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Chapter 1

Some Elementary Logic

The study of logic is the study of the principles and methods used in distinguishing valid argu- ments from those

that are not valid. The aim of this chapter is to help the student to understand the principles and methods

used in each step of a proof. The starting point in logic is the term statement (or proposition) which is used in

a technical sense. We introduce a minimal amount of mathematical logic which lie behind the concept of proof.

1.1 Mathematical Statements

When we prove theorems in mathematics, we are demonstrating the truth of certain statements. We therefore

need to start our discussion of logic with a look at statements, and at how we recognize certain statements as

true or false.

Définition 1.1.1. A statement is any declarative sentence that is either true (T) or false (F), but not both.

We refer to T or F as the truth value of the statement. Statements are usually denoted by lower case letters

(for example: p, q, r, …)

Remark 1.1.1. A statement is also called a proposition.

Exemple 1.1. The following sentences are statements

(a) The world is flat.

(b) 4� 1 equals 3.

(c) The equation x2 + 1 = 0 has two real solutions.

(d) (x+ y)2 = x2 + 2xy + y2:

(e) Gaza is a Palestinian city.

Exemple 1.2. The following sentences are NOT statements

(a) How are you ?

(b) x2 = 9:

(c) I will come to school next week.
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1. Some Elementary Logic

(d) x is an even number

(e) Go to your room.

1.2 Connectives and Compound Statements

� A simple statement is a statement that conveys a single idea.

� A compund statement is a statement that conveys two or mor ideas.

� Connecting Simple statements with words and phrases such as and, or, if ...then, if and only if creates a

comound statement.

Exemple 1.3. The following sentences are compound statements

1) Gaza is Palestin city and Palastine is an arabic country.

2) 2� 1 equals 3 or 7 is divisible by 2.

3) If 5 is an integer, then 5 is a real number.

4) You will pass this course if and only if you learned how to construct a mathematical proof.

Notation: We will denote simple statements by lowercase letters p; q; r; � � � and we will denote compound

statements by uppercase letters P;Q;R; � � � :

1.2.1 Truth tables

An important distinction must be made between a statement and the form of a statement. A statement form

does not have a truth value. Instead, each form has a list of truth values that depend on the values assigned

to its components. This list is displayed by presenting all possible combinations for the truth values of its

components in a truth table. We will use ”T”(or 1) for true and ”F”(or 0) for false. If P denotes a statement

then can be summarized neatly in the truth table

P

T

F

1.2.2 connectives

To form new compound statements out of old ones we use the following

ve fundamental connectives:

Définition 1.2.1. (Negation: ” not ”)

The negation of a statement P , denoted by P (read as ”not P” or ”the negation of P”) is the statement

whose truth value is the opposite of the truth value of P .

P P

T F

F T
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1.2 Connectives and Compound Statements

Exemple 1.4. p: thirteen is not a prime number.

P : thirteen is a prime number.

q: Today is friday. q : Today is not friday.

Exercice 1.1. I.Write the negation of each of the following:

a:
p
2 is a rational number.

b: The sine function is continuous at x = 0.

c: An apple is not red.

d: 3 divides 12.

II. Give the truth values (True or False) of each of the above statements.

Définition 1.2.2. ( Conjunction: ”and”)

If p and q are statements, then the conjunction of p and q is denoted by p^q (read: ”p and q” or ”conjunction

of p and q”). The truth values for p ^ q are de

ned as follows:

p q p ^ q
T T T

T F F

F T F

F F F

Remark 1.2.1.

� The statement p ^ q is true only when both p and q are true.

� In a compound statement with two components p and q there are 2� 2 = 4 possibilities, called the logical

possibilities. In general, if a compound statement has n components, then there are 2n logical possibilities.

Exemple 1.5. Indicate which of the following statements is T and which is F :

1) 1 + 1 = 2 and 3� 1 = 2: [the statement is T ]

2) 5 is an integer and 1� 3 = 1: [the statement is F ]

Exercice 1.2. Construct a truth table for the compound statement p ^ p.

Définition 1.2.3. (Disjunction: ”or”)

If p and q are statements, then the disjunction of p and q is denoted by p _ q (read: ”p or q” or ”the

disjunction of p and q”). The truth values for p _ q are defined as follows:

p q p _ q
T T T

T F T

F T T

F F F
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1. Some Elementary Logic

Exemple 1.6. Indicate which of the following statements is T and which is F:

� 1� 1 = 1 or 3 + 3 = 6: [the statement is T ]

� p�1 = 2 or 22 = �1 [the statement is F ]

� 7 is a prime number or 7 is an odd number.[the statement is T ]

Exercice 1.3. Construct a truth table for the compound statement p _ p.

Définition 1.2.4. ( CONDITIONAL:” if ....then”)

If p and q are statements, then the statement ”p) q” is a conditional statement (read: ”p implies q” or ”if

p then q”). If p is true and q is false then p) q is false, and in all other cases p) q is true.

p is called the antecedent and q is called the consequent. If p ) q is true, then sometimes p is called the

hypothesis and q is called the conclusion.

The truth values of p) q is

p q p) q

T T T

T F F

F T T

F F T

Exemple 1.7. Determine whether the following statements are T or F:

� If 2� 4 = 2; then 2� 2 = 4: [the statement is T ]

� If 7 < 9; then 7 < 8: [the statement is T ]

� If 3 > 3; then 4 > 3: [the statement is T ]

� If 5 < 6; then 5 is even.[the statement is F ]

Exercice 1.4.

� Construct the truth table for the compound statement (p _ q)) r:

� Is the statement p) q equivalent to the statement q ) p. Explain.

Remark 1.2.2. We use p) q to translate the following statements:

1) If p, then q.

2) p only if q.

3) q if p.

4) p is sufficient to q.

5) q is necessary for p.

6) q whenever p.

Définition 1.2.5. (BICONDITIONAL: ”if and only if”)

If p and q are statements, then the statement p, q is called the biconditional (read : p if and only if q”) and

6



1.3 THEOREMS OF LOGIC

is abbreviated to ”p iff q”, or ’p is equivalent to q”.

If both p and q are true, or if both are false, then p, q is true. It is false if (p is true and q is false), and it is

also false if (p is false and q is true).

The truth values of p, q is

p q p, q

T T T

T F F

F T F

F F T

Exemple 1.8. Determine whether the following statements are T or F:

� 1 is odd if and only if 3 is even.[the statement is F]

� j 5 j= �5 if and only if 5 > 0: [the statement is F ]

� p4 = 2 if and only if 22 = 4: [the statement is T ]

� 5 > 6 if and only if 5 is even.[the statement is T ]

Exercice 1.5. Construct the truth table for the compound statement (p ^ q), p:

Remark 1.2.3. We use p, q to translate the following statements:

1) p if and only if q.

2) p is equivalent to q.

3) p is necessary and sufficient for q.

Exercice 1.6. Translate the given compound statements into a symbolic form using the suggested symbols.

