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Université Djilali Bounaama de Khemis Miliana               Faculté des Sciences et de la Technologie   

Département de Technologie/ Niveau et Spécialité: 1ère Année Master Telecom   

Matière : TP Signaux aléatoires et Processus stochastiques  

 

TP N°03 : Densité spectrale de puissance (Analyse et Simulation d’un bruit blanc sous Matlab) 

 

I) Rappels théoriques 

a) Définition : Un processus aléatoire (ou un signal pour votre visualisation) avec une fonction de densité 

spectrale de puissance (PSD) constante est un processus de bruit blanc. 

b) Densité spectrale de puissance 

La fonction de densité spectrale de puissance (PSD) indique la quantité de puissance contenue dans chacune 

des composantes spectrales. Par exemple, pour une onde sinusoïdale de fréquence fixe, le tracé PSD ne 

contiendra qu'une seule composante spectrale présente à la fréquence donnée.  

c) Bruit blanc gaussien et uniforme  

Un bruit blanc (processus) est constitué d'un ensemble de variables aléatoires indépendantes et identiquement 

distribuées (i.i.d). Au sens discret, le bruit blanc constitue une suite d'échantillons indépendants et générés à 

partir de la même distribution de probabilité. 

Par exemple, vous pouvez générer un bruit blanc à l'aide d'un générateur de nombres aléatoires dans lequel 

tous les échantillons suivent une distribution gaussienne donnée. C'est ce qu'on appelle le bruit blanc gaussien 

(WGN : peut-être généré à l'aide de la fonction randn). De même, un bruit blanc généré à partir d'une 

distribution uniforme est appelé bruit blanc uniforme (peut être généré à l'aide de la fonction rand). 

Le bruit gaussien et le bruit uniforme sont fréquemment utilisés dans la modélisation de systèmes. Prenons 

l'exemple de la génération d'un bruit blanc gaussien de longueur 10 à l'aide de la fonction randn dans Matlab 

- avec une moyenne nulle et un écart type = 1. 

%White Noise:Simulation and Analysis  using Matlab 

 mu=0;sigma=1;  noise= sigma *randn(1,10)+mu 

d) Bruit blanc strictement et faiblement défini  

Étant donné que le processus de bruit blanc est construit à partir d'échantillons/variables aléatoires i.i.d, tous 

les échantillons suivent la même fonction de distribution de probabilité. Ainsi, la fonction de distribution de 

probabilité conjointe du processus ne changera pas avec un décalage dans le temps. C'est ce qu'on appelle un 

processus stationnaire. Un processus stationnaire peut être classé en processus stationnaire au sens strict 

(Strict Sense Stationary :SSS) ou stationnaire au sens large( Wide Sense Stationary :WSS). En conséquence, 

ils peuvent être appelés bruit blanc strictement défini(SSS) et bruit blanc faiblement défini(WSS). 

e) Fonction et matrice de covariance : Un bruit blanc, noté (𝑡) , est défini au sens faible comme une 

condition plus pratique. Ici, les échantillons sont statistiquement non corrélés et distribués de manière 

identique avec une variance égale à 𝜎2. Cette condition est spécifiée en utilisant une fonction de covariance 

comme 

                                                                   

Pourquoi avons-nous besoin d'une fonction de covariance ?  

https://www.gaussianwaves.com/gaussianwaves/wp-content/uploads/2013/11/covariance-function-of-white-noise.png
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Car, nous avons affaire à un processus aléatoire composé de variables aléatoires (10 variables dans l'exemple 

de modélisation ci-dessus). Un tel processus est considéré comme un vecteur aléatoire ou une variable 

aléatoire multivariée. Dans ce cas, la fonction de covariance spécifie comment chacune des variables du 

processus aléatoire donné se comporte les unes par rapport aux autres. La fonction de covariance généralise 

la notion de variance à plusieurs dimensions. L'équation ci-dessus, lorsqu'elle est représentée sous forme 

matricielle, donne la matrice de covariance du processus aléatoire de bruit blanc. Étant donné que les variables 

aléatoires de ce processus ne sont pas corrélées statistiquement, la fonction de covariance ne contient des 

valeurs que le long de la diagonale. 

