CHAPITRE 1

NOTIONS DE CORRELATION ET DE CONVOLUTION

1.1.Introduction

La convolution et la corrélation sont deux concepts abondement utilisés en traitement
des signaux. Dans ce chapitre, on se propose d'aborder les notions de corrélation et de
convolution afin de bien les appréhender et les différencier. La transformée de Fourier nous

permet d’appliquer ces operateurs de fagcon assez simple.

1.2. Rappels sur les systémes linéaires
1.2.1. Definitions
e Signal : ¢’est la valeur d’une grandeur physique ou abstraite qui peut varier en fonction

d’un certain parametre (temps, distance,...,ect).

Exemple 1.1: La tension aux bornes d’une résistance en fonction du temps v(t) tel que t est
une variable indépendante alors que v est dépendante. Le domaine de définition de ces deux

variables peut étre un intervalle de R.

- Siles variables prennent des valeurs dans R , il en résulte des signaux continus(analogiques
notés x(t))
- Si les variables sont des suites de nombres alors on a des signaux discrets (numériques

notés x(n)).

Les signaux sont caractérisés par |’énergie, la corrélation, la densité spectrale, la

convolution,...,

e Systéme : c’est un dispositif qui a tout signal d’entrée x(t) associe un signal de sortie y(t)

tel que :
y(t) = S[x(0)] (1.1)
x(t) | Systéme y(t)
— > S[) —
x(n) | 777 y(n) S[ ]: Opérateur qui modélise le signal.

Figure 1.1 : Systéme linéaire de modélisation d’un signal

1.2.2. Propriétés d’un systéme



e Linearité
Un systéme analogique est dit linéaire s’il vérifie la propriété suivante :
Slayx, () + azx,(0)] = a;S[x,(0)] + a,S[x2 ()] = a1y1(t) + azy,(t)  (1.2)

Avec a, et a, des constantes. Cette relation peut se généraliser pour un systeme a N entrées et

devient :
SIE . aix; (O] = Xy a; S[x; ()] (1.3)
a; : sont des constantes.

e Réponse impulsionnelle d’un systeme
Un signal analogique quelconque peut s’écrire comme suit :
x(®) = x(®)*5@) = [ 2@t —Ddr = [ s(Wx(t —wdu  (L4)
Avec I’opérateur «* » indiquant le produit de convolution

En substituant (1.4) dans (1.2) on obtient :

y(@®) = S[x(®)] = S[[77 x(@)8(t — D] = [ x(D)S[8(t —)]dr  (L5)

Posons :
- pour un signal analogique h(t,t) = S[6(t — 1)]
- pour un signal discret h(n, k) = S[6(n— k)] (1.6)

C’est la réponse impulsionnelle du systéme qui consiste a la réponse du systeme a I’impulsion

de Dirac 6(t)).
e Causalité

Un systeme est dit causal si I’effet ne peut précéder la cause. La sortie y(n) enn = n, dépend

seulement des valeurs de I’entrée en n < n,. La sortie du systéme ne dépend que du passé.
e Stabilité

Un systéme est dit stable si et seulement si la réponse y(t) a toute entrée bornée (t) , est bornée.

C’est-a-dire x(t) borné = y(t) borné.

e L’invariance dans le temps



Un systeme est dit invariant dans le temps(IT) si et seulement si :
y(©) = S[x(©)] = S[x(¢ — 7)] (1.7)
Théoréme 1 : Si le systéme est invariant dans le temps(IT) ona:
h(t—1) =S[6(t—1)] = h(t) Cas continu.
h(n — k) = S[6(n — k)] = h(n) Cas discret.

Le systeme est complétement défini par h(t) ((h(n) dans le cas discret) avec :

y(t) = f Ot = Ddr = x(0) * h(D)

y(n) = XiZ ,x(k)h(n — k) = x(n) * h(n) (1.8)

Un systeme IT initialement au repos est un systéme qui effectue I’opération de convolution du

signal d’entrée par la réponse impulsionnelle (RI) du systeme h(t).

Théoreme 2 : Un systeme linéaire IT est causal & h(n) = 0,n < O(avant I'impulsion rien

n’est a ’entrée = on ne doit avoir rien a la sortie).