(a) ”A natural number is even if and only it is divisible by 2.” (E, D)

(b) ”A matrix has an inverse whenever its determinant is not zero.” (I, Z)

(c) ”A function is differentiable at a point only if it is continuous at that point.” (D, C).

Remark 1.2.4. Using truth tables, we can show that:

1) P , P .

2) (P , Q), [(P ) Q) ^ (Q) Q)] :.

3) (P ) Q)) (P _Q):

4) (P ) Q)) (Q) Q):

1.3 THEOREMS OF LOGIC

Théorème 1.3.1. (Morgan’s Rules) If P and Q are statements,then

1) (P ^Q), (P _Q).
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1. Some Elementary Logic

2) (P _Q), (P ^Q).

Proof. By using the tables of truths we have the required results.

Théorème 1.3.2. Let P;Q, and R be any three statements.

a. Commutative Properties: (P _Q), (Q _ P ) and (P ^Q), (Q ^ P ).

b. Associative Properties: [(P _Q) _R], [P _ (Q _R)] and [(P ^Q) ^R], [P ^ (Q ^R)].
c. Distributive Properties:[(P _Q) ^R], [(P ^R) _ (Q ^R)] and [(P ^Q) _R], [(P _R) ^ (Q _R)].

Théorème 1.3.3. Let P;Q, and R be any three statements.

a. Reflexive Property: For any statement P, P ) P .

b. Antisymmetric Property: If P ) Q and Q) P , then P , Q.

c. Transitive Property: If P ) Q) and Q) R, then P , R:

Définition 1.3.4. From the implication P ) Q we can define the following propositions:

a. The converse of P ) Q is Q) P:

b. The contrapositive of P ) Q is Q) P :

c. The negation of P ) Q is P ^Q:

Exemple 1.9. Let n � 2; and consider the statement (I)

I : [(n is prime and n 6= 2) ) (n is odd)] :

The converse of (I) is

[(n is odd)) n is prime and n 6= 2)]

The contrapositive of(I) is

[(n is even )) (n is not prime or n = 2] :

The negation of (I) is

[(n is prime and n 6= 2) and (n is even)] :

Exercice 1.7. Let P and Q are statements. Determine (P ) Q) and (Q) P ) then Deduce the negation of

P , Q.

Solution Using Morgan’s rules we have:

(P ) Q), P _Q

, P ^Q

, P ^Q

So (Q) P ), Q ^ P . Deduces that:

P , Q, (P ) Q) ^ (Q) P )

, (P ) Q) _ (Q) P )

, (P ^Q) _ (Q ^ P ):

.
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1.4 Quantification Rules

1.4 Quantification Rules

Some sentences depend on some variables and become statements when the variables are replaced by a certain

values.

definition:( Open sentence)

A sentence containing one or more variables and which becomes a statement only when the variables are replaced

by certain values is called an open sentence (or a propositional predicate).

Notation: An open sentence P with variables x1; x2; � � � ; xn will be denoted by P (x1; x2; � � � ; xn).

Exemple 1.10. P (x) : x+ 1 = 0 is an open sentence.

P (0) is false but P (�1) is true.

Exemple 1.11. P (x; y) : x+ 2y = �1 is an open sentence.

P (�3; 1) is true but P (�1; 1) is false.

Definition: (Universal and existence quantifi

ers )

I The expression for all (or for every, or for each, or (sometimes) for any), is called the universal quantifier

and is often written 8.

The following all have the same meaning (and are true)

� for all x and for all y; (x+ y)2 = x2 + 2xy + y2:

� for any x and y; (x+ y)2 = x2 + 2xy + y2:

� for each x and each y; (x+ y)2 = x2 + 2xy + y2:

� 8x8y � (x+ y)2 = x2 + 2xy + y2
�
:

It is implicit in the above that when we say ”for all x” or 8x, we really mean for all real numbers x, etc. In

other words, the quantifier 8 ”ranges over” the real numbers. More generally, we always quantify over some set

of objects, and often make the abuse of language of suppressing this set when it is clear from context what is

intended. If it is not clear from context, we can include the set over which the quantifier ranges. Thus we could

write

for all x 2 R and for ally 2 R; (x+ y)2 = x2 + 2xy + y2:

which we abbreviate to

8x 2 R8 y 2 R; (x+ y)2 = x2 + 2xy + y2:

I The expression there exists (or there is, or there is at least one, or there are some), is called the existential

quantifier and is often written 9.

The following statements all have the same meaning (and are true)

9



1. Some Elementary Logic

� there exists an irrational number.

� there is at least one irrational number.

� some real number is irrational.

� irrational numbers exist.

� 9x(x is irrational).

The last statement is read as ”there exists x such that x is irrational”.

It is implicit here that when we write 9x, we mean that there exists a real number x. In other words, the

quantifier 9 ” ranges over” the real numbers.

Order of Quantifiers

The order in which quanti¯ers occur is often critical. For example, consider the statements

8x9y(x < y): (1.1)

and

9y8x(x < y): (1.2)

We read these statements as

for all x there exists y such that x < y

and

there exists y such that for all x; x < y;

respectively. Here (as usual for us) the quanti¯ers are intended to range over the real numbers. Note once again

that the meaning of these statments is unchanged if we replace x and y by, say, u and v.

Statement (1:1) is true. We can justify this as follows5 (in somewhat more detail than usual!):

Let x be an arbitrary real number. Then x < x+1, and so x < y is true if y equals ( for exemple) x+1. Hence

the statement 9y; (x < y)is true.

But x was an arbitrary real number, and so the statement

for all x there exists y such that x < y

is true. That is, (1:1) is true. On the other hand, statement (1:2) is false.

It asserts that there exists some number y such that 8x(x < y).

But 8x(x < y) means ”there exists y such that y is an upper bound for R.”

We know this last assertion is false.

Alternatively, we could justify that (1:2) is false as follows:

Let y be an arbitrary real number.

Then y + 1 < y is false

Hence the statement 9x(x < y) is false. Since y is an arbitrary real number, it follows that the statement

10



1.4 Quantification Rules

there exists y such that for all x; x < y,

is false.

Exercice 1.8. Rewrite each of the following quantified statements in symbolic form.

1. Some books are not novels.

2. Not all apples are red.

3. All diamonds have brilliance.

4. Some cereals contain vitamins.

Solution:

1. Some books are not novels. This statement can be rewritten:

There exists an x such that x is a book and x is not a novel.

Let B be the predicate “is a book. ”

Let N be the predicate “is a novel. “

Symbolically this statement is written (9x)(B(x) ^N(x)).

2. Not all apples are red. This statement can be rewritten:

There exists an x such that x is an apple and x is not red.

Let A be the predicate “is an apple.”

Let R be the predicate “is red.”

Symbolically, this statement is written (9x)(A(x) ^R(x)).

3. All diamonds have brilliance. This statement can be rewritten:

All diamonds are brilliant objects.

Therefore, you can rewrite the statement in the form: For allx, if x is a diamond, then x is a brilliant

object.

Let D be the predicate “is a diamond. “

Let B be the predicate “is a brilliant object. “

Symbolically, this statement is written (8x)(D(x)) B(x).

