
Chapter II: Dynamics of a Material Point

II.1. Objective : 

The purpose of kinematics is to study the movements of particles as a

function of time, without taking into account the causes that cause them.

Dynamics is the science that studies (or determines) the causes of the

motions of these particles.

➢ Why do bodies near the surface of the earth fall with constant 

acceleration?

➢ Why does the earth move around the sun in an elliptical orbit ?

➢ Why do atoms bind together to form molecules?
(Pourquoi les atomes se lient-ils entre eux pour former des molécules ?)

➢ Why does a spring oscillate when it is stretched?
(Pourquoi un ressort oscille-t-il lorsqu’il est tendu ?)



Called Newton's first law, which reads as follows:

❑ In other words:

➢An object at rest remains at rest.

➢A moving object contained to move at a constant velocity.

II.2. The Law of Inertia (Galileo’s law of Inertia): 

a free particle always moves with constant velocity, or without acceleration.

“Every body preservs in its state of rest, or of uniform motion in a right line, unless it 

is compelled to change that state by impressed forces”.

Or

If no force acts on an object or if the resultant force is zero:



II.3. Inertial frame of reference (Galilean frame of reference):

According to this definition, there is no such thing as an inertial frame of reference;

Only approximate frames of reference are available.

Examples:

❑ whereas for the motion of the planets, this ground-bound frame of reference is not an inertial

frame.

❑ Geocentric frame of reference: is the frame of

reference centered on the center of mass of the earth

and whose axes are parallel to those of the Copernican

frame of reference.

❑ Copernican Frame of Reference (Heliocentric): is the

frame of reference centered on the center of mass of

the solar system and whose three axes point to three

distant stars.

Is defined as a frame of reference in which Newton's first law holds.

❑ For most experiments on Earth, the ground-bound frame of reference is a good inertial frame. 



❑ Any coordinate system that moves at a constant velocity relative to an inertial

frame of reference, can it self be considered as an inertial frame of reference.

Remarks:

❑ The velocities and accelerations of bodies, measured in Galilean reference frames,

are said to be absolute, and those measured in non-Galilean reference frames are

said to be relative.



The momentum of a particle of mas of "𝑚“ and moving at velocity 𝑽 is 

defined by : 

II.4.1. Definition:

II.4.Momentum (Quantity of motion:

𝑷 = 𝒎𝑽

"A free particle moves with a constant momentum in a Galilean frame of reference"

Remark:
𝑑𝑃

𝑑𝑡
= = 𝑚 Ԧ𝑎 = Ԧ𝐹

⟹ The derivative of the momentum vector of a body is equal to the sum of the external 

forces applied to that body:

❖ The principle of inertia can then be stated as follows:

❑ 2D Motion:

x

y

m

𝑽

𝑃 = 𝐾𝑔. 𝑚/𝑠
falling mass

m

𝑷 = 𝒎𝑽𝑷

෍ 𝑭𝒆𝒙𝒕 =
𝒅𝑷

𝒅𝒕

𝑑 𝑚𝑉

𝑑𝑡
= 𝑚

𝑑𝑉

𝑑𝑡



➢ For a system of two particles with 𝒎𝟏 and 𝒎𝟐 isolated masses:

The total momentum of the system at time 𝒕 is:

𝑃 = 𝑃1 + 𝑃2 = 𝑚1𝑉1 + 𝑚2𝑉2

At the moment 𝒕′ we have: 𝑃′ = 𝑃′1 + 𝑃′2 = 𝑚1𝑉′1 + 𝑚2𝑉′2

Isolated System ⟹ Total momentum is retained:

𝑃 = 𝑃′ ⟹ 𝑃1 + 𝑃2 = 𝑃′1 + 𝑃′2 ⟹ 𝑃′
1 − 𝑃1 = 𝑃2 −𝑃′2

⟹ ∆𝑷𝟏 = −∆𝑷𝟐

➢ For an isolated system of interacting "n" particles: 𝑷𝑻 = ෍

𝒊=𝟏

𝒏

𝑷𝒊 = 𝑪𝒕𝒆

II.4.2. Conservation of momentum:

A system is said to be isolated if it is not subject to any external (interaction) forces.