Théoreme 3 : Un systeme linéaire IT est stable si et seulement si :

400
Z Ih(k)| < 00 = 1im (k)| = 0

k=—o0

(1.9)

e Quelques exemples de systemes

linéaire causal invariant
y(t) = x2(t) non oui oui
y(t) = sin(x(t)) non oui oui
y(t) = m(t)x(t) oui oui non
+oo oui non non
y(t) =f h(t,8)x(6)do

® f”“ ©)d6 oui non non

t) =—

Y 2a )i, g

Exemple 1.2 :



a®* n=0

Etant donnée h(n) = a™u(n) = {0 ailleurs

Ce systeme est causal. Est-il stable ?

+ 00 + 00 1
— silal <1 systéme stable
> @l =Y lat =] T-Tal 1! Y
k=0 — +o0 silal =1 systéme instable

k=—o0

1.2.3. Filtres dynamiques

De nombreux systéemes électriques et mécaniques sont décrits par des équations

différentielles linéaires a coefficients réels constants dont les filtres dynamiques font partie.
Par exemple un circuit RC est décrit par :

y +ay=x (1.10)

N 1
Ou;a=—.
RC

Cette équation introduit un filtre linéaire de fonction de transfert (en transformée en z)

suivante :

H(z) = — (1.11)

z+a

D’une maniere générale, une fonction de transfert peut étre un simple polynéme ou une

fraction de deux polyndmes exprimée comme suit :

(1.12)
Cette fonction correspond a 1’équation différentielle ci-dessous :
agy(t) + a;y O (E) + -+ + a,y™(t) = box(t) + byxD(t) + -+ byx™ ()  (1.13)

Un filtre dynamique possede une fonction de transfert sous forme d’une fraction rationnelle
dont tous les pdles sont a gauche de I’axe imaginaire. On dit qu’un filtre est dynamique s’il est
rationnel et de plus causal. Pour qu’il soit stable, il faut que les pdles de H(z) soient a I’intérieur

du cercle unité.



1.3. Notions de corrélation et de convolution

1.3.1. La convolution

En traitement du signal, la convolution est I'outil permettant de calculer la sortie d'un systéme.

En effet, pour un signal d'entrée x(t) soumis a un systeme de fonction transfert g(t), la sortie

sera la convolution des deux fonctions y(t) = x(t) = g(t).

a) Définition

Soient x(t) et y(t) deux fonction de R (ou C), on appelle produit de convolution de x(t) par

y(t), s’il existe, la fonction z(t) définie par :

z(t) = fj: x(Dy(t —1)dr =x(t) xy(t) (1.14)
Le symbole «* » représente le produit de convolution.
b) Propriétés de la convolution
- La convolution est commutative
x(t) *y(t) = y(t) » x(t)
x(n) *x h(n) = h(n) * x(n) (1.15)
- Transformée de Fourier
TF{x(t) » y(t)} = TF{x()}.TF{y(t)} = X(f).Y (f) (1.16)
Application :
X(Tl) h(n) )/(Tl) h(n) x(n) V(TL)
BN -, —_— >
=
On veut générer physiquement un signal y(n) a partir d’une source de bruit.
bruit h(n) y(n)
—> —>
- Laconvolution est distributive < elle est linéaire.
Cas continu (x(t) * y(t)) xz(t) = x(t) = (y(t) * Z(t))
x(t) * [y(t) +z(£)] = x(t) * y(t) + x(t) * z(t) (1.17)



Cas discret h(n) = [y(n) + z(n)] = h(n) * y(n) + h(n) * z(n)
1.3.2. Lacorrélation

Nous sommes souvent amenés a rapprocher I’allure des variations de certaines grandeurs.
Ces grandeurs peuvent étre liées par des liaisons. Si nous cherchons une liaison entre les
observations x;, x,, ..., x,, d’une grandeur physique X et les observations y,,y,, ..., y, d’une
grandeur physique Y alors on peut définir entre X et Y une certaine fonction de corrélation. Elle
exprime I'influence d’un signal sur un autre. Elle permet d’étudier la ressemblance entre deux

signaux. On distingue deux opérations qui sont :
a) La fonction d’autocorrélation

x(1)
x(n)

Elle consiste a comparer un signal ( )avec lui-méme durant un intervalle de temps ou ’'un

est la valeur décalée de 1’autre.

