
CHAPITRE 1 

NOTIONS DE CORRELATION ET DE CONVOLUTION 

1.1.Introduction  

 

La convolution et la corrélation sont deux concepts abondement utilisés en traitement 

des signaux. Dans ce chapitre, on se propose d'aborder les notions de corrélation et de 

convolution afin de bien les appréhender et les différencier. La transformée de Fourier nous 

permet d’appliquer ces operateurs de façon assez simple. 

 

1.2. Rappels sur les systèmes linéaires 

1.2.1. Définitions  

 Signal : c’est la valeur d’une grandeur physique ou abstraite qui peut varier en fonction 

d’un certain paramètre (temps, distance,…,ect). 

Exemple 1.1:  La tension aux bornes d’une résistance en fonction du temps 𝑣(𝑡) tel que 𝑡 est 

une variable indépendante alors que 𝑣 est dépendante. Le domaine de définition de ces deux 

variables peut être un intervalle de ℝ. 

- Si les variables prennent des valeurs dans ℝ , il en résulte des signaux continus(analogiques 

notés 𝑥(𝑡)) 

- Si les variables sont des suites de nombres alors on a des signaux discrets (numériques 

notés 𝑥(𝑛)). 

Les signaux sont caractérisés par l’énergie, la corrélation, la densité spectrale, la 

convolution,…, 

 Système : c’est un dispositif qui à tout signal d’entrée 𝑥(𝑡) associe un signal de sortie 𝑦(𝑡) 

tel que : 

𝑦(𝑡) = 𝑆[𝑥(𝑡)]                                  (1.1) 

 

 

                                                                           𝑆[ ] : Opérateur qui modélise le signal. 

Figure 1.1 : Système linéaire de modélisation d’un signal 

1.2.2. Propriétés d’un système  

Système 

𝑆[⬚] 

𝑥(𝑡) 

𝑥(𝑛) 

𝑦(𝑡) 

𝑦(𝑛) 



 Linéarité  

Un système analogique est dit linéaire s’il vérifie la propriété suivante : 

𝑆[𝑎1𝑥1(𝑡) + 𝑎2𝑥2(𝑡)] = 𝑎1𝑆[𝑥1(𝑡)] + 𝑎2𝑆[𝑥2(𝑡)] = 𝑎1𝑦1(𝑡) + 𝑎2𝑦2(𝑡)    (1.2) 

Avec 𝑎1 et 𝑎2 des constantes. Cette relation peut se généraliser pour un système à N entrées et 

devient : 

𝑆[∑ 𝑎𝑖𝑥𝑖(𝑡)𝑁
𝑖=1 ] = ∑ 𝑎𝑖

𝑁
𝑖=1 𝑆[𝑥𝑖(𝑡)]                         (1.3) 

𝑎𝑖  : sont des constantes. 

 Réponse impulsionnelle d’un système 

Un signal analogique quelconque peut s’écrire comme suit : 

 

 𝑥(𝑡) = 𝑥(𝑡) ∗ 𝛿(𝑡) = ∫ 𝑥(𝜏)𝛿(𝑡 − 𝜏)𝑑𝜏 =
+∞

−∞
∫ 𝛿(𝑢)𝑥(𝑡 − 𝑢)𝑑𝑢

+∞

−∞
        (1.4) 

Avec l’opérateur «* » indiquant le produit de convolution 

En substituant (1.4) dans (1.2) on obtient : 

𝑦(𝑡) = 𝑆[𝑥(𝑡)] = 𝑆[∫ 𝑥(𝜏)𝛿(𝑡 − 𝜏)𝑑𝜏
+∞

−∞
] = ∫ 𝑥(𝜏)𝑆[𝛿(𝑡 − 𝜏)]𝑑𝜏

+∞

−∞
    (1.5) 

Posons : 

- pour un signal analogique               ℎ(𝑡, 𝜏) = 𝑆[𝛿(𝑡 − 𝜏)]  

- pour un signal discret                      ℎ(𝑛, 𝑘) = 𝑆[𝛿(𝑛 − 𝑘)]                                           (1.6) 

  C’est la réponse impulsionnelle du système qui consiste à la réponse du système à l’impulsion 

de Dirac 𝛿(𝑡)). 