                                                       

La matrice ci-dessus indique que seule la fonction d'auto-corrélation existe pour chaque variable aléatoire. Les 

valeurs de corrélation croisée sont nulles (les échantillons/variables sont statistiquement non corrélés les uns 

par rapport aux autres). Les éléments diagonaux sont égaux à la variance et tous les autres éléments de la 

matrice sont nuls. La fonction d'auto-corrélation d'ensemble du bruit blanc faiblement défini est donnée par : 

                                          

Cela indique que la fonction d'auto-corrélation du processus de bruit blanc faiblement défini est nulle partout 

sauf au décalage . 

Caractéristiques dans le domaine fréquentiel  

Le théorème de Wiener-Khintchine énonce que pour le processus stationnaire au sens large (WSS), la fonction 

de densité spectrale de puissance  d'un processus aléatoire peut être obtenue par la transformée de 

Fourier de la fonction d'auto-corrélation du processus aléatoire. Dans le domaine temporel continu, ceci est 

représenté par : 

                                    

 

                Figure 1: Illustration du Théorème de Weiner-Khintchine  

Pour le processus de bruit blanc faiblement défini, nous constatons que la moyenne est une constante et que 

sa covariance ne varie pas par rapport au temps. C'est une condition suffisante pour un processus WSS. Ainsi, 

nous pouvons appliquer le théorème de Weiner-Khintchine. Par conséquent, la densité spectrale de puissance 

du processus de bruit blanc faiblement défini est constante (plate) sur l'ensemble du spectre de fréquences 

(Figure 1). La valeur de la constante est égale à la variance ou puissance du signal de bruit. 

 

https://www.gaussianwaves.com/gaussianwaves/wp-content/uploads/2013/11/covariance-matrix-of-white-noise.png
https://www.gaussianwaves.com/gaussianwaves/wp-content/uploads/2013/11/auto-correlation-function-of-white-noise.png
https://www.gaussianwaves.com/gaussianwaves/wp-content/uploads/2013/11/Wiener-Khinchin-Theorem-equation.png
https://www.gaussianwaves.com/buy-books/
https://www.gaussianwaves.com/gaussianwaves/wp-content/uploads/2013/11/Wiener-Khinchin-Theorem-equation-for-white-noise.png
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II)  Simulations des caractéristiques du bruit blanc gaussien dans Matlab  

1) Générez un bruit blanc gaussien de longueur   à l'aide de la fonction randn dans Matlab et 

tracez-le. Supposons que la densité de  probabilité est gaussienne avec une moyenne  et un écart 

type  . Ainsi, la variance est  . La densité de  probabilité théorique de la gaussienne est donnée 

par : 

2) clear all; clc; close all; 

L=100000; %Sample length for the random signal 

mu=0; sigma=2; 

X=sigma*randn(L,1)+mu; 

figure(); 

subplot(2,1,1), plot(X); 

title(['White noise : \mu_x=',num2str(mu),' \sigma^2=',num2str(sigma^2)]) 

xlabel('Samples') 

ylabel('Sample Values') 

grid on; 

 

3) Tracez l'histogramme du bruit généré et comparez le à l'histogramme de la densité de probabilité théorique 

de la variable aléatoire gaussienne. 

 

subplot(2,1,2) 

n=100; %number of Histrogram bins 

[f,x]=hist(X,n); 

bar(x,f/trapz(x,f)); hold on; 

%Theoretical PDF of Gaussian Random Variable 

g=(1/(sqrt(2*pi)*sigma))*exp(-((x-mu).^2)/(2*sigma^2)); 

plot(x,g);hold off; grid on; 

title('Theoretical PDF and Simulated Histogram of White Gaussian Noise'); 

legend('Histogram','Theoretical PDF'); 

xlabel('Bins'); 

ylabel('PDF f_x(x)'); 

 

4) Calculer la fonction d'auto-corrélation du bruit blanc.  

