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Matiere : TP Signaux aléatoires et Processus stochastiques

TP N°03 : Densité spectrale de puissance (Analyse et Simulation d’un bruit blanc sous Matlab)

) Rappels théoriques

a) Définition : Un processus aléatoire (ou un signal pour votre visualisation) avec une fonction de densité
spectrale de puissance (PSD) constante est un processus de bruit blanc.

b) Densité spectrale de puissance

La fonction de densité spectrale de puissance (PSD) indique la quantité de puissance contenue dans chacune
des composantes spectrales. Par exemple, pour une onde sinusoidale de fréquence fixe, le tracé PSD ne
contiendra qu'une seule composante spectrale présente a la fréquence donnée.

¢) Bruit blanc gaussien et uniforme

Un bruit blanc (processus) est constitué d'un ensemble de variables aléatoires indépendantes et identiqguement
distribuées (i.i.d). Au sens discret, le bruit blanc constitue une suite d'échantillons indépendants et générés a
partir de la méme distribution de probabilité.

Par exemple, vous pouvez générer un bruit blanc a l'aide d'un générateur de nombres aléatoires dans lequel
tous les échantillons suivent une distribution gaussienne donnée. C'est ce qu'on appelle le bruit blanc gaussien
(WGN : peut-étre généré a l'aide de la fonction randn). De méme, un bruit blanc généré a partir d'une
distribution uniforme est appelé bruit blanc uniforme (peut étre généré a l'aide de la fonction rand).

Le bruit gaussien et le bruit uniforme sont fréquemment utilisés dans la modélisation de systémes. Prenons
I'exemple de la génération d'un bruit blanc gaussien de longueur 10 a I'aide de la fonction randn dans Matlab
- avec une moyenne nulle et un écart type = 1.

%White Noise:Simulation and Analysis using Matlab
mu=0;sigma=1; noise= sigma *randn(1,10)+mu

d) Bruit blanc strictement et faiblement défini

Etant donné que le processus de bruit blanc est construit & partir d'échantillons/variables aléatoires i.i.d, tous
les échantillons suivent la méme fonction de distribution de probabilité. Ainsi, la fonction de distribution de
probabilité conjointe du processus ne changera pas avec un décalage dans le temps. C'est ce qu'on appelle un
processus stationnaire. Un processus stationnaire peut étre classé en processus stationnaire au sens strict
(Strict Sense Stationary :SSS) ou stationnaire au sens large( Wide Sense Stationary :WSS). En conséquence,
ils peuvent étre appelés bruit blanc strictement défini(SSS) et bruit blanc faiblement défini(WSS).

e) Fonction et matrice de covariance : Un bruit blanc, noté (t) , est défini au sens faible comme une
condition plus pratique. Ici, les échantillons sont statistiguement non corrélés et distribués de maniére
identique avec une variance égale a 2. Cette condition est spécifiée en utilisant une fonction de covariance
comme

A=

cov(x,x;) = {g oy

Pourquoi avons-nous besoin d*une fonction de covariance ?


https://www.gaussianwaves.com/gaussianwaves/wp-content/uploads/2013/11/covariance-function-of-white-noise.png

Car, nous avons affaire a un processus aléatoire composé de variables aléatoires (10 variables dans I'exemple
de modélisation ci-dessus). Un tel processus est considérée comme un vecteur aléatoire ou une variable
aléatoire multivariée. Dans ce cas, la fonction de covariance spécifie comment chacune des variables du
processus aléatoire donné se comporte les unes par rapport aux autres. La fonction de covariance genéralise
la notion de variance a plusieurs dimensions. L'équation ci-dessus, lorsqu'elle est représentée sous forme
matricielle, donne la matrice de covariance du processus aléatoire de bruit blanc. Etant donné que les variables
aléatoires de ce processus ne sont pas corrélées statistiquement, la fonction de covariance ne contient des
valeurs que le long de la diagonale.
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La matrice ci-dessus indique que seule la fonction d'auto-corrélation existe pour chaque variable aléatoire. Les
valeurs de corrélation croisée sont nulles (les échantillons/variables sont statistiguement non corrélés les uns
par rapport aux autres). Les éléments diagonaux sont égaux a la variance et tous les autres éléments de la
matrice sont nuls. La fonction d'auto-corrélation d'ensemble du bruit blanc faiblement défini est donnée par :

B

Ryx(1) = E[x(t)x*(t —1)] = ¢?8(7)

Cela indique que la fonction d'auto-corrélation du processus de bruit blanc faiblement défini est nulle partout
sauf au décalage 7 = 0.

