


Table A-1 Periodic Table of the Elements 

The atomic masses, based on the exact number 12.00000 as the assigned atomic mass of the prin
cipal isotope of carbon, 12C, are the most recent (1961) values adopted by the International 
l'nion of Pure and Applied Chemistry. The unit of mass used in this table is called atomic mass 

Group-+ I II III IV 

Period Series 
lH 

1 1 1.00797 

3 Li 
2 2 6.939 

11 Na 
3 3 '22.9898 

19K 
4 39.102 

4 
29 Cu 

5 63.54 

37 Rb 
6 85.47 

5 
47 Ag 

7 107.870 

55 Cs 
8 132.905 

6 
79 Au 

9 196.967 

87 Fr 
7 10 [223] 

* L th 'd . 157 La an am e series: 138.91 

** Actinide series· 89 Ac 
· (227] 

58 Ce 
140.12 
90 Th 
232.038 

4 Be 
~.0122 

12 Mg 
24.312 

20 Ca 
40.08 

30 Zn 
65.37 

38 Sr 
87.62 

48 Cd 
112.40 

56 Ba 
137.34 

80 Hg 
200.59 

88 Ra 
(226.05] 

59 Pr 
140.907 
91 Pa 
(231] 

Table A-2 Fundamental Constants 

Constant Symbol 

Velocity of light c 

Elementary charge e 

Electron rest mass me 

Proton rest mass mp 

Neutron rest mass mn 

Planck constant h 

h = h/21r 

Charge-to-mass ratio for electron e/me 

Quantum charge ratio h/e 

Bohr radius ao 

Compton wavelength: 
of electron Ac,e 
of proton Xc,p 

Rydberg constant R 

5B 6C 
10.811 12.01115 

13 Al 14 Si 
26.9815 28.086 

21 Sc 22 Ti 
44.956 47.90 

31 Ga 32 Ge 
69.72 72.59 

39 Y 40 Zr 
88.905 91.22 

49 In 50 Sn 
114.82 118.69 

57-71 72 Hf 
Lanthanide 178.49 
series* 

81 Tl 
204.37 

89-Actinide 
series** 

60 Nd 
144.24 
92 U 
238.03 

61 Pm 
(147] 
93 Np 
(237] 

Value 

82 Pb 
207.19 

62 Sm 
150.35 
94 Pu 
(242] 

2.9979 X 10s m s-1 

1.6021 X 10-19 C 

9.1091 X 10-31 kg 

1.6725 x 10-27 kg 

1.6748 X 10-27 kg 

6.6256 X 10-34 J s 

1.0545 X 10-34 J s 

1.7588 X 1011 kg-1 C 

4.1356 x 10-15 J s c-1 

5.2917 X 10-11 m 

2.4262 X 10-12 m 

1.3214 X 10-15 m 

1.0974 X 107 m-1 



unit (amu): 1 amu = 1.6604 X 10-21 kg. The atomic mass of carbon is 12.01115 on this scale 
because it is the average of the different isotopes naturally present in carbon. (For artificially 
produced elements, the approximate atomic mass of the most stable isotope is given in brackets.) 

V VI VII VIII O 

7N 80 
14.0067 15.9994 

15 P 16 S 
30.9738 32.064 

23 V 24 Cr 
50.942 51.996 

33 As 34 Se 
74.9216 78.96 

41 Nb 42 Mo 
92.906 95.94 

51 Sb 52 Te 
121.75 127.60 

73 Ta 74 W 
180.948 183.85 

83 Bi 84 Po 
208.980 [210] 

63 Eu 
151.96 
95Am 
[243] 

64 Gd 
157.25 
96 Cm 
[245] 

65 Tb 
158.924 
97 Bk 
[249] 

9F 
18.9984 

17 Cl 
35.453 

25 Mn 
54.9380 

35 Br 
79.909 

43 Tc 
[99] 

53 I 
126.9044 

75 Re 
186.2 

85 At 
[210] 

66 Dy 
162.50 
98 Cf 
[249] 

67 Ho 
164.930 
99 Es 
[253] 

Constant Symbol 

Bohr magneton µB 

Avogadro constant NA 

Boltzmann constant k 

Gas constant R 

Ideal gas normal volume (STP) Vo 

Faraday constant F 

Coulomb constant Ke 

Vacuum permittivity Eo 

Magnetic constant Km 

Vacuum permeability µo 

Gravitational constant 'Y 

Acceleration of gravity at sea level and 

at equator g 

Numerical constants: 71' = 3.1416; e = 2.7183; 

-

26 Fe 27 Co 28 Ni 
55.847 58.9332 58.71 

44 Ru 45 Rh 46 Pd 
101.07 102.905 106.4 

76 Os 77 Ir 78 Pt 
190.2 192.2 195.09 

68 Er 
167.26 
100 Fm 
[255] 

69Tm 
168.934 
101 Md 
[256] 

70 Yb 
173.04 
102 No 

Value 

9.2732 X 10-24 J T-1 

6.0225 X 1023 mol-1 

1.3805 X 10-23 J °K-1 

8.3143 J °K-1 mol-1 

2.2414 X 10-2 m3 mo1-1 

9.6487 X 104 C mo1-1 

2 He 
4.0026 

10 Ne 
20.183 

18 A 
39.948 

36 Kr 
83.80 

54 Xe 
131.30 

86 Rn 
[222] 

71 Lu 
174.97 
103 

8.9874 X 100 N m2 c-2 

8.8544 X 10-12 N- 1 m -2 c2 

1.0000 X 10-1 m kg c-2 

1.3566 X 10-6 m kg c-2 

6.670 X 10-11 N m2 kg-2 

9.7805 m s-2 

y2 = 1.4142; y3 = 1.7320 
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FOREWORD 

Physics is a fundamental science which has a profound influence on all the other sciences. 

Therefore, not only must physics majors and engineering students have a thorough 

understanding of its fundamental ideas, but anyone who plans a career in science (in

cluding students majoring in biology, chemistry, and mathematics) must have this same 
understanding. 

The primary purpose of the general physics course (and perhaps the only reason it is 
in the curriculum) is to give the student a unified view of physics. This should be done 

without bringing in too many details, but by analyzing the basic principles, their implica
tions, and their limitations. The student will learn specific applications in the more 

specialized courses that follow. Thus this book presents what we believe are the funda

mental ideas that constitute the core of today's physics. We gave careful consideration 

to the recommendations of the Commission on College Physics in selecting the subject 

matter and its method of presentation. 
Until recently, physics has been taught as if it were a conglorneratiorr of several 

sciences, more or less related, but without any real unifying point of view. The traditional 

division into (the "science" of) mechanics, heat, sound, optics, electromagnetism, and 
modern physics no longer has any justification. We have departed from this traditional 

approach. Instead, we follow a logical and unified presentation, emphasizing the conserva

tion laws, the concepts of fields and waves, and the atomic view of matter. The special 

theory of relativity is used extensively throughout the text as one of the guiding prin

ciples that must be met by any physical theory. 

The subject matter has been divided into five parts: (1) Mechariics, (2) Interactions and 

Fields, (3) Waves, (4) Quantum Physics, and (5) Statistical Physics. We start with me

chanics, in order to set up the fundamental principles needed to describe the motions we ob

serve around us. Then, since all phenomena in nature are the result of interactions, and 

these interactions are analyzed in terms of fields, in Part 2 we consider the kinds of interac

tions we understand best: gravitational and electromagnetic interactions, which are the in

teractions responsible for most of the macroscopic phenomena we observe. We discuss 

electromagnetism in considerable detail, concluding with the formulation of Maxwell's 

equations. In Part 3 we discuss wave phenomena as a consequence of the field concept. 

It is in this part that we have included much of the material usually covered under the 

headings of acoustics and optics. The emphasis, however, has been placed on electro

magnetic waves as a natural extension of Maxwell's equations. In Part 4 we analyze the 
structure of matter-that is, atoms, molecules, nuclei, and fundamental particles-an 

analysis preceded by the necessary background in quantum mechanics. Finally, in Part 

5, we talk about the properties of matter in bulk. First we present the principles of sta-
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vi Foreword 

tistical mechanics, and apply them to some simple, but fundamental, cases. We discuss 

thermodynamics from the point of view of statistical mechanics, and conclude with a 
chapter on the thermal properties of matter, showing how the principles of statistical 

mechanics and of thermodynamics are applied. 

This text is novel not only in its approach but also in its content, since we have included 

some fundamental topics not found in most general physics texts and deleted others that 

are traditional. The mathematics used can be found in any standard textbook on calculus. 

We assume that the student has had a minimal introduction to calculus and is taking a 

concurrent course in the subject. Many applications of fundamental principles, as well 

as a few more advanced topics, appear in the form of worked-out examples. These may 

be discussed at the instructor's convenience or proposed on a selective basis, thus allow

ing a greater flexibility in organizing the cours~ 
The curricula for all sciences are under great pressure to incorporate new subjects that 

are becoming more relevimt. We expect that this book will relieve this pressure by raising 
the level of the student's understanding of physical concepts and his ability to manipulate 

the corresponding mathematical relations. This will permit many intermediate courses 
presently offered in the undergraduate curriculum to be upgraded. The traditional 

undergraduate courses in mechanics, electromagnetism, and modern physics will benefit 

most from this upgrading. Thus the student will finish his undergraduate career at a higher 

level of knowledge than formerly-an important benefit for those who terminate their 

formal education at this point. Also there will now be room for newer and more exciting 

courses at the graduate level. This same trend is found in the more recent basic textbooks 
in other sciences for freshman and sophomore courses. 

The text is designed for a three-semester course. It may also be used in those schools 

in which a two-semester general physics course is followed by a one-semester course in 

modern physics, thus offering a more unified presentation over the three semesters. For 

convenience the text has been divided into three volumes, each roughly corresponding to 
a semester. Volume I treats mechanics and the gravitational interaction. Volume II 

deals with electromagnetic interactions and waves, essentially covering the subjects of 

electromagnetism and optics. Quantum and statistical physics, including thermody

namics, are covered in Volume III. Although the three volumes are closely related and 

form a unified text, each one can be considered as a self-contained introductory text. 
In particular, Volumes I and II together are the equivalent of a two-semester general 

physics course, covering_nonquantum physics. 

We hope that this text will assist progressive physics instructors who are constantly 

struggling to improve the courses they teach. We also hope that it will stimulate the many 
students who deserve a presentation of physics which is more mature than that of the 

traditional course. 

We want to express our gratitude to all those who, because of their assistance and en

couragement, have made the completion of this work possible. We recognize our dis

tinguished colleagues, in particular Professors D. Lazarus and H. S. Robertson, who read 

the original manuscript; their criticism and comments helped to correct and improve 

many aspects of the text. We are also grateful for the ability and dedication of the staff 
of Addison-Wesley. Last, but not least, we sincerely thank our wives, who have so pa

tiently stood by us. 

Washington, D.C. 

June 1966 

M.A. 

E.J.F. 



NOTE TO THE INSTRUCTOR 

To assist the instructor in setting up his course, we present a brief outline of this volume 

and some suggestions concerning the important concepts in each chapter. As indicated 

in the foreword, this physics course has been developed in an integrated form so that 

the student quickly recognizes the few basic ideas on which physics is based (for example, 

the conservation laws, and the fact that physical phenomena can be reduced to inter

actions between fundamental particles). The student should recognize that to become a 

physicist or an engineer he must attain a clear understanding of these ideas and develop 

the ability to manipulate them. 
The basic subject matter forms the body of the text. Many worked-out examples have 

been included in each chapter; some are simple numerical applications of the theory 

being discussed, while others are either actual extensions of the theory or mathematical 

derivations. It is recommended that in his first reading of a chapter the student be advised 

to omit all examples. Then, on the second reading, he should look into the examples 

chosen by the instructor. In this way the student will grasp the basic ideas separate 

from their applications or extensions. 

There is a problem section at the end of each chapter. Some of them are more difficult 

than the average general physics problem and others are extremely simple. They are 

arranged in an order that roughly corresponds to the sections of the chapter, with a few 

more difficult problems at the end. The large number of varied problems gives the in

structor more freedom of choice in matching problems with his own students' abilities. 
We suggest that the instructor establish a reserve shelf based on the reference material 

listed at the end of each chapter, and encourage the student to use it so that he may 

develop the habit of checking source material, getting more than one interpretation of a 

topic, and acquiring historical information about physics. 
The present volume is designed to cover the first semester. (However, Chapter 13 can 

be postponed until the second semester.) We have suggested as a guide, on the basis of 
our o,i;vn experience, the number of lecture hours needed to comfortably cover the ma

terial. The time listed (43 lecture hours) does not include recitation or testing time. A 

brief comment on each chapter follows. 

Chapter I. Introduction (1 hour) 

This chapter is designed to give the student a preliminary insight into the science he is 

about to study; hence he should read it carefully. A brief classroom discussion should be 

organized by the instructor. 

vu 



vm Note to the instructor 

Chapter 2. Measurement and Units (1 hour) 

Following the recommendations of the commission on Symbols, Units, and Nomenclature 

of IUPAP, we have adhered to the MKSC system of units. Whenever we introduce a 

new MKSC unit in later chapters, we give its equivalent in the cgs and the British sys

tems. The problems in this chapter are designed to give the student a feeling of the "large" 

and the "small." 

Chapter 3. Vectors (3 hours) 

The basic ideas of vector algebra are introduced and illustrated by problems in kinematics. 

Sections 3.8, 3.9, and 3.10 may be postponed until these concepts are needed for the first 

time in the text. Because of its limited physical motivation, the chapter may be a difficult 

one for the student. The" teacher should, however, impress on him the necessity for 

vector notation, and seek to enliven the lectures with physical examples. 

Chapter 4. Forces (2} hours) 

We put this chapter early in the book for several reasons. First, it provides a familiar 

application of vectors. Second, it allows time for the student to learn some basic calculus 

before embarking on the study of kinematics. Third, it permits an uninterrupted develop
ment of mechanics in Chapters 5 through 12. For courses in which this material is not 

required, this chapter can be omitted, with the exception of Sections 4.3 (torque) and 4.8 

(center of mass). If desired, the chapter could be assigned after Section 7.6, but we do 

not recommend this procedure. 

PART 1. MECHANICS 

In Chapters 5 through 12, the text develops the major concepts of classical and relativistic 

mechanics. We first discuss, as a simplification, the mechanics of a single particle, but 

we cover many-particle systems in great detail. We emphasize the distinction between 

the ideal single-particle system and the real many-particle system. 

Chapter 5. Kinematics (3} hours) 

This chapter must be covered in depth, and entirely. The student must understand the 

vector nature of velocity and acceleration and their relations to the path. The instructor 

should stress that, when the time rate of change of a vector is computed, one must consider 

both the changes in magnitude and in direction. The calculus required for this chapter 
is relatively simple. -If the instructor wishes, he can postpone Section 5.11 and discuss it 

just before Section 7.14. 

Chapter 6. Relative Motion ( 4 hours) 

We consider relative motion from a kinematical point of view. This chapter precedes 

the one on dynamics, so that the student grasps the importance of frames of reference. 



Note to the instructor ix 

Sections 6.4 and 6.5 (on rotational frames) may be omitted and Sections 6.6 and 6.7 (on 

relativistic frames) may be postponed (if desired) until Chapter 11. 

Chapter 7. Dynamics of a Particle (4 hours) 

This is one of the more important chapters, and the student should digest it thoroughly. 

The principle of conservation of momentum is given more relevance than the relation 

F = ma. The limitations of the laws of motion and the concepts of .interactions and forces 

must be analyzed very carefully. 

" Chapter 8. Work and Energy (3 hours) 

This chapter is, in a sense, an extension of Chapter 7, and must also be understood 
thoroughly. Section 8.10 (central forces) may be omitted or postponed until Chapter 13. 

The more important ideas are the concepts of energy and the conservation of energy for 

a single particle. We introduce the virial theorem for a particle here, because this theorem 

is being used more and more extensively in both physics and chemistry. 