La fonction d'auto-corrélation calculée doit être mise à l'échelle correctement. Si la fonction « xcorr » (intégrée 

à Matlab) est utilisée pour calculer la fonction d'auto-corrélation, utilisez l'argument « biaisé » dans la fonction 

pour la mettre à l'échelle correctement. 

figure(); 

Rxx=1/L*conv(flipud(X),X); 

lags=(-L+1):1:(L-1); plot(lags,Rxx);  

title('Auto-correlation Function of white noise'); 

xlabel('Lags') 

ylabel('Correlation') 

grid on; 

5) Simulation de la densité spectrale de puissance (PSD) : Simuler la densité spectrale de puissance (PSD) 

du bruit blanc est une tâche un peu délicate. Il y a deux problèmes ici : 

 

%Alternative method 

%[Rxx,lags] =xcorr(X,'biased');  

%The argument 'biased' is used for proper scaling by 

1/L 

%Normalize auto-correlation with sample length for 

proper scaling 
 

https://www.gaussianwaves.com/gaussianwaves/wp-content/uploads/2013/11/PDF-of-Gaussian-random-variable.png
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a) Les échantillons générés sont de longueur finie. Cela revient à appliquer la troncature d'une série infinie 

d'échantillons aléatoires. Cela implique que les décalages sont définis sur une plage fixe.  

b) Les générateurs de nombres aléatoires utilisés dans les simulations sont des générateurs pseudo-aléatoires. 

Pour ces deux raisons, vous n'obtiendrez pas un spectre plat de PSD lorsque vous appliquez la transformée de 

Fourier sur les valeurs d'auto-corrélation générées. L'effet d'oscillation du PSD peut être minimisé en générant 

un signal aléatoire suffisamment long et en faisant la moyenne du PSD sur plusieurs réalisations du signal 

aléatoire. 

4.1. Simulation du bruit blanc gaussien en tant que vecteur aléatoire gaussien multivarié : 

Pour vérifier la densité spectrale de puissance du bruit blanc, nous utiliserons l'approche consistant à envisager 

le bruit comme la somme de N variables aléatoires gaussiennes. Nous voulons faire la moyenne de la DSP sur 

L de telles réalisations. Puisqu'il existe N variables aléatoires gaussiennes (N échantillons individuels) par 

réalisation, la matrice de covariance  sera de dimension . Le vecteur de moyenne pour ce cas 

multivarié sera de dimension .La décomposition de Cholesky de la matrice de covariance donne l'écart 

type équivalent pour le cas multivarié. La décomposition de Cholesky peut être considérée comme une 

opération de racine carrée. La fonction randn de Matlab est utilisée ici pour générer le processus aléatoire 

gaussien multidimensionnel avec la matrice moyenne et la matrice de covariance données. 

mu=0; %Mean of each realization of Noise Process 

sigma=2; %Sigma of each realization of Noise Process 

  

L = 1000; %Number of Random Signal realizations to average 

N = 1024; %Sample length for each realization set as power of 2 for FFT 

 %Generating the Random Process - White Gaussian Noise process 

MU=mu*ones(1,N); %Vector of mean for all realizations 

Cxx=(sigma^2)*diag(ones(N,1)); %Covariance Matrix for the Random Process 

R = chol(Cxx); %Cholesky of Covariance Matrix 

%Generating a Multivariate Gaussian Distribution with given mean vector and 

%Covariance Matrix Cxx 

z = repmat(MU,L,1) + randn(L,N)*R; 

Calculez la PSD du processus multidimensionnel généré ci-dessus et faites-en la moyenne pour obtenir un 

tracé lisse. 

Z = 1/sqrt(N)*fft(z,[],2); %Scaling by sqrt(N); 

Pzavg = mean(Z.*conj(Z));%Computing the mean power from fft 

 normFreq=[-N/2:N/2-1]/N; 

Pzavg=fftshift(Pzavg); %Shift zero-frequency component to center of spectrum 

plot(normFreq,10*log10(Pzavg),'r'); title('power spectral density') 

axis([-0.5 0.5 0 10]); grid on; ylabel('Power Spectral Density (dB/Hz)'); xlabel('Normalized Frequency'); 

 

Application : Dans la modélisation de canal, nous rencontrons souvent un canal de bruit blanc gaussien 

additif (AWGN). 

