): ℝ → ℝ 

𝐹𝑋(𝑥) = 𝑃𝑋(]−∞, 𝑥]) = 𝑝(𝑈(𝑥 = 𝑡), 𝑡 ≤ 𝑥)                        (2.4) 

=∑𝑓𝑋(𝑡)

𝑡≤𝑥

 

La fonction de répartition de l’exemple 2.1 se calcule comme suit : 

Pour la pièce de monnaie, la densité de probabilité est 𝑓𝑋(𝑥) = {
  
1

2
         𝑥 = 0,1

0  𝑎𝑖𝑙𝑙𝑒𝑢𝑟𝑠
    ce qui 

mène à : 

𝐹𝑋(0) = 𝑝(𝑋 < 0) = 0     𝑠𝑖 𝑥 < 0 

𝐹𝑋(𝑥) = 𝑝(𝑋 ≤ 𝑥) = 𝑝(𝑋 = 0 ) =  
1

2
     𝑠𝑖  0 ≤ 𝑥 < 1 

𝐹𝑋(𝑥) = 𝑝(𝑋 ≤ 𝑥) = 𝑝(𝑋 = 0 ) + 𝑝(𝑋 = 1 ) =  1     𝑠𝑖  𝑥 ≥ 1 

On regroupe ces trois expressions en une seule : 

𝐹𝑋(𝑥) = {

0                        𝑠𝑖  𝑥 < 0

 
1

2
              𝑠𝑖 0 ≤ 𝑥 < 1   

1                         𝑠𝑖  𝑥 ≥ 1

                     (2.5) 

 

On peut représenter graphiquement 𝑓𝑋(𝑥) et 𝐹𝑋(𝑥) de cet exemple comme le montre la figure 

2.2. 

 b) Propriétés de la fonction de répartition 

Soit X une variable aléatoire sur  (Ω, ℱ, p) et 𝐹𝑋(𝑥) sa fonction de répartition alors :  



1. 𝐹𝑋(𝑥)  est une fonction croissante. 

2. 𝐹𝑋(𝑥) est continue à droite. 

3.  lim
𝑥→−∞

𝐹𝑋(𝑥) = 0  , lim
𝑥→+∞

𝐹𝑋(𝑥) = 1 

4.  𝑃 {𝑋 > 𝑥} = 1 − 𝐹𝑋 (𝑥)          

 

 

 

 

 

 

 

(a)                                                          (b) 

Figure 2.2 : (a) densité de probabilité                  (b) fonction de répartition. 

Exemple 2.4 : Soit G une fonction telle que :    𝐺(𝑦) =

{
  
 

  
 
0                                   𝑠𝑖  𝑦 < 1

 
1

8
                         𝑠𝑖 1 ≤ 𝑦 < 3   

 
1

4
                         𝑠𝑖  3 ≤ 𝑦 < 5

1

2
                         𝑠𝑖  5 ≤ 𝑦 < 8

1                                 𝑠𝑖  𝑦 ≥ 8

 

1) Montrer que 𝐺(𝑦) est une fonction de répartition d’une certaine variable aléatoire Y. 

2) Trouver la densité de probabilité 𝑓𝑌(𝑦) de Y. 

 

Solution 

1) 𝐺(𝑦) vérifie les propriétés d’une fonction de répartition : elle est croissante, continue à 

droite et ses limites inférieure et supérieure sont égales respectivement à 0 et 1, donc : 

 ⁆ Y telle que 𝐹𝑌(𝑦) = 𝐺(𝑦) 

2) Calcul de 𝑓𝑌(𝑦) 

𝑓𝑌(1) = 𝐹𝑌(1)−𝐹𝑌(1
−) =

1

8
− 0 =

1

8
 

𝑓𝑌(3) = 𝐹𝑌(3)−𝐹𝑌(3
−) =

1

4
−
1

8
=
1

8
 

𝑓𝑌(5) = 𝐹𝑌(5)−𝐹𝑌(5
−) =

1

2
−
1

4
=
1

4
 

𝑓𝑌(8) = 𝐹𝑌(8)−𝐹𝑌(8
−) = 1 −

1

2
=
1

2
 

 

𝐹𝑋(𝑥) 𝑓𝑋(𝑥) 

𝑥 𝑥 

1/2 1/2 

1 

1 1 0 0 



 

 

 

 

 

 

 

  

 

 

(a)                                                          (b) 

Figure 2.3 : (a) densité de probabilité                  (b) fonction de répartition 

𝑓𝑌(𝑦) est définie pour les points de discontinuité. 

                      

𝑓𝑌(𝑦) =

{
  
 

  
 
1

8
           𝑦 = 1,3

1

4
             𝑦 = 5

1

2
             𝑦 = 8

0          𝑎𝑖𝑙𝑙𝑒𝑢𝑟𝑠

 

2. 3. Lois de probabilité usuelles 

Dans les sections précédentes, nous avons défini des variables aléatoires à partir 

d'expériences connues. Dans cette section, nous considérerons souvent des variables aléatoires 

ayant des fonctions de répartition ou de densité spécifiques sans aucune référence à un espace 

de probabilité particulier. 

2.3.1. Théorème de l'existence 

Pour ce faire, il faut montrer que, étant donné une fonction 𝑓𝑋  (𝑥) ou son intégrale 

𝐹𝑋 (𝑥) = ∫ 𝑓𝑋  (𝑢)
𝑥

−∞

𝑑𝑢 

                                                 (2.6) 

 

On peut construire une expérience et une variable aléatoire 𝑋 ayant une fonctions de répartition 

𝐹𝑋 (𝑥) ou de densité de probabilité 𝑓𝑋  (𝑥). Il existe deux types de variables aléatoires : 

 

0 1 

𝑓𝑌(𝑦) 

1/2 

𝑦 3 5 8 

1/4 

1/8 

𝐹𝑌(𝑦) 

1 

1/2 

𝑦 1 0 8 5 3 

1/4 

1/8 



2. 3.2. Variables aléatoires discrètes  

La plus simple parmi l'ensemble discret de variables aléatoires est la variable aléatoire de 

Bernoulli qui correspond à n'importe quelle expérience avec seulement deux résultats possibles 

: échec ou succès (pile ou face) comme dans les exemples 2.3.1 (lancer d’une pièce de 

monnaie). 

a) Loi de Bernoulli.  

Une variable aléatoire 𝑋 suit une loi de Bernoulli si elle prend deux valeurs 1 et 0 avec (Fig. 

2.2) les probabilités suivantes : 

𝑃{𝑋 =  1}  = 𝑝    𝑃{𝑋 =  0}  =  𝑞 =  1 − 𝑝                                 (2.7)     

 

Dans un essai indépendant de n expériences de Bernoulli, p représentant la probabilité de 

réussite de chaque expérience, alors que q est celle d’échec. 

b) Loi binomiale 

X est dite variable aléatoire binomiale avec les paramètres n et p si elle prend les valeurs 0, 1, 

2, ..., n avec : 

𝑃{𝑋 = 𝑘} = 𝐶𝑛
𝑘𝑝𝑘𝑞𝑛−𝑘  ; tel que :  𝑝 + 𝑞 = 1 𝑒𝑡 𝑘 = 0,1,2,… , 𝑛       (2.8) 

 

La fonction de répartition correspondante est une fonction en escalier comme illustré 

sur la Fig. 2.4. Une autre distribution étroitement liée à la distribution binomiale est la 

distribution de Poisson, qui représente le nombre d'occurrences d'un événement rare dans un 

grand nombre d'essais. Des exemples typiques incluent le nombre d'appels téléphoniques 

échangés sur une durée fixe, le nombre de billets gagnés parmi ceux achetés dans une grande 

loterie, le nombre d'erreurs d'impression dans un livre, etc.  

 

 



Figure 2.4 : Densité de probabilité (a) et fonction de répartition (b) d’une loi binomiale. 

 

c) Loi de poisson 

Une variable aléatoire 𝑋 suit une loi de Poisson de paramètre λ, si elle prend les valeurs 0,1,2, 

... , ∞, avec une densité de probabilité donnée par : 

𝑃{𝑋 = 𝑘} = 𝑒−λ
λ𝑘

𝑘!
       𝑘 = 0,1,2, . . . ,∞        (2.9) 

Avec 𝑝𝑘 = 𝑃{𝑋 = 𝑘} , il s'ensuit que (voir fig4.21) 

p𝒌−𝟏
pk

=

𝒆−λλ𝒌−𝟏

(k − 1)!

𝒆−λλ𝒌

k!

=
k

λ
 

- Si    𝑘 < λ   alors  𝑃{𝑋 = 𝑘 − 1} < 𝑃{𝑋 = 𝑘} ,  

- Si    𝑘 > λ , alors   𝑃{𝑋 = 𝑘 − 1} > 𝑃{𝑋 = 𝑘} 

- Si   𝑘 = λ, on  aura  𝑃{𝑋 = 𝑘 − 1} = 𝑃{𝑋 = 𝑘}. 

De là, nous concluons que 𝑃(𝑋 =  𝑘) augmente avec k de 0 jusqu’à  𝑘 ≤ λ) et diminue au-delà 

de λ. Si λ est un entier 𝑃(𝑋 =  𝑘)a deux valeurs maximales à 𝑘 = λ − 1 et  𝑘 = λ. La fonction 

de répartition correspondante est également une fonction en marche d'escalier similaire à celle 

de la figure 2.4b mais contenant un nombre infini de marches. En résumé, si le rapport 
p𝒌−𝟏

pk
 est 

inférieur à 1, c'est-à-dire que, si 𝑘 < λ, alors à mesure que k augmente ce dernier augmente 

pour atteindre son maximum pour 𝑘 = λ. Donc : 

-  Si  λ < 1, alors pk est maximum pour k = 0.  

-  Si  λ > 1 mais  non pas un entier, pk augmente avec k, atteignant son maximum pour 𝑘 =

λ;  

- Si 𝑘 = λ est un entier, alors pk est maximum pour 𝑘 = λ − 1 et  𝑘 = λ: 

La Figure 2.5 montre une densité de probabilité d’une loi de Poisson pour λ = 3. 

 

 Figure 2.5 : densité de probabilité d’une loi de Poisson pour λ = 3.  

 



Exemple 2.5 : Dans l'expérience des points de Poisson, un résultat s est un ensemble de points 

𝑡𝑖 ; sur l’axe des temps. 

a) Étant donné une constante 𝑡0, nous définissons la variable aléatoire ζ telle que sa valeur 

𝑛(𝜁) soit égale au nombre de points 𝑡𝑖 ; dans l'intervalle (0, 𝑡0). Clairement, n = k signifie 

que le nombre de points dans l'intervalle (0, 𝑡0) est égal à k.  

   

𝑃{𝑛 = 𝑘} = 𝑒−𝜆𝑡0
(𝜆𝑡0)

𝑘

𝑘!
 

                                              (2.10)  

Ainsi, le nombre de points de Poisson dans un intervalle de longueur 𝑡0 est une variable aléatoire 

qui suit la loi de Poisson de paramètre a = 𝜆𝑡0, où λ est la densité des points. 

 

b)  On note 𝑡1 le premier point aléatoire à droite du point fixe 𝑡0 et on définit la variable 

aléatoire 𝑋 comme la distance de 𝑡0 à  𝑡1 (Fig. 2 .6a). De la définition, il résulte que : 

 𝑛(𝜁) ≥ 0  pour tout 𝜁. Par conséquent, la fonction de répartition de 𝑋 est 0 pour 𝑥 < 0 et 

pour  𝑥 < 0   elle est donnée par    𝐹𝑋(𝑥) = 1 − 𝑒
−𝜆𝑥   

 

Preuve :  

Comme nous le savons, 𝐹𝑋(𝑥) est égale à la probabilité que 𝑋 ≤  𝑥, où 𝑥 est un nombre 

spécifique. Mais 𝑋 ≤  𝑥  signifie qu'il y a au moins un point entre 𝑡0 et 𝑡0 + 𝑥. Donc 1 − 𝐹𝑋(𝑥) 

est égale à la probabilité 𝑝0 qu'il n'y ait pas de points dans l'intervalle (𝑡0 , 𝑡0 + 𝑥). Et puisque 

la longueur de cet intervalle est égale à  𝑥, (2.10) donne  𝑝0 = 𝑒
−𝜆𝑥 = 1 − 𝐹𝑋(𝑥) 

et la densité de probabilité correspondante est :  

𝑓𝑋(𝑥) = 𝜆𝑒
−𝜆𝑥𝑈(𝑥)                  (2.11)  

 

est une exponentielle (figure 2.6). 

d) Loi uniforme discrète. 

 La variable aléatoire X est dite discrète uniforme si : 

 

𝑃{𝑋 = 𝑘} =
1

𝑁
        𝑘 = 1,2,… , 𝑁                                         (2.12) 

 



 

Figure 2.6 : Expérience des points de Poisson 

 

 

2. 3.3. Variables aléatoires continues  

Une variable aléatoire X est continue si X(Ω) est un intervalle dans  ℝ (union de 

plusieurs intervalles). Une variable aléatoire X est continue, s’il existe une fonction 𝑓𝑋(𝑥) de ℝ 

dans ℝ+ telle que : 

∀ 𝐼  ⊂ ℝ     𝑃(𝑋 ∈ 𝐼) = ∫ 𝑓𝑋(𝑥)𝑑𝑥𝐼
                                        (2.13) 

 

Où I est un intervalle dans  ℝ . La fonction 𝑓𝑋(𝑥) , est appelée densité de probabilité de X, 

ayant les propriétés suivantes : 

                𝑓𝑋(𝑥) ≥ 0 ,             ∫ 𝑓𝑋(𝑥)𝑑𝑥 = 1ℝ
 

Parmi les lois de probabilités continues on peut citer : 

a) La loi de probabilité uniforme 

Une variable aléatoire X est dite uniforme dans l’intervalle [a,b] , −∞ < 𝑎 < 𝑏 < ∞ , si : 

 

𝑓𝑋  (𝑥) = {
1

𝑏 − 𝑎
      𝑎 ≤ 𝑥 ≤ 𝑏

 0            𝑎𝑖𝑙𝑙𝑒𝑢𝑟𝑠

 

                              (2.14)  



 

Figure 2.7 : Densité de probabilité d’une loi uniforme continue sur l’intervalle  [𝑎, 𝑏] 

On écrira  𝑋 ↝ 𝑈(𝑎, 𝑏). La fonction de répartition de X est donnée par :  

 

𝐹𝑋(𝑥) = {

1                                 𝑥 ≥ 𝑏
𝑥−𝑎

𝑏−𝑎
                                        

0                                 𝑥 < 𝑎

𝑎 ≤ 𝑥 < 𝑏                  (2.15) 

b) La loi de probabilité normale  

La distribution normale (gaussienne) est l'une des distributions les plus couramment utilisées. 

On dit que 𝑋 est une variable aléatoire normale ou gaussienne de paramètres µ et 𝜎2(𝜇 𝜖 𝑅, 𝜎 >

0) , si sa  densité de probabilité est donnée par : 

 

𝑓𝑋  (𝑥) =
1

√2𝜋𝜎2
𝑒−(𝑥−𝜇)

2/2𝜎2  

                                         (2.16) 

  

Il s'agit d'une courbe en forme de cloche (voir Fig.2.8), symétrique par rapport au paramètre µ 

et sa fonction de répartition est donnée par : 

 

𝐹𝑋 (𝑥) = ∫ 𝑓𝑋  (𝑣)
𝑥

−∞

𝑑𝑣 = ∫
1

√2𝜋𝜎2
𝑒−(𝑣−𝜇)

2/2𝜎2
𝑥

−∞

𝑑𝑣 ≜ 𝐺 (
𝑥 − 𝜇

𝜎
) 

                (2.17)  

 

 

où la fonction 

𝐺(𝑥) = ∫
1

√2𝜋
𝑒−𝑣

2/2𝜎2
𝑥

−∞

𝑑𝑣 

                    (2.18)  

 



est souvent disponible sous forme de table. Puisque 𝑓𝑋  (𝑥) dépend de deux paramètres µ et σ2, 

la notation 𝑋 ↝ 𝑁(𝜇, 𝜎2) sera utilisée pour représenter la loi Gaussienne de (2.16).  

 
a) 𝑋 ↝ 𝑁(𝜇, 𝜎1

2)                                                            b) ↝ 𝑁(𝜇, 𝜎2
2) ,   𝜎1

2 > 𝜎2
2 

 

Figure 2.8 : densité de probabilité de la loi normale (loi Gaussienne). 