Caracteristiques dans le domaine fréquentiel

Le théoreme de Wiener-Khintchine énonce que pour le processus stationnaire au sens large (WSS), la fonction
de densité spectrale de puissance Szalf) dun processus aléatoire peut étre obtenue par la transformée de
Fourier de la fonction d'auto-corrélation du processus aléatoire. Dans le domaine temporel continu, ceci est
représenté par :
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Figure 1: Hlustration du Théoreme de Weiner-Khintchine

Pour le processus de bruit blanc faiblement défini, nous constatons que la moyenne est une constante et que
sa covariance ne varie pas par rapport au temps. C'est une condition suffisante pour un processus WSS. Ainsi,
nous pouvons appliquer le théoreme de Weiner-Khintchine. Par conséquent, la densité spectrale de puissance
du processus de bruit blanc faiblement défini est constante (plate) sur I'ensemble du spectre de fréquences
(Figure 1). La valeur de la constante est égale a la variance ou puissance du signal de bruit.

oo = =)

S.x(f)=F[R.;(1)] = f g?8(t)e T dr = g* J- §(1t)e 72T dr = g*
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) Simulations des caractéristiques du bruit blanc gaussien dans Matlab

1) Générez un bruit blanc gaussien de longueur L = 100, 000 3 aide de la fonction randn dans Matlab et
tracez-le. Supposons que la densité de probabilité est gaussienne avec une moyenne # = U et un écart
type o = 2. Ainsi, lavariance est 7° = 4 . La densité de probabilité théorique de la gaussienne est donnée
par :

1 (x — p)?
2) clear all; clc; close all; felx) = ——exp|— :
a2 2a-

L=100000; %Sample length for the random signal

mu=0; sigma=2;

X=sigma*randn(L,1)+mu;

figure();

subplot(2,1,1), plot(X);

title(['VWhite noise : \mu_x=",num2str(mu)," \sigma”2="num2str(sigma’2)])
xlabel('Samples’)

ylabel('Sample Values')

grid on;

3) Tracez I'histogramme du bruit généré et comparez le a I'histogramme de la densité de probabilité théorique
de la variable aléatoire gaussienne.

subplot(2,1,2)

n=100; %number of Histrogram bins

[f,x]=hist(X,n);

bar(x,f/trapz(x,f)); hold on;

%Theoretical PDF of Gaussian Random Variable
g=(1/(sgrt(2*pi)*sigma))*exp(-((x-mu)."2)/(2*sigma’2));
plot(x,g);hold off; grid on;

title('Theoretical PDF and Simulated Histogram of White Gaussian Noise');
legend('Histogram',"Theoretical PDF');

xlabel('Bins');

ylabel('PDF f_x(x)");

4) Calculer la fonction d'auto-corrélation du bruit blanc.

La fonction d'auto-corrélation calculée doit étre mise a I'échelle correctement. Si la fonction « xcorr » (intégrée
a Matlab) est utilisée pour calculer la fonction d'auto-corrélation, utilisez I'argument « biaisé » dans la fonction

pour la mettre a I'échelle correctement. :
%Alternative method

%[Rxx,lags] =xcorr(X,'biased");

%The argument 'biased' is used for proper scaling by
1/L

%Normalize auto-correlation with sample length for
proper scaling

figure();

Rxx=1/L*conv(flipud(X),X);
lags=(-L+1):1:(L-1); plot(lags,Rxx);
title("Auto-correlation Function of white noise’);
xlabel('Lags')

ylabel(‘Correlation’)
grid on;

5) Simulation de la densité spectrale de puissance (PSD) : Simuler la densité spectrale de puissance (PSD)
du bruit blanc est une tache un peu délicate. Il y a deux problémes ici :
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a) Les échantillons générés sont de longueur finie. Cela revient a appliquer la troncature d'une série infinie
d'échantillons aléatoires. Cela implique que les décalages sont définis sur une plage fixe.

b) Les générateurs de nombres aléatoires utilisés dans les simulations sont des générateurs pseudo-aléatoires.
Pour ces deux raisons, vous n'obtiendrez pas un spectre plat de PSD lorsque vous appliquez la transformée de
Fourier sur les valeurs d'auto-corrélation génerées. L'effet d'oscillation du PSD peut étre minimisé en générant
un signal aléatoire suffisamment long et en faisant la moyenne du PSD sur plusieurs réalisations du signal
aléatoire.