4. Some cereals contain vitamins. This statement can be written:

Some tortillas are products which are made of flour.

Therefore, you can rewrite the statement this way:

There exists an x such that x is a tortilla and x is a product which is made of flour.

Let T be the predicate “is a tortilla. “

Let F be the predicate “is a product which is made of flour. “

Symbolically, the statement is written (9x)(T (x) ^ F (x)).

Rulr of quantifier negation

Remark 1.4.1. Let the domain of discourse be U = fa1; a2; � � � ; ang. Then

11



1. Some Elementary Logic

1. The statement (8x 2 U)(P (x)) means P (a1) ^ P (a1) ^ � � �P (an).

2. The statement (9x 2 U)(P (x)) means P (a1) _ P (a1) _ � � �P (an).

definition: (Quantifier negation )

1. (8x 2 U)(P (x)), (9x 2 U)(P (x)).

2. (9x 2 U)(P (x)), (8x 2 U)(P (x)).

Exemple 1.12.

� 8x 2 R x2 � 0, 9x 2 R; x2 < 0.

� 8x 2 Z 9y 2 Z; x+ y = 0, 9x 2 Z 8y 2 Z; x+ y 6= 0.

1.5 Methods of Mathematical Proof

A proof is a complete justification of the truth of a statement called a theorem. It generally begins with some

hypotheses stated in the theorem and proceeds by correct reasoning to the claimed state- ment. It is nothing

more than an argument that presents a line of reasoning explaining why the statement follows from known facts.

There are several methods of proof .Here we introduce the basic methods of proof.

1.5.1 DIRECT PROOF:

A direct proof is a logical step-by-step argument from the given conditions to the conclusion.

I Proving conditional statements p) q

The most famous example is the direct proof of statement of the form p ) q which proceeds in a step-

by-step fashion from the condition p to the conclusion q. Since p) q is false only when p is true and q is

false, it suffices to show that this situation cannot happen. The direct way to proceed is to assume that

p is true and show (deduce) that q is also true.

A direct proof of p) q will have the following form:

Direct proof of p) q:

Assume p.
...

Therefore,q.

I Proving biconditional statements p, q

Proofs of biconditional statements p, q often make use of the tautology

(p, q), [(p) q) ^ (q ) p)] :

Proofs of p, q generally have the following two-part form:

12



1.5 Methods of Mathematical Proof

Two-Part Proof Of p, q

(i) Show p) q.

(ii) Showq ) p.

Therefore,p, q.

Remark: some cases it is possible to prove a biconditional sentence p , q that uses the connective

throughout. This amounts to starting with p and then replacing it with a sequence of equivalent state-

ments, the last one being q. Withn intermediate statements R1; R2; � � � ; Rn, a biconditional proof of

p, q has the form:

Biconditional Proof Of p, q

p, R1

, R2

...

, Rn

, q

Exemple 1.13. Let n and m be integers. Then

(i) if n and m are both even, then n+m is even,

(ii) if n and m are both odd, then n+m is even,

(i) if one of n and m is even and the other is odd, then n+m is odd.

Rough notes: This is a warm-up theorem to make us comfortable with writing mathematical arguments. Start

with the hypothesis, which tells you that both n andm are even integers (for part (i)). Use your knowledge

about the even and odd numbers, writing them in forms 2k or 2k + 1 for some integerk.

Proof. (i) If n and m are even, then there exist integers k and j such that n = 2k and m = 2j. Then

n+m = 2k + 2j = 2(k + j);

And since k; j 2 Z; (k + j) 2 Z : n+m is even:

(ii) and (iii) are left for a reader as an exercise.

Exercice 1.9. Let n 2 N;n > 1. Suppose that n is not prime ) 2n � 1 is not a prime.

Rough notes: Notice that this statement gives us a starting point; we know what it means to be a prime,

so it is reasonable to begin by writing n as a product of two natural numbers n = a� b.

To

nd the next step, we have to ”play” with the numbers so we receive the expression of the required form.

We are looking at 2ab � 1 and we want to factorise this. We know the identity

tm � 1 = (t� 1)(1 + t+ t2 + � � �+ tm�1):

13



1. Some Elementary Logic

Apply this identity with t = 2b and m = a to obtain

2a � 1 = (2b � 1)(1 + 2b + 22b + � � �+ 2(a�1)b):

Always keep in mind where you are trying to get to - it is a useful advice here!

Proof. Since n is not a prime, 9a; b 2 N such that n = a � b; 1 < a; b < n: Let x = 2b � 1 and y =

1 + 2b + 22b + � � �+ 2(a�1)b. Then

xy = (2b � 1)(1 + 2b + 22b + � � �+ 2(a�1)b (substituting for x andy)

= 2b + 22b + 23b + � � �+ 2ab � 1� 2b � 22b � 23b � � � � � 2(a�1)b (multiplying out the brackets)

= 2ab � 1 (taking away the similar items)

= 2n � 1 (as n = ab)

Now notice that since 1 < b < n, we have that 1 < 2b� 1 < 2n� 1, so 1 < x < 2n� 1. Therefore, x is a positive

factor, hence 2n � 1 is not prime number.

Note: It is not true that:n 2 N, if n is prime ) 2n � 1 is prime.(exemple;211 � 1 = 23� 89).

1.5.2 Indirect proof

There are another method of proof called indirect proof or the proof by reduction ad absurdum. An indirect

proof of validity is done by including, as an additional hypotheses, the negation of the conclusion, and then

deriving a contradiction. As soon as a contradiction is obtained, the proof is complete.

Proof by Counterexamples:

Having in mind a little ”writer - reader battle”, we should be sceptical about any presented statement and try

to fi

nd a counterexample, which will disprove the conjecture. It may happen that the theorem is true, so it is

not obvious in which direction to go - trying to prove or disprove? One counterexample is enough to say that

the statement is not true, even though there will be many examples in its favour.

(i.e. to prove that a proposition of the form 8x 2 E;P (x) is false. The idea is to find at least one x0 2 E for

which the proposition is false.)

Exemple 1.14. Conjecture: every man is Chinese.

Counterexample: it suffices to find at least one man who is not Chinese.

Exemple 1.15. Disprove the statement:

If x 2 Z; then x2 + x

x2 � x
=
x+ 1

x� 1
:

Proof. if x = 0, then x2 � x = 0 and so x2 + x

x2 � x
is not defined. On the other hand, if x = 0, then x+ 1

x� 1
= �1;

So the expresions x2 + x

x2 � x
and x+ 1

x� 1
are certainl not equal whene x = 0.

Thus, x = 0 is a conterexemple to the statement holds.
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1.5 Methods of Mathematical Proof

Exercice 1.10. Disprove the statement:

Let n 2 N:If n2 + 3n is even, then nodd :

Proof. If n = 2, then n2 + 3n = 22 + 3:2 = 10 is even and 2 is even. thus, n = 2 is a conterexemple.