 

La constante √2𝜋𝜎2 de (2.16) est la constante de normalisation qui maintient l'aire sous 𝑓𝑋  (𝑥) 

à l'unité. 

Exercice : Vérifier que cette loi est une densité de probabilité. 

Pour répondre à cette question il faut vérifier    𝑓𝑋(𝑥) ≥ 0 ,    ∫ 𝑓𝑋(𝑥)𝑑𝑥 = 1ℝ
, ce qui nous 

mène  à calculer :  

𝑄 = ∫
1

√2𝜋𝜎2
𝑒−(𝑥−𝜇)

2/2𝜎2
+∞

−∞

𝑑𝑥 

 

On pose   𝑧 =
𝑥−𝜇

𝜎
⟹   𝑑𝑧 =

𝑑𝑥

𝜎
 

Il s’ensuit que : 

𝑄 = ∫
1

√2𝜋𝜎2
𝑒−𝑧

2/2𝜎2 . 𝜎
+∞

−∞

𝑑𝑧 =
1

√2𝜋
∫ 𝑒−𝑧

2/2𝜎2
+∞

−∞

𝑑𝑧 

Comme cette intégrale n’existe pas on passe aux coordonnées polaires pour la calculer. Nous 

allons utiliser la transformation  𝑥 = 𝑟𝑐𝑜𝑠𝜃, 𝑦 = 𝑟𝑠𝑖𝑛𝜃, de sorte que 𝑑𝑥 𝑑𝑦 = 𝑟 𝑑𝑟 𝑑𝛳 et 

donc : 

 

 

𝑄2 =
1

2𝜋𝜎2
∫ ∫ 𝑒

−
𝑥2+𝑦2

2𝜎2
+∞

−∞

𝑑𝑥𝑑𝑦
+∞

−∞

 

                                                   =    
1

2𝜋𝜎2
 ∫ ∫ 𝑒

−
𝑟2

2𝜎2
+∞

0
𝑟𝑑𝑟𝑑𝜃

2𝜋

0
 



                                                   =
1

2𝜋𝜎2
× 2𝜋𝜎2 ∫ 𝑒−𝑢

+∞

0
𝑑𝑢 = 1                        (2.19)   

c) La loi de probabilité normale centrée 

Le cas particulier  𝑋 ↝ 𝑁(0,1) est désigné comme « variable aléatoire normale centrée ». 

Sa densité de probabilité est donnée par : 

 

𝑓𝑋  (𝑥) =
1

√2𝜋
𝑒−𝑥

2/2                                               (2.20)  

 

 

La courbe représentative de cette fonction est symétrique par rapport à l’origine (figure 2.9). 

La fonction de répartition est exprimée par : 

 

𝐹𝑋(𝑥) = 𝑃(𝑋 ≤ 𝑥) = ∫ 𝑓𝑋  (𝑢)
𝑥

−∞

𝑑𝑢 

 

=  ∫
1

√2𝜋
𝑒−𝑢

2/2
𝑥

−∞

𝑑𝑢 

                        (2.21) 

 

Cette intégrale est donnée par une table (voir annexe). 

Pour calculer les probabilités d’une loi gaussienne quelconque il faut utiliser la table de la loi 

centrée réduite. Le passage vers cette dernière se fait en utilisant le théorème suivant :   

Théorème : Soit   𝑋 ↝ 𝑁(𝜇, 𝜎2) alors 𝑌 =
𝑋−𝜇

𝜎
↝ 𝑁(0,1) 

 
 

Figure 2.9 : Représentation graphique d’une loi normale centrée réduite 

 

Exemple 2.6    Soit  𝑋 ↝ 𝑁(2,9)  



1) Calculer  𝑃(𝑋 > 0).           2) Calculer  𝑃(−1 < 𝑋 < 3). 

Solution 

1) 𝑃(𝑋 > 0) = 𝑃 (
𝑋−2

3
>
−2

3
) 

 

On a la propriété suivante : 

𝐹𝑋(𝑥) = 1 − 𝐹𝑋(−𝑥) 
Ceci nous permet d’écrire : 

𝑃 (
𝑋 − 2

3
>
−2

3
) = 1 − 𝑃 (

𝑋 − 2

3
≤
−2

3
) 

= 1− 𝐹𝑌 (−
2

3
) = 𝐹𝑌 (

2

3
) 

                                              = 0.7454 

Cette valeur est donnée par la table de la loi centrée réduite (voir annexe). 

2) 𝑃(−1 < 𝑋 < 3) = 𝑃 (
−1−2

3
<
𝑋−2

3
<
3−2

3
) 

= 𝑃 (−1 <
𝑋 − 2

3
<
1

3
) 

= 𝑃 (
𝑋 − 2

3
<
1

3
) − 𝑃 (

𝑋 − 2

3
< −1) 

= 𝐹𝑌 (
1

3
)-𝐹𝑌(−1)= 𝐹𝑌 (

1

3
)-1 + 𝐹𝑌(1) 

𝐹𝑌 (
1

3
)  et  𝐹𝑌(1) se calculent à partir de la table. 

𝑃(−1 < 𝑋 < 3) = 0.4706 

 

d) Loi de probabilité exponentielle (distribution exponentielle)  

On dit que X suit une loi exponentielle de paramètre λ si sa densité de probabilité est donnée 

par (voir Fig.2.10) : 

𝑓𝑋  (𝑥) = {
λ𝑒−λx       𝑥 ≥ 0
0       𝑎𝑖𝑙𝑙𝑒𝑢𝑟𝑠

                                          (2.22)                             

 

 
Figure 2.10 : Densité de probabilité d’une loi exponentielle. 

 



La fonction de répartition de cette loi est exprimée par : 

𝐹𝑋(𝑥) = 𝑃(𝑋 ≤ 𝑥) = ∫ 𝑓𝑋  (𝑢)
𝑥

−∞

𝑑𝑢 

=  ∫ λ𝑒−λu 
𝑥

0

du 

                                                           = −𝑒−λu ∣0
𝑥=1 − 𝑒−λx 

𝐹𝑋(𝑥) = 1 − 𝑒
−λx                                                    (2.23) 

 

Exemple 2.7 : Supposons que la durée de vie d'un appareil ait une distribution exponentielle 

avec  λ= 10 ans. Un appareil usagé est acheté par quelqu'un. Quelle est la probabilité qu'il 

n'échoue pas dans les 5 prochaines années ? 

 

Solution 

 

 En raison de la propriété « sans mémoire » de la loi exponentielle(le passé n'a pas 

d'importance), cela n'a pas d'importance si l'appareil a été en service pendant de nombreuses 

années avant son achat. Par conséquent, si 𝑋 est la variable aléatoire représentant la durée de 

vie de l'appareil et sa durée de vie réelle jusqu'à l'instant présent, alors : 

𝑃{𝑋 > 𝑡0 + 5|𝑋 > 𝑡0} =  𝑃{𝑋 > 5} = 𝑒
−5/10 = 𝑒−0.5 = 0.368 

 

Exemple 2.8 : Supposons que le temps d'attente qu'un client passe dans un restaurant ait une 

distribution exponentielle d'une valeur moyenne de 5 minutes. La probabilité qu'un client passe 

plus de 10 minutes dans le restaurant est donnée par : 

𝑃{𝑋 > 10} = 𝑒−5/𝜆 = 𝑒−10/5 = 𝑒−2 = 0.1353 

En d'autres termes, le passé n'a pas d'importance. 

Une généralisation de la distribution exponentielle conduit à la distribution gamma. 

 

e) Loi de probabilité GAMMA.  

X  est dite une variable aléatoire gamma avec les paramètres α et β, positifs si :  

𝑓𝑋(𝑥) =  {
𝑥𝛼−1

Γ(𝛼)𝛽𝛼
𝑒
−
𝑥

𝛽      𝑥 ≥ 0

0       𝑎𝑖𝑙𝑙𝑒𝑢𝑟𝑠
                                   (2.23) 



 

où  Γ(𝛼) représente la fonction gamma définie comme : 

 

Γ(𝛼) = ∫ 𝑥𝛼−1𝑒−𝑥
∞

0
𝑑𝑥                                                  (2.24)  

Si  α est un entier, l’intégration par parties de Γ(𝛼) donne : 

 

Γ(𝑛) = (n − 1)Γ(𝑛 − 1) = (𝑛 − 1)!            (2.25) 

 

La densité de probabilité gamma a une variété de formes en fonction des valeurs de α et β. 

-  Pour  𝛼 < 1 ,   𝑓𝑋(𝑥)  est strictement décroissant et lim
𝑥 → 0

𝑓𝑋(𝑥) → ∞ , lim
𝑥 → ∞

𝑓𝑋(𝑥) → 0   

- Pour 𝛼 > 1 , la densité 𝑓𝑋(𝑥) a un mode unique   en  𝑥 =
𝛼−1

𝛽
 avec une valeur maximale 

[(𝛼−1)𝑒−1]𝛼−1

𝛽𝛤(𝛼)
.  

La figure 2.11 montre l’allure de certaines densités de probabilité typiques de la loi gamma. 

Certains cas particuliers de la distribution gamma sont largement utilisés et ont des noms 

spéciaux. Notons que la variable aléatoire exponentielle définie dans (2.22) est un cas 

particulier de distribution gamma avec 𝛼 = 1.  

Si on prend 𝛼 = 𝑛/2  et  𝛽 =  2, nous obtenons la variable aléatoire 𝜒2 (chi-carré) avec n degrés 

de liberté. Pour 𝛼 = 𝑛  en (2.23), nous obtenons la fonction de densité gamma pour être (avec 

= 
1

𝜆
 ). 

𝑓𝑋(𝑥) =  {
𝜆𝑛𝜆𝑥𝑛−1

(n − 1)!
𝑒−𝜆𝑥       𝑥 ≥ 0

0       𝑎𝑖𝑙𝑙𝑒𝑢𝑟𝑠

 

                                  (2.26)  

En intégrant par parties l’équation (2.26), on obtient la fonction de répartition correspondante 

à la variable aléatoire gamma soit : 

F𝑋(𝑡) = ∫ 𝑓𝑋(𝑥)
𝑡

0

𝑑𝑥 = 1 −∑
(𝜆𝑡)𝑘

𝑘!

𝑛−1

𝑘=0

 

              (2.27)  

Si 𝜆 =  𝑛𝜇, dans (2.26) et (2.27), alors cela correspond à une variable aléatoire Erlangienne. 

Ainsi  𝐺(𝑛, 1 𝑛𝜇⁄ ),correspond à une densité de probabilité Erlangienne (𝐸𝑛). 



 

 

 
 

Figure 2.11 : Différentes formes de la densité de probabilité gamma. 

 

Dans ce cas, 𝑛 =  1 donne une variable aléatoire exponentielle, et 𝑛 → ∞ donne une densité 

de probabilité constante (𝐹𝑋 (𝑡)  =  1), pour 𝑡 >  
1

𝜇
 et zéro ailleurs). Ainsi, l’aléatoire à la 

certitude est couvert par la distribution erlangienne car n varie entre 1 et ∞. De nombreuses 

distributions importantes se produisant dans la pratique se situent entre ces deux cas et elles 

peuvent être approximées par une distribution Erlangienne pour un bon choix de n. 

 



 
Figure 2.12: Densités de probabilités 𝜒2 (chi-carré)  pour n = 2, 5, 8 et 10. 

 

 

f) Loi de probabilité chi carré (CHI-SQUARE) 

Une variable aléatoire X  suit la loi  𝝌𝟐 (𝑛) (chi carré) avec n degrés de liberté si : 

 

𝑓𝑋(𝑥) =  {
𝑥𝑛/2−1

Γ(𝑛/2)2𝑛/2
𝑒−

𝑥
2      𝑥 ≥ 0

0       𝑎𝑖𝑙𝑙𝑒𝑢𝑟𝑠

 

                 (2.28)   

La figure 2.12 montre des allures de 𝝌𝟐 (𝑛) pour diverses valeurs de 𝑛. Si on prend 

𝑛 =  2 dans (2.27), on obtient une distribution exponentielle. Il est également possible de 

généraliser la variable aléatoire exponentielle de manière à éviter sa propriété sans mémoire 

évoquée précédemment. En réalité, la plupart des appareils se détériorent avec le temps de sorte 

qu'un modèle exponentiel est inadéquat pour décrire la durée de sa durée de vie et son taux de 

défaillance. Dans ce contexte, considérons la fonction de répartition suivante : 

F𝑋(𝑡) = 1 − 𝑒
−∫ λ(𝑡)

𝑥
0

𝑑𝑡       𝑥 ≥ 0      λ(𝑡) ≥ 0 

    (2.29) 

La densité de probabilité associée est donnée par : 

 

f𝑋(𝑥) = λ(𝑥)𝑒
−∫ λ(𝑡)

𝑥
0

𝑑𝑡         𝑥 ≥ 0      λ(𝑡) ≥ 0 
     (2.30)  

 



Notons que λ (t) = constant, donne lieu à la distribution exponentielle et pour généraliser ça 

correspond à : 

𝜆 (𝑡) = 𝛼𝑡𝛽−1              (2.31) 

et en substituant (2.31) dans (2.30) , on obtient : 

 

𝑓𝑋(𝑥) =  {
𝛼𝑥𝛽−1𝑒−𝛼𝑥

𝛽/𝛽      𝑥 ≥ 0
0       𝑎𝑖𝑙𝑙𝑒𝑢𝑟𝑠

                      (2.32)  

 

et elle est connue sous le nom de densité de probabilité de Weibull (voir Fig. 2.13). 

 
 

Figure. 2.13 : Densité de probabilité de Weibull 

Le cas particulier de Weibull avec 𝛼 = 1/𝜎2et  𝛽 = 2 est connu sous le nom de loi de 

probabilité de Rayleigh. Ainsi, la loi de Rayleigh a un taux linéaire en (2.31). 

 

2.3.4. Exercices d’application  

Exercice 1 

Dans l'expérience du lancement d’une pièce de monnaie, les probabilités d’avoir pile ou face 

sont égales p et q respectivement à. On définit la variable aléatoire X telle que : 

X(face) = 1     X(pile) = 0. 

 

Trouver sa fonction de répartition 𝐹𝑋(𝑥) =  𝑃{𝑋 ≤  𝑥} pour tout 𝑥 de -∞ à + ∞. 

Solution 

- Si      𝑥 < 0,    alors  𝑋(𝑓)  =  1 > 𝑥  et  𝑋(𝑝)  =  0 > 𝑥    Donc :  



    𝐹𝑋(𝑥) =  𝑃{𝑋 ≤ 𝑥 } = 𝑃{∅ } = 0. 

- Si      0 ≤ 𝑥 < 1,    alors   𝑋(𝑓)  =  1 > 𝑥  et  𝑋(𝑝)  =  0 ≤ 𝑥    Donc :  

    𝐹𝑋(𝑥) =  𝑃{𝑋 ≤ 𝑥 } = 𝑃{𝑝 } = 𝑞. 

- Si      𝑥 ≥ 1,    alors   𝑋(𝑓)  =  1 ≤ 𝑥  et  𝑋(𝑝)  =  0 ≤ 𝑥    Donc :  

    𝐹𝑋(𝑥) =  𝑃{𝑋 ≤ 𝑥 } = 𝑃{𝑓, 𝑝 } = 1. 

 

La figure ci-dessus illustre l’allure de 𝐹𝑋(𝑥) et de 𝑓𝑋(𝑥) respectivement. 

Exercice 2 

Nous allons reprendre l’exemple 2.1 avec la variable aléatoire   𝑋(𝑓𝑖) = 10 𝑖 de l’expérience 

du dé (figure 2.14) t.q : 

- L’ensemble {𝑋 ≤ 35} concerne les éléments  𝑓1 , 𝑓2, et 𝑓3 car  

𝑋(𝑓𝑖) ≤ 35 est vérifié seulement pour i=1,2,3 

- L’ensemble {𝑋 ≤ 5} est vide car il n’y a pas de résultat tel que 𝑋(𝑓𝑖) ≤ 5. 

- L’ensemble {20 ≤ 𝑋 ≤ 35} concerne les éléments  𝑓2, et 𝑓3 car ceci est vérifié seulement 

pour i=2 ou 3. 

- L’ensemble {𝑋 = 40} concerne l’élément   𝑓4 car  𝑋(𝑓𝑖) = 40 est vérifié seulement pour 

i=4. 

-  L’ensemble {𝑋 = 35} est vide car il n’y a pas de résultat tel que 𝑋(𝑓𝑖) = 35.  

