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NLP: A fast-growing research field in Al

Code-generators
Text generators

Artificial

Intelligence

Text-to-image
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Text-to-audio



What is NLP ?

How to program computers to analyze the meanings
of Input text and generate meaningful, expressive
output.

NLP

NLU (Natural Language Understanding)

NLG (Natural Language Generation)




The early days of NLP
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Main NLP Applications

1. Machi

Rule-based

(Grammar rules and dictionaries)
Statistical

(Examine extensive human franslations)
Neural

/
(Training on Source-Target language dataset) ;

Hybrid
(Use of multiple machine translation models

ne Translation
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Main NLP Applications

2. Text Classification

= Document classification
(Document categorization: Techno, Sport, Art,..)
= Sentiment analysis

(Classifying emotional quality)

= Toxicity classification

POSITIVE NEUTRAL NEGATIVE
(Detecting threats, insults, hatred towards entities) Hians i (3 b il i A 5 e G
i (e ST Jliad (3dl) 13a i d3Uat)

= Spam detection o
(Classify emails as either spam or not)

= Hadith authentication
(Verify originality of Prophetic Hadiths)

= Misinformation and Fake news detection,...



Main NLP Applications

Extract entities in a piece of text into predefined categories such as personal

names, organizations, locations, and quantities.

NORP : £2i%; bom 1976 pare )isa |Brtish wome -born

B computer scientist and technology entrepreneur focusing on machine leaming and Al Gpg
Ng was a co-founder and head of Google Brain orG and was the former chief scientist at Baidu orec

building the company’s  Artificial Intelligence Group ore Into a team of several thousand camRDINAL people.




Main NLP Applications

4. Topic Modeling

Unsupervised text mining task that takes a corpus of documents and
discovers abstract topics within that corpus.
Tech niq ues: Cluster of word by topic

o Latent Semantic Analysis (LSA)

:LI
o Latent Dirichlet Allocation (LDA] 5 /‘l @
Modeling

o LDA2Vec ! ~Ny
o BERTOpI C Collection of Text Documents °.:: ]

Cluster qf doctoment L?_}f topic



Main NLP Applications

5. Text Generation

Automatically produces text that is similar to human-written text (such

as: Tweets, Blogs, Essays, Computer code,..): LSTM-RNN, BERT, BARD, ChatGPT....

Variations:

o Autocomplete: predicts what word comes next

o Chatbots: automate one side of a conversation

= Questions & Answers database

| .

= Conversation generation
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Main NLP Applications

6. Text Summarization

Shortening text to highlight the most relevant information
Variations:

o Extraction: extracting the most important sentences from a long text and
combining these to form a summary

o Abstraction: writing the abstract that includes words and sentences that are not
present in the original text

Text

Text
Summar Summary
Sentence 1 Extractive y Sentence 1 Abstractive
Sentence 2 Summariser o T—— Sentence 2 Summariser New
Sentence 3 Santence 4 Sentence 3 Sentences
Sentence 4

Sentence 4

Sentence 5 Sentence 5
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Main NLP Applications

7. Information Reirieval

Finds (indexing and matching) the documents that are most relevant

to a query.

Query Emhedding Item Embedding

DNN Encoder DNN Encoder

Query Input Item Input

o Indexing: using a vector space

o Matching: using similarity score
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Main NLP Applications

8. Question/Answering *

Answering questions asked by humans in a natural language

o Multiple choice: question problem is composed of a question and a set of possible

ANnswers

o Open-domain: the model provides answers to questions in natural language

without any options provided

ﬁ Question ( y \ Full Prompt @ Response - 6
&D l.__,:Q &b

13



Main NLP Applications

9. Other NLP apps

o Grammatical error correction: encode grammatical rules to correct the grammar
within text.

o Part-of-Speech Tagging: classifying words in a text according to their grammatical
categories (such as noun, verb, and adjective).

o Language modeling: building models that predict the probability of a sequence of
words.

o Speech recognition: fransform spoken language into a machine-readable format.
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Main NLP Applications

9. Other NLP apps

o Grammatical error correction: encode grammatical rules to correct the grammar
within text.

o Part-of-Speech Tagging: classifying words in a text according to their grammatical
categories (such as noun, verb, and adjective).

o Language modeling: building models that predict the probability of a sequence of
words.

o Speech recognition: fransform spoken language into a machine-readable format.
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NLP Processing levels
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NLP Processing levels o Phoneme detection
o Prosody identification
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NLP Processing levels
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NLP Processing levels
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NLP Processing levels
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NLP Processing levels
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How does NLP work?