In the preceding example, not only is 2 a counterexample, every even integer is a counterexample

Proof by cases:

While attempting to give a proof of a mathematical statement concerning an element x in some set S, it is

sometimes useful to observe that x possesses one of two or more properties. A common property that x may

possess is that of belonging to a particular subset of S. If we can verify the truth of the statement for each

property that x may have, then we have a proof of the statement. Such a proof is then divided into parts called

cases, one case for each property thatx may possess or for each subset to which x may belong. This method is

called proof by cases. Indeed, it may be useful in a proof by cases to further divide a case into other cases,

called subcases.

For example, in a proof of 8n�Z;R(n) , it might be convenient to use a proof by cases whose proof is divided

into the two cases

Case 1:n is even. and Case 2:n is odd.

Exemple 1.16. The square of any integer is of the form 3k or 3k + 1.

Rough notes: This is a simple example of the proof, where at some point it is easier to split the problem

into 2 cases and consider them separately - otherwise it would be hard to find a conclusion. Start by expressing

an integer a as 3q+ r; (q; r 2 Z) and then square it. Then split the problem and show that the statement holds

for both cases.

Proof. We know that every integer can be written in the form: 3q + 1 or 3q + 2 or 3q.

So let a = 3q + r, where q 2 Z; r 2 f0; 1; 2g Then

a2 = (3q + r)2 = 9q2 + 6qr + r2 = 3 (3q2 + 2qr)| {z }+r2
2 Zasq; r 2 Z

So let 3q2 + 2qr := k; k 2 Z We have a2 = 3k + r2: Now,

case I: if r = 0 or r = 1, we are done;

case II: if r = 2) r2 = 4 and then a2 = 3k+ 4 = 3k+ 3+ 1 = 3(k+ 1) + 1 which is in the required form.

Exemple 1.17. Let n 2 Z. Then n2 + n is even.

Rough notes: To show that the expression is even, it may be helpful to consider the cases when n is even

and odd - what does it mean?

� CASE I: n is even (express it mathematically);

� CASE II: n is odd; now, the simple alegabra should bring us to the required conclusion.

15



1. Some Elementary Logic

Proof. Exercice for a reader.

Exercice 1.11. (Triangle Inequality): Suppose x; y 2 R. Then j x+ y j�j x j + j y j.

Notes: To split the proof into small problems, we need to recall the modulus function, which is de

ned using cases:

j x j=

8>><
>>:
x for x � 0;

�x for x < 0:

:

Then, using the defi

nition, carefully substitute x or (�x) for j x j, depending on the case.

Proof.

Case I: x � 0; y � 0. So, midx j= x and j y j= y. Hence, x+ y � 0.

SO

j x+ y j= x+ y =j x j + j y j

Case II: x < 0; y < 0. So midx j= �x and j y j= �y. Then x+ y < 0.

SO

j x+ y j= �(x+ y) = (�x) + (�y) =j x j + j y j

Case III: One of x and y is positive and the other is negative. Without loss of generality, assume that x is positive

(x � 0so j x j= x) and y is negative (y < 0; j y j= �y). Now we need to split the problem into 2 subcases:

i. x+ y � 0. So

j x+ y j= x+ y � x+ (�y) =j x j + j y j

ii. x+ y < 0. So

j x+ y j= �x+ (�y) � x+ (�y) =j x j + j y j

Proof by Mathematical Induction

Proof by mathematical induction is a very useful method in proving the validity of a mathematical statement

(8n)P (n) involving integers n greater than or equal to some initial integer n0.

Principle of Mathematical Induction:

Let P (n) be an infinite collection of statements with n; n0 2 N and n0 � n. Suppose that

(i) P (n0) is true, and

(ii) P (n)) P (n+ 1);8n � n0.

Then, P (n) is true 8n 2 N; n � n0.

When constructing the proof by induction, you need to present the statement P (n) and then follow three

16



1.5 Methods of Mathematical Proof

simple steps (simple in a sense that they can be described easily; they might be very complicated for some

examples though, especially the induction step):

� INDUCTION BASE check if P (n0) is true, i.e. the statement holds for n = n0,

� INDUCTION HYPOTHESIS assume P (n) is true, i.e. the statement holds for n,

� INDUCTION STEP show that if P (n) holds, then P (n+ 1) also does.

We finish the proof with the conclusion ” since P (n0) is true and P (n)) P (n+ 1), the statement P (n) holds

is true by the Principle of Mathematical Induction”.

Exemple 1.18. Show that 23n+1 + 5 is always a multiple of 7.

Proof. The statement P (n) : ”23n+1 + 5 is always a multiple of 7”.

� BASE (n = 0)

23�0+1 + 5 = 2 + 5 = 7 = 7� 1

then P (0) is true.

� INDUCTION HYPOTHESIS: Assume P (n) is true, so

23n+1 + 5 is always a multiple of 7; n 2 N:

� INDUCTION STEP: Now, we want to show that P (n)) P (n+ 1), where

P (n+ 1) : 23(n+1)+1 + 5 = 23n+4 + 5 is always a multiple of 7

We know from induction hypothesis that 23n+1 + 5 is always a multiple of 7, so we can write

23n+1 + 5 = 7� k for somek 2 Z =) (23n+1 + 5)� 23 = 7� k � 23

=) 23n+4 + 40 = 7� k � 8

=) 23n+4 + 5 = 56� k � 35

=) 23n+4 + 5 = 7(8� k � 5)

=) 23n+4 + 5 = 7� k”; where k” = (8� k � 5) 2 Z:

We have shown that P (0) holds and if P (n); then P (n + 1) is also true. Hence by the Principle of

Mathematical Induction, it follows that P (n) holds for all natural n:

Exercice 1.12. Let an+1 = 1
5 (a

2
n + 6) and a1 = 1

5 is decreasing.

Notes:(definition) A sequence (an) is decreasing if an � an+1 for all n 2 N.

We will use the definition to prove the statement. Notice that we need to show an � an+1 for all n - this should

suddenly bring to your mind induction.

17



1. Some Elementary Logic

Proof. We will show that the statement P (n) holds for all n.

P (n) : an+1 < an for alln:

� BASE: (n = 2)

a2 =
1

5

�
(
5

2
)2 + 6

�
=

1

5

�
25

4
+ 6

�
=

49

20
:

Note: a2 = 49
20 <

5
2 = a1. Hence, P (2) is true.

� HYPOTHESIS: Suppose for some n � 2; an+2 � an+1.

� INDUCTION STEP:

an+2 =
(an+1)

2

5
+

6

5

� (an)
2

5
+

6

5

= an+1:

Hence an+2 � an+1.

Since P (2) is true and P (n) =) P (n+1), it follows that the sequence is decreasing by the Mathematical

Induction.

Exercice 1.13. Use mathematical induction to prove that:

1) 8n 2 N;
nP
j=1

(3j � 2) =
1

2
(3n� 1):

2) 8n 2 N; 3 + 11 + 19 + � � �+ (8n� 5) = 4n2 � n:

Proof by contradiction

Suppose, as usual, that we would like to show that a certain mathematical statement R is true. If R is expressed

as the quantified statement 8x 2 E;P (x) =) Q(x), then we have already introduced two proof techniques,

namely direct proof and proof by contrapositive, that could be used to establish the truth of R. We now

introduce a third method that can be used to establish the truth of R, regardless of whether R is expressed in

terms of an implication.