 

Trouver sa fonction de répartition 𝐹𝑋(𝑥) =  𝑃{𝑋 ≤  𝑥} pour tout 𝑥 de -∞ à + ∞. 

 

 
Figure 2.14 : Valeurs possible de 𝑋 

 



Solution 

Si le dé est équilibré, alors la fonction de répartition de X est une fonction en marche d'escalier 

comme le montre la figure 2.15.  

Nous notons, en particulier, que : 

                                                𝐹𝑋(100) =  𝑃{𝑋 ≤ 100 } = 𝑃{𝑆 } = 1 

𝐹𝑋(35) =  𝑃{𝑋 ≤ 35 } = 𝑃{𝑓1,𝑓2,, 𝑓3} =
3

6
 

                                   𝐹𝑋(30.01) =  𝑃{𝑋 ≤ 30.01 } = 𝑃{𝑓1,𝑓2,, 𝑓3} =
3

6
 

𝐹𝑋(30) =  𝑃{𝑋 ≤ 30 } = 𝑃{𝑓1,𝑓2,, 𝑓3} =
3

6
 

                                   𝐹𝑋(29.99) =  𝑃{𝑋 ≤ 29.99 } = 𝑃{𝑓1,𝑓2,} =
2

6
 

 
   

 Figure 2.15 : fonction de répartition et densité de probabilité de la variable aléatoire 

𝑋. 

 

Exercice 3 

Un appel téléphonique se produit au hasard dans l'intervalle [0, 1]. Dans cette expérience. Les 

résultats sont des distances de temps t entre 0 et 1 et la probabilité que t soit entre t1 et t2 est 

donnée par : 

 

 𝑃{𝑡1 ≤ 𝑡 ≤ 𝑡2 } = 𝑡2 − 𝑡1 
 

On définit la variable aléatoire X telle que : 

 

𝑋(𝑡) = 𝑡     0 ≤ 𝑡 ≤ 1 

Ainsi la variable t a une double signification :  

- elle est le résultat de l'expérience  

- et la valeur correspondante 𝑥 (𝑡) de la variable aléatoire. 

 Nous montrerons que la fonction de répartition 𝐹𝑋(𝑥) de 𝑋 est une rampe comme sur la 

figure (2.16 a) 



    
(a)                                                                            (b) 

Figure 2.16 : Fonction de répartition et densité de probabilité de 2 variables aléatoires. 

 

Solution 

- Si  𝑥 >  1, alors 𝑋 (𝑡) ≤ 𝑥 pour chaque résultat. Par conséquent  

                     𝐹𝑋(𝑥) =  𝑃{𝑋 ≤ 𝑥 } = 𝑃{0 ≤ 𝑡 ≤ 1 } = 𝑃{𝑆 } = 1       𝑥 > 1   

- Si      0 ≤ 𝑥 < 1,    alors   𝑋(𝑡)  ≤ 𝑥  pour tout t dans l’intervalle [0, 𝑥]. Donc   

    𝐹𝑋(𝑥) =  𝑃{𝑋 ≤ 𝑥 } = 𝑃{0 ≤ 𝑡 ≤ 𝑥 } = 𝑥. 

- Si      𝑥 < 0 , 𝑎𝑙𝑜𝑟𝑠 {𝑋 ≤ 𝑥 }  , est l’évènement impossible car 𝑋(𝑡)  ≥ 0  pour chaque t. 

Donc   𝐹𝑋(𝑥) =  𝑃{𝑋 ≤ 𝑥 } = 𝑃{∅} = 0. 

 

Exercice 4 

Supposons qu’une variable aléatoire est tel que  𝑋(𝜉) = 𝑎 pour chaque 𝜉 de S. Donner   sa 

fonction de répartition 𝐹𝑋(𝑥) =  𝑃{𝑋 ≤  𝑥} . 

Solution 

- Si  𝑥 ≥  𝑎, alors 𝑋 (𝜉) = 𝑎 ≤ 𝑥 pour chaque ξ. Par conséquent ; 

                     𝐹𝑋(𝑥) =  𝑃{𝑋 ≤ 𝑥 } = 𝑃{𝑆 } = 1       𝑥 ≥ 𝑎   

- Si      𝑥 < 𝑎 , 𝑎𝑙𝑜𝑟𝑠 {𝑋 ≤ 𝑥 }  , est l’évènement impossible car 𝑋(𝜉) = 𝑎. Donc ; 

   𝐹𝑋(𝑥) =  𝑃{𝑋 ≤ 𝑥 } = 𝑃{∅} = 0. 

 

Une constante peut être interprétée comme une variable aléatoire avec une fonction de 

répartition   𝑈(𝑥 − 𝑎) comme le montre la figure (2.16 b). 



Remarque : 

A partir de l’allure de 𝐹𝑋 (𝑥)on peut connaitre le type de la variable aléatoire (continu, discret 

et mixte) : 

- La variable aléatoire 𝑋 est dite de type continu si sa fonction de répartition est continue. 

Dans ce cas 𝐹𝑋 (𝑥
−) = 𝐹𝑋 (𝑥) pour tout x.  

- Si 𝐹𝑋 (𝑥) est constant sauf pour un nombre fini de discontinuités de sauts (constante par 

morceaux), alors X est une variable aléatoire de type discret. Si 𝑥𝑖 est un tel point de 

discontinuité, alors on a :   𝑃 {𝑋 = 𝑥𝑖} = 𝐹𝑋 (𝑥𝑖) − 𝐹𝑋 (𝑥𝑖
−) = 𝑝𝑖                   

 

Par exemple, de la figure 2.16, au point de discontinuité on obtient : 

𝑃 {𝑋 = 𝑎} = 𝐹𝑋 (𝑎) − 𝐹𝑋 (𝑎
−) = 1 − 0 = 1 

Et de la figure 2.2, pour un tel point on aura : 

𝑃 {𝑋 = 0} = 𝐹𝑋 (0) − 𝐹𝑋 (0
−) = 𝑞 − 0 = 𝑞 

 

Exercice 5 

Une pièce équiprobable est lancée deux fois et la variable aléatoire X représente le nombre de 

faces obtenues. Trouvez 𝐹𝑋(𝑥). 

 

Solution 

Dans ce cas 

Ω = {𝐹𝐹, 𝐹𝑃, 𝑃𝐹, 𝑃𝑃} 
 

𝑋(𝐹𝐹) = 2          𝑋(𝐹𝑃) = 1          𝑋(𝑃𝐹) = 1     𝑋(𝑃𝑃) = 0  

Les valeurs de X  sont donc :  𝑥 = {0,1,2} 

- Si        𝑥 < 0,    {𝑋(𝜉) ≤ 𝑥} = ∅ ⟹ 𝐹𝑋 (𝑥) = 0 

- Si        

0 ≤ 𝑥 < 1, {𝑋(𝜉) ≤ 𝑥} = {𝑃𝑃} ⟹ 𝐹𝑋 (𝑥) = 𝑃{𝑃𝑃} = 𝑃{𝑃}𝑃{𝑃} =
1

4
 

 

- Si  1 ≤ 𝑥 < 2,  

{𝑋(𝜉) ≤ 𝑥} = {𝑃𝑃, 𝐹𝑃, 𝑃𝐹} ⟹ 𝐹𝑋 (𝑥) = 𝑃{𝑃𝑃} + 𝑃{𝐹𝑃} + 𝑃{𝑃𝐹} =
3

4
 

 

- Si  𝑥 ≥ 2, {𝑋(𝜉) ≤ 𝑥} = Ω⟹ 𝐹𝑋 (𝑥) = 1 

 



 L’allure de 𝐹𝑋 (𝑥) est donnée par la figure 2.17, au point de discontinuité 

𝑃{𝑋 = 1} = 𝐹𝑋 (1) − 𝐹𝑋 (1
−) =

3

4
−
1

4
=
1

2
 

 

 
Figure 2.17 : Fonction de répartition de la v.a 𝑋 

 

2.3.5. Relation entre la densité de probabilité et fonction de répartition 

La dérivée de la fonction de répartition 𝐹𝑋 (𝑥) représente la densité de probabilité 

𝑓𝑋  (𝑥) de la variable aléatoire 𝑋. Donc : 

𝑓𝑋  (𝑥) ≜
𝑑𝐹𝑋 (𝑥)

𝑑𝑥
 

                                            (2. 33) 

Puisque      

𝑑𝐹𝑋 (𝑥)

𝑑𝑥
= 𝑙𝑖𝑚𝛥𝑥→0

𝐹𝑋 (𝑥 + 𝛥𝑥) − 𝐹𝑋 (𝑥)

𝛥𝑥
≥ 0 

                 (2.34) 
                

de la nature monotone non décroissante de  𝐹𝑋 (𝑥), il s'ensuit que 𝑓𝑋  (𝑥) ≥ 0 pour tout 𝑥. Si 𝑋 

est une variable aléatoire de type continu, 𝑓𝑋  (𝑥)sera une fonction continue. Cependant, si 𝑋 est 

une variable aléatoire de type discret, sa densité de probabilité a la forme générale (Fig. 2.18b) 

suivante : 

 

𝑓𝑋  (𝑥) = ∑ 𝑝𝑖𝑖 𝛿(𝑥 − 𝑥𝑖)                                   (2.35) 

où 𝛿(𝑥𝑖) représente les points de sauts de discontinuité dans 𝐹𝑋 (𝑥) comme le montre Fig. 2.18. 

De (2. 33), on obtient aussi par intégration : 

 

𝐹𝑋 (𝑥) = ∫ 𝑓𝑋  (𝑢)
𝑥

−∞
𝑑𝑢                                     (2.36) 



 

Puisque  𝐹𝑋 (+∞) = 1, (2.36) mène à : 

 

∫ 𝑓𝑋  (𝑥)
+∞

−∞
𝑑𝑥 = 1                           (2.37)  

Ce qui justifie son nom comme fonction de densité. 

 
(a)                                                                       (b) 

Figure 2.18 : fonction de répartition(a) et densité de probabilité(b) de 𝑋. 

De plus, à partir de (2.36), nous obtenons également (Fig.2.19): 

𝑃 {𝑥1 < 𝑋(𝜉) ≤ 𝑥2} = 𝐹𝑋 (𝑥2) − 𝐹𝑋 (𝑥1) = ∫ 𝑓𝑋  (𝑥)𝑑𝑥
𝑥2

𝑥1
                (2.38)  

Ainsi l'aire en dessous de 𝑓𝑋  (𝑥) dans l'intervalle [𝑥1,  𝑥2] représente la probabilité que la 

variable aléatoire 𝑋 se trouve dans ce dernier comme dans (2.38). Si la variable aléatoire 𝑋 est 

continue, alors l'ensemble de gauche peut être remplacé par l'ensemble {𝑥1 < 𝑋 ≤ 𝑥2}. 

 

 

 

 

Figure 2.19 : Fonction de répartition(a) et densité de probabilité (b) d’une v.a 𝑋 

 



 

Cependant, si 𝐹𝑋(𝑥) est discontinue en 𝑥1 ou 𝑥2, alors l'intégration doit inclure les impulsions 

correspondantes de 𝑓𝑋  (𝑥). Avec 𝑥1  =  𝑥 et 𝑥2 =  𝑥 +  𝛥 𝑥 , il résulte de (2.38) que, si 𝑋 est 

de type continu, alors : 

 

𝑃 {𝑥 < 𝑋 ≤ 𝑥 + ∆𝑥} ≅ 𝑓𝑋  (𝑥)∆𝑥                   (2.39)  

 

∆𝑥 est suffisamment petit. Ceci montre que 𝑓𝑋  (𝑥) peut être définie par une limite telle que : 

 

𝑓𝑋  (𝑥) = 𝑙𝑖𝑚∆𝑥→0

𝑃 {𝑥 < 𝑋 ≤ 𝑥 + ∆𝑥}

∆𝑥
 

                (2.40) 

2.4. Fonctions de variables aléatoires 

 

Supposons que 𝑋 soit une variable aléatoire et que 𝑔(𝑋) soit une fonction de la variable 

réelle 𝑋. L'expression : 𝑌 =  𝑔(𝑋)  est une nouvelle variable aléatoire. 

Pour un ζ donné, 𝑋(𝜉) est un nombre et 𝑔[𝑋(𝜉)] est un autre nombre spécifié en fonction 

de 𝑋(𝜉) et (𝑋) . Ce nombre est la valeur 𝑌(𝜉) = 𝑔[𝑋(𝜉)] affectée à la variable aléatoire 𝑌. 

La fonction de répartition 𝐹𝑌 (𝑦) de la variable aléatoire ainsi formée est la probabilité de 

l'événement {𝑌 ≤ 𝑦} consistant en tous les résultats 𝜉 tels que 𝑌(𝜉) = 𝑔[𝑋(𝜉)] ≤ 𝑦 Ainsi : 

 

𝐹𝑌 (𝑦) =  P{Y ≤  y} =  P{g(X)  ≤  y}                               (2.41)      

 

 

Pour un 𝒚 spécifique, les valeurs de 𝑥 telles que 𝑔 (𝑥)  ≤  𝑦 forment un ensemble sur l’axe des 

𝑥 noté 𝑅𝑦 . Clairement, 𝑔[𝑋(𝜉)] ≤ 𝑦 si 𝑋(𝜉) est un nombre dans l'ensemble 𝑅𝑦 .D'où : 

 

𝐹𝑌 (𝑦) =  P{X ∈  𝑅𝑦}                         (2.42)    

 

Pour que 𝑔(𝑥) soit une variable aléatoire, elle doit avoir les propriétés suivantes : 

 



1. Son domaine doit inclure la plage de la variable aléatoire  𝑋. 

 

2. Il doit s'agir d'une fonction borélienne, c'est-à-dire, pour tout  𝑦, l'ensemble 𝑅𝑦 tel que 

𝑔(𝑋)  ≤ 𝑦 doit être constitué par la réunion et l'intersection d'un nombre dénombrable 

d'intervalles. Alors seulement {𝑌 ≤  𝑦} est un événement. 

 

3. Les événements {𝑔(𝑋)  =  ±∞} doivent avoir une probabilité nulle. 

 

2.4.1. La fonction de répartition de 𝒈(𝑿)  

Nous exprimerons la fonction de répartition 𝐹𝑦(𝑦) de variable aléatoire 𝑌 =  𝑔(𝑋) en 

fonction de la fonction répartition 𝐹𝑋(𝑥) de variable aléatoire X et de la fonction g (X). Pour 

cela, il faut déterminer l'ensemble  𝑅𝑦 de l'axe des 𝑥 tel que 𝑔(𝑋)  ≤ 𝑦, et la probabilité que 𝑥 

soit dans cet ensemble. La méthode sera illustrée par plusieurs exemples. Sauf indication 

contraire, on supposera que 𝐹𝑋(𝑥) est continue.  

Exemple 2.9 : Nous commençons par la fonction 𝑔(𝑥) de la figure 2.20. On voit qu’elle est 

comprise entre a et b pour tout 𝑥. Cela conduit à la conclusion que :  

 Si 𝑦 ≥ 𝑏 alors 𝑔(𝑥) ≤ 𝑦 pour tout 𝑥, donc 𝑃{𝑌 ≤ 𝑦} = 1 

 Si 𝑦 < 𝑎 alors il n’existe aucun 𝑥  tel que  𝑔(𝑥) ≤ 𝑦 donc 𝑃{𝑌 ≤ 𝑦} = 0 

Ainsi ; 

𝐹𝑦(𝑦) = {
1         𝑦 ≥ 𝑏
0         𝑦 < 𝑎

 

Avec 𝑥1 et 𝑦1  =  𝑔(𝑥1) comme indiqué, nous observons que 𝑔(𝑥) ≤ 𝑦1 pour 𝑥 ≤ 𝑥1. D'où 

𝐹𝑌(𝑦1) = 𝑃{𝑥 ≤ 𝑥1} = 𝐹𝑋(𝑥1) 

Finalement nous remarquons que : 

𝑔(𝑥) ≤ 𝑦2    si 𝑥 ≤ 𝑥′2  ou si    𝑥′′2 ≤ 𝑥 ≤ 𝑥′′′2 

D'où 

𝐹𝑌(𝑦2) = 𝑃{𝑥 ≤ 𝑥′2} + 𝑃{𝑥′′2 ≤ 𝑥 ≤ 𝑥′′′2} = 𝐹𝑋(𝑥′2) + 𝐹𝑋(𝑥′′′2) − 𝐹𝑋(𝑥′′2) 

car les événements {𝑥 ≤ 𝑥′2} et {𝑥′′2 ≤ 𝑥 ≤ 𝑥′′′2} s'excluent mutuellement. 