 Causalité  

Un système est dit causal si l’effet ne peut précéder la cause. La sortie 𝑦(𝑛) en 𝑛 = 𝑛0 dépend 

seulement des valeurs de l’entrée en  𝑛 ≤ 𝑛0. La sortie du système ne dépend que du passé. 

 Stabilité 

Un système est dit stable si et seulement si la réponse 𝑦(𝑡) à toute entrée bornée (𝑡) , est bornée. 

C’est-à-dire 𝑥(𝑡)  borné ⟹ 𝑦(𝑡) borné. 

 L’invariance dans le temps  



Un système est dit invariant dans le temps(IT) si et seulement si : 

𝑦(𝑡) = 𝑆[𝑥(𝑡)] = 𝑆[𝑥(𝑡 − 𝜏)]                           (1.7) 

Théorème 1 : Si le système est invariant dans le temps(IT) on a : 

ℎ(𝑡 − 𝜏) = 𝑆[𝛿(𝑡 − 𝜏)] = ℎ(𝑡)      Cas continu. 

ℎ(𝑛 − 𝑘) = 𝑆[𝛿(𝑛 − 𝑘)] = ℎ(𝑛)   Cas discret. 

Le système est complètement défini par ℎ(𝑡) ((ℎ(𝑛) dans le cas discret) avec : 

𝑦(𝑡) = ∫ 𝑥(𝜏)ℎ(𝑡 − 𝜏)𝑑𝜏
+∞

−∞

= 𝑥(𝑡) ∗ ℎ(𝑡) 

𝑦(𝑛) = ∑ 𝑥(𝑘)ℎ(𝑛 − 𝑘) = 𝑥(𝑛) ∗ ℎ(𝑛)+∞
𝑘=−∞                 (1.8) 

Un système IT initialement au repos est un système qui effectue l’opération de convolution du 

signal d’entrée par la réponse impulsionnelle (RI) du système ℎ(𝑡). 

Théorème 2 : Un système linéaire IT est causal ⟺ ℎ(𝑛) = 0, 𝑛 < 0(avant l’impulsion rien 

n’est à l’entrée ⟹ on ne doit avoir rien à la sortie). 

Théorème 3 : Un système linéaire IT est stable si et seulement si : 

∑ |ℎ(𝑘)|

+∞

𝑘=−∞

< ∞ ⟹ lim
𝑘⟶∞

|ℎ(𝑘)| = 0 

                           (1.9) 

 Quelques exemples de systèmes  

 

 linéaire causal invariant 

𝑦(𝑡) = 𝑥2(𝑡) non oui oui 

𝑦(𝑡) = sin (𝑥(𝑡)) non oui oui 

𝑦(𝑡) = 𝑚(𝑡)𝑥(𝑡) oui oui non 

𝑦(𝑡) = ∫ ℎ(𝑡, 𝜃)𝑥(𝜃)𝑑𝜃
+∞

−∞

 
oui non non 

𝑦(𝑡) =
1

2𝛼
∫ 𝑥(𝜃)𝑑𝜃

𝑡+𝛼

𝑡−𝛼

 
oui non non 

Exemple 1.2 : 



 Étant donnée   ℎ(𝑛) = 𝑎𝑛𝑢(𝑛) = { 𝑎𝑛       𝑛 ≥ 0
0      𝑎𝑖𝑙𝑙𝑒𝑢𝑟𝑠

  

Ce système est causal. Est-il stable ? 

∑ |ℎ(𝑘)|

+∞

𝑘=−∞

= ∑|𝑎𝑘| = {

1

1 − |𝑎|
    𝑠𝑖 |𝑎| < 1         𝑠𝑦𝑠𝑡é𝑚𝑒 𝑠𝑡𝑎𝑏𝑙𝑒 

⟶ +∞   𝑠𝑖 |𝑎| ≥ 1           𝑠𝑦𝑠𝑡é𝑚𝑒 𝑖𝑛𝑠𝑡𝑎𝑏𝑙𝑒

+∞

𝑘=0

 

 

1.2.3. Filtres dynamiques  

De nombreux systèmes électriques et mécaniques   sont décrits par des équations 

différentielles linéaires à coefficients réels constants dont les filtres dynamiques font partie. 