Data preprocessing

$

Feature exiraction

$

Fed into NLP architecture




How does NLP work?

1. Data preprocessing

o Stemming and Lemmatization: converting words to their base forms.
o Sentence segmentation: breaks a large piece of text into meaningful sentence units.
o Stop word removal: remove words that don’'t add much information to the text.

o Tokenization: splits text intfo individual words.
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How does NLP work?

1. Data preprocessing

o Stemming and Lemmatization:

A.Au-d\ ¢ ADA

Root-based Stemming

D ¢ dad
{92 e
Lemmatization  Light stemming

L4 L4

&l SN 2



How does NLP work?

1. Data preprocessing

o Stop word removal:

a5 JS daall ) daaa by

X ‘M‘ ¢ ADA “,\A..Ag
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How does NLP work?

1. Data preprocessing

o Tokenization: ags JS dacall L) dena cdly taaa 3 o5 Ly daal)
\ }
Y
Tokenizer
/’rokenizer.word_index \
{
(S T |
e tokenizer.texts_to_sequences
Aaaadl 13
o= 14 )i [[] ,2,7,3,5,8],
K :
] :Z [3,6,4,9,2]]
<) .7
p3 : 8
J e : 9
L -
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How does NLP work?

2. Feature extraction

o Bag-of-Words

o One-Hot-Encoding
o N-Grams

o TF-IDF

o Word Embeddings

« Word2Vec (CBoW, Skip-Gram)
« GLoVE
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How does NLP work?

2. Feature extraction

o Bag-of-Words (BoW) 252 08 a3 JS daal) Y i 5in o e e
\ Y ]
Vectorizer
mord_index \
{
Al 1
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How does NLP work?

2. Feature extraction

o One-Hot-Encoding ags JS daeall 1) taaa call tena J e (8 iy daall
\ Y ]
Vectorizer
—~
word_index Al | dese | amwdl | oo K| am | | am | Jw
{ k| 1 0 0 0 0 0 0 0 0
ey 1 Mmas |0 1 0 0 0 0 0 0 0
w12 sl |0 0 1 0 0 0 0 0 0
aadl 23
. . oo 0 0 0 1 0 0 0 0 0
K s Js 0 0 0 0 1 0 0 0 0
wo :6 e 0 0 0 0 0 1 0 0 0
< 7 &) 0 0 0 0 0 0 1 0 0
g5 : 8
Ui 9 o5 0 0 0 0 0 0 0 1 0
\} dyw | O 0 0 0 0 0 0 0 1
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How does NLP work?

2. Feature extraction

o N-Grams (N = 2) a5 JS cags JS Al ) daaa

!

a5 IS BT esrdS L Sl | aadl (I ) dese | dese cady

N-Grams Counter
= N

laaa il 1/7 0,14
ol 1/7 0,14
sl J) 1/7 0,14
JS aawadl  1/7 0,14
ass JS 2/7 0,28

\ JS ps 1/7 0,14 / )



How does NLP work?

2. Feature extraction

o TF-IDF:

=  Weights each word by its importance
= TF (Term Frequency) = Number of occurrences of the word in document / Number of words in document
= |DF (Inverse Docment Frequency) = log(number of documents in the corpus / number of documents that include the word)

D1 Jliaag A el 12a

D2 A gyl 130

<

/ TF-IDF Vectorizer \
TF
il Bl B Bl IR Bl I TF-IDF Features
D1 | 1/5 | 1/5 1/5 0 1/5 0 1/5 ™ o - o } el | e
D2 | 1/4 | 1/4 0 1/4 0 1/4 0
. D1 0 0 0,060 0 0,060 0 0,060
D2 0 0 0 0,075 0 0,075 0
IDF
J 2 JA\ RIEN e 9 %ﬁ\.zﬂ JUM
&03(2/2) log(2/2) | log(2/1) | log(2/1) | log(2/1) | log(2/1) | log(2/1) /
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How does NLP work?