 

Exemple 2.10 : Soient 𝑋 et 𝑌 deux variables aléatoires tel que :  

𝑌 = 𝑎𝑋 + 𝑏                       (2.43)  



Pour trouver 𝐹𝑦(𝑦), on doit chercher les valeurs de 𝑥 tel que 𝑎𝑋 + 𝑏 ≤ 𝑦 . 

a) Si > 0 , donc 𝑎𝑋 + 𝑏 ≤ 𝑦 pour 𝑋 ≤ (𝑦 − 𝑏)/𝑎 (Figure 5-2a). Donc 

 

𝐹𝑌(𝑦) = 𝑃 {𝑋 ≤
𝑦 − 𝑏

𝑎
} = 𝐹𝑋 (

𝑦 − 𝑏

𝑎
)           𝑎 > 0 

b) Si < 0 , donc 𝑎𝑋 + 𝑏 ≤ 𝑦 pour 𝑋 > (𝑦 − 𝑏)/𝑎 (Figure 2.21b). Donc 

 

𝐹𝑌(𝑦) = 𝑃 {𝑋 ≥
𝑦 − 𝑏

𝑎
} = 𝑃 {𝑋 <

𝑦 − 𝑏

𝑎
} = 1 − 𝐹𝑋 (

𝑦 − 𝑏

𝑎
)           𝑎 < 0 

 

 

Figure 2.20 : Allure de la fonction 𝑔(𝑥) 

 

Figure 2.21 : Représentation de 𝑦 (a)  𝑎 > 0  (b)  𝑎 < 0 

Exemple 2.11 : Soient 𝑋 et 𝑌 deux variables aléatoires tel que : 

𝑌 = 𝑋2 

 Si 𝑦 ≥ 0, alors 𝑋2 ≤ 𝑦 pour −√𝑦  ≤ 𝑋 ≤ √𝑦 (fig.2.22a). Donc  

𝐹𝑌(𝑦) = 𝑃(−√𝑦  ≤ 𝑋 ≤ √𝑦 ) = 𝐹𝑋(√𝑦) − 𝐹𝑋(−√𝑦)         𝑦 > 0 

 Si 𝑦 < 0, alors il n’existe aucune valeur de 𝑥 tel que 𝑋2 < 𝑦 . Donc 



𝐹𝑌(𝑦) = 𝑃{∅}  = 0       𝑦 < 0 

2.4.2. La densité de probabilité de 𝒈(𝑿) 

 

Par une dérivation directe de 𝐹𝑌(𝑦) , on obtient : 

𝑓𝑌(𝑦) = {

  
1

2√𝑦
(𝑓𝑋(√𝑦 ) + 𝑓𝑋(−√𝑦 ))             𝑦 > 0

0                                                  𝑎𝑖𝑙𝑙𝑒𝑢𝑟𝑠 

                 (2.44)     

 

Si 𝑓𝑋(𝑥 ) est une fonction paire, alors (2.44) se réduit à : 

𝑓𝑌(𝑦) = {

  
1

√𝑦
 𝑓𝑋(√𝑦 )𝑈(𝑦)            

 
         (2.45)  

 

Figure 2.22 : (a) courbe de = 𝑥2 ,  (b) fonctions de répartition de 𝑋 et 𝑌 respectivement 

En particulier si 𝑋 ↝ 𝑁(0,1), pour que 

   

𝑓𝑋(𝑥) =
1

√2𝜋
𝑒
−𝑥2

2  

                                              (2.46)   

et en substituant ceci dans (2.45), on obtient la densité de probabilité de 𝑌 = 𝑋2 soit : 

𝑓𝑌(𝑦) = {

  
1

√2𝜋𝑦
 𝑓𝑋(√𝑦 )

−𝑦/2
𝑈(𝑦)            

 
         (2.47)  

 

En comparant ceci avec (2.28), nous remarquons que (2.47) représente une variable aléatoire 

chi-carrée avec n=1, puisque ᴦ (
1

2
) = √𝜋 . Donc, si 𝑋 est une variable aléatoire gaussienne avec 

µ=0, alors 𝑌 = 𝑋2  représente une variable aléatoire chi-carrée avec un degré de liberté. 

Cas particulier :  Si 𝑋 est uniforme dans l'intervalle [−1, 1], alors 



𝐹𝑋(𝑥 ) =
1

2
+
𝑥

2
                    |𝑥| < 1 

(Fig. 2.22b). D'où 

𝐹𝑌(𝑦 ) = {
√𝑦            0 ≤ 𝑦 ≤ 1

1                    𝑦 > 1
0                   𝑦 < 0

     

 

Exemple 2.12 : Considérons la fonction de la figure 2.23  

𝑔(𝑥) = {
 0                  − 𝑐 ≤ 𝑥 ≤ 𝑐
𝑥 − 𝑐                       𝑥 > 𝑐
𝑥 + 𝑐                    𝑥 < −𝑐

                                     (2.48)  

 

Dans ce cas, 𝐹𝑌(𝑦 ) est non continue en 𝑦 = 0 et sa discontinuité est égale à  

 𝐹𝑋(𝑐 ) − 𝐹𝑋(−𝑐 ). 

 

En outre, 

 Si 𝑦 ≥ 0  alors  𝑃{𝑌 ≤ 𝑦} = 𝑃{𝑋 ≤ 𝑦 + 𝑐} = 𝐹𝑋(𝑦 + 𝑐 ) 

 Si 𝑦 < 0  alors  𝑃{𝑌 ≤ 𝑦} = 𝑃{𝑋 ≤ 𝑦 − 𝑐} = 𝐹𝑋(𝑦 − 𝑐 ) 

 

 

Figure 2.23 : (a) courbe de 𝑦  (b) fonctions de répartition de 𝑋 et 𝑌 respectivement. 

 

Exemple 2.13 : La courbe de 𝑔(𝑥) de la figure 2.24 est constante pour 𝑥 ≤ −𝑏  et 𝑥 ≥ 𝑏 et est 

une droite dans l’intervalle [-b,b]. Avec 𝑌 = 𝑔(𝑋), il s'ensuit que 𝐹𝑌(𝑦 ) est discontinue pour 

 𝑦 = 𝑔(−𝑏) = −𝑏 et 𝑦 =  𝑔(𝑏) = 𝑏, respectivement. En outre, 

 Si 𝑦 ≥ 𝑏  alors  𝑔(𝑥) ≤ 𝑦   pour tout 𝑥 ; par conséquent  𝐹𝑌(𝑦 ) = 1 

 Si −𝑏 ≤ 𝑦 ≤ 𝑏  alors  𝑔(𝑥) ≤ 𝑦   pour tout 𝑥 ≤ 𝑦 ; par conséquent  𝐹𝑌(𝑦 ) = 𝐹𝑋(𝑥 ) 



 Si 𝑦 < −𝑏  alors  𝑔(𝑥) ≤ 𝑦   pour aucun 𝑥 ; par conséquent  𝐹𝑌(𝑦 ) = 0. 

 

 

Figure 2.24 : (a) courbe de 𝑔(𝑥)  (b) fonctions de répartition de 𝑋 et 𝑌 respectivement 

 

 Exemple 2.14 : Soit     𝑌 = 𝑋2 

a) Si 𝑋 prend les valeurs 1,2,…,6 avec la probabilité 1/6, alors les valeurs de 𝑌 sont : 12, 

22,…, 62 avec la même probabilité de 1/6. 

b)  Si, cependant, 𝑋 prend les valeurs -2, -1, 0, 1, 2,3 avec la probabilité 1/6, alors 𝑌 prend 

les valeurs 0. 1, 4,9 avec probabilités 1/6, 2/6, 2/6, 1/6, respectivement. 

 

2.5. Moments et statistiques d’une variable aléatoire 

2.5.1. Moyenne d’une variable aléatoire (Moment d’ordre 1) 

a) Variable aléatoire continue 

La valeur espérée ou moyenne d’une variable aléatoire 𝑋 est par définition l’intégrale suivante : 

𝐸{𝑋} = ∫ 𝑥𝑓𝑋(𝑥)𝑑𝑥
+∞

−∞

 

                                         (2.49) 

Elle peut être aussi notée par µ𝑋   ou µ. 

 

Exemple 2.15 : Si 𝑋 est uniforme sur l’intervalle [𝑥1, 𝑥2 ], alors 𝑓𝑋(𝑥) =
1

𝑥2−𝑥1
 dans ce 

domaine. Par conséquent : 

𝐸{𝑋} =
1

𝑥2 − 𝑥1
∫ 𝑥𝑑𝑥
𝑥2

𝑥1

 

Nous remarquons que, si la ligne verticale 𝑥 = 𝑎 est un axe de symétrie de  𝑓𝑋(𝑥) alors : 



 𝐸{𝑋} = 𝑎 . En particulier, si 𝑓𝑋(−𝑥) = 𝑓𝑋(𝑥) alors 𝐸{𝑋} = 0. Dans l’exemple précèdent, 

𝑓𝑋(𝑥) est symétrique par rapport à la droite  𝑥 =
𝑥1+𝑥2

2
 

b) Variable aléatoire discrète 

 

Dans ce cas l’intégrale de (2.50) peut être écrite comme une somme. En effet, supposons que 

𝑋 prenne les valeurs 𝑥𝑖 avec une probabilité 𝑝𝑖. Dans ce cas, on a : 

 

𝑓𝑋(𝑥) = ∑𝑝𝑖δ(𝑥 − 𝑥𝑖)                                           (2.51)  

 

En substituant dans (2.50) et utilisant l'identité  ∫ 𝑥δ(𝑥 − 𝑥𝑖)𝑑𝑥
+∞

−∞
= 𝑥𝑖 , on obtient : 

 

𝐸{𝑋} = ∑ 𝑝𝑖𝑥𝑖𝑖       𝑝𝑖 = 𝑃{𝑋 = 𝑥𝑖}                   (2.52)  

 

Exemple 2.16 : Si 𝑋 prend les valeurs 1,2,…,6 avec la probabilité 1/6, alors : 

  

𝐸{𝑋} =
1

6
× (1 + 2 +⋯+ 6) = 3.5 

c) Moyenne d’une fonction d’une variable aléatoire 

Étant donné une variable aléatoire 𝑋 et une fonction  𝑔(𝑋), nous formons la variable 

aléatoire 𝑌 = 𝑔(𝑋), la moyenne de cette variable aléatoire est donnée par : 

𝐸{𝑌} = ∫ 𝑦𝑓𝑌(𝑦)𝑑𝑦
+∞

−∞
                            (2.53)      

 

Il apparaît donc que pour déterminer la moyenne de 𝑌, il faut trouver sa densité de probabilité  

𝑓𝑦(𝑦). Cependant, celle-ci n'est pas nécessaire. 𝐸{𝑌} , peut être exprimée directement en termes 

de fonction 𝑔(𝑋) et de la densité 𝑓𝑋(𝑥) de 𝑋 comme le montre le théorème de base suivant : 

        

Théorème                                            𝐸{𝑔(𝑋)} = ∫ 𝑔(𝑥)𝑓𝑋(𝑥)𝑑𝑥
+∞

−∞
                          (2.54)       

Si 𝑋 est discrète comme dans (2.51), alors (2.54) donne : 

 

𝐸{𝑔(𝑋)} = ∑ 𝑔(𝑥𝑖)𝑖 𝑃(𝑋 = 𝑥𝑖)          (2.55)  



Exemple 2.17 : Avec 𝑥0 un nombre arbitraire et 𝑔(𝑥) comme dans la Fig. 2.25, l’équation 

(2.54) donne : 

𝐸{𝑔(𝑋)} = ∫ 𝑓𝑋(𝑥)𝑑𝑥
+∞

−∞

= 𝐹𝑋(𝑥0) 

Cela montre que la fonction de répartition d'une variable aléatoire peut être exprimée comme 

une espérance. 

 

Figure 2.25 : Moyenne d’une fonction d’une variable aléatoire 

Exemple 2.18 : Dans cet exemple, nous montrons que la probabilité de tout événement A peut 

être exprimée comme une valeur espérée. Pour cela on forme la variable aléatoire 𝑋𝐴(zéro, un) 

associée à l'événement A : 

𝑋𝐴(𝜉) = {
1       𝜉 ∈ 𝐴
0       𝜉 ∉ 𝐴

 

Puisque cette variable aléatoire prend les valeurs 1 et 0 avec des probabilités respectives 𝑃(𝐴) 

et 𝑃(𝐴̅), donne : 

𝐸{𝑋𝐴} = 1 ×  𝑃(𝐴) + 0 ×  𝑃(𝐴̅) = 𝑃(𝐴) 

d) La linéarité 

De (2.54), il s'ensuit que : 

 𝐸{𝑎1𝑔1(𝑋) + ⋯+ 𝑎𝑛𝑔𝑛(𝑋)} = 𝑎1𝐸{𝑔1(𝑋)} +⋯+ 𝑎𝑛𝐸{𝑔𝑛(𝑋)}         (2.56)  

En particulier, 𝐸{𝑎𝑥 +  𝑏}  =  𝑎𝐸{𝑥}  +  𝑏  

e) Variable aléatoire complexe  

Si 𝑍 =  𝑋 +  𝑗𝑌 est une variable aléatoire complexe, alors son espérance mathématique est par 

définition : 𝐸{𝑍}  =  𝐸{𝑋}  + 𝑗 𝐸{𝑌} 



De ceci et de (2.54), il s'ensuit que si 𝑔(𝑋) = 𝑔1(𝑋) + 𝑗𝑔2(𝑋) est une fonction complexe de la 

variable aléatoire réelle X alors : 

𝐸{𝑔(𝑋)} =  ∫ 𝑔(𝑥)𝑓𝑋(𝑥)𝑑𝑥
+∞

−∞
= ∫ 𝑔1(𝑥)𝑓𝑋(𝑥)𝑑𝑥

+∞

−∞
+ 𝑗 ∫ 𝑔2(𝑥)𝑓𝑋(𝑥)𝑑𝑥

+∞

−∞
     (2.57)  

En d'autres termes, (2.54) est vrai même si g(x) est complexe. 

2.5.2. La variance 

La moyenne seule ne pourra pas vraiment représenter la densité de probabilité d'une 

variable aléatoire. Pour illustrer cela, considérons deux variables aléatoires gaussiennes 𝑋1  ↝

 𝑁 (0, 1) et 𝑋2  ↝  𝑁 (0, 3). Les deux ont la même moyenne µ. Cependant, comme le montre 

la figure 2.26, leurs densités de probabilité sont assez différentes. Ici, 𝑋1 est plus concentrée 

autour de la moyenne, alors que 𝑋2 a un étalement plus large. Clairement, il faut au moins un 

paramètre supplémentaire pour mesurer cet écart autour de la moyenne. Pour une variable 

aléatoire 𝑋 de moyenne µ, 𝑋 − µ représente l'écart de la variable aléatoire par rapport à sa 

moyenne. Comme cet écart peut être positif ou négatif, considérons la quantité (𝑋 − µ)2  et sa 

valeur moyenne 𝐸[(𝑋 − µ)2]représente l'écart moyen  au carré de 𝑋 autour de sa moyenne.  En 

Définissant 

𝜎𝑋
2 ≜ 𝐸[(𝑋 − µ)2] > 0                              (2.58)       

Avec 𝑔(𝑋) = (𝑋 − µ)2 et en utilisant (2.54), on obtient : 

 𝜎𝑋
2 = ∫ (𝑥 − µ)

+∞

−∞

2
𝑓𝑥(𝑥)𝑑𝑥  > 0               (2.59)    

La constante positive 𝜎𝑋
2; est appelée la variance de la variable aléatoire 𝑋, et sa racine carrée 

positive 𝜎𝑋 = √𝐸(𝑋 − 𝜇)2 est connue comme l'écart type de 𝑋. Notez que l'écart type 

représente la valeur quadratique moyenne de la variable aléatoire 𝑋 autour de sa moyenne 𝜇. 