Par exemple un circuit RC est décrit par : 

𝑦′ + 𝑎𝑦 = 𝑥                    (1.10) 

 

Où ; 𝑎 =
1

𝑅𝐶
 .  

Cette équation introduit un filtre linéaire de fonction de transfert (en transformée en z) 

suivante : 

𝐻(𝑧) =
1

𝑧+𝑎
                                     (1.11) 

D’une manière générale, une fonction de transfert peut être un simple polynôme ou   une 

fraction de deux polynômes exprimée comme suit : 

𝐻(𝑧) =
𝑏0 + 𝑏1𝑧−1 + ⋯ + 𝑏𝑚𝑧−𝑚

𝑎0 + 𝑎1𝑧−1 + ⋯ + 𝑎𝑛𝑧−𝑛
 

                     (1.12) 

Cette fonction correspond à l’équation différentielle ci-dessous : 

 𝑎0𝑦(𝑡) + 𝑎1𝑦(1)(𝑡) + ⋯ + 𝑎𝑛𝑦(𝑛)(𝑡) = 𝑏0𝑥(𝑡) + 𝑏1𝑥(1)(𝑡) + ⋯ + 𝑏𝑚𝑥(𝑚)(𝑡)     (1.13) 

Un filtre dynamique possède une fonction de transfert sous forme d’une fraction rationnelle 

dont tous les pôles sont à gauche de l’axe imaginaire.  On dit qu’un filtre est dynamique s’il est 

rationnel et de plus causal. Pour qu’il soit stable, il faut que les pôles de 𝐻(𝑧) soient à l’intérieur 

du cercle unité. 



1.3. Notions de corrélation et de convolution 

 

1.3.1. La convolution 

En traitement du signal, la convolution est l'outil permettant de calculer la sortie d'un système. 

En effet, pour un signal d'entrée 𝑥(𝑡) soumis à un système de fonction transfert 𝑔(𝑡), la sortie 

sera la convolution des deux fonctions 𝑦(𝑡) = 𝑥(𝑡) ∗ 𝑔(𝑡). 

a) Définition 

Soient 𝑥(𝑡) et 𝑦(𝑡) deux fonction de ℝ (ou ℂ), on appelle produit de convolution de 𝑥(𝑡) par 

𝑦(𝑡), s’il existe, la fonction 𝑧(𝑡) définie par : 

𝑧(𝑡) = ∫ 𝑥(𝜏)𝑦(𝑡 − 𝜏)𝑑𝜏
+∞

−∞
= 𝑥(𝑡) ∗ 𝑦(𝑡)       (1.14) 

Le symbole «* » représente le produit de convolution. 

b) Propriétés de la convolution 

 

- La convolution est commutative 

𝑥(𝑡) ∗ 𝑦(𝑡) = 𝑦(𝑡) ∗ 𝑥(𝑡) 

𝑥(𝑛) ∗ ℎ(𝑛) = ℎ(𝑛) ∗ 𝑥(𝑛)                                          (1.15) 

- Transformée de Fourier 

𝑇𝐹{𝑥(𝑡) ∗ 𝑦(𝑡)} = 𝑇𝐹{𝑥(𝑡)}. 𝑇𝐹{𝑦(𝑡)} = 𝑋(𝑓). 𝑌(𝑓)                  (1.16) 

Application : 

 

 

                                                                              ⟺  

 

On veut générer physiquement un signal 𝑦(𝑛) à partir d’une source de bruit. 

 

                                                           

 

- La convolution est distributive  ⟺ elle est linéaire. 