2. Feature extraction

o Word embeddings (Word2Vec):

p52 JS dawuall ) dana Ay

Input Projection Output Input Projection Output ‘
wt2) wit2) / Word2Vec \
w(t-1) w(t-1) Al [0.2,0.3,-0.1, 0.5, ...]
SUM SUM
ada [0.1,-0.4,0.6,-0.2, ...]
> >
o S [0.3,-0.2,0.4,0.1, ...]
w(ts1) w(ts) Anwall [-0.5,0.2,0.3,-0.1, ...]
Js [0.4,0.1,-0.3,0.2, ...]
w(t+2) w(t+2) \?35' [0.6,-0.3,0.2,0.4, ...] /
cCBOwW Skip-gram
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NLP techniques

= Traditional machine learning techniques

O

O

O

O

O

Logistic regression

Naive Bayes

Decision trees

LDA/LSA

Hidden Markov Models (HMM)

= Deep learning techniques

O

O

O

O

O

Convolutional Neural Networks (CNN|)
Recurrent Neural Networks (RNN)
Autoencoders

Seg2Seqg models

Transformers

33



NLP techniques

POS-Tagging with HMM

S = Jane will spot WIll

What will be the most likely assignment for each word?

High probability sequence

Jane will spot Will ;
& ——0—0—"0—90—-9O
2/9 3/4 1/4 149
; 0.0003858
P : A : ‘ e Jane will spot Will :
Mary will Spot Jane will Can Spot See Pat e 3/4 5 o 1/9 s o 1/9 ° 1/9 5 0 4/9 i @
2/9 1/9 219 1/9
Jane will spot Will . 0.0000002788
e~0-0-0 0-°9°
219 3/4 1/4 1/9

34



NLP techniques

CNN-Based text classfication

Given a sentence, a CNN uses convolutional layers to refine represenations of input words, before combining

them to render a classification
Filters Features Map Maxpooling

aaaaaa

crimbers

<<<<<

Embedding
Dimensions

A4
[TTTTTT]

Sentence Matrix | | convolutional Layer | ( Pooling Layer | | softmax | 35




NLP techniques

RNN-Based Seq2Seq model for Machine translation

Given a sentence, a RNN encodes the sequence and then iteratively generates a franslation

Word1 Word2 Word3 Word4

@ @ @ RNN » Encoded Vector
Sequential processing @ @ @ @

AT AT,
Py ,

The teécher taLight thé studént wifh thé boﬁk Y Y2 Y3 Y4
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NLP techniques

Transformer architecture

Relies entirely on a self-attention mechanism to draw global dependencies between input and output,

It is at the core of new language models:

o Encoder only: BERT, ROBERTA

o Autoregressive (Decoder only): GPT, BLOOM
o Seq2Seq (Encoder-Decoder): T5, BART

Parallel processing

Output Probababilities

1
[ Softrmax |
1
[ Linear |
g ™
|  Add&Norm |
| FeedForward |
H
’ . | Add&Norm e
(__ Add & Norm ) [Multi-Head Attention | Nx
[ FeedForward ) z J 3
b M
Nx [ Add&MNorm  Jes
N X
Add & jorm [ Masked Multi-Head
Multi-Head Attention Attention
Y > N _"'_J
Positional P & Positional
Encoding 3 Encoding
| InputEmbedding | (_Output Embedding |
i

Inputs Outputs (Shifted right) 37



NLP system evaluation

o Evaluating an NLP system is a critical process to ensure it meets its

inNfended purpose and performs effectively.

o Evaluation methods depend on the specific tasks the system is

designed for, such as text classification, machine franslation,..

38



Evaluating a classification model



Confusion matrix

o Total number of examples: 1000
o Class A: 262 Class B: 237 Class C: 283 Class D: 218

Predicted Label

A B C D
A 205 10 1 46
2
L B 6 199 0 32
é C 9 17 223 34
<L
D 21 8 3 186

Y correct _ 813

= = 0.813
Y. all 1000

Total accuracy =



Confusion matrix

Predicted Label

E Positive Negative
4y]

% Positive 38 17

=

E Negative 3 42

True Positive (TP): Predicted positive matches actual positive
True Negative (TN): Predicted negative matches actual negative
False Positive (FP) (“Type | Error”): Predicted positive does not match actual negative

False Negative (FN) (“Type Il Error’). Predicted negative does not match actual positive



Confusion matrix

o Total number of examples: 1000
o Class A: 262 Class B: 237/ Class C: 283 Class D: 218
Predicted Label

A B C D
A 205 10 1 46
2
e B 6 199 0 32
g C 9 17 223 34
<T
D 21 8 3 186

True Positive (TP): Predicted positive matches actual positive
True Negative (TN): Predicted negative matches actual negative
False Positive (FP) (“Type | Error”): Predicted positive does not match actual negative

False Negative (FN) (“Type Il Error’): Predicted negative does not match actual positive



Confusion matrix

o Total number of examples: 1000

o Class A: 262 Class B: 237 Class C: 283 Class D: 218
Predicted Label

A B C D
A 205 10 1 46
2
© B 6 199 0 32
2 C 9 17 223 34
<T
D 21 8 3 186
Per class Accuracy:
p ~ TP + TN _199+728_0927
CCuracYs = rp {TN+FP+FN 1000