Chapter 9, Dynamics of a System of Particles (5 hours) 

For simplicity, most of the results are derived for two particles and then, by similarity, 

these results are extended to an arbitrary number of particles. We introduce the concepts 

of temperature, heat, and pressure as convenient statistical concepts to describe the 
behavior of systems composed of a very large number of particles. This allows us to use 

these concepts throughout the rest of the book. The equation of state of a gas is derived 

from the virial theorem because this more clearly reveals the role of internal forces; a 

more traditional approach is also presented in Example 9.17. The chapter closes with a 

section on fluid motion that may be omitted if desired. 

Chapter 10. Dynamics of a Rigid Body (3-! hours) 

Great emphasis should be placed on the precession of angular momentum under an applied 

torque. The section on gyroscopic motion is also important, since the ideas developed are 

used many times. 

Chapter 11. High-Energy Dynamics (3-! hours) 

This is essentially a chapter on relativistic dynamics, emphasizing the concepts of system 
velocity (or C-frame) and of the Lorentz transformation of energy and momentum. This 

is naturally an important chapter in today's physics. 

Chapter 12. Oscillatory Motion (5 hours) 

Simple harmonic motion is first presented kinematically and then dynamically. This 

chapter can either be discussed in its entirety at this time (end of first semester) or limited 

to the first few sections only, deferring the remaining sections until they are required for 

later chapters. We recommend the first alternative. The first semester could be concluded 
with this chapter. 
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PART 2. INTERACTIONS AND FIELDS 

This part is dedicated to a study of gravitational and electromagnetic interactions, which 
are discussed in Chapters 13 through 17. Here we stress the concept of a field as a useful 

tool for physics. Since we realize that many instructors like to discuss gravitation dur

ing the first semester and immediately after completing mechanics, we have included 
Chapter 13 in this volume, reserving the study of the electromagnetic interaction (Chap

ters 14 through 17) for the second semester and Volume II. 

Chapter 13. Gravitational Interaction (4 hours) 

This is a brief account of gravitation, which illustrates the application of mechanics to a 

particular interaction. It also serves to introduce the student to the concept of field. 
The chapter is written in such a way that it ties in, in a natural way, with the discussion 

of electromagnetic interaction in Volume II. Sections 13.5 and 13.7 may be omitted 
without loss of continuity. Section 13.8 provides a brief account of the ideas of the theory 

of general relativity. 



NOTE TO THE STUDENT 

This is a book about the fundamentals of physics written for students majoring in science 
or engineering. The concepts and ideas you learn from it will, in all probability, become 

part of your professional life and your way of thinking. The better you understand them, 

the easier the rest of your undergraduate and graduate education will be. 

The course in physics that you are about to begin is naturally more advanced than 

your high-school physics course. You must be prepared to tackle numerous difficult 

puzzles. To grasp the laws and techniques of physics may be, at times, a slow and painful 
process. Before you enter those regions of physics that appeal to your imagination, you 

must master other, less appealing, but very fundamental ones, without which you cannot 
use or understand physics properly. 

You should keep two main objectives before you while taking this course. First: 
become thoroughly familiar with the handful of basic laws and principles that constitute 

the oore of physics. Second: develop the ability to manipulate these ideas and apply them 

to concrete situations; in other words, to think and act as a physicist. You can achieve 

the first objective mainly by reading and re-reading those sections in large print in the 

text. To help you attain the second objective, there are many worked-out examples, in 

small print, throughout the text, and there are the homework problems at the end of each 

chapter. We strongly recommend that you first read the main text and, once you are 

acquainted with it, proceed with those examples and problems assigned by the instructor. 

The examples either illustrate an application of the theory to a concrete situation, or ex

tend the theory by considering new aspects of the problem discussed. Sometimes they 

provide some justification for the theory. 

The problems at the end of each chapter vary in degree of difficulty. They range from 

the very simple to the complex. In general, it is a good idea to try to solve a problem 

in a symbolic or algebraic form first, and insert numerical values only at the end. If you 

cannot solve an assigned problem in a reasonable time, lay the problem aside and make 
a second attempt later. For those few problems that refuse to yield a solution, you 

should seek help. One source of self-help that will teach you the method of problem
solving is the book How to Solve It (second edition), by G. Polya (Garden City, N. Y.: 

Doubleday, 1957). 

Physics is a quantitative science, which requires mathematics for the expression of its 
ideas. All the mathematics used in this book can be found in a standard calculus text, 

and you should consult such a text whenever you do not understand a mathematical 

derivation. But by no means should you feel discouraged by a mathematical difficulty; 

in case of mathematical trouble, consult your instructor or a more advanced student. 

For the physical scientist and engineer, mathematics is a tool, and is second in importance 

xi 
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to understanding the physical ideas. For your convenience, some of the most useful 

mathematical relations are listed in an appendix at the end of the book. 
All physical calculations must be carried out using a consistent set of units. In this 

book the MKSC system is used. Since it differs from the British system, you may find 

it unfamiliar at first. However, it requires very little effort to become acquainted with it. 

Also, this is the system officially approved for scientific work and used by the United 

States National Bureau of Standards in its publications. Be extremely careful to check 

the consistency of the units in all your calculations. Also, it is a good idea to use a slide 

rule from the start; the three-place accuracy of even the simplest slide rule will save you 
many hours of computation. In some instances, however, a slide rule may not provide 

the required accuracy. 

A selected list of references is given at the end of each chapter. Consult them as often 
as possible. Some will help you to grasp the idea of physics as an evolving science, while 

others will amplify material in the text. In particular, you will find the book by Holton 

and Roller, Foundations of Modern Physics (Reading, Mass.: Addison-Wesley, 1958) 
particularly useful for information about the evolution of ideas in physics. 



Chapter I 

Chapter 2 

Chapter 3 

Chapter 4 

CONTENTS 

Front End Papers 

Periodic Table of the Elements; Fundamental Constants 

Rear End Papers 

Units and Symbols; Conversion Factors 

Introduction 

What is physics? 2 0 The classical branches of physics 2 0 Our 
view of the universe 3 0 The relation of physics to other sciences 10 
O The experimental method 10 

Measurement and Units 

Introduction 15 0 Measurement 15 0 Fundamental quantities 
and units 16 0 Density 20 0 Plane angles 21 0 Solid angles 
22 0 Precision and accuracy 23 0 Measurement in the laboratory 
25 

Vectors 

Introduction 31 0 Concept of direction 31 0 Scalars and 
vectors 32 O Addition of vectors 33 0 Components of a vector 
36 0 Addition of several vectors 40 0 Application to kinematic 
problems 41 0 Scalar product 43 0 Vector product 46 0 
Vector representation of an area 49 

Forces 

Introduction 57 0 Composition of concurrent forces 57 0 Torque 
58 0 Torque of several concurrent forces 60 0 Composition of 
forces applied to a rigid body 62 0 Composition of coplanar forces 
63 0 Composition of parallel forces 64 0 Center of mass 66 
O Statics. Equilibrium of a particle 69 0 Statics. Equilibrium 
of a rigid body 70 

xiu 



xiv Contents 

PART 1 

Chapter 5 

Chapter 6 

Chapter 7 

Chapter 8 

Chapter 9 

MECHANICS 

Kinematics 

Introduction 84 D Rectilinear motion: velocity 85 D Rectilinear 
motion: acceleration 87 D Vector representation of velocity and 
acceleration in rectilinear motion 89 D Curvilinear motion: 
velocity 94 D Curvilinear motion: acceleration 96 D Motion 
under constant acceleration 98 D Tangential and normal 
components of acceleration 101 D Circular motion: angular 
velocity 104 D Circular motion: angular acceleration 106 D 
General curvilinear motion in a plane 108 

Relative Motion 

Introduction 118 D Relative velocity 118 D Uniform relative 
translational motion 120 D Uniform relative rotational motion 123 D 
Motion relative to the earth 125 D The Lorentz transformation 133 
D Transformation of velocities 136 D Consequences of the Lorentz 
transformation 140 

Dynamics of a Particle 

Introduction 152 D The law of inertia 152 D Linear momentum 
154 D Principle of conservation of momentum 154 D Redefinition 
of mass 158 D Newton's second and third laws; concept of force 159 
D Critique of the concept of force 161 D Units of force 162 D 
Frictional forces 165 D Frictional forces in fluids 168 D Systems 
with variable mass 171 D Curvilinear motion 173 D Angular 
momentum 178 D Central forces 180 D Equilibrium and rest 184 

Work and Energy 

Introduction 196 D Work 197 D Power 200 D Units of work 
and power 200 D Kinetic energy 203 D Work of a force constant 
in magnitude and direction 205 D Potential energy 207 D 
Conservation of energy of a particle 212 D Rectilinear motion 
under conservative forces 214 D Motion under conservative 
central forces 215 D Discussion of potential energy curves 217 D 
Nonconservative forces 221 D The virial theorem for a single 
particle 224 D Critique of the concept of energy 225 

-
Dynamics of a System of Particles 

Introduction 233 D Motion of the center of mass of a system of 
particles 233 D Reduced mass 239 D Angular momentum of a 
system of particles 242 D Kinetic energy of a system of particles 
247 D Conservation of energy of a system of particles 248 D 
Collisions 253 D Many-particle systems: temperature 259 D 
Many-particle systems: work 261 D Many-particle systems: heat 



Chapter 10 

Chapter 11 

Chapter 12 

PART 2 

Chapter 13 

Contents xv 

263 0 Reformulation of the principle of conservation of energy for 
many-particle systems 264 0 The virial theorem for many 
particles 265 0 Equation of state of a gas 267 0 Fluid motion 
271 

Dynamics of a Rigid Body 

Introduction 286 0 Angular momentum of a rigid body 287 0 
Calculation of the moment of inertia 290 0 Equation of motion for 
rotation of a rigid body 294 0 Kinetic energy of rotation 300 0 

Gyroscopic motion 303 

High-Energy Dynamics 

Introduction 317 D Classical principle of relativity 317 0 Special 
principle of relativity 319 0 Momentum 320 D Force 322 0 
Energy 325 D Transformation of energy and momentum 330 D 
Transformation of force 332 0 Systems of particles 334 D High
energy collisions 336 

Oscillatory Motion 

Introduction 347 0 Kinematics of single harmonic motion 347 0 
Force and energy in simple harmonic motion 351 D Dynamics of 
simple harmonic motion 352 D The simple pendulum 354 
O Compound pendulum 357 0 Superposition of two SHM: 
same direction, same frequency 359 0 Superposition of two SHM: 
same direction, different frequency 362 0 Superposition of two 
SHM: perpendicular directions 363 0 Coupled oscillators 367 O 
Anharmonic oscillations 372 0 Damped oscillations 374 
O Forced oscillations 376 D Impedance of an oscillator 380 0 
Fourier analysis of periodic motion 382 

INTERACTIONS AND FIELDS 

Gravitational Interaction 

Introduction 396 0 The law of gravitation 398 0 Inertial and 
gravitational mass 401 0 Gravitational potential energy 402 D 
General motion under gravitational interaction 408 0 Gravitational 
field 413 0 Gravitational field due to a spherical body 419 
O Principle of equivalence 424 0 Gravitation and intermolecular 
forces 426 

Appendix: Mathematical Relations; Tables A-3 

Answers to Odd-Numbered Problems A-13 

Index A-22 



xoi 

The Parts of all homogeneal hard Bodies which fully touch 

one arwther, stick together very strongly. And for explaining 

how this may be, some have invented hooked Atoms .... 

I had rather infer from their Cohesion, that their Particles 

attract one arwther by some Force, which in immediate Contact is 

exceeding strong, and reaches not far from the Particles with 

any sensible Effect .... There are therefore Agents in Nature 

able to make the Particles of Bodies stick together by very 

strong Attractions. And it is the Business of experimental 

Philosophy to find them out. 

Optiks, BOOK 3, QUERY 31 (1703), NEWTON 
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2 Introduction (1.2 

Studying physics is an exciting and challenging adventure. To be a professional 

physicist is even more exciting. Perhaps it is one of the most pleasing activities 

of the human intellect since, in the authors' opinion, nothing appeals more to 

the mind than learning about the world we live in and unraveling the secrets of 

nature. 

It may seem unnecessary at this point to tell the student what physies is about, 

why it is so challenging and interesting, or what its methods are, since he already 

has some familiarity with this science. However, precisely because of his famil

iarity with physics, it is desirable to analyze and review the objectives and methods 

of this science before embarking on its study at a somewhat higher level. That 

is what we shall briefly do in this chapter. 

1.1 What Is Physics? 

The word physics comes from a Greek term meaning nature, and therefore physics 

should be a science dedicated to the study of all natural phenomena. In fact, until 

early in the nineteenth century physics was understood in this broad sense, and it 

was called "natural philosophy." However, during the nineteenth century and 

until very recently, physics was restricted to the study of a more limited group of 

phenomena, designated by the name of physical phenomena and loosely defined as 

processes in which the nature of the participating substances does not change. 

This somewhat awkward definition of physics has been gradually discarded, re

turning to the broader and more fundamental concept of previous times. Accord

ingly, we may say that physics is a science whose objective is to study the components 

of matter and their mutual interactions. In terms of these interactions the scientist 

explains the properties of matter in bulk, as well as the other natural phenomena we 

observe. 

As he progresses through this course, the student will witness the way this pro

gram is developed from basic and general principles and applied to the understand

ing of a large variety of physical phenomena, apparently unrelated but obeying 

the same fundamental laws. Once these great principles are clearly understood 

the student will be able to attack new problems with great economy of thought 

and effort. 

1.2 The Classical Branches of Physics 

Man, having an inquiring mind, has always had a great curiosity about how nature 

works. At the beginning his only sources of information were his senses, and there

fore he classified the phenomena he observed according to the way he sensed them. 

Light was related to the act of vision and optics was developed as a more or less 

independent science associated with this act. Sound was related to the act of 

hearing and acoustics developed as a correlative science. Heat was related to an

other kind of physical sensation, and for many years the study of heat (called 

thermodynamics) was yet another autonomous branch of physics. Motion, of 

course, is the most common of all directly observed phenomena, and the science of 
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motion, mechanics, developed earlier than any other branch of physics. The mo

tion of the planets caused by their gravitational interactions, as well as the free 

fall of bodies, was very nicely explained by the laws of mechanics; therefore gravi

tation was traditionally discussed as a chapter of mechanics. Electromagnetism, 

not being directly related to any sensory experience-in spite of being responsible 

for most of them-did not appear as an organized branch of physics until the 

nineteenth century. 

So physics in the nineteenth century appeared to be divided into a few ( called 

classical) sciences or branches: mechanics, heat, sound, optics, and electromag

netism, with little or no connection between them, although mechanics was, quite 

properly, the guiding principle for all of them. AnJ physics was so taught to stu

dents until very recently. Lately a new branch, called modern physics, which 

covers the developments of twentieth-century physics, has been added to these 
"classical" branches. 

The "classical" branches of physics are, and will continue to be, very important 

fields of specialization and professional activity, but it no longer makes sense to 

study the fundamentals of physics in such a compartmentalized manner. The 

very same set of phenomena included under electromagnetism and modern physics 

have produced a new trend of thought that looks at physical phenomena from a 

unified and more logical point of view, and this is one of the great achievements 

of the twentieth century. This unified presentation of physics calls for a reap

praisal of classical physics from a modern point of view-not a division of physics 

into classical and modern. There will always be a modern physics in the sense that 

there will be contemporary physics being developed in one's time. This modern 

physics will require at each instant a revision and a reevaluation of previous ideas 

and principles. Classical and modern physics are to be integrated at each stage into 

a single body of knowledge. Physics will always be a whole that must be con

sidered in a consistent and logical way. 

1.3 Our View of the IJniverse 

At present we consider matter to be composed of a handful of fundamental (or 

elementary) particles and all bodies, both living and inert, to be made up of dif

ferent groupings or arrangements of such particles. Three of these fundamental 

particles are especially important because of their presence in many common 

phenomena: electrons, protons, and neutrons. 