 

Cas continu             (𝑥(𝑡) ∗ 𝑦(𝑡)) ∗ 𝑧(𝑡) = 𝑥(𝑡) ∗ (𝑦(𝑡) ∗ 𝑧(𝑡)) 

 

                        𝑥(𝑡) ∗ [𝑦(𝑡) + 𝑧(𝑡)] =  𝑥(𝑡) ∗ 𝑦(𝑡) + 𝑥(𝑡) ∗ 𝑧(𝑡)                              (1.17) 

   

ℎ(𝑛) 
𝑥(𝑛) 𝑦(𝑛) 𝑥(𝑛) 

ℎ(𝑛) 𝑦(𝑛) 

ℎ(𝑛) 𝑏𝑟𝑢𝑖𝑡 𝑦(𝑛) 



Cas discret        ℎ(𝑛) ∗ [𝑦(𝑛) + 𝑧(𝑛)] = ℎ(𝑛) ∗ 𝑦(𝑛) + ℎ(𝑛) ∗ 𝑧(𝑛) 

 

1.3.2. La corrélation  

Nous sommes souvent amenés à rapprocher l’allure des variations de certaines grandeurs. 

Ces grandeurs peuvent être liées par des liaisons. Si nous cherchons une liaison entre les 

observations 𝑥1, 𝑥2, … , 𝑥𝑛 d’une grandeur physique 𝑋 et les observations 𝑦1, 𝑦2, … , 𝑦𝑛 d’une 

grandeur physique 𝑌 alors on peut définir entre 𝑋 et 𝑌 une certaine fonction de corrélation. Elle 

exprime l’influence d’un signal sur un autre. Elle permet d’étudier la ressemblance entre deux 

signaux. On distingue deux opérations qui sont : 

a) La fonction d’autocorrélation 

Elle consiste à comparer un signal (
𝑥(1)

⋮
𝑥(𝑛)

)avec lui-même durant un intervalle de temps ou l’un 

est la valeur décalée de l’autre. 

La fonction d’autocorrélation 𝑅𝑋𝑋(𝜏) d’un signal à énergie finie 𝑥(𝑡) est la fonction réelle ou 

complexe définie par : 

𝑅𝑋𝑋(𝜏) = ∫ 𝑥(𝑡)𝑥∗+∞

−∞
(𝑡 − 𝜏)𝑑𝑡      𝑥(𝑡)𝜖ℂ                       (1.18) 

Cette fonction caractérise la dépendance entre 𝑥(𝑡) et sa version retardée et possède les 

propriétés suivantes : 

- Lien avec la convolution : 

Posons        𝑧(𝑡) = 𝑥∗(−𝑡) ⟹ 𝑧(𝜏 − 𝑡) = 𝑥∗(𝑡 − 𝜏) 

𝑅𝑋𝑋(𝜏) = ∫ 𝑥(𝑡)𝑧
+∞

−∞

(𝜏 − 𝑡)𝑑𝑡 = 𝑥(𝜏) ∗ 𝑧(𝜏)     𝑧(𝜏) = 𝑥∗(−𝜏) 

𝑅𝑋𝑋(𝜏) = 𝑥(𝜏) ∗ 𝑥∗(−𝜏)                                                  (1.19) 

- Limitation : Inégalité de Shwarz 

|∫ 𝑓(𝑡)𝑔∗+∞

−∞
(𝑡)𝑑𝑡|

2
≤ ∫ |𝑓(𝑡)|2𝑑𝑡

+∞

−∞
∫ |𝑔(𝑡)|2𝑑𝑡

+∞

−∞
               (1.20) 

𝑓(𝑡)  et  𝑔(𝑡)  sont des signaux à énergie finie. 

|𝑅𝑋𝑋(𝜏)|2 = |∫ 𝑥(𝑡)𝑥∗
+∞

−∞

(𝑡 − 𝜏)𝑑𝑡|

2

≤ ∫ |𝑥(𝑡)|2𝑑𝑡
+∞

−∞

. ∫ |𝑥(𝑡 − 𝜏)|2𝑑𝑡
+∞

−∞

= 𝐸𝑋 . 𝐸𝑋  



|𝑅𝑋𝑋(𝜏)|2 ≤ 𝐸𝑋
2     ⟹   |𝑅𝑋𝑋(𝜏)| ≤  𝐸𝑋                              (1.21) 

L’équation (1.23) montre que l’autocorrélation est bornée par l’énergie 𝐸𝑋   du signal.     