Ԧ𝐹 = 0 ⟹ 𝑚
𝑑𝑉

𝑑𝑡
= 0 ⇒

𝑑𝑃

𝑑𝑡
= 0 ⇒ 𝑃 = 𝐶𝑡𝑒



Example:

A rifle of mass m of 0.8 kg fires a bullet of mass of 0.016 kg with a velocity of 700 m/s. 

Calculate the recoil velocity of the rifle.

Solution:

The system consists of two bodies: Rifle + Bullet

𝑷𝑩𝒆𝒇𝒐𝒓𝒆 = 𝑷𝑨𝒇𝒕𝒆𝒓

Before Shooting: Total momentum is zero

After Shooting: Total momentum:  𝑷𝑨𝒇𝒕𝒆𝒓=𝑃𝑅 + 𝑃𝐵

𝑃𝑅 + 𝑃𝐵 = 0 ⟹ 𝑚𝑓𝑉𝐹 + 𝑚𝐵𝑉𝐵 = 0

By projection: 𝑚𝑅 −𝑉𝑅 0 + 𝑚𝐵𝑉𝐵 = 0 ⟹ 𝑉𝑅 =
𝑚𝐵

𝑚𝑅
𝑉𝐵

N.A: 𝑉𝑅 =
0,016

0,8
700 = 14m/s

Principle of conservation of momentum:



II.5. Newtonian Definition of Force:

❑ Any cause capable of modifying the momentum vector of a material point, in a 

Galilean frame of reference, is called “ FORCE ".

❑ So, force is a mathematical notion that, by definition, is equal to the derivative of 

momentum with respect to time.

➢ We defined the average force, during a time interval Δt, as:

𝑭𝒂𝒗𝒆 =
∆𝑷

∆𝒕

➢ The instantaneous force is therefore given by:

𝑭𝒊𝒏𝒔𝒕 = 𝑭 = 𝐥𝐢𝐦
∆𝒕→𝟎

∆𝑷

∆𝒕
= 𝒎

𝒅𝑽

𝒅𝒕

Ԧ𝐹 = 𝐾𝑔. 𝑚𝑠−2 = 𝑁𝑒𝑤𝑡𝑜𝑛 (𝑁)

=
𝒅𝑷

𝒅𝒕



II.5.1. Moment of a Force about a Point (Torque):

A moment of a force is the tendency of that force to cause a 

rotation of a body about an axis,

❑ Vector Expression

The moment of the force 𝑭 about the point O, 

denoted 𝑀 Ԧ𝐹

(𝑂)
 , is:

𝑀 Ԧ𝐹

(𝑂)

𝑴𝑭

(𝑶)
= 𝑶𝑨 ∧ 𝑭

𝑭
O

A
𝜽𝑀 Ԧ𝐹

(𝑂)
= 𝑂𝐴 Ԧ𝐹 sin 𝜃

𝑀 Ԧ𝐹

(𝑂)
= 𝑁. 𝑚

The magnitude of the moment of a force about a point is (the magnitude of the force) × (the

perpendicular distance of the line of action of the force from the point).

❑ In other words:

𝑑 sin 𝜃= 𝐹. 𝑑 sin 𝜃
𝒅



Example:

𝑑 sin 𝜃 𝑃𝑂 = 𝑑

𝜃

Ԧ𝐹

𝑃
𝑂 𝑑

Find the moment of  Ԧ𝐹 about 𝑃 when 𝜃 = 35 ∘,𝐹 = 8𝑁 and 𝑑 = 14𝑚.

Solution:

𝑀 Ԧ𝐹

(𝑃)
= 𝑃𝑂 ∧ Ԧ𝐹

⟹ 𝑀 Ԧ𝐹

𝑃
= 𝑃𝑂 Ԧ𝐹 sin 𝜃  ;

⟹ 𝑀 Ԧ𝐹

𝑃
= 𝐹. 𝑑 sin 𝜃

= 8.14. sin 35° = 64,24 𝑁𝑚



A BO

𝒎𝟏 𝒎𝟐

In equilibrium, the sum of the moments of 

the forces about "O" equal zero:

For a system of m masses (G is a center of gravity):