De la définition, il résulte que 𝜎2 est la moyenne de la variable aléatoire  (𝑋 − 𝜂)2. Ainsi : 

𝑉𝑎𝑟{𝑋} = 𝜎2 = 𝐸{(𝑋 − 𝜂)2} = 𝐸{𝑋2 − 2𝑋𝜂 + 𝜂2  } = 𝐸{𝑋2} − 2𝜂𝐸{𝑋} + 𝜂2 

Par conséquent :  

𝜎2 = 𝐸{𝑋2} − (𝐸{𝑋})2                                     (2.60)  

Pour n’importe qu’elle variable aléatoire on a 𝐸{𝑋2} ≥ (𝐸{𝑋})2 

 



 

Figure 2.26 : Deux variables aléatoires gaussiennes 𝑋1  ↝  𝑁 (0, 1) et 𝑋2  ↝  𝑁 (0, 3) 

 

Exemple 2.19 :  

Si 𝑋 est uniforme dans l’intervalle [-c, c], alors 𝜂 = 0 et 

𝜎2 = 𝐸{𝑋2} =
1

2𝑐
∫ 𝑥2
𝑐

−𝑐

𝑑𝑥 =
𝑐2

2
 

Exemple 2.20 : la densité de la variable aléatoire normale a été exprimée par :   

𝑓𝑋(𝑥) =
1

𝜎√2𝜋
𝑒
−(𝑥−𝜂)2

2𝜎2  

Jusqu’à présent 𝜂 et 𝜎2 étaient deux constantes arbitraires. On montre ensuite que 𝜂 est bien la 

moyenne de 𝑋 et 𝜎2 sa variance. 

Preuve. Clairement. 𝑓𝑋(𝑥) est symétrique par rapport à la ligne 𝑥 = 𝜂; donc  𝐸{𝑋}  =  𝜂. De 

plus,   ∫ 𝑒
−(𝑥−𝜂)2

2𝜎2 𝑑𝑥 = 𝜎√2𝜋
+∞

−∞
, car l'aire de 𝑓𝑋(𝑥) est égale à 1. En dérivant par rapport à 𝜎, 

on obtient : 

∫
(𝑥 − 𝜂)2

2𝜎3
𝑒
−(𝑥−𝜂)2

2𝜎2 𝑑𝑥 = √2𝜋
+∞

−∞

 

En multipliant les deux côtés par 
𝜎2

√2𝜋
 , nous concluons que 𝐸{(𝑋 − 𝜂)2} = 𝜎2 . 

 Cas discret : Si la variable aléatoire 𝑋 est de type discret comme en (2.51), alors : 

𝜎2 = ∑ 𝑝𝑖𝑖 (𝑥𝑖 − 𝜂)
2      𝑝𝑖 = 𝑃(𝑋 =  𝑥𝑖)             (2.61)     



Exemple 2.21 : 

 La variable aléatoire 𝑋 prend les valeurs 1 et 0 avec des probabilités p et q = 1 - p 

respectivement. Dans ce cas on aura : 

𝐸{𝑋} = 1 × 𝑝 + 0 × 𝑞 = 𝑝 

𝐸{𝑋2} = 12 × 𝑝 + 02 × 𝑞 = 𝑝 

Donc         𝜎2 = 𝐸{𝑋2} − (𝐸{𝑋})2 = 𝑝 − 𝑝2 = 𝑝(1 − 𝑝) = 𝑝𝑞 

Exemple 2.22 : Une variable aléatoire suivant la loi de Poisson de paramètre λ prend les valeurs 

0, 1, ... avec les probabilités données par : 

𝑃{𝑋 = 𝑘} = 𝑒−𝜆
𝜆𝑘

𝑘!
 

On montre que sa moyenne et sa variance sont toutes deux égales : 

𝐸{𝑋} = 𝜆      𝐸{𝑋2} = 𝜆2+ 𝜆      𝜎2 = 𝜆                        (2.62)  

Preuve : On différencie deux fois le développement de Taylor de  𝑒𝜆: 

𝑒𝜆 =∑
𝜆𝑘

𝑘!

∞

𝑘=0

=∑𝑘
𝜆𝑘−1

𝑘!

∞

𝑘=0

=  
1

𝜆
∑𝑘

𝜆𝑘

𝑘!

∞

𝑘=1

 

𝑒𝜆 = ∑𝑘(𝑘 − 1)
𝜆𝑘−2

𝑘!

∞

𝑘=1

= 
1

𝜆2
∑𝑘2

𝜆𝑘

𝑘!

∞

𝑘=1

−
1

𝜆2
∑𝑘

𝜆𝑘

𝑘!

∞

𝑘=1

 

Donc  

𝐸{𝑋} = 𝑒−𝜆∑𝑘
𝜆𝑘

𝑘!

∞

𝑘=1

= 𝜆 

𝐸{𝑋} = 𝑒−𝜆∑𝑘2
𝜆𝑘

𝑘!

∞

𝑘=1

= 𝜆2 + 𝜆 

Points de Poisson : le nombre n de points de Poisson dans un intervalle de longueur 𝑡0 est 

une variable aléatoire distribuée de Poisson de paramètre 𝑎 = 𝜆𝑡0 . De là il s'ensuit que : 

𝐸{𝑛} = 𝜆𝑡0           𝜎𝑛
2 = 𝜆𝑡0                         (2.63)  



Cela montre que la densité 𝜆 de points de Poisson est égale au nombre espéré de points par 

unité de temps. 

Remarques : 

1- La variance 𝜎2d’une variable aléatoire 𝑋 est une mesure de la dispersion de cette 

dernière au tour de sa moyenne η. Son interprétation fréquentielle relative est la 

moyenne de (𝑥𝑖 − η)
2. 

𝜎2 ≅
1

𝑛
∑(𝑥𝑖 − η)

2                           (2.64) 

Où ;  𝑥𝑖 sont les observations de 𝑋. Cette moyenne ne peut etre utilisée comme  

estimation de 𝜎2que si η est connue. Dans le cas contraire on remplace η par son 

estimation ce qui donne : 

𝜎2 ≅
1

𝑛−1
∑(𝑥𝑖 − 𝑥̃)

2        𝑥̃ =
1

𝑛
∑𝑥𝑖                           (2.65) 

2- Une mesure plus simple de la dispersion des valeurs de  𝑋 au tour de η est le premier 

moment centré absolu 𝐸{|𝑋 − η|} estimé par  𝑀 ≅
1

𝑛
∑|𝑥𝑖 − η|. 

2.5.3. Les moments d’une variable aléatoire 

Les grandeurs suivantes sont intéressantes dans l'étude des variables aléatoires : 

 Moment d’ordre n 

𝑚𝑛 = 𝐸{𝑋
𝑛} = ∫ 𝑥𝑛

+∞

−∞
𝑓𝑋(𝑥)𝑑𝑥                                            (2.66) 

 

 Moment centré d’ordre n 

𝜇𝑛 = 𝐸{(𝑋 − 𝜂)
𝑛} = ∫ (𝑥 − 𝜂)𝑛

+∞

−∞
𝑓𝑋(𝑥)𝑑𝑥               (2.67) 

 

 Moments absolus d’ordre n 

𝐸{|𝑋|𝑛}           𝐸{|𝑋 − 𝜂|𝑛}                        (2.68) 

 Moments généralisés 

𝐸{(𝑋 − 𝑎)𝑛}                   𝐸{|𝑋 − 𝑎|𝑛}                   (2.69) 

On remarque que : 

𝜇𝑛 = 𝐸{(𝑋 − 𝜂)
𝑛} = 𝐸 {∑ (

𝑛
𝑘
) 𝑥𝑘(−𝜂)𝑛−𝑘

𝑛

𝑘=0
} 

Donc                  



𝜇𝑛 =∑ (
𝑛
𝑘
)𝑚𝑘(−𝜂)

𝑛−𝑘
𝑛

𝑘=0
 

                      (2.70)       

De la même façon on a : 

𝑚𝑛 = 𝐸{[(𝑋 − 𝜂) + 𝜂]
𝑛} = 𝐸 {∑ (

𝑛
𝑘
) (𝑥 − 𝜂)𝑘𝜂𝑛−𝑘𝑛

𝑘=0 }  

Donc  

𝑚𝑛 = ∑ (
𝑛
𝑘
) 𝜇𝑘𝜂

𝑛−𝑘𝑛
𝑘=0                                    (2.71)    

En particulier, µ0 = 𝑚0 = 1      𝑚1 = 𝜂      µ1 = 0     µ2 = 𝜎
2        

Et  

µ3 = 𝑚3 − 3𝜂𝑚2 + 2𝜂
3                 𝑚3 = 𝜇3 + 3𝜂𝜎

2 + 𝜂3 

2.5.4. Calcul des moments de quelques variables aléatoires usuelles 

a) Variable aléatoire normale  

 Nous montrerons que si : 

𝑓𝑋(𝑥) =
1

𝜎√2𝜋
𝑒
−(𝑥)2

2𝜎2  

Alors 

 𝐸{𝑋𝑛} = {
0                                    𝑛 = 2𝑘 + 1
1.3… (𝑛 − 1)𝜎𝑛                𝑛 = 2𝑘

                                                 (2.72)     

𝐸{|𝑋|𝑛} = {
2𝑘𝑘! 𝜎2𝑘+1 √2/𝜋                                  𝑛 = 2𝑘 + 1

1.3… (𝑛 − 1)𝜎𝑛                                           𝑛 = 2𝑘
                      (2.73)     

Les moments impairs de 𝑋 sont 0 car 𝑓𝑋(−𝑥) = 𝑓𝑋(𝑥) . Pour prouver la partie inférieure de 

(2.72, on différencie k fois l'identité. 

∫ 𝑒−𝛼𝑥
2
𝑑𝑥 = √

𝜋

𝛼

+∞

−∞

 

Cela donne 

∫ 𝑥2𝑘𝑒−𝛼𝑥
2
𝑑𝑥 =

1.3… (2𝑘 − 1)

2𝑘
√

𝜋

𝛼2𝑘+1

+∞

−∞

 



Et avec  𝛼 =
1

2𝜎2
  , on obtient (2.72)  

Puisque 𝑓𝑋(−𝑥) = 𝑓𝑋(𝑥), on a : 

𝐸{|𝑋|2𝑘+1} = 2∫ 𝑥2𝑘+1𝑓𝑋(𝑥)𝑑𝑥 =
+∞

0

2

𝜎√2𝜋
∫ 𝑥2𝑘+1𝑒

−𝑥2
2𝜎2
⁄

𝑑𝑥
+∞

0

 

Avec 𝑦 =
𝑥2

2𝜎2
 , le résultat sera : 

√
2

𝜋
 
(2𝜎2)𝑘

2𝜎
∫ 𝑦𝑘𝑒−𝑦𝑑𝑦
+∞

0

 

 

et il en résulte (2.73). Notons en particulier que : 

𝐸{𝑋4} = 3𝜎4 = 3 𝐸2{𝑋2} 

b) Variable aléatoire de Poisson.  

Les moments d'une variable aléatoire suivant la loi de Poisson sont fonctions du paramètre λ : 

𝑚𝑛(𝜆) = 𝐸{𝑋
𝑛} = 𝑒−𝜆∑ 𝑘𝑛∞

𝑘=0
𝜆𝑘

𝑘!
                     (2.74)   

𝜇𝑛(𝜆) = 𝐸{(𝑋 − 𝜆)
𝑛} = 𝑒−𝜆∑ (𝑘 − 𝜆)𝑛∞

𝑘=0
𝜆𝑘

𝑘!
      (2.75)   

Nous montrerons qu'ils satisfont aux équations récursives suivantes : 

𝑚𝑛+1(𝜆) = 𝜆[𝑚𝑛(𝜆) + 𝑚𝑛
′ (𝜆)]                     (2.76) 

𝜇𝑛+1(𝜆) = 𝜆[𝑛𝜇𝑛−1(𝜆) + 𝜇𝑛
′ (𝜆)]                      (2.77) 

Preuve : En différenciant (2.74)  par rapport à λ, on obtient : 

𝑚𝑛
′ (𝜆) = 𝑒−𝜆 ∑ 𝑘𝑛∞

𝑘=0
𝜆𝑘

𝑘!
+ 𝑒−𝜆 ∑ 𝑘𝑛+1∞

𝑘=0
𝜆𝑘−1

𝑘!
= −𝑚𝑛(𝜆) +

1

𝜆
𝑚𝑛+1(𝜆)  

et (2.76) est trouvée.    Et de la même façon, à partir de (2.76),il s’en suit :               

𝜇𝑛
′ (𝜆) = −𝑒−𝜆 ∑ (𝑘 − 𝜆)𝑛∞

𝑘=0
𝜆𝑘

𝑘!
− 𝑛𝑒−𝜆 ∑ (𝑘 − 𝜆)𝑛−1∞

𝑘=0
𝜆𝑘

𝑘!
+ 𝑒−𝜆 ∑ (𝑘 − 𝜆)𝑛∞

𝑘=0
𝜆𝑘−1

𝑘!
        

 



En fixant 𝑘 = (𝑘 − 𝜆) + 𝜆 dans la dernière somme, on obtient 𝜇𝑛
′ = −𝜇𝑛−𝑛𝜇𝑛−1 +

1

𝜆
 et 

(𝜇𝑛+1 + 𝜆𝜇𝑛) et (2.77) est obtenue. Les équations précédentes conduisent à la détermination 

récursive des moments 𝑚𝑛 et  𝜇𝑛. En partant des moments connus 𝑚1 = 𝜆, et 𝜇1 = 0, et 𝜇2 =

𝜆 [voir (2.62)], on obtient : 

𝑚2 = 𝜆(𝜆 + 1)    et    𝑚3 = 𝜆(𝜆
2 + 𝜆 + 2𝜆 + 1) = 𝜆3 + 3𝜆2 +  𝜆 

𝜇3 = 𝜆(𝜇′2 + 2𝜇1) = 𝜆 

2.5.5. Estimation de la moyenne et de la variance de g(x).  

a) La moyenne 

La moyenne de la variable aléatoire 𝑌 =  𝑔(𝑋) est donnée par : 

𝐸{𝑔(𝑋)} = ∫ 𝑔(𝑥)𝑓𝑋(𝑥)𝑑𝑥
+∞

−∞
                             (2.78)  

Par conséquent, pour sa détermination, la connaissance de 𝑓𝑋(𝑥) est requise. Cependant, si 𝑋 

est concentrée près de sa moyenne, alors 𝐸{𝑔(𝑋)} peut être exprimée en fonction des moments 

𝜇𝑛 de 𝑋. Supposons tout d'abord que 𝑓𝑋(𝑥) soit négligeable en dehors d'un intervalle [𝜂 − 𝜀, 𝜂 +

𝜀] et dans lequel, 𝑔(𝑥)  ≅  𝑔(𝜂). Dans ce cas, (2.78) donne : 

𝐸{𝑔(𝑋)} ≅ 𝑔(𝜂) ∫ 𝑓𝑋(𝑥)𝑑𝑥 ≅ 𝑔(𝜂)
𝜂+𝜀

𝜂−𝜀
                           (2.78b) 

Cette estimation peut être améliorée si 𝑔(𝑋) est approximée par un polynôme. 

𝑔(𝑥) ≅  𝑔(𝜂) + 𝑔′(𝜂)(𝑥 − 𝜂) +⋯+ 𝑔(𝑛)(𝜂)
(𝑥−𝜂)𝑛

𝑛!
                (2.78c) 

En insérant dans (2.78) on obtient : 

𝐸{𝑔(𝑋)} ≅ 𝑔(𝜂) + 𝑔′′(𝜂)
𝜎2

2
+⋯+ 𝑔(𝑛)(𝜂)

𝜇𝑛

𝑛!
                    (2.79) 

En particulier, si 𝑔(𝑥) est approximée par une parabole, alors : 

𝜂𝑌 =  𝐸{𝑔(𝑋)} ≅ 𝑔(𝜂) + 𝑔
′′(𝜂)

𝜎2

2
                                         (2.80) 

Et si elle est approximée par une droite, alors 𝜂𝑌 ≅ 𝑔(𝜂). Cela montre que la pente de 𝑔(𝑥) n'a 

aucun effet sur 𝜂𝑌 ; cependant, comme nous le montrons ensuite, cela affecte la variance 𝜎𝑌
2 ; 

de 𝑌. 

b) La variance : Nous retenons que l'estimation du premier ordre de 𝜎𝑌
2 est donnée par : 



𝜎𝑌
2 ≅ |𝑔′(𝜂)|2𝜎2                                       (2.81) 

 

Exemple 2.23 : Une tension E = 120 V est branchée aux bornes d'une résistance dont la valeur 

est une variable aléatoire r uniforme entre 900 et 1100 Ω. En utilisant (2.79) et (2.80), nous 

allons estimer la moyenne et la variance du courant résultant : I=E/r 

Clairement, 𝐸(𝑟) = 𝜂 = 103, 𝜎2 =
1003

3
  avec 𝑔(𝑟) = 𝐸/𝑟 , on a : 

𝑔(𝜂) = 0.12          𝑔′(𝜂) = −12 × 10−5                𝑔′′(𝜂) = 24 × 10−5 

Donc, 

𝐸{𝑖} ≅ 0.12 + 0.0004𝐴   𝜎𝑖
2 ≅ 48 × 10−6𝐴2 

2.5.6. Fonction caractéristique 

La fonction caractéristique d'une variable aléatoire est par définition l'intégrale : 

Ф𝑋(𝜔) = ∫ 𝑓𝑋(𝑥)𝑒
𝑗𝜔𝑥𝑑𝑥

+∞

−∞
                       (2.82)  

Cette fonction est maximale à l’origine car 𝑓𝑋(𝑥) ≥ 0. 

|Ф𝑋(𝜔)| ≤ Ф𝑋(0) = 1             (2.83)  

Si on remplace 𝑗𝜔 par s, l’intégrale résultante est : 

Ф𝑋(𝑠) = ∫ 𝑓𝑋(𝑥)𝑒
𝑠𝑥𝑑𝑥

+∞

−∞
       Ф𝑋(𝑗𝜔) = Ф𝑋(𝜔)                      (2.84)   

est la fonction génératrice de moment de 𝑋.  