There are a few other fundamental particles (some physicists think there are 

too many!) but they have a transient life, being continuously created and de

stroyed (an.d thus are termed unstable), and apparently they do not participate 

directly in most of the phenomena we observe around us (Fig. 1-1). Their exist

ence is made manifest only by means of rather elaborate observational techniques, 

and their role in the general scheme is not yet completely understood. Some of 

these, such as the pion, are vital because of the role they play in the interactions 

between protons and neutrons. Fundamental particle research is of great im

portance today in obtaining some clue to the structure of the universe. 
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Fig. 1-1. (a) Fundamental particle tracks in 80-inch (2 m) liquid-hydrogen bubble 
chamber, which is placed in a strong magnetic field that forces the charged particles to 
follow curved paths. These tracks are analyzed, and from the analyses the properties of 
the different particles are derived. This photograph, taken in 1964, is historic. It pro
vided the first evidence of the existence of the omega minus (Q-) particle, which had 
previously been predicted on a theoretical basis. (b) The line diagram shows the more 
important events registered in the photograph. The 0- track is the short line near the 
bottom of the picture. The particles corresponding to the other tracks are also identified. 
(Photograph courtesy Brookhaven National Laboratory.) 

He 0.9A Ne l.IA A l.5A. Kr l.7A. 

Fig. 1-2. Arrangements of electrons around the nucleus in some simple atoms (helium, 
He; neon, Ne; argon A; krypton, Kr). Since electrons do not follow well-defined paths, 

the dark regions are those more likely to be occupied by the electrons (I A = 1 ang
strom = 10-10 m). 
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Fig. 1-3. Some relatively simple molecules. The inner electrons remain attached to 

the respective atoms, but the outer ones either move in the space between two atoms or 

more or less freely over the molecule (1 A = 1 angstrom = 10-10 m). 

Using an oversimplified language, we may say that the three particles, electron, 

proton, and neutron, are present in well-defined groups called atoms, with the 

protons and neutrons clustered in a very small central region called the nucleus 

(Fig. 1-2). About 104 distinct "species" of atoms have been recognized (see 

Table A-1), but there are about 1300 different "varieties" of atoms, called isotopes. 

Atoms in turn form other aggregates called molecules, of which several thousands 

of different kinds are known to exist. The number of different molecules seems to 

be extremely large, since more and more new molecules are synthesized every day 

in chemical laboratories. Some molecules contain just a few atoms, such as hydro

chloric acid [whose molecules are formed of one atom of hydrogen and one atom of 

chlorine (Fig. 1-3)], while others may have as many as several hundred atoms, 

such as the proteins, enzymes, and the nucleic acids [DNA and RNA (Fig. 1-4)] 

or some organic polymers such as polyethylene or polyvinylchloride (PVC). 

Finally, molecules group together forming bodies ( or matter in bulk), appearing to 

us as solids, liquids, or gases* (Fig. 1-5) although this classification or division is 

not a rigid one. 

* Another state of matter is the plasma, consisting of a gaseous mixture of positive and 

negative ions (or charged particles). Most of the matter in the universe is in the form of 
a plasma. 
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S: Sugar 

C: Cytosine 

G: Guanine 

A: Adenine 

T: Thymine 

(b) 

(c) Thymine Adenine 

Figure 1-4 
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Fig. 1-5. Crystal structure of sodium chloride. The atoms are arranged in a regular 
geometric form that extends over a relatively large volume. This structure is reflected 
in the external appearance of the macroscopic crystals. 

A particularly important kind of body is the living body or living matter, also 

designated protoplasm, in which molecules appear in a highly organized pattern 

and exhibit properties and functions that are apparently distinct from those of 

inert matter. The human body, which is the most developed of all living bodies, 

is composed of about 1028 atoms; most of these are carbon, hydrogen, oxygen, 

and nitrogen atoms. 

The solar system is an aggregate of several huge bodies called planets, which 

rotate about a star, called the sun. One of the planets is our earth, which contains 

about 1051 atoms. The sun is composed of about 1057 atoms. The solar system 

Fig. 1-4. Crick-Watson model of desoxyribonucleic acid (DNA). One of the two nucleic 
acids involved in the composition of a chromosome, DNA carries genetic information, 
and is one of the best-studied giant molecules. X-ray diffraction has shown that it con
sists of two antiparallel helices composed of a sequence of sugar (S) and phosphate (P) 
groups. The sugar, called desoxyribose, contains five carbon atoms. The two helices are 
interlocked by pairs of hydrogen-bonded base groups. One pair is formed by two sub
stances called adenine and thymine (A-T) and the other by cytosine and guanine (C-G). 
The genetic code of the DNA molecule depends on the sequence or ordering of each 
base pair. These base pairs are like rungs along a helical stepladder, each rung being about 
11 angstroms long. The pitch of each helix is about 34 angstroms, and its overall diameter 
is about 18 angstroms (1 angstrom = 10-10 m). 
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in turn is a small part of a large aggregate of stars which form a galaxy called 

the Milky Way, composed of about 10 11 stars or 1070 atoms and having a disk 

shape, with a diameter of about 1021 m or about 100,000 light years, and a maxi

mum thickness of about 1020 m. Many galaxies similar to ours have been observed 

(Fig. 1-6), the closest being about two million light years or 2 X 1022 m from us. 

The universe may contain about 1020 stars grouped in about 1010 galaxies and con

taining a total of about 1080 atoms in a region whose radius is of the order of 1026 m 

or 1010 light years. 

Some natural questions come to our mind. Why and how are electrons, protons, 

and neutrons bound together to form atoms? Why and how are atoms bound to

gether to form molecules? Why and how are molecules bound together to form 

bodies? How does it happen that matter aggregates itself in size from small dust 

particles to huge planets, from bacteria to this marvelous creature called man? 

We may answer these fundamental questions, in principle, by introducing the 

notion of interactions. We say that the particles in an atom interact among them

selves in such a way as to produce a stable configuration. Atoms in turn interact 

to produce molecules, and molecules interact to form bodies. Matter in bulk also 

exhibits certain obvious interactions, such as gravitation. 

This concept of interaction is not new. We are not promulgating a radical new 

doctrine, or overthrowing long-established concepts. We have merely changed 

and adapted the wording used to describe the makeup of the universe, as a result 

of the many years of investigation since 300 B.c., when Aristotle, in his De Caelo, 

said, "They [atoms] move in the void and catching each other up jostle together, 

and some recoil in any direction that may chance, and others become entangled 

with one another in varying degrees, according to the symmetry of their shapes 

and sizes and positions and order, and they remain together; and thus the coming 

into being of composite things is effected." We may compare Aristotle's wording 

with that of the Nobel laureate T. D. Lee, who, in 1965, said:* "The purpose of 

science is to seek for that simple set of fundamental principles through which 

all known facts are understood and new results predicted. Since all matter is 

composed of the same fundamental units, the ultimate foundation of all natural 

sciences must be based on the laws governing the behavior of these elementary 

particles. " 

It is the primary objective of the physicist to disclose the various interactions of 

matter; mainly, these are gravitational, electromagnetic and nuclear interactions. 

The physicist then tries to express them in a quantitative way, for which math

ematics is required. Finally he attempts to formulate general rules about the be

havior of matter in- bulk-behavior which results from these fundamental inter

actions. A description of the behavior of matter in bulk is, by necessity, statistical 

in nature, since it involves a tremendously large number of molecules, whose in

dividual motions are impossible to follow in detail. For example, in a raindrop 

there may be as many as 1020 water molecules. 

* Nature of Matter-Purposes of High Energy Physics, Luke C. L. Yuan, editor. New 
York: Brookhaven National Laboratory, 1965. 
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Fig. 1-6. Great Nebula in Andromeda, also called M-31. The nearest of the large 
regular galaxies, it is still about 2,500,000 light years or 2.5 X 1022 m from the solar 
system. Its diameter is about 125,000 light years or 102 1 m, and it contains more than 
1011 stars. (Photograph courtesy Mount Wilson and Palomar Observat&ries.) 

Physics covers a tremendous range of magnitudes, going from lengths of the 
order of 10-15 m and masses of the order of 10-31 kg (corresponding to a single 

particle such as the electron), up to-and far beyond-lengths of the order of 

109 m and masses of the order of 1030 kg (corresponding to bodies in our solar 
system). Although the basic laws are all the same, the way the laws are expressed 
and the types of approximation made depend on the particular range of magni-

. tudes in which one is working. 
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1.4 The Relation of Physics to Other Sciences 

We indicated in Section 1.1, and we may say again, that the objective of physics 

is to enable us to underst~nd the basic components of matter and their mutual 

interactions, and thus to explain natural phenomena, including the properties of 

matter in bulk. From this statement we can see that physics is the most funda

mental of all natural sciences. Chemistry deals basically with one particular aspect 

of this ambitious program: the application of the laws of physics to the forma

tion of molecules and the different practical means of transforming certain molecules 
into others. And biology must lean very heavily on physics and chemistry to ex

plain the processes occurring in living bodies. The application of the principles 

of physics and chemistry to practical problems, in research and development as 

well as in professional practice, has given rise to the different branches of en

gineering. Modern engineering practice and research would be impossible without 

a sound understanding of the fundamental ideas of the natural sciences. 

But physics is important not just because it provides the basic conceptual and 

theoretical framework on which the other natural sciences are founded. From 

the practical point of view, it is important because it provides techniques which 

can be used in almost any area of pure or applied research. The astronomer re

quires optical, spectroscopic, and radio techniques. The geologist uses gravimetric, 

acoustic, nuclear, and mechanical methods in his research. The same may be 

said of the oceanographer, the meteorologist, the seismologist, etc. A modern 

hospital is equipped with laboratories in which the most sophisticated of physical 

techniques are used. In summary, hardly any activity of research, including such 

fields as archaeology, paleontology, history, and art, can proceed without the use 

of modern physical techniques. This gives the physicist the gratifying feeling that 

he is not only advancing our body of knowledge about nature, but contributing to 

the social progress of mankind. 

1.5 The Experimental Method 

In order to fulfill its objective, physics, as well as all natural sciences both pure and 

applied, depends on observation and experimentation. Observation consists in a 

careful and critical examination of a phenomenon by noting and analyzing the dif

ferent factors and circumstances that appear to influence it. Unfortunately, the 

conditions under which phenomena occur naturally rarely offer enough variation 

and flexibility. In some cases they occur only infrequently so that analyzing them 

is a difficult and slow process. For that reason experimentation is necessary. 

Experimentation consists in the observation of a phenomenon under prearranged 

and carefully controlled conditions. Thus the scientist can vary the conditions 

at his will, making it easier to disclose how they affect the process. Without ex

perimentation modern science would never have achieved the advances it has. 

This is why laboratories are so essential to the scientist. 

To emphasize this point, Fig. 1-7 shows the research reactor of the Oak Ridge 

National Laboratory. Note that the space surrounding the reactor is crowded 

with experimental equipment. Some of this equipment may be used by physicists 

to learn more about nuclear properties or to make a structural analysis of materials. 
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Fig, 1-7, The Oak Ridge National Laboratory research nuclear reactor, which is being 
used in a great variety of fundamental research. (Photograph courtesy of ORNL.) 

Other apparatus may be used to prepare radioactive materials for applications in 
chemistry, medicine, biology, agriculture, or engineering. A group of biophysi
cists using some of the above equipment may be experimenting on the effects of 
radiation on biological specimens, while another group of scientists may be using 
the same equipment to study effects of radiation on different kinds of material. 
It is suggested that the student pay a visit to a modern research laboratory so that 
he may have a more personal feeling for the role of experimentation in science. 

Of course, experimentation is not the only tool a physicist has. From the known 
facts a scientist may infer new knowledge in a theoretical way. By theoretical we 
mean that the physicist proposes a model of th~ physical situation he is studying. 
Using relations previously established, he applies logical and deductive reasoning 
to the model. Ordinarily he works out his reasoning by means of mathematical 
techniques. The end result may be the prediction of some phenomenon not yet 
observed or the verification of the relations among several processes. The knowl
edge a physicist acquires by theoretical means is in turn used by other scientists 
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Fig. 1-8. General view of CERN (European Organization for Nuclear Research), 
founded in 1954. Although it is a cooperative enterprise among European governments 
(Austria, Belgium, Denmark, Federal Republic of Germany, France, Greece, Italy, 
Netherlands, Norway, Spain, Sweden, Switzerland, and the United Kingdom), the 
United States also participates actively. Located at Meyrin, Switzerland, on the Swiss
French border, CERN has the best facilities for nuclear research in Western Europe, 
such as a 600-Mev synchro-cyclotron, a 28-Gev proton synchrotron (whose magnet lies 
underground along the circular structure), and a 2-m liquid-hydrogen bubble chamber. 
CERN's personnel (about 2000) comes from all the member countries, and its annual 
budget is close to $30,000,000. (Photograph courtesy of CERN.) 

to perform new experiments for checking the model itself, or to determine its limi
tations and failures. The theoretician then revises and modifies his model so that 

it will agree with the new information. It is this interwoven relation between ex
perimentation and theory that allows science to progress steadily and on solid 
ground. 

Although in the old days a scientist could work in a more or less isolated fashion 
(and such was the case for Galileo, Newton, Huygens and others), modern science, 
because of its complexity, is mainly the result of teamwork, in which theoreticians 
and experimentalists_work and think together. And by "together," we do not neces
sarily imply physical coincidence at the same place. Modern means of communica
tion facilitate rapid exchange of ideas. Physicists several hundred miles apart, and 
from different nationalities, may work jointly, collaborating on a common re

search project (Fig. 1-8). This fact applies not only to physics, but to almost any 
science, and thereby demonstrates the universal value of science, which reaches 
beyond all kinds of human barriers. It may be hoped that science, through this 
type of cooperation, will assist in increasing understanding among men. 
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2.J. Introduction 

The observation of a phenomenon is in general incomplete unless it results in 

quantitative information. Obtaining such information requires the measurement of 

a physical property, and thus measurement constitutes a good part of the daily 
routine of the experimental physicist. Lord Kelvin said that our knowledge is 

satisfactory only when we can express it in terms of numbers. Although this 

assertion is perhaps exaggerated, it expresses a philosophy which a physicist must 
keep in mind at all times in his research. But, as we indicated in Chapter 1, the 

expression of a physical property in terms of numbers requires not only that we 

use mathematics to show the relations between the different quantities, but also 

that we be able to manipulate these relations. This is why mathematics is the 
language of physics; without mathematics it is impossible to understand physical 

phenomena, either from a theoretical or experimental viewpoint. Mathematics 

is the tool of the physicist; it must be manipulated with skill and thoroughness 
so that its use furthers instead of hinders his work. 

In this chapter we shall not only define the units necessary to express the re

sults of a measurement, but also we shall discuss a number of topics (all of which 
are important) that appear again and again throughout the book. These are 

density, the plane angle, the solid angle, significant figures, and the process of 
analyzing experimental data. 

2.2 !Jleasurenient 

Measurement is a technique by means of which we attach a number to a physical 

property as a result of comparing it with a similar, standard, quantity that has 

been adopted as a unit. Most measurements performed in the laboratory reduce 
essentially to the measurement of a length. By using this measurement (and cer

tain conventions expressed by formulas), we obtain the desired quantity. When 
he measures something, the physicist must take great care to produce the minimum 

possible disturbance of the system that is under observation. For example, when 

we measure the temperature of a body, we place it in contact with a thermometer. 
But when we place the two together, some energy or "heat" is exchanged between 

the body and the thermometer, resulting in a slight change in the temperature of 

the body, thus affecting the very quantity we wanted to measure. In addition, 
all measurements are affected by some degree of experimental error because of 

the inevitable imperfections in the measuring device, or the limitations imposed 

by our senses (vision and hearing) which must record the information. There
fore, a physicist designs his measuring technique so that the disturbance of the 

quantity measured is smaller than his experimental error. In general, this is 

always possible when we are measuring quantities in the macroscopic range (i.e., 

in bodies composed of a large number of molecules), because then all we have 

to do is to use a measuring device that produces a disturbance smaller, by sev
eral orders of magnitude, than the quantity measured. Thus whatever the dis

turbance produced, it is negligible compared with the experimental error. In 
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other cases the amount of disturbance can be estimated and the measured value 
corrected. 