෍ 𝑀 Ԧ𝐹𝑖

(𝑂)
= 0 ⇒ 𝑀 Ԧ𝐹𝐴

(𝑂)
+ 𝑀 Ԧ𝐹𝐵

(𝑂)
= 0

⇒ 𝑂𝐴 ∧ 𝑚1 Ԧ𝑔 + 𝑂𝐵 ∧ 𝑚2 Ԧ𝑔 = 0 ⇒ 𝑚1𝑂𝐴 + 𝑚2𝑂𝐵 ∧ Ԧ𝑔 = 0

⇒ 𝒎𝟏𝑶𝑨 + 𝒎𝟐𝑶𝑩 = 𝟎

𝑚1𝐺𝑀1 + 𝑚2𝐺𝑀2 + ⋯ 𝑚𝑛𝐺𝑀𝑛 = 0 ⟹ ෍

𝑖

𝑚𝑖𝐺𝑀𝑖 = 0

II.5.2. Center of Inertia or Barycenter: (Center of Gravity)

(Clockwise moments will equal anticlockwise moments),

⇒ 𝑂𝐴 ∧ Ԧ𝐹𝐴 + 𝑂𝐵 ∧ Ԧ𝐹𝐵 = 0



𝑴𝒊(𝒎𝒊)

𝑴𝟏(𝒎𝟏)

𝑴𝟐(𝒎𝟐)

𝑴𝟑(𝒎𝟑)
𝑮

⟹ 𝑂𝐺 =
σ𝑖 𝑚𝑖𝑂𝑀𝑖

σ𝑖 𝑚𝑖

➢For a continuous environment, the sum becomes integral:

This last relation gives the center of inertia of a system consisting of masses 𝑚𝑖 located at the 

points 𝑀𝑖

σ𝑖 𝑚𝑖 = 𝑀, With M is the total mass of the system. ⟹ 𝑶𝑮 =
𝟏

𝑴
෍

𝒊

𝒎𝒊𝑶𝑴𝒊

𝑶𝑮 =
𝟏

𝑴
ම 𝑶𝑴𝒅𝑴

⟹ ෍

𝑖

𝑚𝑖𝑂𝑀𝑖 = ෍

𝑖

𝑚𝑖𝑂𝐺

x
y

𝒛

i
j

k

O

On the other hand, according to the diagram opposite, 

𝑂𝐺 + 𝐺𝑀𝑖 = 𝑂𝑀𝑖

෍

𝑖

𝑚𝑖𝐺𝑀𝑖 = 0

⟹ 𝐺𝑀𝑖 = 𝑂𝑀𝑖 − 𝑂𝐺

⟹ ෍

𝑖

𝑚𝑖 𝑂𝑀𝑖 − 𝑂𝐺 = 0

with G is a center of gravity, we have:



❑ Newton’s Second Law (Fundamental Principle of Dynamics):

In a Galilean frame of reference, the sum of the external forces applied to a system is

equal to the derivative of the momentum vector of the center of inertia of that system.

෍ Ԧ𝐹𝑒𝑥𝑡 =
𝑑𝑃

𝑑𝑡
=

𝑑 𝑚𝑉

𝑑𝑡
= 𝑚

𝑑𝑉

𝑑𝑡
= 𝑚 Ԧ𝑎 (𝒎 = 𝒄𝒕𝒔)

❑ Newton's First Law:

Ԧ𝐹 = 0 , 𝑉 = 𝐶𝑠𝑡

II.5.3.Newton’s Laws of Motion

Newton’s first law states that every object will remain at rest or in uniform motion in 

a straight line unless compelled to change its state by the action of an external force.



𝑥

𝑦

𝑧

Ԧ𝒊
Ԧ𝒋

𝒌
𝑶

➢ Angular Momentum Theorem for a particle: 

The angular momentum 𝝈 (or 𝑳 ) of 𝑀 with respect to O is given by:

𝝈 = 𝑶𝑴 ∧ 𝑷

⟹ Ԧ𝜎 = Ԧ𝑟 ∧ 𝑚𝑉 = 𝒎𝒓 ∧ 𝑽 𝝈 ⊥ 𝒓, 𝑽

❖ In the case of a circular motion with constant velocity angular 𝝎 , we have:

⟹ Ԧ𝜎 = 𝑚𝑅2𝜔 𝑢𝑟 ∧ 𝑢𝜃

𝑶
𝑽

𝝈

𝑀

𝑹

𝑽
𝑀

𝒓

Ԧ𝜎

Consider a particle 𝑀 of mass 𝑚, moving in plan (𝑂, 𝑥, 𝑦) with velocity vector 𝑽 relative to 

inertial frame 𝑅. 