𝑅𝑋𝑋(𝜏) = ∫ 𝑥(𝑡)𝑥∗+∞

−∞
(𝑡 − 𝜏)𝑑𝑡   ⟹  𝑅𝑋𝑋(0) = ∫ 𝑥(𝑡)𝑥∗+∞

−∞
(𝑡)𝑑𝑡 = ∫ |𝑥(𝑡)|2𝑑𝑡

+∞

−∞
           

𝑅𝑋𝑋(0) = 𝐸𝑋                                     (1.22) 

𝑅𝑋𝑋(𝜏) est maximale à l’origine (𝜏 = 0. Le coefficient d’autocorrélation est exprimé par : 

𝜌𝑋𝑋(𝜏) =
𝑅𝑋𝑋(𝜏) 

𝑅𝑋𝑋(0) 
    ⟹ |𝜌𝑋𝑋(𝜏)| ≤ 1                      (1.23) 

Si 𝑅𝑋𝑋(𝜏) = 𝑅𝑋𝑋(0) alors 𝜌𝑋𝑋(𝜏) est maximal et vaut 1. 

 

- Parité : 

𝑅𝑋𝑋(𝜏) = 𝑅𝑋𝑋(−𝜏)   si  𝑥(𝑡)  ∈ ℝ                  (1.24) 

La fonction d’autocorrélation est paire, lorsque le signal est réel. 

b) La fonction d’inter-corrélation 

La fonction d’inter-corrélation 𝑅𝑋𝑌(𝜏) de deux signaux à énergie finie 𝑥(𝑡) et 𝑦(𝑡) est la 

fonction réelle ou complexe définie par : 

𝑅𝑋𝑌(𝜏) = ∫ 𝑥(𝑡)𝑦∗+∞

−∞
(𝑡 − 𝜏)𝑑𝑡      𝑥(𝑡), 𝑦(𝑡) 𝜖ℂ                       (1.25) 

C’est une fonction continue qui caractérise la dépendance entre les signaux 𝑥(𝑡) et y(t). Par 

analogie  avec 𝑅𝑋𝑋(𝜏), on peut citer quelques propriétés de 𝑅𝑋𝑌(𝜏) comme suit : 

- Lien avec la convolution : 

𝑅𝑋𝑌(𝜏) = 𝑥(𝜏) ∗ 𝑦∗(−𝜏) 

𝑅𝑌𝑋(𝜏) = 𝑦(𝜏) ∗ 𝑥∗(−𝜏) 

                                                  (1.26) 

- Parité : 

                                                       𝑅𝑋𝑌(𝜏) = 𝑅𝑌𝑋
∗(−𝜏)    

Si     𝑥(𝑡)   et   𝑦(𝑡)  ∈ ℝ            𝑅𝑋𝑌(𝜏) = 𝑅𝑌𝑋(−𝜏)                                                  (1.27) 

Dans les deux cas cette fonction n’est ni paire, ni impaire. 



- Limitation :  

 

|𝑅𝑋𝑌(𝜏)|2 = |∫ 𝑥(𝑡)𝑦∗
+∞

−∞

(𝑡 − 𝜏)𝑑𝑡|

2

≤ ∫ |𝑥(𝑡)|2𝑑𝑡
+∞

−∞

. ∫ |𝑦(𝑡 − 𝜏)|2𝑑𝑡
+∞

−∞

= 𝐸𝑋 . 𝐸𝑌  

 

|𝑅𝑋𝑌(𝜏)|2 ≤ 𝑅𝑋𝑋(0)𝑅𝑌𝑌(0)                                 (1.28) 

 La fonction 𝑅𝑋𝑌(𝜏) est bornée, sa valeur maximale est √𝑅𝑋𝑋(0)𝑅𝑌𝑌(0) et 𝑅𝑋𝑌(0) n’est pas 

nécessairement à l’origine (dépend de l’application) et ça sera même chose  pour 𝑅𝑌𝑋(𝜏). 