The situation, however, is quite different when we are measuring individual 

atomic properties, such as the motion of an electron. Now we do not have the op

tion of using a measuring device that produces an interaction smaller than the 

quantity to be measured, because we do not have a device that small. The dis
turbance introduced is of the same order of magnitude as the quantity to be meas

ured and it may not be possible even to estimate or account for it. Therefore a 

distinction must be made between the measurement of macroscopic quantities and 

of atomic quantities. We shall require a special theoretical structure when we deal 
with atomic quantities. The technique will not be discussed at this time; it is called 

quantum mechanics. 

Another important requirement is that the definitions of physical quantities 

must be operational, in the sense that they must indicate explicitly or implicitly 
how to measure the quantity that is defined. For example, to say that velocity is 

an expression of the rate at which a body moves is not an operational definition of 

velocity, but to say that veloci"ty is the distance moved divided by the time is an opera
tional definition of velocity. 

2.3 Fundamental Quantities and lf nits 

Before we measure something, we must first select a unit for each quantity to be 

measured. For purposes of measurement, there are fundamental and derived 

quantities and units. The physicist recognizes four fundamental independent 
quantities: length, mass, time, and charge.* 

Length is a primary concept and is a notion we all acquire naturally; it is use

less to attempt to give a definition of it. So is time. Mass and charge, however, are 
not that intuitive. The concept of mass will be analyzed in detail in Chapters 7 

and 13. Let us say here only that mass is a coefficient, characteristic of each 'par

ticle, that determines the particle's behavior when it interacts with other particles 

as well as the strength of its gravitational interactions. 
Similarly, charge, which will be discussed in detail in Chapter 14, is another co

efficient, characteristic of each particle, that determines the strength of its elec

tromagnetic interaction with other particles. There may exist other coefficients 

characterizing other interactions between particles, but so far they have not been 
identified, and no additional fundamental quantities seem to be required at present. 

Mass can also be defined operationally using the principle of the equal arm 

balance (Fig. 2-1); that is, a symmetric balance supported at its center 0. Two 

bodies C and C' are said to have equal masses when, with one mass placed on each 
pan, the balance remains in equilibrium. Experimentally it is verified that if the 

balance is in equilibrium at one place on the earth, it remains in equilibrium when 

* By this we do not mean that there are no other "fundamental" quantities in physics; 
however, the other quantities are such that they can be expressed as some combination 
of these four, or else they do not require a special unit for their expression. 
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c C' 

Fig. 2-1. Equal arm balance for comparing the masses of two bodies. 

placed anywhere else. Therefore, the equality of mass is a property of the bodies, 

independent of the place where they are compared. If C' is composed of standard 

units, the mass of C can be obtained as a multiple of the standard mass. The 

mass obtained this way is really the gravitational mass (Chapter 13). But in 

Chapter 7 we shall see a means for comparing masses dynamically. Mass ob

tained dynamically is called inertial mass. No difference has been found between 

the two methods of measuring mass, as will be discussed in Chapter 13. 

With a few exceptions, all other quantities used thus far in physics can be re

lated to these four quantities by their definitions, expressed as mathematical rela

tions involving length, mass, time, and charge. The units of all these derived 

quantities are in turn expressed in terms of the units of the four fundamental 

quantities by means of these defining relations. Therefore it is only necessary to 

agree on the units for the four fundamental quantities in order to have a con

sistent system of units. Physicists have agreed (at the Eleventh General Con

ference on Weights and Measures, held in Paris in 1960) to use the MKSC system 

of units, and this is what we shall adhere to in this book. The initials stand for 

meter, kilogram, second, and coulomb. Their definitions are as follows: 

·Meter, abbreviated m, is the unit of length. It is equal to 1,650,763.73 wave

lengths of the electromagnetic radiation emitted by the isotope 86Kr in its transi

tion between states 2p10 and 5d 5 . Those two symbols refer to particular physical 

states of the krypton atom. The radiation emitted can easily be identified because 

it appears as a red line on a spectrogram. 

Kilogram, abbreviated kg, is the unit of mass. It is defined as the mass of the 

international kilogram, a platinum block kept at the International Bureau of 

Weights and Measures in Sevres, near Paris. For all practical purposes it is equal 

to the mass of 10-3 m 3 of distilled water at 4°C. The mass of 1 m 3 of water is thus 

103 kg. A volume of 10-3 m 3 is called one liter. By analogy with the meter, we 

could associate the kilogram with an atomic property by saying that it is equal 

to the mass of 5.0188 X 1025 atoms of the isotope 12C. In fact, this is the criterion 

adopted in defining the international scale of atomic masses. 

Second, abbreviated s, is the unit of time. It is defined according to the Inter

national Astronomical Union as 1/31,556,925.975 of the duration of the tropical 

year 1900. The tropical year is defined as the time interval between two successive 

passages of the earth through the vernal equinox, which takes place approximately 
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on March 21st each year (Fig. 2-2). It may also be defined as 1/86,400 of the mean 

solar day, which is the time interval between two successive passages of a point 
on the earth in front of the sun, averaged over one year. But this definition has 

the drawback that, because of tidal action, the period of the earth's rotation is 
decreasing gradually, and therefore this unit should also be changing gradually. 

For that reason a particular year, 1900, was arbitrarily chosen. 

Autumnal 

Ecliptic! 

Plane of earth's equator 

equinox 

Apparent 
position 
of sun 

Fig. 2-2. Definition of the tropical year. 
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Fig. 2-3. Oscillation of the nitrogen 
atom between two symmetric positions 
in the ammonia molecule. 

The unit of time could also be related to an atomic property, as has been done 
with the unit of length, resulting in what are called atomic clocks. For example, 

the molecule of ammonia (NH3) has a pyramidal structure, with the three H atoms 

in the base and the N atom at the vertex (Fig. 2-3). But obviously there is a sym
metric position, N', for the nitrogen atom at the same distance from the H-H-H 

plane but on the opposite side. The N atom may oscillate between these two posi
tions of equilibrium with a fixed period. The second may then be defined as the 

time required for the N atom to make 2.387 X 1010 such oscillations. The first 

atomic clock, based on this principle, was built at the National Bureau of Standards 

in 1948. Since then other substances have been tried as atomic clocks. However, 
no international agreement has yet been reached for an atomic standard of time, 

although it seems that there is a general consensus toward the adoption of such a 

definition of the unit of time.* 

Coulomb; abbreviated C, is the unit of electric charge. Its precise and official 
definition will be given in Chapter 14, but at this moment we may say that it is 

equal in absolute value to the negative charge contained in 6.2418 X 10 18 elec

trons, or to the positive charge in an equal number of protons. 

* In October 1964, the International Committee on Weights and Measures temporarily 
based the international time interval on a particular atomic transition of the 133Cs atom. 
The second is thus temporarily defined as the time required for the oscillator which forces 
cesium atoms to perform the stated transition to oscillate 9,192,631,770 times. 
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Note: Strictly speaking, in addition to the meter, the kilogram, and the second, the 

fourth unit adopted at the Eleventh Conference was the ampere (instead of the coulomb) 

as a unit of electric current. The coulomb is thus defined as the amount of electric charge 
that passes through a section of a conductor during one second when the current is one 

ampere. The reason for choosing the ampere is that a current is more easily estab
lished as a standard. Our decision to use the coulomb is based mainly on our wish to ex

press the more fundamental character of electric charge, without departing essentially 

from the recommendations of the Eleventh Conference. The MKSA is the Interna

tional System of units, designated by the symbol SI. 

The meter and the kilogram are units originally introduced during the French 
revolution, when the French government decided to establish a rational system of 

units, known since then as the metric system, to supplant the chaotic and varied 

units in use at that time. The meter was at first defined as "the ten-millionth 
(10-7) part of a quadrant of a terrestrial meridian." For that purpose an arc of a 

\ 

meridian was carefully measured-an operation that took several years-and a 

standard platinum bar measuring one meter was fabricated and kept under con
trolled conditions at 0°C at the International Bureau of Weights and Measures, at 

Sevres. Later measurements indicated that the standard bar was shorter by 

1.8 X 10-4 m than the ten-millionth part of the quadrant of a meridian, and it 

was decided to adopt the length of the bar as the standard meter without further 
reference to the earth meridian. Duplicates of the standard meter exist in many 

countries. However, the convenience of having a standard of more permanent 

character and easy availability at any laboratory was recognized. For that reason 

the red line of 8 6Kr was chosen. 
For mass, the unit chosen by the French was the gram, abbreviated g, defined 

as the mass of one cubic centimeter (1 cm = 10-2 m = 0.3937 in. and 1 cm 3 = 
10-6 m 3) of distilled water at 4 °C. This temperature was chosen because it is the 

temperature at which the density of water is a maximum. The kilogram is then 
equal to 103 grams. A platinum block, having a mass of one kilogram, was built. 

Later on it was decided to adopt this block as the standard kilogram without fur

ther reference to the water. 
Before the MKSC system was adopted, another system was very popular in 

scientific work: the cgs system, in which the unit of length is the centimeter, the 

unit of mass is the gram, and the unit of time is the second. No definite unit of 
charge had been assigned to this system, although two were used: the statcoulomb 

and the abcoulomb, equal respectively to ! X 10-9 C and 10 C. The cgs system 
is gradually being replaced in scientific and practical work by the MKSC system. 

In many English-speaking countries another system of units is widely used in 

practical and engineering applications. The unit of length is the foot, abbreviated 

ft, the unit of mass is the pound, abbreviated lb, and the unit of time is again the 

second. The equivalent metric units are: 

1 foot = 0.3048 m 

1 pound = 0.4536 kg 

1 m = 3.281 ft 

1 kg = 2.205 lb 
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TABLE 2-1 Prefixes for Powers of Ten 

Magnitude Prefix Symbol 

10-18 atto- a 
10-15 fem to- f 
10-12 pico- p 
10-9 nano- n 
10-6 micro- µ 

10-3 milli- m 
10-2 centi- c 
10-1 deci- d 

10° = 1 Fundamental unit 

10 deca- D 
102 hecto- H 
103 kilo- k (or K) 

106 mega- M 
109 gig a- G 
1012 tera- T 

It is expected that eventually only the MKSC system will be used throughout the 

world for scientific, engineering, and household measurements. 

For practical reasons multiples and submultiples of the fundamental and de

rived units have been introduced as powers of ten. They are designated with a 

prefix, according to the scheme given in Table 2-1. 

2.4 Bensit-g 

The density of a body is defined as its mass per unit volume. So a body having a 

mass m and a volume V has a density of 

m 
p = -· v 

Density is expressed in kg m-3 . Obviously the density of water is 

p = 103 kgm-3 (or 1 g cm-3 and 62.4 lb ft-3). 

(2.1) 

Density, as defined_in Eq. (2.1), is applicable only to homogeneous bodies; i.e., 

bodies having the same composition or structure throughout their volume. Other
wise, it gives the average density of the body. For a heterogeneous body, the 

density varies from one place to another. To obtain the density at a particular 

place, the mass dm, contained in a small (or infinitesimal) volume dV located 

around the point, is measured. Then one applies Eq. (2.1), which now becomes 

dm 
p=-· 

dV 
(2.2) 
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TABLE 2-2 Densities (Relative to Water) 

Solids Liquids 

Iron 7.86 Water (4°C) 

Ice 0.917 Mercury 
Magnesium 1.74 Ethyl alcohol 
Aluminum 2.70 Gasoline 
Uranium 18.7 Air (-147°C) 

1.000 

13.59 
0.791 

0.67 

0.92 

Air 
Hydrogen 

Oxygen 

Nitrogen

Helium 

Plane angles 

Gases 

1.2922 X 10-3 

8.988 X 10-5 

1.42904 X 10-3 

1.25055 X 10-3 

1.7847 X 10-4 
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Since density is a statistical concept, the volume dV, to have any physical meaning, 

must be of such a size as to contain a large number of molecules. 

Another useful concept is relative density. If p1 and p2 are the densities of two 

different substances, their relative density is 

P2 
P21 = -· 

P1 
(2.3) 

It is not expressed in any unit because it is a relative quantity; i.e., the quotient 

of two quantities of the same kind. It is customary to express relative densities 

with respect to water as a reference. In Table 2-2 we give the densities of several 

substances relative to water. The numerical values are given at standard tempera

ture and pressure (STP: 0°C and 1 atm), unless otherwise noted. 

2.5 Plane Angks 

There are two systems for measuring plane angles: degrees and radians. It is the 

second that is more important in physics. The circumference of a circle is arbi

trarily divided into 360 degrees (0
). A right angle, for example, corresponds to 90°. 

Each degree is divided into 60 minutes (') and each minute into 60 seconds ("). 

The measure of an arbitrary angle is expressed in degrees, minutes, and seconds, 

such as 23°42'34". 

To express a plane angle in radians, one draws, 

with an arbitrary radius R (Fig. 2-4), the arc AB 

with center at the vertex O of the angle. Then the 

measure of () in radians (abbreviated rad) is 

l () = -, 
R 

(2.4) 

where l is the length of the arc AB. This method is Figure 2-4 

based on the fact that, for a given angle, the ratio 

B 

l/ R is constant and independent of the radius, and is thus the measure of the 

angle expressed in radians. Note that land R must be expr~ssed in the same units 
of length. From Eq. (2.4), we have 

l = Ro. (2.5) 
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Noting that the circumference of a circle is 21rR, we see that a complete plane 

angle around a point, measured in radians, is 21rR/R = 21r rad. So 21r rad are 

equivalent to 360°, and 

1° = 1:0 rad = 0.017453 rad, 

2.6 Solid Angles 

1 rad = 
1800 

= 57°17'44.9". 
7r 

A solid angle is the space included inside a conical ( or pyramidal) surface, as in 

Fig. 2-5. Its value, expressed in steradians (abbreviated sterad), is obtained by 

drawing, with arbitrary radius R and center at the vertex 0, a spherical surface 

and applying the relation 

s 
n = R2' (2.6) 

where S is the area of the spherical cap intercepted by the solid angle. Since the 

surface area of a sphere is 41rR 2 , we conclude that the complete solid angle around 

a point is 41r steradians. The solid angle formed by the three mutually perpendicu

lar coordinate axes OX, OY, and OZ (Fig. 2-6), is i(41r) or 1r/2 steradians. 

z 

y 

x 

Fig. 2-5. Solid angle. Figure 2-6 

When the solid angle is small (Fig. 2-7), the surface area S becomes dS, and is 

not necessarily a spherical cap, but may be a small plane surface perpendicular to 

OP so that 

dn = dS. 
R2 

(2.7) 

In some instances the surface dS is not perpendicular to OP, but its normal N 

makes an angle() with OP (Fig. 2-8). Then it is.necessary to project dS on a plane 

perpendicular to OP, which gives us the area dS' = dS cos 0. Thus 

d .. _ dS cos o 
H, - R2 ., (2.8) 

, 

an expression that will be very useful in future discussions. 
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2. 7 Precision and Accuracy 

The word precision usually has a connotation of accuracy. In the world of meas

urement, however, precision has the connotation of inaccuracy. What we mean is 

that when a physical property is described by some numerical quantity and some 

units, the numerical quantity is dependent on a number of different factors, in

cluding the particular piece of apparatus used to make the measurement, the type 

and number of measurements made, and the method employea by the experimenter 

to extract the number from the apparatus. Unless the numerical quantity is ac

companied by another which describes the precision of the measurement, the num

ber quoted is as good as useless. A number may be extremely accurate (that is, 

be exactly correct), but not be precise because the person quoting the number has 

failed to state at least something about his method of measurement. 

Let us consider a few examples in order to clarify these ideas. If one sees a 

basket containing seven apples, the statement "I count seven apples in the basket" 

is a straightforward quote of a numerical quantity. It is precise and accurate, 

since the number of units to be counted is small and integral. If there are two peo

ple, one slowly putting apples into the basket and another slowly removing them, 

then one can make accurate and precise statements about the number of apples 

at any given time. 