The particle M has the momentum 𝑷 = 𝑚𝑽 relative to R. 

Ԧ𝑟 = 𝑅𝑢𝑟

𝑉 = 𝑅𝜔𝑢𝜃
⟹ 𝝈  = 𝒎𝑹𝟐𝝎𝒌 𝑢𝑟

𝑢𝜃
𝑘



❖ In the case of a planar curvilinear motion (Polar coordinates):

𝑂𝑀 = Ԧ𝑟 = 𝑟𝑢𝑟 𝑉 = 𝑉𝑟𝑢𝑟 + 𝑉𝜃𝑢𝜃

𝑀

𝒓

𝑶

Ԧ𝜎 = 𝑚. 𝑟 ∧ 𝑉 = 𝑚. 𝑟𝑢𝑟 ∧ 𝑉𝑟𝑢𝑟 + 𝑉𝜃𝑢𝜃 = 𝑚. 𝑟𝑉𝑟𝑢𝑟 ∧ 𝑢𝑟 + 𝑚. 𝑟𝑉𝜃𝑢𝑟 ∧ 𝑢𝜃

𝑶 𝒌

⟹ 𝝈 = 𝒎. 𝒓𝑽𝜽𝒌

𝑉𝜃 = 𝑟
𝑑𝜃

𝑑𝑡
⟹ Ԧ𝜎 = 𝑚𝑟2

𝑑𝜃

𝑑𝑡
𝑘

❑ The derivative of 𝝈 with respect to time is given by:

𝑑𝜎

𝑑𝑡
=

𝑑 Ԧ𝑟 ∧ 𝑚𝑉

𝑑𝑡
= 𝑉 ∧ 𝑚𝑉 + Ԧ𝑟 ∧

𝑑𝑃

𝑑𝑡

𝑶

⟹
𝒅𝝈

𝒅𝒕
= 𝑴𝑭

(𝑶) (Moment of Force 𝑭)

Theorem: the derivative, with respect to time, of the angular momentum of a particle is 

equal to the moment of the force applied to it when both are measured with respect to 

the same point.

𝑽
𝒙

𝒚
𝒖𝒓

𝒖𝜽
𝒌

=
𝑑𝑟

𝑑𝑡
∧ 𝑚𝑉 + Ԧ𝑟 ∧ 𝑚

𝑑𝑉

𝑑𝑡
= 𝒓 ∧ 𝑭

Ԧ𝐹: is the resultant force

𝝈



𝒂 =
𝒅𝟐𝒓 𝒕

𝒅𝒕𝟐
− 𝒓 𝒕

𝒅𝜽 𝒕

𝒅𝒕

𝟐

𝒖𝒓 + 𝟐
𝒅𝒓 𝒕

𝒅𝒕

𝒅𝜽 𝒕

𝒅𝒕
+ 𝒓 𝒕

𝒅𝟐𝜽 𝒕

𝒅𝒕𝟐
𝒖𝜽

𝜽
𝒍

𝑴

𝑶

❖ In case of central Force:

A force whose direction always passes through a fixed point is called a central force

Ԧ𝐹 ∥ 𝑂𝑀 ⟹ 𝝈 = 𝑪𝒕𝒆

𝑀

𝑀′

𝑀′′

𝑭

𝑭′

𝑭′′

𝑶Exercise: (Simple Pendulum)

I- We apply the Newton’s second law : ෍ Ԧ𝐹𝑒𝑥𝑡 = 𝑚 Ԧ𝑎 ⇒ 𝑊 + 𝑇 = 𝑚 Ԧ𝑎

By projection:

2 ⟺ 𝑚𝑙
𝑑2𝜃

𝑑𝑡2
+ 𝑚𝑔𝑠𝑖𝑛𝜃 = 0

𝑠𝑖𝑛𝜃 ≈ 𝜃 ⟹
𝒅𝟐𝜽

𝒅𝒕𝟐
+

𝒈

𝒍
𝜽 = 𝟎 

Find the differential equation to write the equation of motion 

of a simple pendulum 𝜃(t). 