Suppose that we assume R is a false statement and, from this assumption, we are able to arrive at or deduce a

statement that contradicts some assumption we made in the proof or some known fact. (The known fact might

be a definition, an axiom or a theorem.) If we denote this assumption or known fact by P , then what we have

deduced is P and have thus produced the contradiction C : P ^ (P ). We have therefore established the truth

of the implication

R =) C

However, because R =) C is true and C is false, it follows that R is false and so R is true, as desired. This

technique is called proof by contradiction.

18



1.5 Methods of Mathematical Proof

If R is the quantified statement 8x 2 E;P (x) =) Q(x), then a proof by contradiction of this statement consists

of verifying the implication

(8x 2 E;P (x) =) Q(x)) =) C

for some contradictionC. However, since

(8x 2 E;P (x) =) Q(x))() 9x 2 E; (P (x) =) Q(x)

() 9x 2 E; (P (x) ^Q(x)

it follows that a proof by contradiction of 8x 2 E;P (x) =) Q(x) would begin by assuming the existence

of some element x 2 E such that P (x) is true and Q(x) is false. That is, a proof by contradiction of

8x 2 E;P (x) =) Q(x) begins by assuming the existence of a counterexample of this quantified statement.

Often the reader is alerted that a proof by contradiction is being used by saying (or writing )

Suppose thar R is false.

or

Assume, to the contrary, that R is false.

Therefore, ifR is the quantified statement 8x 2 E;P (x) =) Q(x), then a proof by contradiction might begin

with: Assume, to the contrary, that there exists some element x 2 E for which P (x) is true and Q(x) is false.

(or something along these lines). The remainder of the proof then consists of showing that this assumption

leads to a contradiction.

Exemple 1.19. Prove that
p
2 +

p
6 <

p
15.

Proof. Assume for a contradiction that
p
2 +

p
6 � p

15. So
p
2 +

p
6 �

p
15 =) (

p
2 +

p
6)2 � 15

=) 8 + 2
p
12 � 15

=) 2
p
12 � 7

=) 48 � 49

The last statement is clearly p not true, hence we reached the contradiction. Therefore, we proved that
p
2 +

p
6 <

p
15.

Exercice 1.14. If a is an even integer and b is an odd integer, then 4 - (a2 + 2b2).

Proof. Assume, to the contrary, that there exist an even integer a and an odd integer b such that 4 j (a2 +2b2).

Thus, a = 2x; b = 2y + 1 and a2 + 2b2 = 4z for some integers x; y and z. Hence,

a2 + 2b2 = (2x)2 + 2(2y + 1)2 = 4z:

Simplifying, we obtain 4x2 + 8y2 + 8y + 2 = 4z or, equivalently,

2 = 4z � 4x2 � 8y2 � 8y = 4(z � x2 � 2y2 � 2y):

Since (z � x2 � 2y2 � 2y) is an integer, 4 j 2,which impossible.
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1. Some Elementary Logic

PROOF BY CONTRAPOSITION:

A proof by contraposition or contrapositive proof for a conditional sentence p) q makes use of the tautology

(p) q), (q ) p):

It is an indirect proof method in wich we first give a direct proof of (q ) p) and then conclude by replacement

that(p) q).

Exemple 1.20. Let n 2 Z: if n2 is odd, then n is odd.

Proof. Let n be even (which is ”not B”). So

nis even =) n = 2k; k 2 Z

=) n2 = (2k)2 = 4k2 = 2� 2k2 k 2 Z

=) n is even

So we proved that n is even =) n2 is even. Now using the contrapositive we conclude that

n2 not even (odd) =) n not even (odd),

which proves the statement.

Exercice 1.15.

Friendly reminder

’ The importance of proofs goes well beyond a university degree. It is eventually about

using reason in everyday life. This could contribute to solving major and global problems.”

You have seen many methods of proofs presented in previous sections and they are all used in different areas of

mathematics. It has been underlined many times that writing proofs is not easy, but with a lot of practice and

open mind, pure mathematics is not as scary. Here are some final tips to keep in your head when starting the

next proof. Good luck!

� Experiment! If one method does not work, try a different one. Lots of practice allows for an ”educated

guess” in the future;

� do not start with what you are trying to prove;

� use correct English with full punctuation;

� begin by outlining what is assumed and what needs to be proved; do not skip this step!

� remove initial working when writing up the final version of the proof, but include all steps of reasoning.
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p q p, q

T T T

T F F

F T F

F F T
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Fich exercice
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Chapter 2

Sets, Relations and Maps

2.1 Basic Concepts of Set Theory.

2.1.1 Sets and elements

Set theory is a basis of modern mathematics, and notions of set theory are used in all formal descriptions. The

notion of set is taken as “undefined”, “primitive”, or “basic”, so we don’t try to define what a set is, but we

can give an informal description, describe important properties of sets, and give examples. All other notions of

mathematics can be built up based on the notion of set.

Définition 2.1.1. A set is a collection of objects together with some rule to determine whether a given object

belongs to this collection. Any object of this collection is called an element. of the set.

� Sets are usually denoted by capital letters and the members by lower case letters. We usually write all

elements in curly brackets. The notation

A = fa; b; cg

means that the set A consists of 3 elements: a; b and c: We can say that the element a belongs to the set A,

write a 2 A; or that d is not a member of A, write d /2 A. Sets can be finite or infinite.

� Sets can be finite or infinite.

� There is exactly one set, the empty set, or null set, which has no members at all. The symbol � represents

the empty set.

� A set with only one member is called a singleton or a singleton set. (“Singleton of a”)

2.1.2 Specification of sets

There are three main ways to specify a set:

(1) by listing all its members (list notation);

(2) by stating a property of its elements (predicate notation);

(3) by defining a set of rules which generates (defines) its members (recursive rules).
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2.1 Basic Concepts of Set Theory.

(1) List notation: The first way is suitable only for finite sets. In this case we list names of elements of a set,

separate them by commas and enclose them in braces:

Examples:f1; 12; 45g; f George Washington, Bill Clintong; fa; b; d;mg.
“Three-dot abbreviation”:f1; 2; � � � ; 100g.
f1; 2; 3; 4; � � � ; g – this is not a real list notation, it is not a finite list, but it’s common practice as long as the

continuation is clear.

Note that we do not care about the order of elements of the list, and elements can be listed several times.f1; 12; 45g
, f12; 1; 45; 1g and f45; 12; 45; 1g are different representations of the same set (see below the notion of identity of

sets). List notation. The first way is suitable only for finite sets. In this case we list names of elements of a set,

separate them by commas and enclose them in braces: Examples: 1, 12, 45, George Washington, Bill Clinton,

a,b,d,m. “Three-dot abbreviation”: 1,2, ..., 100. (See xeroxed “preliminaries”, pp xxii-xxiii) 1,2,3,4,… – this is

not a real list notation, it is not a finite list, but it’s common practice as long as the continuation is clear. Note

that we do not care about the order of elements of the list, and elements can be listed several times. 1, 12, 45,

12, 1, 45,1 and 45,12, 45,1 are different representations of the same set (see below the notion of identity of sets).