0 

Figure 2-7 Figure 2-8 

Now let us complicate the discussion. Consider the number of people in a small 

village. Here the number is larger, but still fairly reasonable and definitely in

tegral. An observer standing in the center of the village's one street, by observing 

the coming and going of people after a census count, could make accurate state

ments about the number of people in the village. But his numerical quantity 

would not necessarily be precise, since it would be difficult for him to discover the 

exact time of the birth and death of the townspeople. Make the village a city or 

a county, and the job becomes even more difficult. 

Let us now ask: Why do we need an accurate counting of the number of the in

habitants of a county? In order to provide different services for all the inhabitants, 

it is really not necessary to know, at each moment of time, the exact number of 

them. Rather do we need an accurate accounting whose precision depends on the 

particular service in question. For instance, to determine the number of new 

schools to be built in an area we must have a different kind of numerical precision 
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for the population than would be necessary if we had to determine the number of 

fire departments needed. If we state the county's population with a precision of 

1 %, we mean that the number quoted may be 1 % greater or 1 % less than the 
actual population, but we do not know which, nor does it matter in many cases. In 
a village of 200 people, a precision of 1 % means that we know the population with

in 2 people. In a county of 100,000 people, the precision is within 1000 people. If 

we know the population of the United States with a precision of 1 %, our popula
tion figure may be off by as much as one and a half million, but we do not know 

exactly. Obviously, under some conditions, a precision of greater than 1 % is neces

sary; under others, less precision may suffice. 
Up to this point we have been concerned with the operation of counting itself. 

The assumption is that, given enough information and an ability to process the 

information rapidly, we could find out the exact population. Whether it is neces
sary to know this precisely or not has already been discussed. Now we must realize 

that there are operations which do not give us a number of units. For instance, it 

is true that at a particular point in a room there is an exact value of the temperature. 

Its value, however, depends on a definition, since temperature is a human concep
tion. Nevertheless, we do not measure temperature itself by a counting method; 

rather, we measure the length of a column of mercury, a column whose length 
represents the temperature. For various reasons the measured length of the col

umn will not be recorded identically every time it is read, even if the temperature 

remains constant. One of the major reasons for the variations in the readings is 

the finite space between divisions on the scale. A meter stick ordinarily has a dis

tance of 1 mm between its divisions. Therefore, if a meter stick is read to the near
est division, the reading at each end may be in error by as much as i mm. There 

are other types of reading errors that are taken up in specialized books on the 

topic. (See the references at the end of the chapter for a few selected texts and 
articles on measurement.) 

The precision, or uncertainty, of a number allows us to define the number of 
significant figures associated with the quantity. For example, if a measurement 

is quoted as 642.54389 ± 1 %, this means that the uncertainty is around 6.4. 

Therefore we are justified in retaining only those figures in the number that are 
truly significant. In this case the number should be quoted as 642 ± 1 % or 

642 ± 6. When the student sees a physical property (such as the velocity of light 

or Avogadro's number) quoted in this text, the number will be quoted to the first 
five significant figures, even though the number may be known more precisely; 

the precision will not be specified. If the student wishes to use these numbers in 

the calculation of an uncertainty, he may consider the least significant number 

quoted to be precise to ± 1. 
When one performs a series of mathematical operations using numbers that have 

a stated precision, the simplest procedure is to perform the operations, one at a 

time, disregarding the significant-figure problem until the conclusion of the multi
plication, or whatever. Then the resultant number should be reduced to a number 

having the same number of significant figures (i.e., the same precision) as the 

least accurate of the numbers. 
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2.B Measurement in the Laboratoru 

With a relatively simple example, the period of a pendulum, we shall describe the 

methods used in obtaining the numerical quantity associated with a physical prop
erty. The period of a pendulum is the time between two consecutive passes of the 

bob through the same point, moving in the same direction. A particular pendulum 
was set to swing, and its period for a single oscillation was measured fifty separate 
times. Table 2-3 contains the fifty measurements, in seconds: 

From the table you may see that there is no one particular period for the pen
dulum. What we must do is to take these fifty measurements of the period, deter

mine some average value, and then determine the precision of this average value. 
By adding all the periods and then dividing by the total number of measurements, 

we find that the mean (or average) value for the period of the pendulum is 3.248 

seconds. (Note that for the moment we have kept the entire number; we shall 
modify it at the proper time.) By taking the difference between this mean value 
and each measurement, we obtain the deviation of each measurement from the mean. 

The sum of the absolute values of the deviations divided by the number of meas
urements is called the mean deviation, which gives an indication of the precision 

of the measurement. For our example, the mean deviation of the period is 0.12 
second. Therefore, we should write the period of the pendulum, as measured in 
the laboratory, as 3.25 ± 0.12 seconds, or 3.25 ± 4% seconds (approximately). 

Another way of expressing the precision of the measurement is by use of the 
rms deviation, defined as the square root of the quantity obtained by adding the 

squares of the deviations divided by the number of measurements. For our meas
urements, the rms (root-mean-square) deviation is 0.15 second. The extra effort 
in obtaining the rms deviation is well worth the task, since a relatively simple 

meaning may be attached to it. Assuming that the randomness that appears in 
the set of measurements is not due to any bias, but that these are just normal 

fluctuations, the rms deviation tells us that roughly two-thirds of all the measure
ments fall within this deviation from the mean value. Or, to put it another way, 
we now have confidence that, the very next time we take the measurement of the 

period of our pendulum with the same apparatus, there is a 67% chance that we 
shall measure a period of no more than 3.40 seconds or less than 3.10 seconds. 

TABLE 2-3 

3.12 3.18 3.25 3.32 3.32 

3.62 3.33 3.30 3.42 3.27 

3.33 3.28 3.15 3.12 3.20 

3.17 3.18 3.20 3.18 2.98 

3.17 3.52 3.35 3.33 3.38 

3.58 3.02 3.00 3.32 3.08 

3.27 3.35 3.63 3.15 3.38 

3.00 3.15 3.27 2.90 3.27 
2.97 3.18 3.28 3.28 3.37 

3.18 3.45 3.18 3.27 3.20 
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3.00 I 3.20 L 3.40 I I 
I I 
1---0.15- 0.15---1 

3.60 

3.25 seconds 

Fig. 2-9. Histogram showing the number of measurements of the period of a pendulum, 
as shown in Table 2-3, in each time interval of 0.04 s. The corresponding Gaussian 
distribution is indicated by the solid line. 

To show this situation in a slightly different manner, Fig. 2-9 is a histogram, on 

which the frequency distribution of the given readings is plotted. There is an ap
parent randomness to the manner in which the number of the various readings 
occur. As more and more readings are taken, however, a definite pattern begins 

to take shape, showing that the frequency of appearance of a given measurement 
is proportionately less the larger its deviation from the mean value. The familiar 

bell-shaped curve is what results. Analysis shows that the curve under which the 
peak of the histogram fits more and more closely as the number of measurements 

increases has an analytic form called the Gaussian or normal distribution. 
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Problems 

2.1 Atomic masses as given in Table A-1 

are expressed in atomic mass units, abbre

viated amu. One amu is equal to 1.6604 X 
10-27 kg. Express, in kilograms and grams, 

the masses of one atom of (a) hydrogen and 

(b) oxygen. 

2.2 How many water molecules, each 

composed of one atom of oxygen and two 

atoms of hydrogen, are there in one gram? 

In 18 grams? In one cubic centimeter? 

2.3 It was said in Section 2.3 that the 
kilogram could be defined as the mass 

of 5.0188 X 102 5 atoms of the 12C iso

tope, whose mass is defined as exactly 

12.0000 amu. Verify that this definition 

is compatible with the value of the amu 
given in Problem 2.1. 

2.4 Consider molecules of hydrogen, of 
oxygen, and of nitrogen, each composed of 

two identical atoms. Calculate the number 

of molecules of each of these gases (at STP) 

in one m3 . Use the values of relative 

densities given in Table 2-2. Extend your 

calculation to other gases. What general 

conclusion can you draw from this result? 

2.5 Assuming that air is composed of 20% 

oxygen and 80% nitrogen and that these 
gases have molecules each comprised of 
two atoms, obtain the "effective" molecu

lar mass of air. Estimate the number of 
molecules in one cubic centimeter of air at 

STP. How many molecules are oxygen, 

and how many are nitrogen? 

2.6 The density of interstellar gas in our 

galaxy is estimated to be about 10-21 kg 
m - 3 . Assuming that the gas is mainly 

hydrogen, estimate the number of hydro

gen atoms per cubic centimeter. Compare 

the result with air at STP (Problem 2.5). 

2.7 A glass containing water has a radius 

of 2 cm. In 2 hours the water level drops 
1 mm. Estimate, in grams per hour, the 
rate at which water is evaporating. How 
many water molecules are evaporating per 

second from each square centimeter of 

water surface? (We suggest that the stu-
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dent perform this experiment and obtain 

his own data. Why do you get different 

results on different days?) 

2.8 One mole of a substance is defined as 

an amount, in grams_, numerically equal to 
its molecular mass expressed in amu. 

(When we refer to a chemical element and 

not a compound, we use the atomic mass.) 

Verify that the number of molecules (or 

atoms) in one mole of any substance is the 

same, and is equal to 6.0225 X 1023. 

This number, called Avogadro's constant, 

is a very important physical constant. 

2.9 Using the data in Tables 2-2 and A-1, 

estimate the average separation between 

molecules in hydrogen at STP (gas), in 
water (liquid), and in iron (solid). 

2.10 The mass of an atom is practically 
all in its nucleus. The radius of the nu
cleus of uranium is 8.68 X 10-15 m. Using 

the atomic mass of uranium given in 

Table A-1, obtain the density of "nuclear 

matter." This nucleus contains 238 par

ticles or "nucleons." Estimate the average 

separation between nucleons. From your 
result, would you conclude that it is rea

sonable to treat nuclear matter in the same 

manner as matter in bulk, i.e., aggregates 
of atoms and molecules? 

2.11 Using the data from Table 13-1, 

obtain the average density of the earth 

and of the sun. When you compare these 

values with the data in Table 2-2, what 

do you conclude about the structure of 

these two bodies? 

2.12 Estimate the average density of the 

universe, using the information given in 

Section 1.3. Assuming that all atoms are 

distributed uniformly over all the uni
verse, how many atoms would there be in 

each cubic centimeter? Assume that all 
atoms are hydrogen. 

2.13 The speed of light in vacuum is 
2.9979 X 108 m s-1. Express it in miles 

per hour. How many times could a light 
ray travel around the earth in one second? 
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(Use Table 13-1 for data about the earth.) 

What distance would it travel in one year? 
' This'tlistance is called a light year. 

2.14 The radius of the earth's orbit is 

1.49 X 1011 m. This length is called an 

astronomical u.nit. Express a light year in 

astronomical units (see Problem 2.13). 

p, Star 
I 1\ 

I I \ 
I I \ 

I I \ 
/...._ 20 I /\ 
I~\ 

I I ' 
I I \ 

I I \ 
/ r1 \ 

I I \\ 
I I \ 

I I \ 
I I )\ 

I \ 

I (3 \ a ~ 

EzC)---------6---------'-bEi 
Sun I I 

Figure 2-10 

2.15 Parallax is the difference in the ap

parent direction of an object, due to 

a change in the position of the observer. 

(Hold a pencil in front of you and close 

first the right and then the left eye. Note 

that in each case the pencil appears against 

a different background.) Stellar parallax 

is the change in the apparent position of a 

star as a result of the earth's orbital motion 

around the sun. It is expressed quantita

tively by one-half the angle subtended by 

the earth's diameter E1E2 perpendicular 

to the line joining the star and the sun (see 

Fig. 2-10). It is given by () = !(180° -

a - {3), where the angles a and {3 are 

measured at the two positions E1 and E2 

separated by 6 months. The distance r 
from the star to the sun can be obtained 

from a = rfJ, where a is the radius of the 

earth's orbit and () is expressed in radians. 

The star with the largest parallax of 0. 76" 

(i.e., the closest star) is a-Centauri. Find 

its distance from the sun expressed in 

meters, in light years, and in astronomical 

units. 

2.16 A parsec is equal to the distance from 

the sun corresponding to a star whose 

parallax isl". Express the parsec in meters, 

light years, and astronomical units. Ex

press the distance in parsecs in terms of 

the parallax in seconds of arc. 

2.17 The distance between San Francisco 

and New York, measured along the great 

circle passing through these two cities, is 

2571 mi. Compute the angle between the 

verticals at the two cities. 

2.18 Using the data in the caption of 

Fig. 1-6, determine the angle subtended 

by the diameter of the Great Nebula 

M-31 when observed from the earth. Ex

press it in radians and in degrees of arc. 

Also find the solid angle subtended by the 

nebula. 

2.19 By looking at the table of trigonomet

ric functions in the Appendix, find the 

angle at which sin () and tan () differ by 

(a) 10% (b) 1 % (c) 0.1 %- Do the same 

for sin () and fJ, and for tan() and fJ, where () 

is expressed in radians. What conclusion 

can you draw from your result? 

2.20 Given the three numbers: 49238.42; 

6.382 X 104; 86.545. (a) Add the numbers. 

(b) Multiply all three together. (c) Add 

the first two and multiply by the third. 

(d) Multiply the last two and divide by 

the first. Give all answers to the proper 

number of significant figures. 

2.21 Use the data listed in Table 2-3 to 

check the listed value for mean value, mean 

deviation, and rms deviation. How many 

significant figures should be quoted in the 

result? 

2.22 The table below contains a set of ten 

readings of some physical property (e.g., 

the thickness of a piece of paper, or the 

weight of a stone, etc.). 

116 

113 

125 

124 

108 

111 

111 

136 

113 

111 

(a) Determine the mean value of these 

numbers. Determine the mean deviation 

and the rms (or standard) deviation. (b) 

Make some judgment about keeping or 



discarding the single reading of 136. (If 

it is discarded, the mean value of the nine 

remaining data points is 114.7 and the 

standard deviation becomes 5.6.) 

2.23 Take a small ball or a pencil and let 

it roll down the slope of a long book. Meas

ure the time it takes for the ball or pencil to 

go from rest, at the top, to the bottom when 

it hits the table. Repeat the experiment 

ten (or more) times. Determine the mean 

value for the roll and its precision, expressed 

by therms deviation. If you do not have a 
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sweep-second hand, use your pulse as a 

timing source. 

2.24 Take a census of members of your 

class. Determine the height and weight of 

each member. Discriminate so that you 

cover only one sex and have an age span 

of no more than three years. Calculate 

the mean height, mean weight, and the 

rms deviation. Note that you cannot talk 

about the precision of your measurement 

in the same sense as above. Why? 
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3.1 Introduction 

This chapter will serve as an introduction to, or re

view of, the essential ideas associated with a branch 
of mathematics most important to the physical 
scientist. Vector algebra is important because it 

enables the scientist to write in a convenient, terse, 
shorthand notation some very complicated expres

sions. For example, in ordinary algebra the equation 

3x + 2y = 6 

is a shorthand notation for all possible pairs of x

Concept of direction 

y 

and y-values that satisfy this equation. It is also Figure 3-1 

possible to describe this same relation in yet another 
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way; namely, by the shorthand notation of a graphical plot of this equation, as 
shown in Fig. 3-1. Both these examples are readily understandable to any student 

who has studied algebra and analytic geometry, because he understands the short

hand notation. In the same manner, vector algebra is readily understandable, once 
the shorthand notation is understood. 

By the end of this chapter it will be discovered that vector notation is not un

like the notation of algebra and analytic geometry. The major difference is in the 
interpretation of this notation. A thoughtful reading of this chapter accompanied 

by careful working of all exercises will save the student many difficult moments in 
succeeding chapters. 

3.2 Concept of Direction 

When we are given a straight line, we can move along it in two opposite senses; 

these are distinguished by assigning to each a sign, plus or minus. Once the posi
tive sense has been determined, we say that the line is oriented and call it an axis. 