𝑾

𝑻⇒
𝑚𝑔𝑐𝑜𝑠𝜃 − 𝑇 = −𝑚𝑙

𝑑𝜃

𝑑𝑡

2

… … … . . (1) 

−𝑚𝑔 𝑠𝑖𝑛𝜃 = 𝑚𝑙
𝑑2𝜃

𝑑𝑡2
… … … … … (2)

⟹
𝑑 Ԧ𝜎

𝑑𝑡
= 𝑂𝑀 ∧ Ԧ𝐹 = 0

𝒖𝒓:

𝒖𝜽:
𝒖𝜽

𝒖𝒓

𝑊𝑟

𝑊𝜃

𝜽

𝑊𝑟 − 𝑇 = 𝑚𝑎𝑟

−𝑊𝜃 = 𝑚𝑎𝜃

⇒ 𝑙
𝑑2𝜃

𝑑𝑡2
+

𝑔

𝑙
𝑠𝑖𝑛𝜃 = 0



𝑾

𝒖𝜽

𝒖𝒓

𝜽
𝒍

𝑴

𝑶
𝑑𝜎

𝑑𝑡
= 𝑀 Ԧ𝐹

(𝑂)
= 𝑀𝑊

(𝑂)
+ 𝑀𝑇

(𝑂)

We have: Ԧ𝜎 = 𝑂𝑀 ∧ 𝑚 Ԧ𝑣 = 𝑙 𝑢𝑟 ∧ 𝑚𝑙
𝑑𝜃

𝑑𝑡
𝑢𝜃 = 𝑚𝑙2

𝑑𝜃

𝑑𝑡
𝑘

⟹
𝒅𝝈

𝒅𝒕
= 𝒎𝒍𝟐

𝒅𝟐𝜽

𝒅𝒕𝟐
𝒌 … … … … … . . (𝟏)

On the other hand, we have:

❑ 𝑀𝑊

(𝑂)
= 𝑂𝑀 ∧ 𝑊

𝑊𝑟

𝑊𝜃

𝜽

= 𝑙 𝑢𝑟 = −𝑙𝑚𝑔 𝑠𝑖𝑛 𝜃𝑘

❑ 𝑀𝑇

(𝑂)
= 𝑂𝑀 ∧ 𝑇 = 𝑙 𝑢𝑟 ∧ −𝑇𝑢𝑟 = 0

II- Let's apply the angular momentum theorem with respect to O :

(circular motion) 𝑻

⟹ 𝑴𝑾

𝑶
+ 𝑴𝑻

𝑶
= −𝒍𝒎𝒈 𝒔𝒊𝒏 𝜽𝒌 … … … (𝟐)

𝟏 = 𝟐 ⟺ 𝒎𝒍𝟐
𝒅𝟐𝜽

𝒅𝒕𝟐
𝒌 = −𝒍𝒎𝒈 𝒔𝒊𝒏 𝜽𝒌 ⟹

𝒅𝟐𝜽

𝒅𝒕𝟐
+

𝒈

𝒍
𝒔𝒊𝒏 𝜽 = 𝟎

∧ 𝑚𝑔 𝑐𝑜𝑠 𝜃 𝑢𝑟 − 𝑚𝑔 𝑠𝑖𝑛 𝜃 𝑢𝜃

For small oscillations, we have: 𝒔𝒊𝒏 𝜽 ≈ 𝜽 ⟹
𝒅𝟐𝜽

𝒅𝒕𝟐
+

𝒈

𝒍
𝜽 = 𝟎



❑ Newton’s Third Law (3rd law of dynamics: Principle of action and reaction):

Let two particles (1) and (2) interacting with each other, the action of (1) on (2) Ԧ𝐹1  is 

equal and opposite to that exerted by (2) on (1) Ԧ𝐹2 .