4.1. Simulation du bruit blanc gaussien en tant que vecteur aléatoire gaussien multivarie :

Pour vérifier la densité spectrale de puissance du bruit blanc, nous utiliserons I'approche consistant a envisager
le bruit comme la somme de N variables aléatoires gaussiennes. Nous voulons faire la moyenne de la DSP sur
L de telles réalisations. Puisqu'il existe N variables aléatoires gaussiennes (N échantillons individuels) par
réalisation, la matrice de covariance Cx= sera de dimension V x . Le vecteur de moyenne pour ce cas
multivarie sera de dimension 1 x /V.La decomposition de Cholesky de la matrice de covariance donne I'écart
type équivalent pour le cas multivarié. La décomposition de Cholesky peut étre considérée comme une
opération de racine carree. La fonction randn de Matlab est utilisée ici pour générer le processus aléatoire
gaussien multidimensionnel avec la matrice moyenne et la matrice de covariance données.

mu=0; %Mean of each realization of Noise Process
sigma=2; %Sigma of each realization of Noise Process

L = 1000; %Number of Random Signal realizations to average

N = 1024; %Sample length for each realization set as power of 2 for FFT
%Generating the Random Process - White Gaussian Noise process
MU=mu*ones(1,N); %Vector of mean for all realizations
Cxx=(sigma”2)*diag(ones(N,1)); %Covariance Matrix for the Random Process
R = chol(Cxx); %Cholesky of Covariance Matrix

%Generating a Multivariate Gaussian Distribution with given mean vector and
%Covariance Matrix Cxx

z = repmat(MU,L,1) + randn(L,N)*R;

Calculez la PSD du processus multidimensionnel généré ci-dessus et faites-en la moyenne pour obtenir un
tracé lisse.

Z = 1/sqrt(N)*fft(z,[],2); %Scaling by sqrt(N);

Pzavg = mean(Z.*conj(2));%Computing the mean power from fft

normFreq=[-N/2:N/2-1]/N;

Pzavg=fftshift(Pzavg); %Shift zero-frequency component to center of spectrum
plot(normFreq,10*log10(Pzavg),'r'); title('power spectral density’)

axis([-0.5 0.5 0 10]); grid on; ylabel('Power Spectral Density (dB/Hz)"); xlabel('Normalized Frequency");

Application : Dans la modélisation de canal, nous rencontrons souvent un canal de bruit blanc gaussien
additif (AWGN).

I11)  Le périodogramme
On génére un signal composé d'une onde sinusoidale de 100 Hz accompagneé d’un bruit additif N(0,1). La

fréquence d'échantillonnage est de 1 kHz. La longueur du signal est de 1000 échantillons.
fs = 1000; t = 0:1/fs:1-1/fs;

X = cos(2*pi*100*t) + randn(size(t));
figure,plot (x)



a) Périodogramme en utilisant la FFT.

Le signal est a valeur réelle et a une longueur paire. Etant donné que le signal est & valeur réelle, vous
n'avez besoin que d'estimations de puissance pour les fréquences positives ou négatives. Afin de conserver
la puissance totale, multipliez toutes les fréquences qui se produisent dans les deux ensembles (les
fréquences positives et négatives) par un facteur de 2. La fréquence zéro (DC) et la fréquence de Nyquist
ne se produisent pas deux fois. Tracez le résultat.

N = length(x);

xdft = fft(x);

xdft = xdft(1:N/2+1);

psdx = (1/(fs*N)) * abs(xdft).”2;
psdx(2:end-1) = 2*psdx(2:end-1);
freq = 0:fs/length(x):fs/2;

plot(freq,pow2db(psdx))

grid on

title('Periodogram Using FFT)
xlabel(‘Frequency (Hz)")
ylabel('Power/Frequency (dB/Hz)")

b) Périodogramme a I'aide de I’instruction « périodogram ».

figure
periodogram(x, rectwin (N),N, £s)
mxerr = max (psdx'-periodogram(x,rectwin (N),N, fs))

Montrer que les deux résultats sont identiques.

c) Entrée a fréquence normalisee

$%C) Entrée a fréquence normalisée
N = 1000;

n = 0:N-1;

X = cos(pi/4*n) + randn(size(n));

xdft = fft (x);

xdft (1:N/2+1) ;

psdx = (1/(2*pi*N)) * abs(xdft)."2;

psdx (2:end-1) = 2*psdx(2:end-1);

freq = 0:2*pi/N:pi;

figure

plot (freq/pi, pow2db (psdx))

grid on

title('Periodogram Using FFT')

xlabel ('Normalized Frequency (\times\pi rad/sample)')
ylabel ('Power/Frequency (dB/ (rad/sample)) ")
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figure
periodogram(x, rectwin (N) ,N)
mxerr = max (psdx'-periodogram(x,rectwin(N),N))

Identification des systémes (estimation de la densité spectrale de puissance

l. Objectifsdu TP
1. Analyser les estimateurs de la densité spectrale de puissance

2. Tdentifier des systemes en utilisant le procédé de correlation



1. Partie théorique
Le périodogramme permet une estimation simple de la densité spectrale de puissance en prenant le

carré de la transformée de Fourier.