The coordinate axes X and Y are oriented lines in which the positive senses are as 
indicated in Fig. 3-2. The positive sense is usually indicated by an arrow. An 

oriented line or axis defines a direction. Parallel lines oriented in the same sense 

y 

l 

Fig. 3-2. Oriented coordinate axes. 

(a) (b) 

Fig. 3-3. Parallel and antiparallel directions. 
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define the same direction (Fig. 3-3a), but if they have opposite orientations they 
define opposite directions (Fig. 3-3b). 

Directions in a plane are determined by an angle, which is the angle between a 

reference direction or axis and the direction we want to indicate, measured counter

clockwise (Fig. 3-4). Opposite directions are determined by the angles () and 

1r + () (or 180° + 0). 
In three-dimensional space it is necessary to use two angles to fix a direction. 

The choice most frequently used is the one indicated in Fig. 3-5. The direction 

O A is determined by: 

(i) the angle () (less than 180°) it makes 

with axis OZ, 

(ii) the angle </> between the plane AOZ 

and the plane XOZ, measured counter
clockwise. 

A 

B 

Fig. 3-4. In a plane, opposite directions 
are defined by angles () and 1r + 0. 

z 

\ 
\ 

x 

\ 
\ 

\ 
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\ 
\ 
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\ 
\ 

I 
I 
I 
I 
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i-------y 
I 

\ I 
\ I 

\ I 
\I 
~ 

Fig. 3-5. Two angles are required to 
define a direction in space. 

We leave it to the student to verify that the opposite direction is determined 

by the angles 1r - () and 1r + </>. 

3.3 Scalars and Vectors 

Many physical quantities are completely determined by their magnitude, ex

pressed in some convenient unit. These quantities are called scalars. For example, 
to specify the volume of a body it is necessary only to indicate how many cubic 

meters or cubic feet it occupies. To know a temperature it is enough to read a 

conveniently located thermometer. Time, mass, charge, and energy are also scalar 

quantities. 
Other physical quantities require, for their complete determination, a direction 

in addition to their magnitude. Such quantities we call vectors. The most obvious 

case is displacement. The displacement of a body is determined by the effective 

distance it has moved and the direction in which it moved. For example, if a par
ticle is displaced from O to A (Fig. 3-6), the displacement is determined by the 
distanced = 5 and the angle () ,......, 37°. Velocity is also a vector quantity, since 

the motion is determined by the rate of displacement and the direction of the 
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displacement. Similarly, force and acceleration are vector quantities. Other 

physical quantities that are vectors will appear in succeeding chapters. 

Vectors are represented graphically by line segments having the same direction 

as the vector (indicated by an arrow) and a length proportional to the magnitude. 

When written down, a symbol in boldface type such as V or with an arrow, as V, 
indicates a vector (i.e., magnitude plus direction), while V refers to the magnitude 

only (sometimes, however, the magnitude will be indicated by JV[). A unit vector 

is a vector whose magnitude is one. A vector V parallel to the unit vector u can be 

expressed in the form 

V= uV. (3.1) 

The negative of a vector is another vector that has the same magnitude but op
posite direction. 

If two vectors V and V' are parallel to each other, they may be written as V = 

u V and V' = u V', where the unit vector u is the same. Thus if}. = V /V' we may 
write 

V = }.V'. 

Reciprocally, wherever an equation such as the preceding holds for two vectors 
V and V', they are parallel. 

3.4 Addition of Vectors 

To understand the rule for addition of vectors we shall consider first the case of 

displacements. If a particle is displaced first from A to B (Fig. 3-7), represented 

by vector d 1 , and then from B to C, or d 2 , the result is equivalent to a single dis
placement from A to C, or d, which we write symbolically as d = d 1 + d 2 . This 

expression must not be confused with d = d1 + d2 , which refers only to the mag
nitudes and does not hold in this case. The procedure can be generalized to fit 

any kind of vectors. Therefore we say that Vis the sum of V1 and V2 if it is ob-

y 

-3 

~v 
/ 

/ 
-2 

v"" 
d=q. / 

-1 

/ 
l/ r\1:1~371 

x 0 1 2 3 4 
I I I I 

Fig. 3-6. Displacement 1s a vector 
quantity. 

Fig. 3-7. Vector addition of two dis
placements. 
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c 
J". T 

I 
I 
I 
I 
I 
I 

V2 sin Iii 
I 

\ () I 

~-...... --........ ---',---- ___ On 
B V2 cos Ii 

0 

(b) A 

Fig. 3-8. Vector addition is commutative. Figure 3-9 

tained as indicated in Fig. 3-8. We can also see in the figure that the vector sum 

is commutative, the resuit being the same if the order in which the vectors are 

added is reversed; this is a direct consequence of the geometry of the method. The 
geometrical relation of Fig. 3-8 is expressed algebraically by 

(3.2) 

To compute the magnitude of V we see from Fig. 3-9 that (AC) 2 = (AD) 2 + 
(DC) 2. But AD= AB+ BD = Vi+ V 2 cos O and DC= V 2 sin o. Therefore 

V 2 = (Vi+ V 2 cos 0) 2 + (V2 sin 0) 2 = Vi+ V~ + 2Vi V 2 cos 0, or 

V = v'Vi + V~ + 2Vi V2 cos 0. (3.3) 

To determine the direction of V, we need only find the angle a. From the figure 

we see that in triangle ACD, CD = AC sin a, and in triangleBDC, CD = BC sin 0. 

Therefore V sin a = V 2 sin O or 

Similarly, BE = Vi sin a = V 2 sin {3 or 

Combining both results, one gets the symmetrical relation 

(3.4) 

We have thus derived two fundamental trigonometric expressions, the Law of 

Cosines and the Law of Sines. In the special case when Vi and V2 are perpendic

ular (Fig. 3-10), 0 = f1r and the following relations hold: 

V = v'Vi + V~; (3.5) 
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Fig. 3-11. Vector difference is anticom
mutative. 

The difference between two vectors is obtained by adding to the first the negative 

(or opposite) of the second (Fig. 3-11); that is, 

Note that V2 - V 1 = -D; that is, if the vectors are subtracted in the reverse 

order, the opposite vector results; i.e., vector difference is anticommutative. The 

magnitude of the difference is 

or 

(3.6) 

EXAMPLE 3.1. Given two vectors: A is 6 units long and makes an angle of +36° 
with the positive X-axis; Bis 7 units long and is in the direction of the negative X-axis. 

Find: (a) the sum of the two vectors; (b) the difference between the two vectors. 

Solution: Before starting to apply the previous equations, draw the vectors on a set of 
coordinate axes (Fig. 3-12). We see from Fig. 3-7, 3-8, or 3-9 that, in order to add the 

two vectors, one of the vectors must be set with its tail at the head of the other. This 

may be done by moving either vector or both, just so long as the direction of the vector 

is not changed (Fig. 3-13). In any case the vector C = OE results. 

y 
y 

Figure 3-12 Figure 3-13 
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(a) From Fig. 3-13 we see that we may write either: C = A+ B or C = B + A. 

Using the triangle ODE, C may be found as A+ B. In order to find the magnitude 

of C by application of Eq. (3.3), we first recognize that we can equate A to V1, B to V2 , 

C to V, and the angle 'Y = 180° - 36° = 144° to the angle 0. This results in: 

C = V36 + 49 + 2(6)(7) cos 144° = 4.128 units. 

To find the angle between C and A, we apply Eq. (3.4), which reads in this case 

so that 

c 
sin 'Y 

B 
=--, 

sin o 

sin o = B si~1440 = 0.996 and 0 ,..._, 85°. 

Therefore C is 4.128 units long and in a direction that makes an angle of 36° + 85° 

+121 ° with the positive X-axis. 

(b) To find the difference between two vectors, we must know, just as in ordinary 

arithmetic, which quantity is being subtracted from which. That is to say, if the vector 

Dis defined as A - B (Fig. 3-14), then B - A is equal to -D. 

Thus, using the statements of equivalence from part (a) above, and from Eq. (3.6), 

we find the magnitude of D = A - B as 

D = ,V36 + 49 - 2(6)(7) cos 144° 

To find the direction of D, we use Eq. (3.4): 

D 

sin 36° 

or, since J-BJ = B, 

s1na 

or 

I-BJ 
=-.-; 

sma 

B sin 36° 
D . = 0.334 

12.31 units. 

y 

a = 19.5°; 
Figure 3-14 

and thus D is 12.31 units long and makes an angle of 

36° - 19.5° = 16.5° with the positive X-axis. 

It is left as an exercise for the student to prove that -D 

long and makes an angle of +196.5° with the positive X-axis. 

3.5 Components of a Vector 

B - A is 12.31 units 

Any vector V can always be considered as the sum of two (or more) vectors, and 

the number of possibilities is infinite. Each set of vectors which, when added, give 

V are called the components of V. 
The ones most commonly used are the rectangular components; i.e., the vector 

is expressed as the sum of two mutually perpendicular vectors (Fig. 3-15). Then, 

as we see from the figure, V = Ve + Vy, with 

Vx = V COS a and Vy= Vsina. (3.7) 
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y 

B 
B ------------------•C 

I 

Fig. 3-15. Rectangular components of a 
vector in a plane. 

Fig. 3-16. Components of a vector in a 
certain direction. 

Defining unit vectors ux and Uy in the directions of the X- and Y-axes, we note 
that 

Therefore we have 

V = UxVx + Uy Vy, (3.8) 

This equation expresses a vector in terms of its rectangular components in two 

dimensions. Using Eq. (3.7), we may also write for Eq. (3.8) V = uxV cos a+ 

uyV sin a = V(ux cos a+ uy sin a). When we compare this result with Eq. (3.1), 

or just make V = 1, we conclude that a unit vector can be written as 

U = UxCOSa + Uy Sina. (3.9) 

Note that the component of a vector in a particular direction is equal to the pro

jection of the vector in that direction (Fig. 3-16). From the figure, we see that 

V 11 = V cos a. Also from Fig. 3-16, we see 

that BC is that component of V perpendic

ular to the chosen direction AN, and we 

can see that V ..1_ = BC = V sin a. Thus 

V = Vii+ V..1_. 

There are three rectangular components 

in space: V x, Vy, V z (Fig. 3-17). The stu
dent may verify from the figure that they 

are computed according to 

Vx = V sin 8 cos <f,, 

Vy= V sin 8 sin <f,, 

Vz = V cos 8, 

(3.10) 
x 

z 

c /\ __ _ 
// \ ----

/ Vz , --..., 
/ \ /I 

/ \ / I 

// \ // I 
,--- Uz "'() \ / I 
I -----~ , / I I I ____ ,./ I 

I ~\ '"D I I VI I 
I ~ I I 

I Ux ~\{, Uyl~ 
I ¢ , 1 Vy7Jj---. y 
I ' I / 

A Vx \ I / 
\ I / 

-- \ I // ---~ 
E 

Fig. 3-17. Rectangular components 
of a vector in three dimensions. 
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from which it follows, by direct computa

tion, that 

v2 = v; + v; + v;. 
(3.11) 

z 

Uz 

I 
I 

(3.5 

P(x, y, z) 

Defining three unit vectors ux, Uy, Uz parallel 

to the X-, Y-, and Z-axes, respectively, we 
have 

I 

/_ i~y 
I / 

\ I /: 

-- ' I / 
x -1r-- \ 1 / V = UxVx + uyVy + UzVz. --..:iv 

(3.12) 
Fig. 3-18. The position vector. 

Note that if we designate by a and {3 the angles the vector V makes with the X

and Y-axes, respectively, we also have, by similarity with the third of Eqs. (3.10), 

Vx = V COS a, Vy= V cos {3. 

Using these two and Vz = V cos(} in Eq. (3.11), we obtain the relation 

cos 2 a + cos 2 {3 + cos2 (} = 1. 

The quantities cos a, cos {3, and cos(} are called the direction cosines of a vector. 

An important case of a three-dimensional vector is the position vector r = OP 
of a point P having coordinates (x, y, z). From Fig. 3-18 we see that 

r = OP = UxX + UyY + UzZ. (3.13) 

The relative position vector of two points P 1 and P 2 is r 21 = P 1P 2 (Fig. 3-19). 

From the figure we note that OP2 = OP 1 + P 1P2, so that 

r21 = P1P2 = OP2 - M = r2 - r1 

(3.14) 

Note that~ = -P1P 2 . It should be observed that, by applying Eq. (3.11) 

to Eq. (3.14), we obtain the expression of analytic geometry for the distance be

tween two points: 

r21 = V(x2 - X1) 2 + (Y2 - Y1)2 + (z2 - z1) 2. 

-
EXAMPLE 3.2. Find the distance between the two points (6, 8, 10) and ( -4, 4, 10). 

Solution: We draw a set of rectangular axes and identify the two points (Fig. 3-20). 

We see that both points are in a plane parallel to the XY-plane, since they are both a 
distance (height) of 10 units in the Z-direction. From Eq. (3.14), we find that the vector 

r21 is 
r21 = u,,(-4 - 6) + Uy(4 - 8) + Uz(lO - 10) 

= u,,(-10) + Uy(-4) + Uz(O) = -u,,(10) - uy(4). 
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z 

x 

Figure 3-19 Figure 3-20 

Using Eq. (3.11), we find that the magnitude is 

r~ 1 = 100 + 16 = 116 or r21 = 10.77 units. 

EXAMPLE 3.3. Find the components of the vector that is 13 units long and makes 

an angle() of 22.6° with the Z-axis, and whose projection in the XY-plane makes an angle 

<I> of 37° with the +X-axis (cf. Fig. 3-17). Find also the angles with the X- and Y-axes. 

Solution: Using Fig. 3-17 as our figure for the problem, we say that 

V = 13 units, 

sin () = 0.384, 

() = 22.6°, cos() = 0.923, 

<I> = 37°, cos <I> = 0.800, sin <I> 

Now a simple application of Eq. (3.10) yields 

V x 13(0.384) (0.800) = 4.0 units, 

Vy 13(0.384) (0.600) = 3.0 units, 

Vz 13(0.923) = 12.0 units. 

In terms of Eq. (3.12) we may write: 

V = Ux(4) + Uy(3) + Uz(12). 

For the angles a and 13 that V makes with the X- and Y-axes, we have 

Vx 
0.308 72.1°, cos a 

v or a= 

v 
13 = 77°. cos 13 = J' = 0.231 or 

0.600. 

EXAMPLE 3.4. Express the equation of a straight line parallel to a vector V = ux,4. + 

uyB + uzC and passing through a point Po. 
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Solution: Designating by ro the position 
vector of Po (Fig. 3-21) and by r the position 
vector on any point P on the straight line, 

we have from Eq. (3.14) that PoP = r - ro. 

But the vector PoP must be parallel to V, 

and therefore we may write PoP = AV, 

where A is a parameter still undetermined. 
Then 

r - ro = AV 

(3.6 

z 

x Figure 3-21 

is the equation of the straight line, and by varying A, we obtain the different position 
vectors r. Separating the equation into rectangular components, we have 

or 
x - xo = AA, 

X - XO 

A 

Y - Yo 

B 

y - Yo= AB, z - zo = AC, 

z - zo 

c 

which is one of the forms used in analytic geometry to express a straight line. 

3.6 Addition al Sei,eral Vet!tars 

To add several vectors Vi, V2 , V3 , ... , we extend the procedure indicated in 

Fig. 3-8 for the case of two vectors. The method for three vectors is shown in Fig. 

3-22. That is, we draw one vector after another, the vector sum being indicated by 

the line going from the origin of the first to the end of the last. Then 

(3.15) 

There is no simple formula to express Vin terms of V1, V2 , 

V 3 , .•. , and it is better to utilize the method of components. 

Let us consider, for simplicity, the case where all vectors are 

in one plane, so that we need to use only two components. 

Then 

Therefore 

V = (uxVix + UyViy) + (uxV2x + uyV2y) 

+ ( Ux V 3x + Uy V 3y) + · · · 
= Ux(Vix + V2x + Vax+·'·) 

+ uy(V1y + V2y +Vay+···). 

B 

A 

Fig. 3-22. Addition 
of several vectors. 