Le coefficient d’inter-corrélation est exprimé par : 

𝜌𝑋𝑋(𝜏) =
𝑅𝑋𝑌(𝜏) 

√𝑅𝑋𝑋(0)𝑅𝑌𝑌(0) 
 

           ⟹ |𝜌𝑋𝑋(𝜏)| ≤ 1                      (1.29) 

 

Pour les Signaux à puissance moyenne finie, nous adoptons la formulation suivante : 

 𝑅𝑋𝑋(𝜏) = lim
𝑇→∞

1

2𝑇
∫ 𝑥(𝑡)𝑥∗+𝑇

−𝑇
(𝑡 − 𝜏)𝑑𝑡                             (1.30) 

Si (𝑡) ∈ ℝ , alors   𝑅𝑋𝑋(𝜏) = lim
𝑇→∞

1

2𝑇
∫ 𝑥(𝑡)

+𝑇

−𝑇
𝑥(𝑡 − 𝜏)𝑑𝑡   

Si   𝜏 = 0, on obtient : 

𝑅𝑋𝑋(0) = lim
𝑇→∞

1

2𝑇
∫ |𝑥(𝑡)|2+𝑇

−𝑇
𝑑𝑡 = 𝑃𝑚𝑜𝑦                    (1.31) 

 Parité : 

                                                       𝑅𝑋𝑋(𝜏) = 𝑅𝑋𝑋
∗(−𝜏)    

 

si     𝑥(𝑡)  ∈ ℝ            𝑅𝑋𝑋(𝜏) = 𝑅𝑋𝑋(−𝜏)     cette fonction est paire. 

 

- Limitation :  

|𝑅𝑋𝑋(𝜏)| ≤ 𝑅𝑋𝑋(0) = 𝑃𝑚𝑜𝑦                     (1.32) 



 

1.4. Application fondamentale des méthodes de corrélation  

1.4.1. Identification des processus et détection des signaux noyés dans le bruit 

L’une des applications de la corrélation est la détection par radar d’une cible : on désire 

détecter la présence ou non d’un avion puis connaitre la distance à laquelle il se trouve. 

Principe du radar : Il envoie un signal 𝑥(𝑡) et capte en retour l’écho 𝑦(𝑡)  renvoyé par l’avion. 

- S’il n’y a pas d’avion dans la zone couverte 𝑦(𝑡) est un bruit seulement. 

- Présence d’avion : 𝑦(𝑡) est une version retardée, atténuée et fortement bruitée du signal 

émis 𝑥(𝑡). 

𝑦(𝑡) = 𝐴𝑥(𝑡 − 𝑡𝑑) + 𝑛(𝑡)                                               (1.33) 

Où ; 

𝐴 : Atténuation qui dépend de la distance et de la forme d’avion. 

𝑡𝑑 : le temps mis par l’onde pour faire son aller et son retour. 

𝑛(𝑡) : bruit capté par l’antenne et généré par l’électronique du radar.   

Pour détecter le signal noyé dans le bruit on calcule l’inter-corrélation entre le signal d’entrée 

(signal émis par le radar) et le signal à reconnaitre (𝑥(𝑡) contenu dans 𝑦(𝑡)) . 

Si  𝑒(𝑡) = 𝑥(𝑡) + 𝑏(𝑡)  

𝑅𝑒𝑥(𝜏) = 𝑒(𝜏) ∗ 𝑥∗(−𝜏) ⟹ 𝑅𝑒𝑥(𝜏) = [𝑥(𝜏) + 𝑏(𝜏)] ∗ 𝑥∗(−𝜏) 

                                                           =𝑥(𝜏) ∗ 𝑥∗(−𝜏) + 𝑏(𝜏) ∗ 𝑥∗(−𝜏) 

𝑅𝑒𝑥(𝜏) = 𝑅𝑥𝑥(𝜏) + 𝑅𝑏𝑥(𝜏) 

𝑅𝑒𝑥(0) = 𝑅𝑥𝑥(0) + 𝑅𝑏𝑥(0)                                            (1.34) 

L’inter corrélation à l’origine est maximale et égale à 𝐸𝑥, si 𝑅𝑏𝑥(0) = 0 ⟹ 𝑥(𝑡) et 𝑏(𝑡) sont 

décorrélés. Cela est vrai si le bruit est blanc et indépendant du signal. 