Predicate notation. Example

fx j x is a natural number and x < 8g
Reading:” the set of all x such that x is a natural number and is less than 8”.

So the second part of this notation is a property the members of the set share (a condition or a predicate which

holds for members of this set).

Other examples:

fx j x is a letter of Russian alphabet g
fy j y is a student of UDBKM and y is older than 25g.
General form:

fx j P (x)g, where P is some predicate (condition, property).

The language to describe these predicates is not usually fixed in a strict way.

Recursive rules: (Always safe.) Example – the set E of even numbers greater than 3:

a) 4 2 E

b) if x 2 E, then x+ 2 2 E

c) nothing else belongs to E.

The first rule is the basis of recursion, the second one generates new elements from the elements defined before

and the third rule restricts the defined set to the elements generated by rules a and b. (The third rule should

always be there; sometimes in practice it is left implicit. It’s best when you’re a beginner to make it explicit.)

2.1.3 Subsets and power sets

Définition 2.1.2. If A is a subset of B (write A � B), then all elements of A are also elements of B;

(A � B)() (8x; x 2 A =) x 2 B)

. So A is ”contained” in B.
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If you want to say that A is NOT subset of B, write mathematically A 6� B:

Exemple 2.1. fa; bg � fd; a; b; eg and fa; bg � fd; a; b; eg, fa; bg � fa; bg but fa; bg 6� fa; bg

Notice that the empty set is a subset of any set.

To show that A � B, you need to show that every element of A is also an element of B.

Exercice 2.1. Let E =
�
1; 52

�
; F = [�5; 4]. Prove that E � F .

Proof. Start by choosing an arbitrary element x 2 E,then

x 2 E =) 1 < x � 5

2

=) �5 � 1 < x � 5

2
< 3

=) x 2 F:

If A is a subset of B but it they are not equal, then we say that A is a proper subset of B and write it

A � B (or A  B or A $ B).

To show that A is a proper subset of B, you need to show that A � b and find at least one element of B which

is not an element of A.

Exemple 2.2.

fa; b; cg � fa; b; c; dg;

f1; 2; 3g 6� f1; 2; 3g but f1; 2; 3g � f1; 2; 3g

.

Définition 2.1.3. The power set of a set A consists of all subsets of A and is usually denoted by P(A) (some

writers use 2A).

Exemple 2.3. if A = fa; bg;P(A) = f�; fag; fbg; fa; bgg:

From the example above: a 2 A; fag � A; fag 2 P(A):
� 62 A; � � A; � 2 P(A);� � P(A):

2.1.4 Cardinality and equality

Définition 2.1.4. In mathematics, the cardinality of a set A (card(A)or j A j ) is a measure of the ” number

of the elements of the set”.

Exemple 2.4. If fa; b; cg, then j A j= 3

Exemple 2.5. Important to notice:

j f�g j= 1; while j � j= 0:

j f0g j6= 0; but j f0g j= 1:

26



2.1 Basic Concepts of Set Theory.

Notice that the repetitions are ignored when we are counting the members of the set. The convention is to

list each element only once,the same number can be weritten in different forms.

F = f2;�1; 0; 1; 2; cos�; cos �
2
g = f�1; 0; 1; 2g; as cos� = �1; cos �

2
= 0;Hence; j F j= 4:

Définition 2.1.5. Two sets A and B are equal when they have exactly the same elements, i.e. every element

of A is an element of B and every element of B is an element of A. So

A = B () (A � B ^B � A):

To show that two sets A and B are equal, pick an arbitrary x 2 A and show that x 2 B and vice versa.

Exemple 2.6. Let A = f1; 2; 3; 4g and B = fx : x 2 N; x2 < 17g, where N is the set of natural numbers. Show

that A = B:

Proof. To prove the equality of the sets, we must show that for every x,

x 2 B =) x 2 A (B � A)

and

x 2 A =) x 2 B (A � B):

So if x 2 B, then x2 < 17, which implies x <
p
17. Therefore x � 4. Since x is a positive integer, therefore for

every x 2 B we have that 0 < x � 4. Hence, x 2 B =) x 2 A.

Now assume x 2 A, so x 2 f1; 2; 3; 4g. To prove that x 2 B, it suffices to show that the largest element

x 2 A satisfier x2 < 17 . Then it is also true for the smaller values since they all belong to N.

Since 8x 2 A;x2 � 42 � 16 < 17, we have that x 2 A =) x 2 B

Exercice 2.2. Show that f(cos t; sin t) : t 2 Rg = f(x; y) : x2 + y2 = 1g:

Proof. Let A = f(cos t; sin t) : t 2 Rg and B = f(x; y) : x2 + y2 = 1g: Now, to show that A = B we need to

show that A � B and B � A.

Let x = cos t and y = sin t. Then

x2 + y2 = cos2 t+ sin2 t = 1

because cos2 t+ sin2 t = 1 is a known identity. Hence we have that A � B.

Now, to show that B � A we appeal to geometry. Let (x; y) 2 B, hence x2 + y2 = 1. So (x; y) lies on the unit

circle.
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2. Sets, Relations and Maps

Therefore, we have that cos t = x and sin t = y. As x2 + y2 = 1, substituting in for x and y gives

cos2 t+ sin2 t = 1

and hence we have shown that B � A and so A = B.

2.1.5 Common sets of numbers

The commonly used sets of numbers are:

I The set of natural numbers, N = f0; 1; 2; 3; 4; � � � g;

I The set of integers,Z = f� � � ;�3;�2;�1; 0; 1; 2; 3; � � � g;

I The set of rational numbers Q = fm
n

: m;n 2 Z; n 6= 0g;

I The set of real numbers R, which is the union of both rational Q and irrational numbers (which cannot

be expressed as a fraction, for example log 2;
p
2;�; e).

I the complex numbers C = fa+ ib j a; b 2 Rg, where i2 = �1.

Notice that one set is a subset of another, in the following order: N � Z � Q � R � C.

2.1.6 SET OPERATIONS

a. Intersection

Définition 2.1.6. Let A and B be subsets of a set X: The intersection of A and B is the set of all

elements in X common to both A and B.

Notation: ”A \B” denotes ”A intersection B” or the intersection of sets A and B.

Thus, A \B := fx 2 X j (x 2 A) and (x 2 B)g; or A \B := fx 2 X j (x 2 A) ^ (x 2 B)g;

Exemple 2.7.
(a) Given that the box below represents X, the shaded area represents A \B :

(b) Let A = f2; 4; 5g and B = f1; 4; 6; 8g. Then, A \B = f4g .

(c) Let A = f2; 4; 5g and B = f1; 3g. Then, A \B = �

Remark 2.1.1. If, as in the above example, A and B are two sets such that A \ B is the empty set, we

say that A and B are disjoint.
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b. Union

Définition 2.1.7. Let A and B be subsets of a set X. The union of A and B is the set of all elements

belonging to A or B.