TP 02 : Identification des Systémes

(Estimation de la Densité Spectrale de Puissance)

I.  Objectifs du TP
. Analyser les estimateurs de la densité spectrale de puissance (DSP).
2. Identifier des systémes en utilisant le procédé de corrélation.
II.  Partie théorique
¢ Le périodogramme permet une estimation simple de la densité spectrale de
puissance en prenant le carré de la transformée de Fourier. 11 a ¢té introduit
par Arthur Schuster en 1898, L' csumnlnon de lads.pdu sngnal X est:

Sper () = —|Z=(n)e:p( ~ jum)|

Autrement dit

Iffe(x)|?

E..pnrr U] - T
N représenie be nombre d'échaniillons fixés. w représente la pulsation (w = 27 ).
* Périsdogramme moyenné

a Iffe(x)l?

s’fr(f) = —N'-
N représente e nombre d'échantillons fixés. @ représente la pulsation (w = 2rf).
* Périodogramme moyenné
Pour améliorer les performances de 'estimateur préeédent on caleule plusicurs
périodogrammes sur des signaux indépendants, La sinusoide est la méme pour les
différents signaux mais le bruit est indépendant pour chaque réalisation. On caleule
ensuite la moyenne des différents périodogrammes. Cette méthode réduit la variance
d'un facteur égal au nombre de périodogrammes caleulés.

. Ft_mﬂlon d"auto-corrélation (FAC) !
A unprocessus  stochastique discret ou  conting, correspond  une  « auto-
comrélation » statistique qui généralise la notion de covariance. Dans le cas
d'un processus continu (en toute généralité complexe) X(1), la fonction d'auto-
corrélation statistique se définit comme :
Rx(ty,tz) = E[X(t;). X" (t2)]

Avec:it, =t Il =t~T:

Ryx(7) = E[X(£1)X"(t2)] = E[X(O)X"(t - 1)]
Ladspde X, Sxy(f) estla transformée de Fourier (TF) de la FAC

o Périodogramme Lissé (de Welch)
La méthode de Welch fournit un estimateur consistant de la densité spectrale de
puissance. Cette méthode a ét¢ proposée par Peter D). Welch en 1967
La méthode de Welch consiste & calculer plusieurs périodogrammes & partir d’un
unique signal en utilisant une fenétre glissante. Il s’agit d'une fenétre
rectangulaire de taille trés inférieure 3 la taille du signal glissant d*¢échantillon en
échantillon. Cette méthode réduit le biais de I'estimateur. Les différentes fenétres
sont : Hamming, Hannin, Bartlett

« Caractéristiques des Estimateurs
Chacun de ces estimateurs peut étre canactérisé par une ¢tude statistique dont les




© Manmipulations

Manipulationl
Génération du signal bruite ot estimation de la dsp par le periodogramme

Dans cette partic on s'intéresse aux méthodes du « periodogram », periodogramme
moyenné et périodogramme lissé ous welch » pour Iestimation de la DSP.

Pour réaliser cette manipulation, on procéde de la maniére suivante :
1. Génénation d'un signal sinusoidal de fréquence 100 Hz, et de durée 1.5s.
On se pose que la fréquence d'échantillonnage est de 1000 Hz.

2. La génération du bruit en utilisant la fonction *awgn”® (ke cas ou SNR= -20),
3. L'utilisation de la fonction ‘periodogram’ pour caleuler et tracer la DSP par la
methode du periodogramme,

cle;

clear all;

close all;
£2100;fe=1000 ;t=0:1/fe:1.5;
s=cos(2'pi*f't);
sb=awgn (s, ~20);
figure

subplot 211
plot(s):

subplot 212
plot(sb);

§ La méthode du periodogran

figure

subplot 211

periodogram(s, [1,[], fe, 'twosided’);
subplot 212

periodogram(sb, ], (], fe, 'twosided');

- " v awsaar v ’ r—

Manipulation2 : periodogramme fenétré (periodogram de Welch :

pwelch ®
y r— W w4 Gt o a
§ La méthode de welch "{ | '
|
gt et

Sﬂbplot 2l L RO TN R
B
puelchis, (1, (), {1, fe, 'tiosided');

siplot 212 ,E_.}ﬁﬂ+“"ﬂﬂ f?wﬁ

puelch(sb, {1, {1, 1,2, "twosided'); e R R

n — |



Identification des systémes par corrélation

Dans cette partic du TP on calcule la fonction de corrélation des signaux non-
périodiques (Corrélation linéaire) et des signaux périodiques (Corrélation circulaire).