Ԧ𝐹1 = − Ԧ𝐹2 Ԧ𝐹1 = Ԧ𝐹2

𝑭𝟏 𝑭𝟐

𝟏 𝟐

If a particle (1) exerts a force Ԧ𝐹1 on a particle (2), then (2) exerts a force Ԧ𝐹2  on (1) in the opposite 

direction with the same magnitude.

In the other word:

Example: 

A person of mass 85 kg is standing in a lift which is accelerating downwards at 0.45 𝑚𝑠−2. 

Draw a diagram to show the forces acting on the person and calculate the force the 

person exerts on the floor of the lift. 

Solution: 

𝑹

𝑊

using Newton’s second law gives: ෍ Ԧ𝐹𝑒𝑥𝑡 = 𝑚 Ԧ𝑎

⟹ 𝑅 + 𝑊 = 𝑚 Ԧ𝑎

By projection: 𝑊 − 𝑅 = 𝑚𝑎 ⟹ 𝑅 = 𝑊 − 𝑅𝑎 = 𝑚𝑔 − 𝑚𝑎

𝑅 = 795,6 𝑁



A B

𝑴 𝒎

II.6. Some laws of forces:

II.6.1. Newton’s Law of Universal Gravitation (1666):

This law explains the motions of the planets around the sun.

The force of attraction between 𝑴 and 𝒎 is given by:

Ԧ𝐹𝐴/𝐵 = −
𝐺𝑀𝑚

𝑟2 𝑢

With:

𝐺 = 6,67259. 10−11 𝑚3𝐾𝑔−1𝑠−2 : Universal gravitational constant

𝑟 = 𝐴𝐵 ⟹ Ԧ𝐹𝐴/𝐵 = −
𝐺𝑀𝑚

𝑟2

𝐴𝐵

𝐴𝐵
= −

𝐺𝑀𝑚

𝑟3 Ԧ𝑟

Ԧ𝐹𝐴/𝐵 = − Ԧ𝐹𝐵/𝐴

𝑭𝑨/𝑩𝒖

𝑭𝑩/𝑨

𝒓 = 𝑨𝑩



Special case: The weight of an object placed on the surface of the earth

𝑶

𝑀𝑇

Ԧ𝐹 = −
𝐺𝑀𝑇𝑚

𝑅𝑇
2 𝑢

We posit : ⟹ Ԧ𝐹 = 𝑚 Ԧ𝑔

𝑔 : Gravitational Field of Earth,

❖ At the surface level of the earth: 𝑔 = 𝑔0 =
𝐺𝑀𝑇

𝑅𝑇
2 = 9,820251 𝑚. 𝑠−2

❖ At an altitude 𝒉 of the earth's surface: 𝑔 =
𝐺𝑀𝑇

𝑅𝑇+ℎ 2 =
𝐺𝑀𝑇

𝑅𝑇+ℎ 2

𝑹𝑻
𝟐

𝑹𝑻
𝟐

⟹ 𝒈 =
𝑮𝑴𝑻

𝑹𝑻
𝟐

𝑹𝑻

𝑹𝑻 + 𝒉

𝟐

= 𝒈𝟎

𝑹𝑻

𝑹𝑻 + 𝒉

𝟐 (Neglecting the rotational speed of the 

earth upon itself).

𝒎

𝒖 𝑅𝑇

Ԧ𝑔 = −
𝐺𝑀𝑇

𝑅𝑇
2 𝑢

(𝑀𝑇 = 5,9737 × 1024 𝐾𝑔 ; 𝑅𝑇 = 6371 𝑘𝑚 ; 𝐺 = 6,67259. 1011 𝑚3𝐾𝑔−1𝑠−2)



II.6.2. Contact forces:

❑ Support Reaction: 𝒎

𝑮➢ The force that a mass 𝑚, placed on a horizontal support, 

undergoes from the support is called the "support force"

➢ The support reaction on 𝒎 is distributed over the entire "support-object" contact surface

𝑅𝑁 : Represents the resultant of all actions exerted on the contact surface.

➢ In equilibrium : 𝑅𝑁 + 𝑊 = 0 ⟹ 𝑅𝑁 = −𝑊

❑ Frictional forces:

➢ Frictional forces are forces that appear: 

- Either when an object is moving (Soit lors de mouvement d’un objet), 

- Or that object is subjected to a force that tends to want to move it

            (Cet objet est soumis à une force qui tend à vouloir de le déplacé).