La fonction suivante : 

𝛹(𝜔) = 𝑙𝑛 Ф𝑋(𝜔) = 𝛹(𝑗𝜔)                                       (2.85)  

est la seconde fonction caractéristique de 𝑋 

On voit clairement que : 

 Ф𝑋(𝜔) = 𝐸{𝑒
𝑗𝜔𝑥}    𝑒𝑡     Ф𝑋(𝑠) = 𝐸{𝑒

𝑠𝑥}                    (2.86)   

En effet si 𝑌 = 𝑎𝑋 + 𝑏 alors   Ф𝑌(𝜔) = 𝑒
𝑗𝑏𝜔  Ф𝑋(𝑎𝜔) 

Car         𝐸{𝑒𝑗𝜔𝑦}  = 𝐸{𝑒𝑗𝜔(𝑎𝑥+𝑏)} =  𝑒𝑗𝑏𝜔𝐸{𝑒𝑗𝑎𝜔𝑥}             



 

Exemple 2.24 : La fonction caractéristique d’une variable aléatoire 𝑋  suivant une loi 

𝑁(𝜂, 𝜎)est égale à :  

 Ф𝑋(𝜔) = 𝑒 {𝑗𝜂𝜔 −
1

2
𝜎2𝜔2}                        (2.87)  

Preuve : 

La variable aléatoire 𝑍 = (𝑋 − 𝜂)/𝜎 est une loi 𝑁(0,1) et sa fonction caractéristique est égale 

à : 

 Ф𝑍(𝑠) =
1

√2𝜋
∫ 𝑒𝑠𝑧
+∞

−∞

𝑒−𝑧
2/2𝑑𝑧 

Avec ; 𝑠𝑧 −
𝑧2

2
= −

1

2
(𝑧 − 𝑠)2 +

𝑠2

2
 

On conclue que : 

 Ф𝑍(𝑠) = 𝑒
𝑠2/2∫

1

√2𝜋
𝑒−(𝑧−𝑠)

2/2
+∞

−∞

𝑑𝑧 = 𝑒𝑠
2/2 

                   (2.88)  

Et puisque 𝑋 = 𝜎𝑍 + 𝜂 ; (2.87) s’en suit à partir de (2.86) et (2.88) avec = 𝑗𝜔 . 

 Formule d'inversion  

Comme on le voit dans (2.82),  Ф𝑋(𝜔) est la transformée de Fourier de 𝑓𝑋(𝑥). Par conséquent, 

les propriétés des fonctions caractéristiques sont essentiellement les mêmes que les propriétés 

des transformées de Fourier. Notons en particulier que 𝑓𝑋(𝑥)peut s'exprimer en fonction de 

 Ф𝑋(𝜔) : 

𝑓𝑋(𝑥) =
1

2𝜋
∫  Ф𝑋(𝜔)
+∞

−∞
𝑒−𝑗𝜔𝑥𝑑𝜔                               (2.89)  

 Théorème du moment 

 En dérivant (2.84) n fois, on obtient : 

Ф(𝑛)(𝑠) = 𝐸{𝑋𝑛𝑒𝑠𝑥} 

Donc ,  

Ф(𝑛)(0) = 𝐸{𝑋𝑛} = 𝑚𝑛                                         (2.90)  



Ainsi les dérivées de Ф(s)  à l'origine sont égales aux moments de 𝑋. Ceci justifie l'appellation 

« fonction moment » donnée à Ф(s). En particulier, 

Ф′(0) = 𝑚1 = 𝜂                  Ф
′′(0) = 𝑚2 = 𝜂

2 + 𝜎2             (2.91) 

Remarque :  

En développant Ф(s) en une série proche de l'origine et en utilisant (2.90), on obtient : 

Ф(s) = ∑
𝑚𝑛

𝑛!

∞
𝑛=0 𝑠𝑛                                 (2.92)   

Ceci n'est valable que si tous les moments sont finis et que la série converge absolument au 

voisinage de 𝑠 = 0. Puisque 𝑓𝑋(𝑥) peut être déterminée en fonction de Ф(s), (2.92) montre que, 

dans les conditions indiquées, la densité d'une variable aléatoire est déterminée de manière 

unique si tous ses moments sont connus. 

 

Exemple 2.25 : Nous allons déterminer la fonction des moments et les moments d'une variable 

aléatoire 𝑋 qui suit une loi  gamma telle que:  𝑓𝑋(𝑥) = 𝛾𝑥
𝑏−1𝑒−𝑐𝑥𝑈(𝑥)             𝛾 =

𝑐𝑏+1

ᴦ(𝑏+1)
 

De (2.82), il s’en suit que : 

Ф(s) = 𝛾 ∫ 𝑥𝑏−1𝑒−(𝑐−𝑠)𝑥
∞

0
𝑑𝑥 =

𝛾ᴦ(𝑏)

(𝑐−𝑠)𝑏
=

𝑐𝑏

(𝑐−𝑠)𝑏
                      (2.93)    

En dérivant par rapport à s et prenant s=0, on obtient :  

Ф(𝑛)(0) =
𝑏(𝑏 + 1)… (𝑏 + 𝑛 − 1)

𝑐𝑛
= 𝐸{𝑋𝑛} 

Avec n = 1 et n = 2, cela donne : 

𝐸{𝑋} =
𝑏

𝑐
        𝐸{𝑋2} =

𝑏(𝑏+1)

𝑐2
            𝜎2 =

𝑏

𝑐2
                    (2.94)  

La densité exponentielle est un cas spécial obtenu avec b=1, c=λ  

𝑓𝑋(𝑥) = 𝜆𝑒
−𝜆𝑥𝑈(𝑥)            Ф(s) =

λ

λ−s
               𝐸{𝑋} =

1

λ
           𝜎2 =

1

λ2
           (2.95)  

 

Exemple 2.26 : Densité Chi carrée : En prenant 𝑏 =  𝑚/2 et 𝑐 =  1/2 dans (2.93), on obtient 

la fonction du moment de la densité du chi carré 𝜒2(𝑚) : 



Ф(s) =
1

√(1−2𝑠)𝑚
            𝐸{𝑋} = 𝑚        𝜎2 = 2𝑚                (2.96)  

2.5.7. Les cumulants  

Les cumulants  𝜆𝑛 de la variable aléatoire 𝑋 sont par définition les dérivées de sa seconde 

fonction de moment 𝛹(𝑠): 

  

𝑑𝑛𝛹(0)

𝑑𝑠𝑛
= 𝜆𝑛                               (2.97)  

De (2.85), on voit clairement que 𝛹(0) = 𝜆0=0. 

 Donc :     𝛹(𝑠) = 𝜆1𝑠 +
1

2
𝜆2𝑠

2 +⋯+
1

𝑛!
𝜆𝑛𝑠

𝑛 +⋯ 

On retient : 

𝜆1 = 𝜂          𝜆2 = 𝜎
2                            (2.98)  

Preuve : 

Puisque,  Ф = 𝑒𝛹, on conclue que :  Ф′ = 𝛹′ 𝑒𝛹               Ф′′ = [𝛹′′ + (𝛹′)2]𝑒𝛹 

Avec s=0, ceci donne : Ф′(0) = 𝛹′( 0) = 𝑚1              Ф
′′(0) = 𝛹′′(0) + (𝛹′(0))

2
= 𝑚2 et 

(2.98) est obtenue. 

Type discret : Supposons que 𝑋 soit une variable aléatoire de type discret prenant les valeurs 

𝑥𝑖 avec une probabilité 𝑝𝑖. Dans ce cas, (2.82) donne : 

Ф𝑋(𝜔) = ∑  𝑝𝑖𝑖 𝑒𝑗𝜔𝑥𝑖                          (2.99)   

Ainsi Ф𝑋(𝜔) est une somme d'exponentielles. La fonction moment de x peut être définie 

comme dans (2.84). Cependant, si 𝑋 ne prend que des valeurs entières, alors une définition en 

termes de transformations z est préférable.  

2.5.8. Fonction génératrice de moments.  

Si 𝑋 est une variable aléatoire de type treillis prenant des valeurs entières, alors sa fonction 

génératrice de moment est par définition la somme : 

ᴦ(𝑧) = 𝐸{𝑧𝑛} = ∑ 𝑃{𝑋 = 𝑛}𝑧𝑛+∞
𝑛=−∞ = ∑ 𝑝𝑛𝑧

𝑛+∞
𝑛=−∞                (2.100)   



Ainsi ᴦ(1/𝑧) est la transformée en z ordinaire de la séquence 𝑝𝑛 = 𝑃{𝑋 = 𝑛}. Avec Ф𝑋(𝜔) 

comme dans (2.99) , ceci donne : 

Ф𝑋(𝜔) = ᴦ(𝑒
𝑗𝜔) =∑ 𝑝𝑛𝑒

𝑗𝑛𝜔
+∞

𝑛=−∞
 

Donc Ф𝑋(𝜔) est la transformée de Fourier discrète(DFT) de la série {𝑝𝑛}, et 

𝛹(𝑠) = 𝑙𝑛 ᴦ(𝑒𝑠)                                                         (2.101)   

 Théorème du moment : En dérivant (2.100) k fois, on obtient : 

ᴦ(𝑘)(𝑧) = 𝐸{𝑋(𝑋 − 1)… (𝑋 − 𝑘 + 1)𝑧𝑥−𝑘} 

Avec z=1, ceci donne : 

ᴦ(𝑘)(𝑧) = 𝐸{𝑋(𝑋 − 1)…(𝑋 − 𝑘 + 1)}                                  (2.102)   

On remarque que ᴦ(1) = 1 et  

     ᴦ′(1) = 𝐸{𝑋}       ᴦ′′(1) = 𝐸{𝑋2} − 𝐸{𝑋}                    (2.103)  

Exemple 2.27 

a) Si 𝑋 prend les valeurs 0 et 1 avec 𝑃{𝑋 = 1} = 𝑝 et 𝑃{𝑋 = 0} = 𝑞, alors 

     ᴦ(𝑧) = 𝑝𝑧 + 𝑞        ᴦ′(1) = 𝐸{𝑋} = 𝑝         ᴦ′′(1) = 𝐸{𝑋2} − 𝐸{𝑋} = 0 

b) Si 𝑋 suit une loi binomiale 𝐵(𝑚, 𝑝) donnée par : 

𝑝𝑛 = 𝑃{𝑋 = 𝑛} = (
𝑚
𝑛
)𝑝𝑛𝑞𝑚−𝑛   0 ≤ 𝑛 ≤ 𝑚 

Alors  

ᴦ(𝑧) = ∑ (
𝑚
𝑛
)𝑝𝑛𝑞𝑚−𝑛𝑚

𝑛=0 𝑧𝑛 = (𝑝𝑧 + 𝑞)𝑚                   (2.104)   

et  ᴦ′(1) = 𝑚𝑝        ᴦ′′(1) = 𝑚(𝑚 − 1)𝑝2 

par conséquent : 

𝐸{𝑋} = 𝑚𝑝      𝜎2 = 𝑚𝑝𝑞                 (2.105)   

Exemple 2.28 : Si 𝑋 suit une loi de poisson de paramètre λ , t.q : 

𝑃{𝑋 = 𝑛} = 𝑒−λ
λ𝑛

𝑛!
     𝑛 = 0,1,…   

Alors 

ᴦ(𝑧) = 𝑒−λ ∑ λ𝑛∞
𝑛=0

𝑧𝑛

𝑛!
= 𝑒λ(z−1)                                 (2.106)   



Dans ce cas (voir (2.101), on a   𝛹(𝑠) = λ(𝑒𝑠 − 1)        𝛹′(0) = λ      𝛹′′(0) = λ et  (2.98) 

donne 𝐸{𝑋} = λ      𝜎2 = λ . 

On peut utiliser la méthode de la fonction caractéristique pour établir le théorème de De Moivre-

Laplace suivant : 

Théorème de De Moivre-Laplace  

Soit  𝑋 ↝ 𝐵(𝑛, 𝑝) , alors de (2.100, on obtient la fonction caractéristique de la variable 

binomiale suivante : Ф𝑋(𝜔) = (𝑝𝑒
𝑗𝜔 + 𝑞)

𝑛
 

 Et définissons 

 𝑌 =
𝑋−𝑛𝑝

√𝑛𝑝𝑞
                                                          (2.107)    

 Ceci donne : 

Ф𝑌(𝜔) = 𝐸{𝑒
𝑗𝑦𝜔} = 𝑒

−𝑛𝑝𝜔
√𝑛𝑝𝑞
⁄

   Ф𝑋 (
𝜔

√𝑛𝑝𝑞
)  

= 𝑒
−𝑛𝑝𝜔

√𝑛𝑝𝑞
⁄

(𝑝𝑒
𝑗𝜔

√𝑛𝑝𝑞
⁄

+ 𝑞)

𝑛

 

= (𝑝𝑒
𝑗𝜔𝑞

√𝑛𝑝𝑞
⁄

+ 𝑞𝑒
−𝑗𝑝𝜔

√𝑛𝑝𝑞
⁄

)

𝑛

 

= {𝑝 (1 +
𝑗𝑞𝜔

√𝑛𝑝𝑞
−
𝑞2𝜔2

2𝑛𝑝𝑞
+∑

1

𝑘!

∞

𝑘=3

(
𝑗𝑞𝜔

√𝑛𝑝𝑞
)

𝑘

)

+ 𝑞(1 −
𝑗𝑝𝜔

√𝑛𝑝𝑞
−
𝑝2𝜔2

2𝑛𝑝𝑞
+∑

1

𝑘!

∞

𝑘=3

(
−𝑗𝑝𝜔

√𝑛𝑝𝑞
)

𝑘

)}

𝑛

 

= (1 −
𝜔2

2𝑛
{1 + ∅(𝑛)})

𝑛

→ 𝑒−𝜔
2/2      lorsque    𝑛 → ∞   (2.104)  

Puisque      ∅(𝑛) ≝ 2∑
1

𝑘!

∞
𝑘=3 (

𝑗𝜔

√𝑛
)
𝑘−2 𝑝𝑞𝑘+𝑞(−𝑝)𝑘

(√𝑝𝑞)𝑘
 → 0  lorsque  𝑛 → ∞. 

En comparant (2.104)  avec (2.84), on conclue que lorsque  𝑛 → ∞, la variable aléatoire 𝑌 tend 

vers la loi normle centrée, ou de (2.103), 𝑋 tend vers 𝑁(𝑛𝑝, 𝑛𝑝𝑞). 

L'exemple suivant est d'intérêt historique, car il a d'abord été proposé et résolu par De Moivre. 



Exemple 2.29 : Un événement 𝐴 se produit dans une série d'essais indépendants avec une 

probabilité constante 𝑝. Si 𝐴 se produit au moins 𝑟 fois de suite, nous l'appelons une série de 

longueur 𝑟. Trouvez la probabilité d'obtenir une séquence de longueur 𝑟 pour 𝐴 en 𝑛 essais. 

Solution 

 Soit 𝑃𝑛 la probabilité de l'événement 𝑋𝑛 qui représente une séquence de longueur r pour A dans 

𝑛 essais. Une série de longueur r dans 𝑛 + 1 essais ne peut se produire que de deux manières 

mutuellement exclusives : soit il y a une série de longueur r dans les 𝑛 premiers essais, soit une 

série de longueur 𝑟 n'est obtenue que dans les 𝑟 derniers essais des 𝑛 + 1 essais et pas avant. 