Vx = Vix+ V~x+ Vax+···= LiVix = LiViCOSai, 

Vy= V1y + V2y +Vay+••.= LiViy = Livi sin CXi, 
(3.16) 

where ai is the angle Vi makes with the positive X-axis and Vi cos ai and Vi sin ai 

are the components of Vi along the X- and Y-axes. Once we know Vx and Vy, 

we compute V, using Eq. (3.5). We now illustrate the procedure with a numerical 

example. 
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EXAMPLE 3.5. Find the resultant of the sum of the following five vectors: 

and 

u.,(4) + uy(-3) units, 

u.,(2) + uy(-6) units, 

V5 u.,(9) + uy(l) units. 

V2 = u.,(-3) + uy(2) units, 

V4 = u.,(7) + uy(-8) units, 

Solution: Applying Eq. (3.16), we have 

or 

V., = 4 - 3 + 2 + 7 + 9 = 19 units, 

Vy= -3+2- 6-8+ 1 = -14units, 

V = u.,(19) - uy(14) units. 
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The magnitude of Vis V = v(19)2 + (-14)2 = 23.55 units. Its direction is found 

from tan a = Vy/V., = -0.738 or a = -36.4°, which is the angle V makes with the 
X-axis. 

3.7 Applkatwn to Kinematic Problems 

As an illustration of how to manipulate vectors in some simple physical situations, 
we shall now consider a few kinematic examples. The only physical assumption 

required is that we recognize that velocity is a vector quantity. 

Suppose, for example, that we have a boat moving with a velocity VB relative 

to the water. If the water is still, VB is also the velocity of the boat as measured 

by an observer on the shore. But if the water is flowing at a certain rate, this 
introduces a drift factor which affects the boat's velocity. Thus the resultant 

velocity of the boat, as measured by an observer on the shore, is the vector sum 
of the velocity of the boat VB relative to the water and the drift velocity V c due 

to the water current. That is, V = VB + Ve. A similar logic applies to objects 

moving through the air, such as airplanes. 

EXAMPLE 3.6. A motorboat is heading due north at 15 

mi hr-1 in a place where the current is 5 mi hr-1 in the 

direction S 70° E. Find the resultant velocity of the boat. 

Solution: This problem is solved graphically in Fig. 3-23, 

where VB is the boat velocity, Va the current or drift ve

locity, and V the resultant velocity obtained from 

V = VB+ Va. 

This is based on the physical fact that the resultant ve

locity is the vector sum of the velocity of the boat rela
tive to the water plus the drift velocity Va due to the 
current. 

Vs 

s 

Figure 3-23 
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Analytically, since(} = 110°, we have 

V = -y'152 + 52 + 2(15)(5) cos 110° = 14.1 mi hr-1, 

which gives the magnitude of the resultant velocity. To obtain the direction, we apply 
Eq. (3.4), 

giving t3 

v 
sin(} 

Ve 

sin t3 
or 

• Q = Ve sin e = 0 332 sm/J V . , 

19.4°. Thus the resultant motion is in the direction N 19.4° E. 

N 

I 
I a 

I 
I 

I 
I 

/ 
/ 

I / 
I / 

-Vn// 
f/ 

s 

w~~~~~~ 0 --~~~~~E 

s 

Figure 3-24 Figure 3-25 

EXAMPLE 3.7. A racing boat is heading in the direction N 30° E at 25 mi hr-1 in a 

place where the current is such that the resultant motion is 30 mi hr-1 in the direction 
N 50° E. Find the velocity of the current. 

Solution: Again designating the velocity of the boat by VB, the velocity of the current 
by Va, and the resultant velocity by V, we have V = VB+ Ve, so that Ve = V - VB, 

The vectors V and VB have been drawn in Fig. 3-24, as well as the difference between 

them, which gives Ve. To compute Ve, we note that the angle between V and -VB is 
160°. Thus 

Ve = y302 + 252 + 2(30)(25) cos 160° = 10.8 mi hr-1• 

To obtain the direction of Ve, we first obtain the angle a between V and -VB, using Eq. 

(3.4)' 

V Ve 

sm a -sin 160° 
or sma V si~ ;600 = 0.951, 

giving a 72°. Therefore the angle with the SN-axis is 72° - 30° 42°, and the 

direction of Ve is S 42° E. 

EXAMPLE 3.8. The speed of an airplane in still air is 200 mi hr-1 . It is desired to go 

from Oto O', the direction of 00' being N 20° W. The wind is 30 mi hc1 in the direction 

N 40° E. Find the direction in which the plane is headed and its resultant velocity. 
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Solution: Let us designate the velocity of the airplane by Va and that of the wind by Vw. 

The resultant velocity is, as before, 

In this case we know that V must have the direction 00'. Thus the vector Va must be 

drawn in such a way that, when added to Vw, the resultant is along 00'. This has been 

done in Fig. 3-25 by drawing a circle of radius Va, with center at the end of Vw, and 

finding the circle's intersection with line 00'. 

To proceed analytically, we note that the angle between V and Vw is 20° + 40° = 60°. 

Thus, using Eq. (3.4), we obtain 

sin 60° 

Vw 

sma 
or sma 

g1vmg a 7.8°. Therefore the direction of Va must be N 27.8° W. The angle between 

Va and Vw is O = 27.8° + 40° = 67.8°, and the magnitude of the resultant velocity, 

using Eq. (3.3), is 

v = v2002 + 302 + 2 x 200 x 30 cos 67.8° = 204 mi hr-1. 

Is it possible that this problem has two solutions, or no solution at all? We leave the 

answer to the student. 

EXAMPLE 3.9. Find the acceleration of a body that slides along a plane inclined at 

an angle of 0. 

Solution: Let P (Fig. 3-26) be a body sliding 

down the plane AB without friction. The 

plane AB is inclined an angle 0. If the plane 

were not there, the body would fall freely 

along the vertical with the acceleration due 
to gravity g = 9.8 m s-2 (see Example 5.2). 

The components of g parallel and perpen

dicular to the plane (called, respectively, a 

and a') are given by a = g sin O and a' = 
g cos 0. 

The component a gives the acceleration of 

the body along the plane. 

3.B Scalar Product 

A 

Fig. 3-26. Acceleration along an m
clined plane. 

It is possible to define other operations with vectors besides their addition. One 

of these operations is the scalar product; another is the vector product. 

The scalar product of two vectors A and B, represented by the symbol A· B 

(read "A dot B"), is defined as the scalar quantity obtained by finding the product 

of the magnitudes of A and B and the cosine of the angle between the two vectors, 

A · B = AB cos 0. (3.17) 

Obviously A· A = A 2, since the angle in this case is zero. If the two vectors are 
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perpendicular ( () = 1r /2), the scalar 

product is zero. Therefore the condition 
of perpendicularity is expressed by 

A · B = 0. Because of its definition, the 
scalar product is commutative; that is, 

A· B = B · A, since cos() is the same in 
both cases. The scalar product is distrib

utive with respect to the sum; that is, 

(3.8 

Fig. 3-27. The scalar product is 
C ·(A+ B) = C · A + C · B. (3.18) distributive. 

To prove the distributive property, we note from Fig. 3-27 that 

c . ( A + B) = I c I I A + B I cos 'Y = c (Ob)' 

because IA+ BJ cos 'Y = Ob. Similarly, C · A = CA cos a = C(Oa) and 
C · B = CB cos {3 = C(ab). Adding, we obtain 

C· A+ C· B = C(Oa +ab)= C(Ob). 

Therefore Eq. (3.18) is proved. The scalar products among the unit vectors ux, uy, 

and Uz are 

Ux " Ux = Uy " Uy = Uz " Uz = 1, Ux " Uy = Uy " Uz = Uz " Ux = 0. (3.19) 

Writing A and B in terms of their rectangular ·components, in accordance with 
Eq. (3.12), and applying the distributive law (3.18), we have 

A• B = (uxAx + UyAy + u 2 A 2 ) • (uxBx + UyBy + UzBz) 

= (ux • Ux)AxBx + (ux • Uy)AxBy + (ux • Uz)AxBz 

+ (uy • Ux)AyBx + (uy • Uy)AyBy + (uy • Uz)AyBz 

+ (uz • Ux)AzBx + (uz • Uy)AzBy + (uz • Uz)AzBz. 

Applying relations (3.19), we finally obtain 

a result which has many applications. Note that 

A 2 = A· A = A; + A; + A;, 

in agreement with Eq. (3.11). 

(3.20) 

We can apply the properties of the scalar product to derive quite easily the 

formula (3.3) for the sum of two vectors. From V = V 1 + V2, we have 

V 2 = (V1 + V2) · (V1 + V2) = Vi + V~ + 2V1 · V2 

= Vi+ V~ + 2V1V2 cos o. 
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This result can be extended without difficulty to any number of vectors. Suppose 

that V = V1 + V2 + V3 + · · · = LiVi· Then 

V2 = (V1 + V2 + V3 + · · ·)2 

= Vi + V§ + V~ + · · · + 2V1 · V2 + 2J7i · V3 

+ · · · + 2V2 · V3 + · · · , 
or, in a compact notation, 

v2 = L 
all 

vectors 

VT + 2L Vi· Vj, 
all 

pairs 

EXAMPLE 3.10. Find the angle between the vectors A = 2u.,, + 3uy - Uz and 

B =. -u.,, + Uy + 2uz, 

Solution: We first compute their scalar product, using Eq. (3.20): 

A• B = 2(-1) + 3(1) + (-1)2 = -1. 

Also 

A = V4 + 9 + 1 = VU = 3.74 units 

and 

B = V 1 + 1 + 4 = V6 = 2.45 units. 

Thus from Eq. (3.17), we have 

A·B 
cos8 = -- = 

AB 

1 
---

9.17 
-0.109, 

corresponding to 8 = 96.3°. 

EXAMPLE 3.11. Express the equation of a plane perpendicular to a vector V = 
u.,,A + uyB + uzC and passing through a point Po. 

Solution: Designating the position vector of Po by ro (Fig. 3-28), and the position vec

tor of any point P of the plane by r, we 

see that the vector z 

PoP = r - ro 

must be perpendicular to V. Thus 

V · (r - ro) = 0 

is the equation that must be satisfied by the 

position vectors r of all the points on the 

plane. Using Eq. (3.20), we may write 

which is the form in which the equation of a 

plane perpendicular to a given line is usually 

x ( 
\ 

written in analytic geometry. Fig. 3-28. Vector equation of a plane. 
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3.9 Vector Product 

The vector product of two vectors A and B, represented by the symbol A x B 

(read "A cross B"), is defined as the vector perpendicular to the plane determined 

by A and B and in the direction of advance of a right-handed screw rotated from 

A to B (Fig. 3-29). A right-handed screw is one that, if one's right hand is placed 
as shown in Fig. 3-29, with the fingers pointing in the direction of rotation, the 

screw advances in the direction of the thumb. Most ordinary screws are right
handed. 

AxB J5L 
~ 

AxB 

Fig. 3-29. Vector relations in 
the vector product. 

Fig. 3-30. Right-hand rule for the 
vector product. 

The magnitude of the vector product A x B is given by 

IA X Bl= ABsinO. (3.21) 

Another simple rule useful in establishing the direction of A X B is as follows: 

Place the thumb, forefinger, and middle finger of the right hand in the position 

shown in Fig. 3-30. If the forefinger and the middle finger point in the directions 
of A and B, respectively, the thumb points in the direction of A x B. Actually, 

the rule is more general, and the vectors A, B, and A x B can be sequentially 
assigned to the fingers by starting at any finger, so long as the following cyclic 

order is maintained. 
/Thumb~ 

Fore- Middle 

finger finger ________... 
From the definition of the vector product, we conclude that 

Ax B =-Bx A, (3.22) 

because the sense of rotation of the screw is reversed when the order of the vectors 

is changed, so that the vector product is anticommutative. If two vectors are 
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parallel, 8 = 0°, sin 8 = 0, and the vector product is zero. Therefore the condition 

of parallelism is expressed by A x B = 0. Obviously A x A = 0. 

Note that the magnitude of the vector product is equal to the area of the parallel

ogram formed by the two vectors, or is equal to twice the area of the triangle made 

with their resultant. This can be seen as follows (Fig. 3-31). The magnitude of 

A x Bis AB sin 8. But B sin 8 = h, where h is the height of the parallelogram 

formed with A and B as sides. Thus 

IA x Bl = Ah = area of parallelogram. 

y 

b ------------

AxB 

Fig. 3-31. The vector product is Fig. 3-32. The vector product is 
equivalent to the area of the paral- distributive. 
lelogram defined by the two vectors. 

The vector product is distributive relative to the sum; that is, 

C x (A + B) = C x A + C x B. (3.23) 

The proof when the three vectors are in a plane is very simple. In this case 

(Fig. 3-32) the three vector products appearing in Eq. (3.23) are perpendicular to 

the page of the book, and it is only necessary to verify that relation (3.23) holds 

for the magnitudes. But 

IC x (A+ B)I = IC ff A+ Bl sin 'Y = C(Ob). 
Similarly, 

IC x A[ = CA sin a = C(Oa); IC X Bl = CB sin (3 = C(ab). 

When we add, we obtain 

f C x Al + IC x Bl = C(Oa + ab) = C(Ob). 

Therefore Eq. (3.23) is proved both in magnitude and direction. The proof in the 

general case of three vectors in space is similar, but somewhat more complex.* 

* For a general proof, see G. B. Thomas, Calculus and Analytic Geometry, third edition; 
Reading, Mass.: Addison-Wesley, 1962, Section 13-4. 
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The vector products among the unit vectors, ux, Uy, Uz are 

Ux x Uy= -Uy x Ux = Uz, 

Uy x Uz - -uz x Uy= Ux, 
(3.24) 

Uz x Ux = -ux x Uz = Uy, 

Ux x Ux = Uy x Uy= Uz x Uz = 0. 

Writing A and Bin terms of their rectangular components, according to Eq. (3.12), 

and applying the distributive law (3.23), we have 

A X B = (uxAx + UyAy + UzAz) X (uxBx + UyBy + UzBz) 

= (ux X Ux)AxBx + (ux X Uy)AxBy + (ux X Uz)AxBz 

+ (uy X Ux)AyBx + (uy X Uy}AyBy + (uy X Uz)AyBz 

+ (uz X Ux)AzBx + (uz X Uy)AzBy + (uz X Uz)AzBz. 

Applying relations (3.24), we obtain finally 

A X B = Ux(AyBz - AzBy) + Uy(AzBx - AxBz) 

+ uzCAxBy - AyBx). (3.25) 

Equation (3.25) may also be written in the more compact determinantal form, 

Ux 

Ax B = Ax 

Bx 

(3.26) 

Note on determinants. A determinant is a convenient notation for arranging quan

tities that have to be combined in a certain symmetric way. A second-order determinant 
is a 2 X 2 array of numbers evaluated according to the rule: 

Note that what we do is to multiply along the diagonals and subtract. A third-order 

determinant is a 3 X 3 array of numbers evaluated according to the rule: 

a1 a2 a3 

b1 b2 b3 

c1 c2 c3 

b2 b3 b3 b1 b1 b2 

a1 + a2 + a3 

Note the order in which the columns appear in each term. The student may verify that 

by applying this rule to Eq. (3.26), he will obtain Eq. (3.25). For more information on 

determinants, the student should consult G. B. Thomas, Calculus and Analytic Geometry, 

third edition; Reading, Mass.: Addison-Wesley, Sections 8-1 and 8-2. 
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EXAMPLE 3.12. Find the area of the parallelogram determined by the vectors 

A = 2u., + 3uy - Uz and 

Solution: First we compute the vector product of A and B, using Eq. (3.26): 

AXB 
Ux 

2 

-1 

Uy Uz 

3 -1 
1 2 

Then the area of the parallelogram is just the magnitude of A X B, or 

Area = JAX BJ = v'49 + 9 + 25 = 9.110 units. 
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EXAMPLE 3.13. Find the distance from point P (4, -1, 5) to the straight line passing 

through points P1 (-1, 2, 0) and P2 (1, 1, 4). 