➢ We distinguish two types of friction forces:

- Viscous friction (contact: solid – fluid).

- Solid friction (contact: solid-solid).

𝑅𝑁

𝑾



❑ Viscous friction:

Viscous friction is related to the movement of an object 𝑴 in a fluid medium (air, 

liquid or other)

At low velocities, the friction ( in magnitude) is proportional 

to the velocity at which the object is moving.

𝑭 = −𝒌𝑽

We give:

𝐾: Depends on the geometric shape of the body

𝜂: Fluid viscosity coefficient, depends on internal fluid friction,

𝒌 = −𝑲𝜼

Remark: For higher speeds, experiments have shown that the frictional forces in 

this case are given by:

𝑭 = −𝒌𝑽 𝒏𝒖 with 𝑛 ≥ 2

Object velocity

Positive constant

Friction Force



❑ Solid friction:

𝑪

𝝋

Ԧ𝐹𝑒: Force of entrainment Ԧ𝐶: Contact force

Ԧ𝐶𝑁 = 𝑅: Surface reaction force

Ԧ𝐶𝑇 = Ԧ𝐹𝑓: Friction force (Sliding friction)

➢ The body is initially at rest;

➢ We increase gradually the value of Ԧ𝐹𝑒

➢ Each time Ԧ𝐹𝑒 e is increased, the value of the frictional force Ԧ𝐹𝑓 increases until it

reaches a maximum value Ԧ𝐹𝑓0 = Ԧ𝐶𝑇0 which corresponds to the beginning of the

object's slippage. ⟹ This position is called: Limit equilibrium state,

Applying the Newton’s second law in this case: ෍ Ԧ𝐹𝑒𝑥𝑡 = 0 ⟹ 𝑊 + Ԧ𝐶 + Ԧ𝐹𝑒 = 0

G

𝑦

𝑥

❖ By projection on the (Ox) and (Oy) axes: ቊ
𝐹𝑒 − 𝐶𝑇0 = 0
𝐶𝑁0 − 𝑊 = 0

⟹ ቊ
𝐶𝑇0 = 𝐹𝑒

𝐶𝑁0 = 𝑊

➢ The static coefficient of friction is defined as:

𝝁𝒔 = 𝒕𝒈𝝋 =
𝑪𝑻𝟎

𝑪𝑵𝟎

: characterizes the limit equilibrium state

𝑾

Ԧ𝐹𝑒

Ԧ𝐶𝑁=𝑅

𝑪𝑻 = 𝑭𝒇



➢ When Ԧ𝐹𝑒 > Ԧ𝐹𝑓0, the object begins to move from its steady state with uniformly 

accelerated motion

➢ Applying the Newton’s second law in this case: ෍ Ԧ𝐹𝑒𝑥𝑡 = 𝑚 Ԧ𝑎 ⟹ 𝑊 + Ԧ𝐶 + Ԧ𝐹𝑒 = 𝑚 Ԧ𝑎

By projection on the (Ox) and (Oy) axes:

ቊ
𝐹𝑒 − 𝐶𝑇 = 𝑚𝑎
𝐶𝑁 − 𝑊 = 0

⟹ ቊ
𝐶𝑇 = 𝐹𝑒 − 𝑚𝑎

𝐶𝑁 = 𝑊

➢ The dynamic coefficient of friction is then defined:

𝜇𝑑 = 𝑡𝑔𝜑 =
𝐶𝑇

𝐶𝑁
=

𝐹𝑒 − 𝑚𝑎

𝑚𝑔Remarks:

❑ 𝜇𝑑 is less than 𝜇𝑆

❑ 𝜇𝑠 and 𝜇𝑑 depend on the nature of the surfaces in contact,

❑ 𝜇𝑑 is substantially independent of speed

❑ 𝜇𝑑 is substantially independent of the surface area of the surfaces in contact and depends 

only on their nature

Ԧ𝐶𝑁=𝑅𝑪

𝝋
G

𝑦

𝑥

𝑾

Ԧ𝐶𝑇 = Ԧ𝐹𝑓

Ԧ𝐹𝑒



Application: Inclined Plane

𝑃

Ԧ𝐶

Ԧ𝐶𝑁
Ԧ𝐶𝑇

𝑃𝑥𝑃𝑦

𝛼

❑ At the limit equilibrium state: ෍ Ԧ𝐹𝑒𝑥𝑡 = 0 ⟹ 𝑃 + Ԧ𝐶0 = 0

By projection:

ቊ
𝑃𝑥 − 𝐶𝑇0 = 0
𝐶𝑁0 − 𝑃𝑦 = 0 ⟹ ቊ

𝑃𝑠𝑖𝑛𝛼0 = 𝐶𝑇 … … … … 1

𝑃𝑐𝑜𝑠𝛼0 = 𝐶𝑁 … … … 2

1 / 2 ⟹ 𝑡𝑔𝛼0 =
𝐶𝑇

𝐶𝑁
= 𝜇𝑆

❑ In the state of motion:

෍ Ԧ𝐹𝑒𝑥𝑡 = 𝑚 Ԧ𝑎 ⟹ 𝑃 + Ԧ𝐶 = 𝑚 Ԧ𝑎

By projection: ቊ
𝑃𝑥 − 𝐶𝑇 = 𝑚𝑎
𝐶𝑁 − 𝑃𝑦 = 0

⟹ ቊ
𝑃𝑠𝑖𝑛𝛼 − 𝑚𝑎 = 𝐶𝑇 … 1

𝑃𝑐𝑜𝑠𝛼 = 𝐶𝑁 … … … 2

𝜇𝑑 = 𝑡𝑔𝛼 =
𝐶𝑇

𝐶𝑁
=

𝑃𝑠𝑖𝑛𝛼 − 𝑚𝑎

𝑃𝑐𝑜𝑠𝛼
==

𝑔𝑠𝑖𝑛𝛼 − 𝑎

𝑔𝑐𝑜𝑠𝛼

𝛼0 → 𝛼 𝛼 = 𝛼0 + 𝑑𝛼



3. Elastic Strength:

Ԧ𝐹 = −𝑘𝑂𝑀 ⟹ proportional and opposite to the position vector 𝑂𝑀

𝑂

𝑘 ∶ Stiffness Constant

By projection on the axis (Ox): Ԧ𝐹 = −𝑘𝑥Ԧ𝑖

Example:

l0

Rest
O

Ԧ𝐹 = −𝑘𝑂𝑀=−𝑘 𝑙 − 𝑙0 Ԧ𝑖

l M Ԧ𝐹

l

𝑭

Ԧ𝐹 = −𝑘 𝑙 − 𝑙0 𝑢

Or

𝑥𝑀′𝑀𝑀′′

𝐹′′ Ԧ𝐹 𝐹′



II.6. Fundamental Principle of Dynamics in a Non-Galilean Frame of Reference

x
y

z

O

(R)

(R’)

➢ Let (R)a Galilean frame of reference and (R') a non-Galilean frame of reference.

➢ R' is in moving relative to R.

⟹ R is the absolute frame of reference and R' is the relative
frame of reference

Ԧ𝑎𝑎 = Ԧ𝑎𝑟 + Ԧ𝑎𝑒 + Ԧ𝑎𝐶

⟹ ෍ Ԧ𝐹𝑒𝑥𝑡 = 𝑚 Ԧ𝑎𝑎 = 𝑚 Ԧ𝑎𝑟 + 𝑚 Ԧ𝑎𝑒 + Ԧ𝑎𝐶

In the R' coordinate system, the PFD is:

𝑚 Ԧ𝑎𝑟 = 𝑚 Ԧ𝑎𝑎 − 𝑚 Ԧ𝑎𝑒 − Ԧ𝑎𝐶 = ෍ Ԧ𝐹𝑒𝑥𝑡 + Ԧ𝐹𝑒 + Ԧ𝐹𝐶

Ԧ𝐹𝑒 = −𝑚 Ԧ𝑎𝑒est la force d'inertie d'entraînement,

Ԧ𝐹𝐶 = −𝑚 Ԧ𝑎𝐶  is the Coriolis force of inertia,

Ԧ𝐹𝑒 et Ԧ𝐹𝐶  are non-real forces, they depend on the motion of R’/R.
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