Notation:“A [B” denotes “ A unionB“ or the union of sets A and B.

Thus,A [B := fx 2 X j x 2 A or x 2 Bg; or A [B := fx 2 X j x 2 A ^ x 2 Bg:

Exemple 2.8.
(a) Given that the box below represents X, the shaded area represents A [B :

(b) Let A = f2; 4; 5g and B = f1; 4; 6; 8g. Then, A [B = f1; 2; 4; 5; 6; 8g .

c. Difference

Définition 2.1.8. Let A and B be subsets of a set X. The set B � A (or B n A), called the difference

of B and A, is the set of all elements in B which are not inA.

Thus, B � A = fx 2 X j x 2 B and x 62 Ag.

Notation: symmetric difference of A and B is given by

A4B := (A�B) [ (B � A) = (A [B)� (A \B)

Exemple 2.9.
(a) Given that the box below represents X, the shaded area represents B � A.

(b) Let B = f2; 3; 6; 10; 13; 15g and A = f2; 10; 15; 21; 22g. Then B � A = f3; 6; 13g.

d. complement

Définition 2.1.9. If A � X , then X �A is sometimes called the complement of A with respect to X.

Notation: The following symbols are used to denote the complement of A with respect to X:

CXA;C
A
X ; A

c; A:

Thus, Ac = fx 2 X j x 62 Ag.
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Exemple 2.10.
(a) Given that the box below represents X, the shaded area represents Ac.

X :

(b) Let X = f1; 2; � � � ; 10g be the universal set, A = f2; 3; 5; 7g , B = f2; 4; 6; 8; 10g and C = f4; 8; 10g.
Then

CA
X = A = f1; 4; 6; 8; 9; 10g , CB

X = B = f1; 3; 5; 7; 9g and CC
X = C = f1; 2; 3; 5; 6; 7; 9g:

CC
B = f2; 6g and CC

A is not defined because C 6� A:

e. Cartesian Product

Définition 2.1.10. The Cartesian product (or simply the product) A� B of two sets A and B is the

set consisting of all ordered pairs whose first coordinate belongs to A and whose second coordinate belongs

to B. In other words,

A�B = f(a; b) : a 2 A and b 2 Bg:

Remark 2.1.2. We’ve already mentioned that when a set A is described by listing its elements, the order

in which the elements of A are listed doesn’t matter. That is, if the set A consists of two elements x and y,

then A = fx; yg = fy; xg . When we speak of the ordered pair (x; y), however, this is another story. The

ordered pair (x; y) is a single element consisting of a pair of elements in which x is the first element (or

first coordinate) of the ordered pair (x; y) and y is the second element (or second coordinate). Moreover,

for two ordered pairs (x; y) and (w; z) to be equal, that is, (x; y) = (w; z), we must have x = w and y = z.

So, if x 6= y, then (x; y) 6= (y; x).

Exemple 2.11. If A = fx; yg and B = f1; 2; 3g, then

A�B = f(x; 1); (x; 2); (x; 3); (y; 1); (y; 2); (y; 3)g,
while

B � A = f(1; x); (1; y); (2; x); (2; y); (3; x); (3; y)g.
Since, for example, (x; 1) 2 A� B and (x; 1) 6= B � A, these two sets do not contain the same elements;

so A�B 6= B � A.Also, j A j= 2 and j B j= 3 ; while j A�B j= 6. Indeed, for all finite sets A and B,

j A�B j=j A j � j B j :

2.1.7 Laws of the algebra of sets

Théorème 2.1.11. Let X be an arbitrary set and let P (X) the power set of X. Let A;B; and C be arbitrary

elements of P (X) then
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2.2 Introduction to Relations

Associative laws A [ (B [ C) = (A [B) [ C A \ (B \ C) = (A \B) \ C
Commutative laws A [B = B [ A A \B = B \ A
Identity laws A [ � = A A \ � = �

A [X = X A \X = A

Idempotent laws A [ A = A A \ A = A

Distributive laws A \ (B [ C) = (A \B) [ (A \ C) A [ (B \ C) = (A [B) \ (A [ C)

Complement laws A [ Ac = X A \ Ac = �

Xc = � �c = X

(Ac)c = A = A If A � B then Bc � Ac

De Morgan’s laws (A [B)c = Ac \Bc (A \B)c = Ac [Bc

Exercice 2.3.

2.2 Introduction to Relations

Sometimes it is necessary not to look at the full Cartesian product of two sets A and B, but rather at a subset

of the Cartesian product. This leads to the following

2.2.1 Binary relations

Définition 2.2.1. A binary relation R from a set A to a set B is a subset R � A�B.

In other words, a binary relation from A to B is a set R of ordered pairs where the first element of each

ordered pair comes from A and the second element comes from B. We use the notation aRb to denote that

(a; b) 2 R and a 6 R to denote that (a; b) 62 R. Moreover, when (a; b) belongs to R; a is said to be related to b

by R.

Binary relations represent relationships between the elements of two sets.

The set of pairs (a; b) 2 A � B which satisfy (a; b) 2 R is called the graph of the relation R we denote it by

GR, and we write

GR = f(a; b) 2 A�B j aRbg

Exemple 2.12. Let A = f0; 1; 2; 3; 5; 8; 10; 16g; B = f4; 10; 16; 20; 23; 27g. Then Rf(x; y) j y = 2xg is a relation

from A to B and we write

8(x; y) 2 A�B; xRy , y = 2x

.

This means, for instance, that

GR = f(x; y) 2 A�B j xRyg = f(2; 4); (5; 10); (8; 16); (10; 20)g

2R4; but that 3 6 R4.
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2. Sets, Relations and Maps

2.2.2 Binary relation on a set

Définition 2.2.2. A binary relation R from a set A is a subset of A� A or from A to A.

Exemple 2.13. Let A be the set f1; 2; 3; 4g. Which ordered pairs are in the relation R = f(a; b) j a divides bg?

Solution: Because (a; b) is in R if and only if a and b are positive integers not exceeding 4 such that a

divides b, we see that

GR = f(1; 1); (1; 2); (1; 3); (1; 4); (2; 2); (2; 4); (3; 3); (4; 4)g:

The pairs in this relation are displayed graphically form in Figure 2.

2.2.3 Properties of Relations

Let R be a binary relation defined on A.Then

1) R is reflexive iff (8x 2 A; (xRx)) ;

2) R is symetric iff [8x; y 2 A; (xRy) =) (yRx)] ;

3) R is antisymetric iff [8x; y 2 A; ((xRy) ^ (yRx)) =) x = y] ;

4) R is transitive iff [8x; y; z 2 A; ((xRy) ^ (yRz)) =) xRz] ;

Exemple 2.14.

2.2.4 EQUIVALENCE RELATION

Définition 2.2.3. A relation R on a set A is called an equivalence relation if it is reflexive, symmetric,

and transitive.
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2.2 Introduction to Relations

Exemple 2.15. We consider the relation R defined on Z by:

8x; y 2 Z; xRy , x� y is divisible by 3:

Solution: We show that R satisfies the conditions of an equivalence relation.