A. Corr¢lation linéaire :
Génération d'un signal échelant (de 100 échantillons).
Utilisation de la fonction “xcorr’ pour calculer la fonction dautocorrélation.

% Corrélation lineaire -
x=ones (1,100); o 1
IX=xcorr(x); o et ————————— i
figure(l)

subplot 211
plot(x) ol 1
subplot 212 9 J

B Corrélation circulaire :

1

Génération d'un signal sinusoidal de fréquence 10 Hzet le temp de pas 0.001,
(de 100 échantillons).

Utilisation de la transformée de la DSP avec la fonction ‘ffi " et “iffi ', ‘xcorr’
pour calculer la fonction d’autocorrélation.

§ Corrélation circulaire

t=0:0.001:1;

zl=cos(2'pitllre);

rxleffoohife (zeal (4208 ((£22(x1)) . .toon)(f22(x1))))):
figure(2)

subplot 211

ploz(xl)

subplot 212 - g
plot(zxl)

Travail i effectuer

«  Comparer les résultats de la manipulation | avec les résultats de cette fonction
qu'il famr créer sous marlab

Sunction P= periodogramme(S)
N o= lengthiS);

¥= RSN

¥ = absi¥);

P=(Y."2yN;



e Utiliser la fonction periodogramme précédent pour calculer et tracer le
perodogramme moyéné;

Function P=periodo_moy(s, var_bruit)
for i=1 : nb_periodo

N=length(s) ;

bruit = randn(1,N)*var_bruit;

signal = s + bruit;

P1 = periodogramme(signal);
plot(20*log(P1(1:round(N/2))), 'b")

perodogramme movéng;
Function P=periodo_moy(s, var_bruit)
for i=1 : nb_periodo
N=length(s) ; |
bruit = randn(1,N)*var_bruit;
signal = s + bruit:
P1 = periodogramme(signal);
plot(20™log(P1(1:round(N/2))), 'b")
P=[P:Pl1};
end

Pmoy = mean(P);

o Calculer les caractéristiques statistiques de chaque estimateur (biais et variance)
par la fonction suivante :

Sunction [bluis,variancef=stats(P)
N = length(P);

fori=1:N
variance = variance + ((P(i)-biais)*2);
end

variance = variance / N;

Dans la méthode d'estimation de la dsp par Welch, on pewt utiliser plusicurs
fenétres , & savoir : Hamming, Hanning, Bartlett. Faites varier les fenétres pour
estimer ¢t tracer la dsp par Welch et caleuler & chaque fois les caractéristiques
statistiques par la fonction (stats). (pour cela utiliser pwelch et préciser la fenétre)



Periodogram Using FFT
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Compute and plot the periodogram using periodogram. Show that the two results are identical.
periodogram(x,rectwin(N),N)

20 Periodogram Power Spectral Density Estimate
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mxerr = max(psdx'-periodogram(x,rectwin(N),N))



mxerr = 4.4409e-16

Complex-Valued Input with Normalized Frequency

Use fft to produce a periodogram for a complex-valued input with normalized frequency. The signal is a
complex exponential with an angular frequency of z/4 rad/sample in complex-valued N(0,1) noise.

N = 1000;
n=0:N-1;
x = exp(1j*pi/4*n) + [1 1j]*randn(2,N)/sqrt(2);

Use fft to obtain the periodogram. Because the input is complex-valued, obtain the periodogram
from [0,2x) rad/sample. Plot the result.

xdft = fft(x);
psdx = (1/(2*pi*N)) * abs(xdft)."2;
freq = 0:2*pi/N:2*pi-2*pi/N;

plot(freg/pi,pow2db(psdx))

grid on

title("Periodogram Using FFT")

xlabel("Normalized Frequency (\times\pi rad/sample)")
ylabel("Power/Frequency (dB/(rad/sample))")

20 Periodogram Using FFT
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Use periodogram to obtain and plot the periodogram. Compare the PSD estimates.

periodogram(x,rectwin(N),N,"twosided")
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20 Periodogram Power Spectral Density Estimate
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mxerr = max(psdx'-periodogram(x,rectwin(N),N,"twosided"))
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