Ainsi ; 

𝑋𝑛+1 = 𝑋𝑛 ∪ 𝐵𝑛+1                                                    (2.105)  

Où ; 

𝐵𝑛+1 ={Pas de série de longueur 𝑟 pour 𝐴 dans les premiers 𝑛 −  𝑟 essais}∩{𝐴 ne se produit 

pas dans le (𝑛 −  𝑟 +  𝑙)ème essai}∩{Série de longueur 𝑟 pour 𝐴 dans les 𝑟 derniers essais} 

𝐵𝑛+1 = 𝑋̅𝑛−𝑟 ∩ 𝐴̅ ∩ 𝐴 ∩ 𝐴 ∩ …∩ 𝐴⏟        
𝑟

 

2.6. Séquences de variables aléatoires 

2.6. 1. Concept général : Un vecteur aléatoire est exprimé par : 

𝑋 =  [𝑋1, . . . , 𝑋𝑛]                                                               (2.106)  

dont les composantes 𝑋𝑖 sont des variables aléatoires. La probabilité que 𝑋 se trouve dans une 

région D de l'espace à n dimensions est égale aux masses de probabilité dans D : 

𝑃{𝑋 ∈ 𝐷} = ∫ 𝑓𝑋(𝑋)𝐷
 𝑑𝑋                𝑋 = [𝑋1, . . . , 𝑋𝑛]                  (2.107)  

Où ; 

𝑓𝑋(𝑋) = 𝑓𝑋(𝑥1, . . . , 𝑥𝑛) =
𝜕2𝐹𝑋(𝑥1,...,𝑥𝑛)

𝜕𝑥1,…,𝜕𝑥𝑛
                               (2.108)  

Est la densité jointe des variables aléatoires 𝑋𝑖  et leur fonction de répartition conjointe est 

donnée par : 

𝐹𝑋(𝑋) = 𝐹𝑋(𝑥1, . . . , 𝑥𝑛) = 𝑃{𝑋1 ≤ 𝑥1, … , 𝑋𝑛 ≤ 𝑥𝑛}                (2.109)  



Si on remplace dans 𝐹𝑋(𝑥1, . . . . , 𝑥𝑛) certaines variables par ∞, on obtient la fonction de 

répartition conjointe des variables restantes. Si on intègre 𝑓𝑋(𝑥1, . . . . , 𝑥𝑛) par rapport à certaines 

variables, on obtient la densité jointe des variables restantes. Par exemple : 

𝐹𝑋(𝑥1,  𝑥3) = 𝐹𝑋(𝑥1,∞,𝑥3, ∞) 

𝑓𝑋(𝑥1,  𝑥3) = ∫ ∫ 𝑓𝑋(𝑥1,𝑥2,  𝑥3, 𝑥4,)
+∞

−∞

+∞

−∞
𝑑𝑥2𝑑𝑥4             (2.110)  

2.6.2. Transformation d’un vecteur aléatoire 

Étant donné k fonctions  𝑔1(𝑋), … , 𝑔𝑘(𝑋)  avec  𝑋 = [𝑋1, . . . , 𝑋𝑛] , on forme les variables 

aléatoires suivantes : 

𝑌1 = 𝑔1(𝑋),… , 𝑌𝑘 =  𝑔𝑘(𝑋)                                          (2.111)  

Les statistiques de ces variables aléatoires peuvent être déterminées en fonction des statistiques 

de 𝑋. 

1) Si 𝑘 <  𝑛, alors nous pourrions d'abord déterminer la densité jointe des n variables 

aléatoires 𝑌1, . . . , 𝑌𝑘 , 𝑋𝑘+1, … , 𝑋𝑛  puis utiliser la généralisation de (2.110) pour éliminer les 

𝑋. 

2)  Si 𝑘 >  𝑛, alors les variables aléatoires 𝑌𝑛+1, . . . , 𝑌𝑘 peuvent être exprimées en termes de 

𝑌1, . . . , 𝑌𝑛. Dans ce cas, les masses dans l'espace k sont singulières et peuvent être 

déterminées en fonction de la densité jointe de 𝑌1, . . . , 𝑌𝑛. Il suffit donc de supposer que 𝑘 =

 𝑛. Pour trouver la densité 𝑓𝑌(𝑦1, . . . , 𝑦𝑛) du vecteur aléatoire [𝑌1, . . . , 𝑌𝑛], pour un ensemble 

spécifique de nombres 𝑦1, . . . , 𝑦𝑛on résout le système suivant : 

 

𝑔1(𝑋) = 𝑦1, … , 𝑔𝑛(𝑋) = 𝑦𝑛                                 (2.112)  

Si ce système n'a pas de solution, alors  𝑓𝑌(𝑦1, . . . , 𝑦𝑛) = 0. S'il a une solution unique 

 𝑋 = [𝑥1, . . . , 𝑥𝑛], alors on a : 

𝑓𝑌(𝑦1, . . . , 𝑦𝑛) =
𝑓𝑋(𝑥1, . . . , 𝑥𝑛)

|𝐽(𝑥1, . . . , 𝑥𝑛)|
 

                                    (2.113)  

Où ; 



𝐽(𝑥1, . . . , 𝑥𝑛) = |
|

𝜕𝑔1
𝜕𝑥1

 …   
𝜕𝑔1
𝜕𝑥𝑛…………… .

𝜕𝑔𝑛
𝜕𝑥1

 …   
𝜕𝑔𝑛
𝜕𝑥𝑛

|
| 

                                (2.114)  

est le jacobéen de la transformation (2.112) .S'il a plusieurs solutions, alors on ajoute les termes 

correspondants.  

2.6.3. L’indépendance 

Les variables aléatoires 𝑋1, . . . , 𝑋𝑛 sont dites (mutuellement) indépendantes si les événements 

{𝑋1 ≤ 𝑥1}, . . . , {𝑋𝑛 ≤ 𝑥𝑛} sont indépendants. Il s’en suit que : 

𝐹𝑋(𝑥1, . . . , 𝑥𝑛) = 𝐹𝑋(𝑥1) × 𝐹𝑋(𝑥2) × …× 𝐹𝑋( 𝑥𝑛) 

𝑓𝑋(𝑥1, . . . , 𝑥𝑛) = 𝑓𝑋(𝑥1) × 𝑓𝑋(𝑥2) × … × 𝑓𝑋( 𝑥𝑛)               (2.115)  

 

Exemple 2.30 : Étant donné n variables aléatoires indépendantes 𝑋𝑖  de densités respectives 

𝑓𝑋𝑖(𝑥𝑖), on forme les variables aléatoires t .q : 

𝑌𝑖 = 𝑋1 +⋯+ 𝑋𝑘             𝑘 = 1,… , 𝑛 

Nous déterminerons la densité jointe de 𝑋𝑘 . Le système  

𝑥1 = 𝑦1, 𝑥1 + 𝑥2 = 𝑦2, … , 𝑥1 +⋯+ 𝑥𝑛 = 𝑦𝑛 

a une solution unique  𝑥𝑘 = 𝑦𝑘 − 𝑦𝑘−1    1 ≤ 𝑘 ≤ 𝑛 et son jacobien est égal à 1. D'où 

[voir(2.113) et (2.115) . 

𝑓𝑌(𝑦1, . . . , 𝑦𝑛) = 𝑓𝑌1(𝑦1)𝑓𝑌2(𝑦2 − 𝑦1)… 𝑓𝑌𝑛(𝑦𝑛 − 𝑦𝑛−1)                                       (2.116)  

 

De (2.115), il s'ensuit que tout sous-ensemble de l'ensemble 𝑋𝑖 est un ensemble de variables 

aléatoires indépendantes. Supposons, par exemple que, 𝑓𝑋(𝑥1, 𝑥2 , 𝑥3) = 𝑓𝑋(𝑥1)𝑓𝑋(𝑥2) 𝑓𝑋( 𝑥3). 

En intégrant par rapport à 𝑥3, on obtient 𝑓𝑋(𝑥1, 𝑥2 ) = 𝑓𝑋(𝑥1)𝑓𝑋(𝑥2).  

Ceci montre que les variables aléatoires 𝑋1 et  𝑋2 sont indépendantes. Attention, cependant, si 

les variables aléatoires 𝑋𝑖 sont indépendantes deux à deux, elles ne sont pas nécessairement 

indépendantes. Par exemple, il est possible que : 



𝑓𝑋(𝑥1, 𝑥2 ) = 𝑓𝑋(𝑥1)𝑓𝑋(𝑥2)   ,  𝑓𝑋(𝑥1, 𝑥3 ) = 𝑓𝑋(𝑥1)𝑓𝑋(𝑥3) et  𝑓𝑋(𝑥2, 𝑥3 ) = 𝑓𝑋(𝑥2)𝑓𝑋(𝑥3) mais  

𝑓𝑋(𝑥1, 𝑥2 , 𝑥3) ≠ 𝑓𝑋(𝑥1)𝑓𝑋(𝑥2) 𝑓𝑋( 𝑥3) 

On peut montrer que si les variables aléatoires 𝑋𝑖  sont indépendantes, alors  𝑌1 =

𝑔1(𝑋1),… , 𝑌𝑛 = 𝑔𝑛(𝑋𝑛)  sont aussi indépendantes. 

2.6.4. Expériences indépendantes et essais répétés. 

 Supposons que,   𝑆𝑛 = 𝑆1 ×…× 𝑆𝑛 est une expérience combinée et les variables aléatoires 

𝑋𝑖 ne dépendent que des résultats  𝜉𝑖 de 𝑆𝑖 tel que: 

                     𝑋𝑖(𝜉1…𝜉𝑖 …𝜉𝑛) = 𝑋𝑖(𝜉𝑖)                 𝑖 = 1,… , 𝑛                              (2.117) 

Si les expériences 𝑆𝑖 sont indépendantes, alors les variables aléatoires 𝑋𝑖 sont indépendantes. 

Le cas particulier suivant est intéressant :  

Supposons que,  𝑋 est une variable aléatoire définie sur une expérience 𝑆 qui est effectuée n 

fois générant l’expérience : 

𝑆𝑛 = 𝑆1 ×…× 𝑆𝑛. Dans cette dernière, on défile les variables aléatoires 𝑋𝑖 selon (2.117). Il 

s'ensuit que la fonction de répartition 𝐹𝑋𝑖(𝑥𝑖) de 𝑋𝑖 est égale à la fonction de répartition 𝐹𝑋(𝑥) 

de la variable aléatoire 𝑋. Ainsi, si une expérience est effectuée n fois, les variables aléatoires 

𝑋𝑖 définies comme en (2.117) sont indépendantes et ont la même fonction 𝐹𝑋(𝑥). Ces variables 

aléatoires sont appelées i.i.d. (indépendantes et identiquement distribuées). 

Exemple 31 : (statistiques d'ordre) 

Les statistiques d'ordre des variables aléatoires 𝑋𝑖 ; sont 𝑛 variables aléatoires 𝑌𝑘 

définies comme suit : Pour un résultat spécifique  𝜉 , les variables aléatoires 𝑋𝑖  prennent les 

valeurs 𝑋𝑖(𝜉𝑖). En ordonnant ces nombres, on obtient la séquence 𝑋𝑟𝑖(𝜉) ≤ ⋯ ≤ 𝑋𝑟𝑘(𝜉) ≤

⋯ ≤ 𝑋𝑟𝑛(𝜉) et on définit la variable aléatoire  𝑌𝑘 telle que : 

𝑌1(𝜉) = 𝑋𝑟𝑖(𝜉) ≤ ⋯ ≤ 𝑌𝑘(𝜉) = 𝑋𝑟𝑘(𝜉) ≤ ⋯ ≤ 𝑌𝑛(𝜉) = 𝑋𝑟𝑛(𝜉)           (2.118)  

On note que, pour un 𝑖 spécifique, les valeurs 𝑋𝑖(𝜉) de 𝑋𝑖 occupent des emplacements différents 

dans l'ordre ci-dessus selon les changements de 𝜉. Nous retiendrons que la densité 𝑓𝑌𝑘(𝑦𝑘) de 

la keme statistique 𝑌𝑘 est donnée par : 

𝑓𝑌𝑘(𝑦𝑘) =
𝑛!

(𝑘−1)!(𝑛−𝑘)!
𝐹𝑋

𝑘−1(𝑦)[1 − 𝐹𝑋(𝑦)]
𝑛−𝑘𝑓𝑋(𝑦)                  (2.119)  



Où, 𝐹𝑋(𝑥) est la fonction de répartition des variables aléatoires 𝑋𝑖(i.i.d) et  𝑓𝑋(𝑥) est leur densité 

de probabilité. Pour Prouver cela (voir [1]). 

Cas particulier. Si les variables aléatoires 𝑋𝑖 sont exponentielles avec le paramètre λ telle que 

𝑓𝑋(𝑥) = λ𝑒
−λ𝑥𝑈(𝑥)      𝐹𝑋(𝑥) = (1 − 𝑒

−λ𝑥)𝑈(𝑥), alors 𝑓𝑌1(𝑦) = 𝑛λ𝑒
−𝑛λ𝑦𝑈(𝑦). 

c'est-à-dire que leur minimum 𝑌1 est également exponentiel avec le paramètre 𝑛λ. 

 

Figure 2.27 : statistiques d'ordre des variables aléatoires 𝑋𝑖 

Exemple 2.32 : Un système est constitué de m composants et le temps de défaillance du ième 

composant est une variable aléatoire 𝑋𝑖 de distribution 𝐹𝑋𝑖(𝑥). Ainsi, 1 − 𝐹𝑋𝑖(𝑡) = 𝑃{𝑋𝑖 > 𝑡} 

est la probabilité que le ième composant soit bon au temps t. On note que 𝑛(𝑡) est le nombre 

de composants qui sont bons à l'instant t. Clairement, 𝑛(𝑡) = 𝑛1 +⋯+ 𝑛𝑚 

Où ;𝑛𝑖 = {
1      𝑋𝑖 > 𝑡
0     𝑋𝑖 < 𝑡

      𝐸{𝑛𝑖} = 1 − 𝐹𝑋𝑖(𝑡) 

Donc la moyenne 𝐸{𝑛(𝑡)} = 𝑛(𝑡) est donnée par : 𝑛(𝑡) = 1 − 𝐹𝑋1(𝑡) +⋯+ 1 − 𝐹𝑋𝑚(𝑡) 

On supposera que les variables aléatoires 𝑋𝑖  ont la même distribution F(t). Dans ce cas, on a : 

𝑛(𝑡) = 𝑚[1 − 𝐹(𝑡)] 

Taux d'échec : La différence 𝑛(𝑡) − 𝑛(𝑡 + 𝑑𝑡) est le nombre d'échecs attendu dans l'intervalle 

(𝑡. 𝑡 +  𝑑𝑡). La dérivée  −𝑛′(𝑡) = 𝑚𝑓(𝑡) de −𝑛(𝑡) est le taux de défaillance. Le rapport 

𝛽(𝑡) = −
𝑛′(𝑡)

𝑛(𝑡)
=

𝑓(𝑡)

1 − 𝐹(𝑡)
 

                               (2.120)   

est appelé le taux de chute relatif attendu. La fonction 𝛽(𝑡) peut également être interprétée 

comme le taux de défaillance conditionnelle de chaque composant du système. En supposant 

que le système est mis en service à 𝑡 = 0, nous avons 𝑛(0) = 𝑚 ; donc  𝜂(0) = 𝐸{𝑛(0)} = 𝑚. 

En résolvant (2.120) pour 𝜂(𝑡), on obtient : 

𝜂(𝑡) = 𝑚. 𝑒𝑥𝑝 {−∫ 𝛽(𝜏)𝑑𝜏
𝑡

0
}                       (2.121) 



 

Exemple 2.33 : Nous mesurons un objet de longueur η avec n instruments de précisions 

variables. Les résultats des mesures sont n variables aléatoires avec :   𝑋𝑖 = 𝜂 + 𝜈𝑖 ,  𝐸{𝜈𝑖} =

0  et  𝐸{𝜈𝑖
2} = 𝜎𝑖

2 

où 𝜈𝑖  sont les erreurs de mesure que nous supposons indépendantes avec une moyenne nulle. 