La fonction d’autocorrélation Ry (7) d’un signal a énergie finie x(t) est la fonction réelle ou

complexe définie par :
Ryx (1) = fj;o x(t)x* (t —1)dt  x(t)eC (1.18)

Cette fonction caractérise la dépendance entre x(t) et sa version retardée et possede les

propriétés suivantes :

- Lien avec la convolution :

Posons zt)=x*(-t) =zt—t) =x*({t—1)

Ryx(1) = f+oox(t)z (t—t)dt =x(1t) *xz(r) z(1) =x"(—1)

Ryxx (1) = x(7) * x"(—7) (1.19)
- Limitation : Inégalité de Shwarz

12 F@©g" @de| < [FT1F@1de [T 1g(012de (1.20)

f(t) et g(t) sont des signaux a energie finie.

2

+o0 +o00
< f Ix(t)lzdt.f |x(t — 7)|%2dt = Ex.Ey

—00

f+oox(t)x* (t —1)dt

|RXX(T)|2 =



|Rex(MI? < B = |Ryx (D] < Ex (1.21)
L’équation (1.23) montre que 1’autocorrélation est bornée par 1’énergie Ey du signal.
Rex (@) = [1)x(@x (6 =Dt = Rex(0) = [17 x(0)x" (Dt = [ 1x(0)[2dt
Rxx(0) = Ex (1.22)

Ry (T) est maximale a I’origine (t = 0. Le coefficient d’autocorrélation est exprimé par :

pix(D) = P53 = |pey(D)] < 1 (1.23)
Si Ryx (1) = Ryx(0) alors pyx (7) est maximal et vaut 1.
- Parité :
Rxx(T) = Rxx(—T) Si X(t) ER (124)

La fonction d’autocorrélation est paire, lorsque le signal est réel.
b) La fonction d’inter-corrélation

La fonction d’inter-corrélation Ryy () de deux signaux a énergie finie x(t) et y(t) est la

fonction réelle ou complexe définie par :

Ryy(@) = [T7x(®)y* (t —1)dt  x(t),y(t) eC (1.25)

C’est une fonction continue qui caractérise la dépendance entre les signaux x(t) et y(t). Par

analogie avec Ry (), on peut citer quelques propriétés de Ryy () comme suit :
- Lien avec la convolution :
Ry (7) = x(7) » y*(—7)
Ryx (1) = y(1) * x*(—1)
(1.26)

- Parité :
Ryy (1) = RYX*(_T)
Si x(t) et y(®) €R Ryy (7) = Ryy (1) (1.27)

Dans les deux cas cette fonction n’est ni paire, ni impaire.



- Limitation :

2

+ 00 + oo
|Ryy ()] = < f PO f y(t = D)I2dt = Ey. By

— 00

j Oy (b — Dt

|RXY(T)|2 < Ryxx(0)Ryy (0) (1.28)

La fonction Ryy () est bornée, sa valeur maximale est JRXX(O)RYY(O) et Ry, (0) n’est pas

nécessairement a I’origine (dépend de I’application) et ¢a sera méme chose pour Ry (7).
Le coefficient d’inter-corrélation est exprimé par :

Ryy (T)
VRxx(0)Ryy(0)
= |pxx (D =1 (1.29)

pxx (1) =

Pour les Signaux a puissance moyenne finie, nous adoptons la formulation suivante :
. T .
Rx(0) = lim - [7 x(0)x" (¢ — 0)dt (1.30)
Si (D) € R, alors Ry (1) = lim — [ x(®) x(t - T)dt

Si 7 = 0, on obtient :

. 1 4T
Ryx(0) = }‘E&EI—T lx(t)|* dt = Prnoy (1.31)
Parité :
Rxx(1) = RXX*(_T)
si x(t) eER Ryx (1) = Ryx(—1) cette fonction est paire.
- Limitation :

|Rxx (T)| < Rxx(0) = Pmoy (1.32)



1.4. Application fondamentale des méthodes de corrélation
1.4.1. Identification des processus et détection des signaux noyés dans le bruit

L’une des applications de la corrélation est la détection par radar d’une cible : on désire

détecter la présence ou non d’un avion puis connaitre la distance a laquelle il se trouve.
Principe du radar : Il envoie un signal x(t) et capte en retour I’écho y(t) renvoyé par I’avion.

