Khemis Miliana university Faculty of Science and Technology Department of Material Sciences

Level : L1

Specialization : ST +SM.

Module : Mathematics 1

Semestre1

Exercises Series N°2: Relations and Applications

I. Relations

Exercise n°1: Let R be a relation defined on \mathbb{R} by:

 $\forall x, y \in \mathbb{R}, \ xRy \Leftrightarrow x(3+y^2) = y(3+x^2).$

- 1. Prove that R is an equivalence relation on \mathbb{R} .
- 2. Determine $\overline{2}$ the equivalence class of the integer 2.

Exercise n°2: Let R be a relation defined on \mathbb{N} by:

$$\forall x, y \in \mathbb{N}, \ xRy \Leftrightarrow \frac{2x+y}{3} \in \mathbb{N}.$$

- 1. Determine if 7R5, 6R9, 4R4.
- 2. Prove that R is an equivalence relation on $\mathbb N$

Exercise n°3:

Let E and F be two sets and $f: E \rightarrow F$ be a function

We define a relation R on E by: $\forall x, x' \in E, xRx' \Leftrightarrow f(x) = f(x').$

- 1. Prove that R is an equivalence relation on *E*
- 2. Describe the class \overline{a} of the element $a \in E$
- 3. Describe the class \overline{a} of the element $a \in E$ if the function f is injective.

Exercise n°4 :

Determine if the relations R below are order relations:

1. $\forall x, y \in \mathbb{R}, xRy \Leftrightarrow e^x \leq e^y$. 2. $\forall x, y \in \mathbb{R}, xRy \Leftrightarrow |x+1| \leq |y+1|$. 3. $\forall x, y \in]1, +\infty[, xRy \Leftrightarrow \frac{x}{1+x^2} \geq \frac{y}{1+y^2}$. 4. $\forall x, y \in \mathbb{R}, xRy \Leftrightarrow x - y \in \mathbb{N}$. 5. $\forall x, y \in \mathbb{R}, xRy \Leftrightarrow x - y \in \mathbb{Z}$.

II. Functions

Exercise n°5 :

1. Provide a counterexample to show that the following functions are not injective on $\mathbb R$

a)
$$f(x) = \sin(2x) + 3$$
 b) $g(x) = |x^2 - 5x + 6|$ c) $h(x) = \frac{x^4}{4 + x^2}$

Solve the following equations in R:
f(x) = 5, g(x) = -7 et h(x) = -1.
What can be deduced about the surjectivity of these functions?

Exercice n°6: Let's consider the function $f: \mathbb{R} - \{1/2\} \rightarrow \mathbb{R}$ defined by:

$$f(x) = \frac{x+1}{2x-1}$$

- 1. Show that *f* is injective and determine if *f* is surjective.
- 2. Find the set F such that f is bijective from $\mathbb{R} \{1/2\}$ to F, then calculate the inverse function f^{-1}
- 3. Determine the composed function $f \circ f$ and find by using a second method the inverse function $f^{-1}: F \longrightarrow \mathbb{R} \left\{\frac{1}{2}\right\}$.

Exercice n°7: Let's consider the function $f: \mathbb{R} \to \mathbb{R}$ defined by: $f(x) = \frac{x}{1+x^2}$.

- 1. Determine the direct image $f(A_1)$ et $f(A_2)$ where $A_1 = \{0, \frac{1}{4}, \sqrt{8}, 4\}$ and $A_2 = [2, 3]$.
- 2. Determine the inverse image $f^{-1}(B_1)$, $f^{-1}(B_2)$ with $B_1 = \{-1\}, B_2 = \{0, 1/2\}.$
- 3. Is the function f injective? Surjective? Justify
- 4. Prove that $f: [1, +\infty[\rightarrow]0, 1/2[$ is bijective, and determine its inverse function f^{-1}