Nous déterminerons l'estimation linéaire sans biais, à variance minimale, de η. Cela signifie ce 

qui suit : Nous souhaitons trouver n constantes 𝛼𝑖 telle que la somme  𝜂̂ = 𝛼1𝑋1 +⋯+ 𝛼𝑛𝑋𝑛 

soit une variable aléatoire avec une moyenne 𝐸{𝜂̂} = 𝛼1𝐸{𝑋1} +⋯+ 𝛼𝑛𝐸{𝑋𝑛} = 𝜂 et une 

variance 𝑉 = 𝛼1
2𝜎1

2 +⋯+ 𝛼𝑛
2𝜎𝑛

2  minimale. Donc notre problème est de minimiser la somme 

précédente sous la contrainte suivante : 

𝛼1 +⋯+ 𝛼𝑛 = 1                                           (2.122)  

Pour résoudre ce problème, on remarque que  𝑉 = 𝛼1
2𝜎1

2 +⋯+ 𝛼𝑛
2𝜎𝑛

2 − 𝜆(𝛼1 +⋯+ 𝛼𝑛 − 1) 

pour tout λ(multiplieur de Lagrange).  

Donc 𝑉 est minimale si    
𝜕𝑉

𝜕𝛼𝑖
= 2𝛼𝑖𝜎𝑖

2 − 𝜆 = 0    𝑎𝑙𝑜𝑟𝑠  𝛼𝑖 =
𝜆

2𝜎𝑖
2 

En insérant dans (2.122) et résolvant pour  𝜆, on obtient ,   

𝜆

2
= 𝑉 =

1

1
𝜎1
2 +⋯+

1
𝜎𝑛
2

  𝑑𝑜𝑛𝑐    𝜂̂ =

𝑥1
𝜎1
2 +⋯+

𝑥𝑛
𝜎𝑛2

1
𝜎1
2 +⋯+

1
𝜎𝑛
2

 

     

                             (2.123)    

Illustration : La tension E d'un générateur est mesurée trois fois. Nous listons ici les résultats 

𝑥𝑖 des mesures, les écarts types 𝜎𝑖 ; des erreurs de mesure, et l’estimation 𝐸̂ de E obtenue à 

partir de (2.123): 

𝑥𝑖 = 98.6, 98.8, 98.9        𝜎𝑖 = 0.20, 0.25, 0.28     

𝐸̂ =

𝑥1
0.04⁄ +

𝑥2
0.0625⁄ +

𝑥3
0.0784⁄

1
0.04⁄ + 1 0.0625⁄ + 1 0.0784⁄

= 98.73 

 

 



2.6.5. Indépendance du groupe  

  On dit que le groupe 𝐺𝑋 des variables aléatoires 𝑋1, … , 𝑋𝑛 est indépendant du groupe 

𝐺𝑌 des variables aléatoires 𝑌1, … , 𝑌𝑛 si : 

𝑓𝑋𝑌(𝑥1, … , 𝑥𝑛, 𝑦1, … , 𝑦𝑛) = 𝑓𝑋(𝑥1, … , 𝑥𝑛)𝑓𝑌(𝑦1, … , 𝑦𝑛)           (2.124) 

Par intégration convenable, on conclut de (2.124) que tout sous-groupe de 𝐺𝑋 est indépendant 

de tout sous-groupe de 𝐺𝑌 . En particulier, les variables aléatoires 𝑋𝑖 et 𝑌𝑖 sont indépendantes 

pour tout i et j.  

Supposons que S est une expérience combinée 𝑆1  ×  𝑆2 , les variables aléatoires 𝑋𝑖 ne 

dépendent que des issues de 𝑆1 et les variables aléatoires 𝑌𝑖 ne dépendent que des issues de S2. 

Si les expériences 𝑆1  et 𝑆2 sont indépendantes, alors les groupes 𝐺𝑋 et 𝐺𝑌 sont indépendants.  

Notons enfin que si les variables aléatoires 𝑍𝑚 ne dépendent que des variables aléatoires 

𝑋𝑖 de 𝐺𝑋 et les variables aléatoires 𝑊𝑟  ne dépendent que des variables aléatoires 𝑌𝑖 de 𝐺𝑌, alors 

les groupes 𝐺𝑍 et 𝐺𝑊 sont indépendants. 

 

 2.6.6. Variables aléatoires complexes  

Les statistiques de la variable aléatoire  𝑍1 = 𝑋1 + 𝑗𝑌1, … , 𝑍𝑛 = 𝑋𝑛 + 𝑗𝑌𝑛 sont 

déterminées en fonction de la densité jointe 𝑓𝑋𝑌(𝑥1, … , 𝑥𝑛 , 𝑦1, … , 𝑦𝑛) des 2n variables aléatoires 

𝑋𝑖 et 𝑌𝑖. On dit que les variables aléatoires complexes 𝑍𝑖 sont indépendantes si 

𝑓𝑋𝑌(𝑥1, … , 𝑥𝑛, 𝑦1, … , 𝑦𝑛) = 𝑓𝑋𝑌(𝑥1, 𝑦1)…𝑓𝑋𝑌(𝑥𝑛 , 𝑦𝑛)         (2.125)         

2.6.7. Moyenne et covariance  

La moyenne de 𝑔(𝑋1, … , 𝑋𝑛) est donnée par : 

∫ … ∫ 𝑔(𝑥1, … , 𝑥𝑛)
+∞

−∞

+∞

−∞
𝑓(𝑥1, … , 𝑥𝑛)𝑑𝑥1…𝑑𝑥𝑛     (2.126)         

Si les variables aléatoires 𝑍𝑖 = 𝑋𝑖 + 𝑗𝑌𝑖    sont complexes, alors la moyenne de 𝑔(𝑍1, … , 𝑍𝑛) 

est donnée par : 

∫ … ∫ 𝑔(𝑧1, … , 𝑧𝑛)
+∞

−∞

+∞

−∞

𝑓(𝑥1, … , 𝑥𝑛, 𝑦1, … , 𝑦𝑛)𝑑𝑥1…𝑑𝑦𝑛 



A partir de ceci, il s’en suit que (linéarité) : 

𝐸{𝑎1𝑔1(𝑋) +⋯+ 𝑎𝑚𝑔𝑚(𝑋)} = 𝑎1𝐸{𝑔1(𝑋)} + ⋯+ 𝑎𝑚𝐸{𝑔𝑚(𝑋)} 

pour tout vecteur aléatoire 𝑋 réel ou complexe. 

2.6.8. Matrices de corrélation et de covariance 

a) La covariance 

La matrice de 𝐶𝑖𝑗 de deux variables aléatoires complexes 𝑋𝑖  et 𝑋𝑗 est définie   par : 

𝐶𝑖𝑗 = 𝐸{(𝑋𝑖 − 𝜂𝑖)(𝑋𝑗
∗ − 𝜂𝑗

∗)} = 𝐸{𝑋𝑖𝑋𝑗
∗} − 𝐸{𝑋𝑖}𝐸{𝑋𝑗

∗}           (2.127)    

et la variance de 𝑋𝑖 est donnée par : 

𝜎𝑖
2 = 𝐶𝑖𝑖 = 𝐸{|𝑋𝑖 − 𝜂𝑖|

2} = 𝐸{|𝑋𝑖|
2} − |𝐸{𝑋𝑖}|

2          (2.128)    

 

Les variables aléatoires 𝑋𝑖 sont dites (mutuellement) un-corrélées si 𝐶𝑖𝑗 = 0 pour tout ≠ 𝑗 . 

Dans ce cas, si 

𝑋 = 𝑋1 +⋯+ 𝑋𝑛      alors      𝜎𝑖
2=𝜎1

2+…+𝜎𝑛
2                  (2.129)    

Exemple 2.34 :  

Les variables aléatoires      𝑋̅ =
1

𝑛
∑ 𝑥𝑖
𝑛
𝑖=1      et    𝑉̅ =

1

𝑛−1
∑ (𝑥𝑖 − 𝑋̅)

2𝑛
𝑖=1  sont par définition la 

moyenne et la variance de l'échantillon de 𝑋𝑖 respectivement. Nous allons le montrer, si les 

variables aléatoires 𝑋𝑖 sont un-corrélées avec la même moyenne 𝐸 {𝑋𝑖} = 𝜂   et la variance 

𝜎𝑖
2 = 𝜎2 alors  

𝐸 {𝑋̅} = 𝜂            𝜎𝑋̅
2 = 𝜎2/𝑛                                    (2.130)    

Et    

  𝐸 {𝑉̅} = 𝜎2                                                        (2.131)        

 

Preuve : La première équation de (2.130) découle de la linéarité des valeurs espérées et la 

seconde de (2.131) : 



𝐸 {𝑋̅} =
1

𝑛
∑ 𝐸{𝑥𝑖} =
𝑛
𝑖=1 𝜂            𝜎𝑋̅

2 =
1

𝑛2
∑ 𝜎𝑖

2 =𝑛
𝑖=1 𝜎2/𝑛 

pour prouver (2.131), on observe que : 

𝐸{(𝑋𝑖 − 𝜂)(𝑋̅ − 𝜂)} =
1

𝑛
𝐸{(𝑋𝑖 − 𝜂)[(𝑋1 − 𝜂) + ⋯+ (𝑋𝑛 − 𝜂)]} 

        =
1

𝑛
𝐸{(𝑋𝑖 − 𝜂)(𝑋𝑖 − 𝜂)} =

𝜎2

𝑛
 

Car les variables aléatoires 𝑋𝑖 et 𝑋𝑗 sont un-corrélées par hypothèse. Donc ; 

𝐸{(𝑋𝑖 − 𝑋̅)
2} = 𝐸{[(𝑋𝑖 − 𝜂) − (𝑋̅ − 𝜂]

2} = 𝜎2 +
𝜎2

𝑛
− 2

𝜎2

𝑛
=
𝑛 − 1

𝑛
𝜎2 

  et  (2.131) est obtenue. 

Si les variables aléatoires  𝑋1, … , 𝑋𝑛, sont indépendantes, elles ne sont pas non plus corrélées. 

Si les variables aléatoires 𝑍1  =  𝑋1  +  𝑗𝑌1  et 𝑍2  =  𝑋2  +  𝑗 𝑌2 sont indépendantes, alors 

𝑓𝑋𝑌(𝑥1 , 𝑥2,  𝑦1, 𝑦2)  = 𝑓𝑋(𝑥1 , 𝑥2)𝑓𝑌( 𝑦1, 𝑦2). D'où 

∫ …∫ 𝑧1𝑧2
∗

+∞

−∞

+∞

−∞

𝑓𝑋𝑌(𝑥1 , 𝑥2,  𝑦1, 𝑦2)𝑑𝑥1𝑑𝑥2𝑑𝑦1𝑑𝑦2 

= ∫ ∫ 𝑧1
+∞

−∞

+∞

−∞
𝑓𝑋𝑌(𝑥1 , 𝑦1)𝑑𝑥1𝑑𝑦1 ∫ ∫ 𝑧2

∗+∞

−∞

+∞

−∞
𝑓𝑋𝑌(𝑥2 , 𝑦2)𝑑𝑥2𝑑𝑦2          (2.132)  

Cela donne 𝐸{𝑍1𝑍2
∗}  =  𝐸{𝑍1}𝐸{𝑍2

∗} donc, 𝑍1 et 𝑍2 ne sont pas corrélées. Notons enfin que si 

les variables aléatoires 𝑋𝑖 sont indépendantes, alors : 

𝐸{𝑔1(𝑋1)…𝑔𝑛(𝑋𝑛)} =  𝐸{𝑔1(𝑋1)}…𝐸{𝑔𝑛(𝑋𝑛)}              (2.133)  

De la même façon, si les groupes 𝑋1, … , 𝑋𝑛 et 𝑌1, … , 𝑌𝑘 sont indépendantes, alors : 

𝐸{𝑔(𝑋1, … , 𝑋𝑛)ℎ(𝑌1, … , 𝑌𝑘)} = 𝐸{𝑔(𝑋1, … , 𝑋𝑛)}𝐸{ℎ(𝑌1, … , 𝑌𝑘)}               

b) La matrice de corrélation  

On introduit les matrices  𝑅𝑛 = [
𝑅11 … 𝑅1𝑛
… … . …
𝑅𝑛1 … 𝑅𝑛𝑛

]       𝐶𝑛 = [
𝐶11 … 𝐶1𝑛
… … . …
𝐶𝑛1 … 𝐶𝑛𝑛

] 

Où ; 𝑅𝑖𝑗 = 𝐸{𝑋𝑖𝑋𝑗
∗} = 𝑅𝑗𝑖

∗       𝐶𝑖𝑗 = 𝑅𝑖𝑗 − 𝜂𝑖𝜂𝑗
∗ = 𝐶𝑗𝑖

∗  

La première est la matrice de corrélation du vecteur aléatoire 𝑋 =  [𝑋1, … , 𝑋𝑛] et la seconde sa 

matrice de covariance. Clairement, on a : 𝑅𝑛 = 𝐸{𝑋
𝑇𝑋∗}. 



Où, 𝑋𝑇  est la transposée de 𝑋 (vecteur colonne). Nous discuterons des propriétés de la matrice 

𝑅𝑛 et de son déterminant  ∆𝑛. Les propriétés de 𝐶𝑛 sont similaires car elle représente la matrice 

de corrélation des variables aléatoires « centrées »  𝑋𝑖 − 𝜂𝑖. 

Théorème : La matrice 𝑅𝑛 est définie non négative. Cela signifie que : 

𝑄 = ∑ 𝑎𝑖𝑎𝑗
∗

𝑖,𝑗 𝑅𝑖𝑗 = 𝐴𝑅𝑛𝐴
𝑡 ≥ 0                 (2.134)   

Où ;  𝐴𝑡 est le transposé du conjugué complexe du vecteur 𝐴 =  [𝑎1. . . . ,  𝑎𝑛]. 

Preuve : Il découle facilement de la linéarité des valeurs espérées. 

𝐸{|𝑎1𝑋1 +⋯+ 𝑎𝑛𝑋𝑛|
2} = ∑ 𝑎𝑖𝑎𝑗

∗𝐸{𝑋𝑖𝑋𝑗
∗}𝑖,𝑗              (2.135)    

Si Q > 0 pour tout 𝐴 ≠ 0 (2.134), alors 𝑅𝑛 est appelée « définie positive ».  La différence entre 

𝑄 ≥  0 et 𝑄 >  0 est liée à la notion de dépendance linéaire. 

c) Définition : Les variables aléatoires 𝑋𝑖 sont dites linéairement indépendantes si : 

𝐸{|𝑎1𝑋1 +⋯+ 𝑎𝑛𝑋𝑛|
2} > 0                     (2.136)  

pour tout 𝐴 ≠ 0. Dans ce cas [voir ((2.135)], leur matrice de corrélation 𝑅𝑛 est définie positive. 

Les variables aléatoires 𝑋 𝑖 sont dites linéairement dépendantes si 

𝑎1𝑋1 +⋯+ 𝑎𝑛𝑋𝑛 = 0                                          (2.137)   

pour certains 𝐴 ≠ 0. Dans ce cas, le Q correspondant vaut 0 et la matrice 𝑅𝑛 est singulière [voir 

aussi (2.138]. De la définition, il s’en suit que, si les variables aléatoires 𝑋𝑖 sont linéairement 

indépendantes, alors tout sous-ensemble est également linéairement indépendant. 

d) Le déterminant de la corrélation 

 Le déterminant ∆𝑛est réel car  𝑅𝑖𝑗 = 𝑅𝑖𝑗
∗   .  Nous allons montrer qu'il est aussi non négatif 

   ∆𝑛≥ 0                                                          (2.138)     

avec égalité si seulement si les variables aléatoires 𝑋𝑖 sont linéairement dépendantes. L'inégalité 

familière ∆𝑛= 𝑅11𝑅22 − 𝑅12
2 ≥ 0  est un cas particulier [voir (6-169)]. Supposons d'abord que 

les variables aléatoires 𝑋𝑖 soient linéairement indépendantes. 

 Nous retenons que, dans ce cas, le déterminant ∆𝑛 et tous ses principaux mineurs sont positifs 

∆𝑘> 0         𝑘 ≤ 𝑛                                            (2.139)      



2.7. Conclusion  

Dans ce chapitre on a introduit les concepts essentiels des modèles probabilistes afin d’aborder 

l’inférence statistique : définition d’un événement aléatoire, des probabilités discrètes ou 

continues, et de la notion d’indépendance en probabilités. Après avoir défini la notion de 

variable aléatoire, celles de lois les plus utilisées sont décrites : discrètes de Bernoulli, 

binomiales, géométrique, de Poisson ; continues uniforme, exponentielle, Gamma, normale, du 

chi-deux. Espérance et variance d’une variable aléatoires sont définies, avant de signaler le 

théorème de central limite qui nous donne de façon informelle une estimation précise de l’erreur 

que l’on commet en approchant l’espérance mathématique par la moyenne arithmétique. 