S’il n’y a pas d’avion dans la zone couverte y(t) est un bruit seulement.
- Présence d’avion : y(t) est une version retardée, atténuée et fortement bruitée du signal
émis x(t).
y(t) = Ax(t — ty) + n(t) (1.33)

Ou ;

A : Atténuation qui dépend de la distance et de la forme d’avion.

tq : le temps mis par I’onde pour faire son aller et son retour.

n(t) : bruit capté par ’antenne et généré par 1’¢lectronique du radar.

Pour détecter le signal noyé dans le bruit on calcule I’inter-corrélation entre le signal d’entrée

(signal émis par le radar) et le signal & reconnaitre (x(t) contenu dans y(t)) .
Si e(t) = x(t) + b(t)
Rex (1) = (1) x x"(=7) = Rex(7) = [x(7) + b(D)] * x"(—7)
=x(1) * x*(—=71) + b(7) * x*(—71)
Rex (1) = Ryx (1) + Rpy (1)
Rex(0) = Ry (0) + Ry, (0) (1.34)

L’inter corrélation a ’origine est maximale et égale a E,, Si R,,(0) = 0 = x(t) et b(t) sont

décorrélés. Cela est vrai si le bruit est blanc et indépendant du signal.

1.4.2. Analyse spectrale

1.4.2.1. Transformée de Fourier



Puisque I’autocorrélation Ryx(7) est une fonction bornée donc elle admet toujours une

transformée de Fourier(TF) donnée par :
+00 '
Sxx(f) = TF[Rxx ()] = f Ryx(D)e ™/t dt

TF[Rex (D] = TF(x(©). TF (x*(=0)) = 1X()I? (1.35)

On définit la fonction d’inter-corrélation, pour deux signaux x(t) et y(t) a puissance

moyenne finie par :
. 1 +T N
Ryy(7) = lim — [ x(0)y” (t — 7)dt (1.36)

Ryy(t) = Ryy ' (—1) etsi x(t) et y(t) € R,onaura Ry, (1) = Ryx(—7) quiest ni paire
ni impaire.
1.4.2.2. Densités spectrales

a) Signaux a énergie finie : La densité spectrale d’un signal x(t) a énergie finie est
Syx(f) = |X(f)|?. Elle donne la distribution de son énergie en fonction de la fréquence.
Comme Ry, () est aussi une fonction bornée donc sa transformée de Fourier(TF) existe et

s’exprime par :
= — (T —i2nft
Sxy(f) = TF[Ryy(D)] = [_ Rxy(T)e dt (1.37)
C’est la densité inter-spectrale d’énergie.

TF [Sxx(f)] = Ry (1) (1.38)

+ o0

f Syy ()e™ dr =f x(t)y* (t — v)dt

— 00

Pour T = 0, on obtient :

[2x(Oy(pdf = [ x(©)y* ()t (1.39)
C’est la forme générale du théoréme de Parseval.

b) Densité spectrale de puissance



Puisque B, est finie (signaux a puissance finie), on utilise les distributions pour calculer

Syx(f) = TF[Ryx(7)]. En général, elle n’est pas égale a | X (f)]?.
c) Densité inter-spectrale de puissance

Elle est définie par :  Syy (f) = TF[Rxy (7)]

1.5. Conclusion

Dans ce chapitre, nous avons vu que les deux opérations de convolution et de corrélation
s’apparentent fortement. Un endroit ou 1’on rencontre fréquemment les convolutions est la
theéorie des probabilités, le théoréme central limite et le filtrage. Ces deux concepts sont
abondement utilisés en traitement du signal et plus particulierement dans 1’analyse et traitement
des signaux aléatoires. La convolution est I’opérateur le plus utilisé pour décrire la réponse des

systémes lineaires. Les TF nous permettent de calculer ces choses de fagon assez simple.