1) Reflexive : (8x 2 Z; (xRx)) ; 8x 2 Z we have x� x = 0 and 0 is divisible by 3. So xRx is true. Then R
is reflixive.

2) Symetric : [8x; y 2 Z; (xRy) =) (yRx)] ;
8x; y 2 Z we have

xRy ) x� yis divisible by 3

) 9k 2 Z; x� y = 3k

) 9k 2 Z;�(y � x) = 3k

) 9k 2 Z; (y � x) = �3k = 3k0wherek0 = �k

) yRxis true

Then R is symitric.

3) Transitive : [8x; y; z 2 A; ((xRy) ^ (yRz)) =) xRz] ;
8x; y 2 Z we have xRy ) 9k 2 Z; x� y = 3k::::::::::::::::(1)

yRz ) 9k0 2 Z; y � z = 3k0::::::::::::::::(2)

from (1) and (2) we find

x� y + y � z = 3k + 3k0 ) x� z = 3(k + k0) = 3k00 where k00 = k + k0 2 Z

So xRz is true, then R is transitive.

4) Since R is reflexive, symetric and transitive then R is an equivalence relation on Z.

Exercice 2.4. We consider the relation R defined on R by:

8x; y 2 Z; xRy , xey = yeX :

Show that R is an equivalence relation on R.

2.2.5 Equivalence classes

Définition 2.2.4. Let R be an equivalence relation on a set A.

1) The set of all elements that are related to an element a of A is called the equivalence class of a, denoted

by

a = ȧ = fx 2 A j xRag = fx 2 A j aRxg

2) a is a representative of equivalence class ȧ.

3) If b 2 ȧ, then b is a representative of this equivalence class. Any element of a class can be used as

representative.
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2. Sets, Relations and Maps

4) The set of equivalence classes of all the elements of A is called set quotient of A by the equivalence

relation R, we not it A/R, and we write

A/R = fȧ; a 2 Ag:

Exemple 2.16. We consider the equivalente relation R defined on Z by:

8x; y 2 Z; xRy , x� y is divisible by 3:

1) Determine 0̇; 1̇; 2̇; 3̇; 4̇.

2) Determine Z/R.

Solution:

1) We give the equivalence classes. 0̇; 1̇; 2̇; 3̇; 4̇.

0̇ = fx 2 Z j xR0g;

= fx 2 Z j 9k 2 Z;x = 3kg;

= fx 2 Z j 9k 2 Z;x� 0 = 3kg;

= f3k; k 2 Zg;

= f� � � ;�12;�9;�6;�3; 0; 3; 6; 9; 12; � � � g:

1̇ = fx 2 Z j xR1g;

= fx 2 Z j 9k 2 Z;x� 1 = 3kg;

= fx 2 Z j 9k 2 Z;x = 3k + 1g;

= f3k + 1; k 2 Zg;

= f� � � ;�13;�10;�7;�4; 1; 4; 7; 10; 13; � � � g:

2̇ = fx 2 Z j xR2g;

= fx 2 Z j 9k 2 Z;x� 2 = 3kg;

= fx 2 Z j 9k 2 Z;x = 3k + 2g;

= f3k + 2; k 2 Zg;

= f� � � ;�14;�11;�8;�5; 2; 5; 8; 11; 14; � � � g:

3̇ = fx 2 Z j xR3g;

= fx 2 Z j 9k 2 Z;x� 3 = 3kg;

= fx 2 Z j 9k 2 Z;x = 3k + 3 = 3(k + 1) = 3k0wherek0 = k + 1 2 Zg;

= f3k0; k0 2 Zg;

= f� � � ;�12;�9;�6;�3; 0; 3; 6; 9; 12; � � � g

= 0̇:
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2.2 Introduction to Relations

4̇ = fx 2 Z j xR4g;

= fx 2 Z j 9k 2 Z;x� 4 = 3kg;

= fx 2 Z j 9k 2 Z;x = 3k + 4 = 3(k + 1) + 1 = 3k0 + 1wherek0 = k + 1 2 Zg;

= f3k0 + 1; k0 2 Zg;

= f� � � ;�13;�10;�7;�4; 1; 4; 7; 10; 13; � � � g

= 1̇:

we can see also that 5̇ = 2̇.

2) According to question 1) the quotient set is

Z/R = f0̇; 1̇; 2̇g:

Remark 2.2.1. An equivalence relation R on A, will divide the set A into an equivalence classes, and they are

called portion of X.

2.2.6 Order relation

Définition 2.2.5.
1. A relation R on a set A is called a order relation iff it is refexive, antisymmetric, and transitive.

2. Let R be an order relation on A and a; b 2 A. The elements a and b are comparable if either aRb or bRa
holds.

3. Let R be an order relation on A and if any two elements of A are comparable, then R is called a total

order

4. If the order is not total it is said to be partial.

Exemple 2.17. the relation R defined on R by (8x; y 2 R;xRy , x � y) is a relation of total order on R. We

say that all the elements of R are comparable.

Exemple 2.18. Let R is a relation defined on N by:

8x; y 2 N; xRy , 9n 2 N; y = nx:

1. Show that R is an order relation.

2. The order is it total?

Solution:
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2. Sets, Relations and Maps

2.3 Functions

2.3.1 Basic Definitions

Définition 2.3.1. Let A;B be nonempty sets. A function from A to B is a relation from A to B which assigns

every element x 2 A at most one element in y 2 B such that xRy.

Generally , the fenctions are denoted by f; g; h; k; � � � : and we write:

f :A �! B

x 7�! y = f(x)

Terminology about Functions

Let f : A! B be a function from A to B.

� A is called the set of input of f .

� B is called the set of output or codomain of f .

� If f(a) = b then b is the image of a under f and a is the preimage of b.

� The domain of f is the set

Df = fx 2 A : 9y 2 B; y = f(x)g

� The set f(A) := ff(x) j x 2 Ag is called the range of f . (Note the difference between the range and the

codomain.)

� Two functions f : A! B and g : A0 ! B0 are equal iff A = A0, B = B0 and 8a 2 A; f(a) = g(a):

� The graph of f is the set of ordered pairs

Gf = f(x; y) 2 A�B j y = f(x)g

Définition 2.3.2. We call application or mapping of a set A into a set A, any correspondence f between the

elements of A and those of B which to each x 2 A corresponds to a unique element y 2 B and which satisfies

the relation y = f(x).

Remark 2.3.1. An application f defined from A to B is a function whene Df = A.

Exemple 2.19. the function

f : R! R

x 7! f(x) =
1

x

it is a function because 0 has no image by f , whereas f : R� ! R

x 7! f(x) =
1

x

it is an application because DF = R�
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2.3 Functions

2.3.2 Injection-Surjection-Bijection
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Chapter 3

Real functions with one real variable
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Chapter 4

Application to elementary functions
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Chapter 5

Limited development
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Chapter 6

Linear algebra
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