III) Le périodogramme  

On génère un signal composé d'une onde sinusoïdale de 100 Hz accompagné d’un bruit additif N(0,1). La 

fréquence d'échantillonnage est de 1 kHz. La longueur du signal est de 1000 échantillons. 

fs = 1000; t = 0:1/fs:1-1/fs; 
x = cos(2*pi*100*t) + randn(size(t)); 

figure,plot(x) 
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a) Périodogramme en utilisant la FFT. 

 Le signal est à valeur réelle et a une longueur paire. Étant donné que le signal est à valeur réelle, vous 

n'avez besoin que d'estimations de puissance pour les fréquences positives ou négatives. Afin de conserver 

la puissance totale, multipliez toutes les fréquences qui se produisent dans les deux ensembles (les 

fréquences positives et négatives) par un facteur de 2. La fréquence zéro (DC) et la fréquence de Nyquist 

ne se produisent pas deux fois. Tracez le résultat. 

N = length(x); 

xdft = fft(x); 

xdft = xdft(1:N/2+1); 

psdx = (1/(fs*N)) * abs(xdft).^2; 

psdx(2:end-1) = 2*psdx(2:end-1); 

freq = 0:fs/length(x):fs/2; 

  

plot(freq,pow2db(psdx)) 

grid on 

title('Periodogram Using FFT') 

xlabel('Frequency (Hz)') 

ylabel('Power/Frequency (dB/Hz)') 

 

b)  Périodogramme à l'aide de l’instruction « périodogram ». 

figure 
periodogram(x,rectwin(N),N,fs) 
mxerr = max(psdx'-periodogram(x,rectwin(N),N,fs)) 

 

Montrer que les deux résultats sont identiques. 

c) Entrée à fréquence normalisée 

 

%%c)    Entrée à fréquence normalisée 
N = 1000; 
n = 0:N-1; 
x = cos(pi/4*n) + randn(size(n)); 
xdft = fft(x); 
xdft = xdft(1:N/2+1); 
psdx = (1/(2*pi*N)) * abs(xdft).^2; 
psdx(2:end-1) = 2*psdx(2:end-1); 
freq = 0:2*pi/N:pi; 
figure 
plot(freq/pi,pow2db(psdx)) 
grid on 
title('Periodogram Using FFT') 
xlabel('Normalized Frequency (\times\pi rad/sample)') 
ylabel('Power/Frequency (dB/(rad/sample))') 

figure 
periodogram(x,rectwin(N),N) 
mxerr = max(psdx'-periodogram(x,rectwin(N),N)) 

 Identification des systèmes (estimation de la densité spectrale de puissance 

 

 

I. Objectifs du TP 

1. Analyser les estimateurs de la densité spectrale de puissance 

2. Tdentifier des systemes en utilisant le procédé de correlation 
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II. Partie théorique 

Le périodogramme permet une estimation simple de la densité spectrale de puissance en prenant le 

carré de la transformée de Fourier. 
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Compute and plot the periodogram using periodogram. Show that the two results are identical. 

periodogram(x,rectwin(N),N) 

 

mxerr = max(psdx'-periodogram(x,rectwin(N),N)) 
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mxerr = 4.4409e-16 

Complex-Valued Input with Normalized Frequency 

Use fft to produce a periodogram for a complex-valued input with normalized frequency. The signal is a 

complex exponential with an angular frequency of π/4 rad/sample in complex-valued N(0,1) noise. 

N = 1000; 

n = 0:N-1; 

x = exp(1j*pi/4*n) + [1 1j]*randn(2,N)/sqrt(2); 

Use fft to obtain the periodogram. Because the input is complex-valued, obtain the periodogram 

from [0,2π) rad/sample. Plot the result. 

xdft = fft(x); 

psdx = (1/(2*pi*N)) * abs(xdft).^2; 

freq = 0:2*pi/N:2*pi-2*pi/N; 

 

plot(freq/pi,pow2db(psdx)) 

grid on 

title("Periodogram Using FFT") 

xlabel("Normalized Frequency (\times\pi rad/sample)") 

ylabel("Power/Frequency (dB/(rad/sample))") 

 

Use periodogram to obtain and plot the periodogram. Compare the PSD estimates. 

periodogram(x,rectwin(N),N,"twosided") 
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mxerr = max(psdx'-periodogram(x,rectwin(N),N,"twosided")) 

 

 

 