43



Confusion matrix

o Total number of examples: 1000
o Class A: 262 Class B: 237/ Class C: 283 Class D: 218
Predicted Label

A B C D

A 205 10 1 46
2
@ B 6 199 0 32
2 C 9 17 203 34
<

D 21 8 3 186

True Positive Rate (Sensitivity, Recall, Hit Rate):
TP 199
TPRg = = 0.840

TP+ FN _ 199 + 38



Confusion matrix

o Total number of examples: 1000
o Class A: 262 Class B: 237 Class C: 283 Class D: 218
Predicted Label

A B C D

_ A 205 10 1 46
3
@ B 6 199 0 32
2 C 9 17 223 34
<

D 21 8 3 186

True Negative Rate (Specificity, Selectivity):
TN 728
TNRy = = 0.954

TN + FP _ 728 + 35



Confusion matrix

o Total number of examples: 1000
o Class A: 262 Class B: 237/ Class C: 283 Class D: 218
Predicted Label

A B C D

A 205 10 1 46
2
@ B 6 199 0 32
2 C 9 17 203 34
<

D 21 8 3 186

Positive Predictive Value (Precision):
TP 199
PPVy = = 0.850

TP + FP 199 + 35
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Confusion matrix

o Total number of examples: 1000
o Class A: 262 Class B: 237 Class C: 283 Class D: 218
Predicted Label

A B C D
A 205 10 1 46
2
@ B 6 199 0 32
2 C 9 17 223 34
<T
D 21 8 3 186
F1 score:
PPV X TPR 0.850 x 0.840 2XTP 2 X 199
Flp =2 X =2 X = 0.845 = = = 0.845

PPV + TPR 0.850 + 0.840 ' 2XTP+FP+FN 2x199+ 35+ 38
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Confusion matrix

o Total number of examples: 1000
o Class A: 262 Class B: 237/ Class C: 283 Class D: 218

py B TP +TN
Predicted Label ccuracy = TP+ TN + FP + FN
A B C D 1 >« TP
core =

A 205 10 1 46 2XTP+ FP+FN
o
ﬁ B 6 199 0 32
% C 9 17 223 34
<

D 21 8 3 186

©)

©)

©)

©)

Per-Class Accuracy:

Per-Class F1 Score:

Total Accuracy:

F1 Score Average:
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Confusion matrix

o Total number of examples: 1000

o Class A: 262 Class B: 237 Class C: 283

©)

©)

©)

©)

Class D: 218

Predicted Label

Actual Label

Per-Class Accuracy:
Per-Class F1 Score:

Total Accuracy: 0.813
F1 Score Average: 0.818

A B C D
A 205 10 1 46
B 6 199 0 32
C 9 17 223 34
D 21 8 3 186
0.907 0.927 0.936 0.856
0.815 0.845 0.875 0.721
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Evaluating a text generation model



ROUGE

Recall-Oriented Understudy for Gisting Evaluation

ROUGE calculates the intersection of the common n-grams between the auto-
generated text (candidate) and the human generated text (reference):.

= ROUGE-N

= ROUGE-L

Example:

Reference: dsaill jladl s ) s aill
Candidate: il e Jaill Ll
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ROUGE

Recall-Oriented Understudy for Gisting Evaluation

ROUGE-N: measures the number of matching n-grams between the

candidate and the reference

Number of common n — grams between candidate and reference
Recall = ,
Total number of n — grams inreference

o Number of common n — grams between candidate and reference
Precision = . ,
Total number of n — grams in candidate

Recall X Precision
Recall + Precision

L S " S T 77

ROUGE-1 d.\;.d\ - J\Au\— OJA.\ 9 — JA.\M )A.\S‘ - )A.U d.\;.\j\— J\Au\
ROUGE-2 Jal) sl — ladl 5 5ai— 3 a0 g8 — sa el el e~ i Joddl) — Juadll e 1/4 1/3

F1 — Score = 2 X
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ROUGE

Recall-Oriented Understudy for Gisting Evaluation
ROUGE-L: measures the longest common subsequence (LCS) of words (not

necessarily consecutive) between the candidate and the reference

Length of LCS
Recall = ,
Total number of 1 — grams inreference
o Length of LCS
Precision =

Total number of 1 — grams in candidate

d.\;.\.“ J\&uﬂ o)m)ss JA.\M )A.\S\dem.“ JM\
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