 

1.4.2. Analyse spectrale 

1.4.2.1.Transformée de Fourier   



Puisque l’autocorrélation 𝑅𝑋𝑋(𝜏) est une fonction bornée donc elle admet toujours une 

transformée de Fourier(TF) donnée par : 

𝑆𝑋𝑋(𝑓) = 𝑇𝐹[𝑅𝑋𝑋(𝜏)] = ∫ 𝑅𝑋𝑋(𝜏)𝑒−𝑖2𝜋𝑓𝜏
+∞

−∞

𝑑𝜏 

𝑇𝐹[𝑅𝑋𝑋(𝜏)] = 𝑇𝐹(𝑥(𝜏)). 𝑇𝐹(𝑥∗(−𝜏)) = |𝑋(𝑓)|2                (1.35) 

On définit la fonction d’inter-corrélation, pour deux signaux 𝑥(𝑡) et 𝑦(𝑡) à puissance 

moyenne finie par : 

𝑅𝑋𝑌(𝜏) = lim
𝑇→∞

1

2𝑇
∫ 𝑥(𝑡)𝑦∗+𝑇

−𝑇
(𝑡 − 𝜏)𝑑𝑡                            (1.36) 

𝑅𝑋𝑌(𝜏) = 𝑅𝑌𝑋
∗(−𝜏)    et si     𝑥(𝑡)   et   𝑦(𝑡)  ∈ ℝ , on aura  𝑅𝑋𝑌(𝜏) = 𝑅𝑌𝑋(−𝜏)  qui est ni paire 

ni impaire.   

1.4.2.2. Densités spectrales 

a) Signaux à énergie finie : La densité spectrale d’un signal 𝑥(𝑡) à énergie finie est   

𝑆𝑋𝑋(𝑓) = |𝑋(𝑓)|2. Elle donne la distribution de son énergie en fonction de la fréquence. 

Comme  𝑅𝑋𝑌(𝜏) est aussi une fonction bornée donc sa transformée de Fourier(TF) existe et 

s’exprime par : 

𝑆𝑋𝑌(𝑓) = 𝑇𝐹[𝑅𝑋𝑌(𝜏)] = ∫ 𝑅𝑋𝑌(𝜏)𝑒−𝑖2𝜋𝑓𝜏+∞

−∞
𝑑𝜏                  (1.37) 

C’est la densité inter-spectrale d’énergie.  

𝑇𝐹−1[𝑆𝑋𝑋(𝑓)] = 𝑅𝑋𝑌(𝜏)                (1.38) 

∫ 𝑆𝑋𝑌(𝑓)𝑒𝑖2𝜋𝑓𝜏
+∞

−∞

𝑑𝜏 = ∫ 𝑥(𝑡)𝑦∗
+∞

−∞

(𝑡 − 𝜏)𝑑𝑡 

Pour 𝜏 = 0, on obtient : 

 

      ∫ 𝑋(𝑓)
+∞

−∞
𝑌∗(𝑓)𝑑𝑓 = ∫ 𝑥(𝑡)𝑦∗+∞

−∞
(𝑡)𝑑𝑡                                   (1.39) 

C’est la forme générale du théorème de Parseval. 

b) Densité spectrale de puissance                              



Puisque 𝑃𝑚𝑜𝑦  est finie (signaux à puissance finie), on utilise les distributions pour calculer 

𝑆𝑋𝑋(𝑓) = 𝑇𝐹[𝑅𝑋𝑋(𝜏)]. En général, elle n’est pas égale à   |𝑋(𝑓)|2. 

c) Densité inter-spectrale de puissance 

Elle est définie par :     𝑆𝑋𝑌(𝑓) = 𝑇𝐹[𝑅𝑋𝑌(𝜏)] 

 

1.5. Conclusion 

Dans ce chapitre, nous avons vu que les deux opérations de convolution et de corrélation 

s’apparentent fortement. Un endroit où l’on rencontre fréquemment les convolutions est la 

théorie des probabilités, le théorème central limite et le filtrage. Ces deux concepts sont 

abondement utilisés en traitement du signal et plus particulièrement dans l’analyse et traitement 

des signaux aléatoires. La convolution est l’opérateur le plus utilisé pour décrire la réponse des 

systèmes linéaires. Les TF nous permettent de calculer ces choses de façon assez simple.  

 