Solution: The geometry of the problem has been 

illustrated in Fig. 3-33. It is seen that d = P1P sin (), 

We introduce the vectors 

and B 

so that, using Eq. (3.14), we obtain 

A = P1P = 5u., - 3uy + 5u2 , 

B = N2 = 2u., - Uy + 4u2 • 

We then see that 

d = A sin () = AB ;in () = ~ ~ Bl . 

/ 
/ 

/ 

~--
x 

/ 
/ 

/ 

/ 
/ 

/ 
/ 

/ 

Figure 3-33 

Thus, using Eq. (3.26) to compute the vector product of A and B, we get 

Ux Uy Uz 

AX B = 5 -3 5 = -7u., - lOuy + lu2 • 

2 -1 4 

Then I A X BJ = v' 49 + 100 + 1 
v'2I = 4.582, we obtain 

d = IA~ Bl = 2.674. 

v'150 = 12.25, and since B 

3.10 "Vector Representation of an Area 

v'4 + 1 + 16 

In the discussion related to Fig. 3-31, we indicated that the vector product A x B 

is equal in magnitude to the area of the parallelogram whose sides are defined by 

vectors A and B. This suggests the possibility of considering associating a vector 
with any surface. 
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Let us consider a plane surface S (Fig. 3-34) whose periph

ery Lis oriented as indicated by the arrow. We shall adopt 

the convention of representing it by a vector S, whose mag

nitude is equal to the area of the surface and whose direc

tion is perpendicular to the surface. The sense of the vector 

is the direction in which a right-handed screw advances 

when its head is rotated in the same sense as the periphery 

is oriented. 

The components of Shave a simple geometric meaning. 

Suppose that the plane of surface S makes an angle O with 

the XY-plane (Fig. 3-35). The projection of Son the XY

plane is S cos 0, as is well known from solid geometry. But 

the normal to the plane of the surface also makes an angle O 

with the Z-axis. Thus the Z-component of the vector Sis 

Sz = S cos 0. Therefore we conclude that the components 

of S along the coordinate axes are equal to the projections 

of the surface on the three coordinate planes. 

'L I 
I 
I 
I 
I 

(3.10 

Fig. 3-34. Vector 
representation of a 
surface. 

If the surface is not plane, it may always be divided into a large number of very 

small areas (Fig. 3-36) each one practically plane, and each represented by a vector 

Si. Thus the vector representing the curved surface is 

In this case the magnitude of S is not equal to the area of the curved surface, which 

is Li Si; however, the magnitudes of its three components are equal to the areas 

of the projections of the surface on the three coordinate planes. 

Fig. 3-35. Projection of a surface on a plane. Fig. 3-36. Vector addition of surfaces. 

For example, let us consider a plot of land, of which part is horizontal and part 

on the slope of a hill, as indicated in Fig. 3-37. If 8 1 and 8 2 are the areas of each 

portion, the total area of land usable for farming is 8 1 + 8 2 • However, if the plot 

is going to be used for a building, the actual usable land is the projection of the 

plot on a horizontal plane, or 8 1 + 8 2 cos 0. The veator S = S 1 + S 2 , represent-



I 
I// 

z 

/f---x 8 2 cosO -

Figure 3-37 

y 
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y 

Fig. 3-38. A closed surface is repre
sented by a null vector. 

ing the whole plot, has a magnitude 8 = ,v8i + 8~ + 28 18 2 cos O, which is 

smaller than 8 1 + 8 2• But its component along the vertical Z-axis is 8z = 8 1 + 
8 2 cos O, in agreement with the projection of the plot on the horizontal XY-plane. 

Finally, consider a closed surface, as shown in Fig. 3-38. Divide this surface into 

small plane surfaces, each one represented by a vector Si in the outward direction. 

We can always associate the small areas in pairs such that their combined pro

jection is zero. For example, in Fig. 3-38, the two areas 8 1 and 8 2 have the same 

projection in the XY-plane, but with opposite signs. Thus 81z = a and 8 2z = -a. 

Adding all such pairs we get 8z = Li 8iz = 0. By the same argument we see 

that the same result holds for the components of S = Li Si along the other two 
axes. Therefore, S = 0, or the vector representing a closed surface is zero. 
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Problems 

3.1 Two vectors, 6 and 9 units long, form 
an angle of (a) 0°, (b) 60°, (c) 90°, (d) 150°, 
and (e) 180°. Find the magnitude and direc
tion of their resultant with respect to the 
shorter vector. 

3.2 Find the angle between two vectors, 
10 and 15 units long, when their resultant 
is (a) 20 units long and (b) 12 units long. 
Draw the appropriate figure. 

3.3 Two vectors form an angle of 110°. 
One of the vectors is 20 units long and 
makes an angle of 40° with the vector sum 
of the two. Find the magnitude of the 
second vector and of the vector sum. 

3.4 The resultant vector of two other vec
tors is 10 units long and forms an angle of 
35° with one of the component vectors, 
which is 12 units long. Find the magni
tude of the other vector and the angle 
between the two. 

3.5 Find the angle between two vectors, 
8 and 10 units long, when the resultant 
vector makes an angle of 50° with the 
larger vector. Also calculate the magni
tude of the resultant vector. 

3.6 The resultant of two vectors is 30 
units long and forms angles of 25° and 50° 
with them. Find the magnitude of the two 
vectors. 

3.7 Two vectors, 10 and 8 units long, form 
an angle of (a) 60°, (b) 90°, and (c) 120°. 
Find the magnitude of the dijf erence and 
the angle with respect to the larger vector. 

3.8 Find the rectangular components of a 
vector 15 units long when it forms an an
gle, with respect to the positive X-axis, of 
(a) 50°, (b) 130°, (c) 230°, and (d) 310°. 

3.9 Three vectors in a plane are, respec
tively, 6, 5, and 4 units long. The first 
and second form an angle of 50°, while the 
second and third form an angle of 7 5°. 
Find the magnitude and direction of the 
resultant with respect to the larger vector. 

3.10 Given four coplanar vectors 8, 12, 10, 
and 6 units long, respectively; the last three 

make angles with the first of 70°, 150°, and 
200°, respectively. Find the magnitude and 
direction of the resultant vector. 

3.11 An airplane is supposed to travel 
from A in a direction due north to B, and 
then return to A. The distance between A 
and B is L. The air speed of the plane is v 

and the wind velocity is v'. (a) Show that 
the time for the round trip in still air, 
v' = 0, is ta = 2L/v. (b) Show that the 
time for the round trip when the wind is 
directed due east (or west) is 

(c) Show that the time for the round trip 
when the wind is directed due north ( or 
south) is t 0 = ta/1 - (v' 2/v 2). (d) What 
is the feasibility of trips (b) or (c) when 
v' = v? For a given v', which time is 
greater, tb or tc? 

Figure 3-39 

3.12 The pennant on the masthead of a 
sailboat streams back at an angle of 45°, 
as shown in Fig. 3-39, but the flag on the 
clubhouse extends out at 30° south of west. 
(a) If the speed of the boat is 10 km hr-1, 

find the wind velocity. (b) Find the ap
parent wind velocity for an observer on the 

boat. 

3.13 Prove that if the magnitudes of the 
sum and the difference of two vectors are 
equal, the vectors are perpendicular. 



3.14 Prove that if the sum and the differ
ence of two vectors are perpendicular, the 

vectors have equal magnitudes. 

3.15 Verify that the magnitude of the sum 
and difference of two vectors A and B, ex
pressed in rectangular coordinates, are 

given by 

S = [(A.,+ B.,)2 + (Ay + By)2 

+ (A.,+ B.)2]112 

and 

D = [(A., - B.,) 2 + (Ay - By) 2 

+ (Az - Bz)2]112, 

respectively. 

3.16 Given the vectors 

and 
A = u.,(3) + uy(4) + u 2 (-5) 

B = u.,(-1) + uy(l) + u 2 (2). 

Find: (a) the magnitude and direction of 
their resultant, (b) the same for their dif
ference, A - B, and (c) the angle between 
A and B. 

3.17 Find the resultant of the sum of the 
following vectors: 

(a) Vi = ux(5) + uy(-2) + u 2 , 

(b) V2 = u.,(-3) + uy(l) + u 2 (-7), 

(c) V3 = u.,(4) + uy(7) + u 2 (6). 

Obtain the magnitude of the resultant and 
the angles it makes with the X-, Y-, and Z

axes. 

3.18 Given three vectors: 

(a) V1 = ux(-1) + uy(3) + u 2 (4), 

(b) V2 = u.,(3) + uy(-2) + uz(-8), 

(c) V3 = u.,(4) + Uy(4) + u 2 (4). 

(a) By direct manipulation, determine 
whether there is any difference between 
the vector products V1 X (V2 X V3) and 

(Vi X V2) X V3. (b) Find V1 • (V2 X V3) 

and (Vi X V2) • V3 and determine whether 
there is any difference. Compute (V3 X 

Vi) · V2 and compare this result with the 
previous two. 
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3.19 Express V1 · (V2 X V3) in deter
minant form. Derive from it its sym
metry properties; that is, 

V3 · V1 X V2 

V2 • V3 x V1. 

Prove that the value-of the triple product 
is equal to the volume of the parallelepiped 

made from the three vectors. 

3.20 Prove that 

Vi X (V2 X V3) 

= (Vi • V2) V2 - (V1 • V2) V3. 

[Hint: Place the X-axis along V3 and the 
Y-axis so that V2 is in the XY-plane, and 
check by direct expansion.] 

3.21 Find the distance between two 
points, P1(4, 5, -7) and P2(-3, 6, 12). 

Also write the equation of the straight 
line passing through them. 

3.22 Find the distance from point 
P(4, 5, -7) to the straight line which 
passes through point Q(-3, 6, 12) and is 
parallel to the vector V = u.,(4) -

uy(l) + uz(3). Also find the distance from 
point P to the plane through Q perpendicu
lar to V. 

3.23 Prove that the distance between the 
line passing through P1 parallel to V1 and 
the line through P2 parallel to V2 is 

~ · V1 X V2/IV1 X V2I. [Note: The 
distance between two skew lines is defined 
as the length of the shortest line perpen
dicular to both lines.] Write the above 
result in expanded form, using the co
ordinates of P1 and P2 and the compo
nents of V1 and V2. Apply to the case 

when P1(4, 5, -7), P2(-3, 6, 12), V1 = 
u.,+ uy+ u 2 , and V2 = u.,(-2) + uy(I) + 
u 2 (3). 

3.24 Given a line passing through 
P(4, 5, -7) parallel to V1 = u.,(-1) + 
uy(2) + u.(-4) and a plane through 
Q(-3, 6, 12) perpendicular to V2 = u., + 
uy(-1) + uz(2). (a) Write the respec-
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tive equations in rectangular coordinates. 

(b) Find the point of intersection of the 

line and the plane. (c) Find the angle 

between the line and the plane. 

3.25 Find the equation of the line which 

passes through P(4, 5, -7) and is parallel 

to the line of intersection of the planes 

3x - 2y + 5z = 10 and x + y - 2 = 4. 

Find also the equation of the intersection. 

3.26 Prove that if Vi, V2, and V3 add to 

zero, then Vi X V3 = V3 X V2 = V2 X Vi. 
From these relations, conclude that 

Vi/sin L V 2 V 3 = V 2/sin L V 3 V 1 = V 3/ 

sin L V 1 V 2 where L VS i means the angle 

between vectors Vi and V;. 

3.27 Prove that if two vectors have the 

same magnitude V and make an angle (), 

their sum has a magnitude S = 2V cos f() 

and their difference is D = 2V sin fe. 
3.28 Using the components of V1 and V2 

expressed in spherical form (Eq. 3.10), 

prove that the angle between the vectors 

may be found from 

cos e12 = sin e1 sin ()2 cos (q,1 - 4>2) 

+ cos e1 cos e2, 

where e12 is the angle between the vectors. 

This result is of great use in astronomical 

computations. Adapt this result to obtain 

the angle between the verticals at San 

Francisco (latitude: 37° 45' N; longitude: 

122° 27' W) and New York (latitude: 

40° 40' N; longitude: 73° 50' W). Check 

your answer against that of Problem 2.17. 

3.29 Given the set of 3 noncoplanar vec

tors a1, a2, a3, the vectors 

1 a2 X a3 
a 

a1 ~a2 X a3 

2 a3 X a1 
a 

a1 • a2 X a3 

3 a1 X a2 
a 

a1 • a2 X a3 

are called the reciprocal vectors. Prove 

that ai • ai = 1 and ai • ai = 0, where i 

and j take the values 1, 2, 3. Discuss the 

geometrical arrangement of the reciprocal 

vectors a1, a 2, a3 relative to a1, a2, a3. 

3.30 Prove that any vector V can be 

written in either of the two alternative 

forms 

V = (V • a 1)a1 + (V • a 2)a2 + (V • a 3)a3 

Li (V • ai)ai 

or 

V = (V • a1)a1 + (V • a2)a2 + (V • a3)a3 

Li (V · ai)ai. 

3.31 Calling V · Oi = vi and Vi = V · ai 

the covariant and contravariant components 

of V, and 

Yii = Oi. Uj, 

prove that 

and 

These relations are very important in 

vector calculations using nonrectangular 

coordinates, and are especially useful in 

solid-state physics when one is dealing 

with the crystalline structure of solids. 

3.32 Prove that 

0 1 • a 2 X a3 = l/a1 • a2 X a3. 

3.33 Prove that r = as2 + bs + c (where 
a, b, and c are constant vectors and s a 

scalar variable) represents a parabola lying 

in the plane determined by vectors a and b 

and passing through a point whose position 

vector is c. 

3.34 Show that a unit vector in three di

mensions can be expressed as 

u = Ux COS a+ Uy COS {3 + Uz COS(), 

where the angles a, {3, and () are as defined 

in Fig. 3-17. 



3.35 Using the fact that the vector repre

senting a closed surface is zero, prove that 

two surfaces having the same closed line 

as a boundary are represented by the same 

vector. 

3.36 An open surface is limited by a tri

angle with vertices at (0, 0, O), (2, 0, O), 

and (0, 2, 0). It is composed of three tri
angular surfaces each having one side 

coincident with the sides of the triangle 

and one common vertex at point (a, b, c). 

Show that the vector representing the com

plete surface is independent of (a, b, c). 
Was this result to be expected in view of 
Problem 3.35? 

3.37 A tetrahedron is a solid body limited 

by four triangular surfaces. Consider the 
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tetrahedron with vertices at points (0, 0, 0), 

(2, 0, 0), (0, 2, 0), and (1, 1, 2). Find: 
(a) the vector representing each face; (b) 

the vector representing the whole tetra

hedron; (c) the magnitude of the surface of 

the tetrahedron. Were you expecting the 
result obtained in (b)? 

3.38 Using vector mtlthods, find: (a) the 

length of the diagonals of a cube; (b) their 

angles with the adjacent sides; (c) their 

angles with the adjacent faces; (d) the 

angles between the diagonals. 

3.39 The faces of a regular tetrahedron 

are equilateral triangles of side a. Find, 

using vector methods, the angle of each 

side with the opposite face and the dis

tance from one vertex to the opposite face. 
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4.1 Introduction 

An important usage of vector algebra is its application to the composition of 

forces. The precise definition of force will be analyzed in Chapter 7, where we 

shall discuss the dynamics of motion. However, to gain more skill in the manipu

lation of vectors, we shall now discuss the composition of forces, and in particular 

the equilibrium of forces, a problem of wide application in engineering. 

We shall assume at present an intuitive notion of force, derived from our every

day experience, such as the force needed to push or pull a given weight, the force 

exerted by certain tools, etc. This intuitive notion suggests that force is a vector 

quantity having magnitude (or intensity) and direction. Experience confirms that 

forces are combined according to the rules of vector algebra. In this chapter we 

shall consider forces applied only to mass points or particles and rigid bodies. 

In the MKSC system, the unit of force is the newton (abbreviated N), which 

will be defined in Section 7.8. In this chapter, however, we shall also express force 

in other units, such as kilogram-force (kgf), pound-! orce (lbf), poundal (pdl), and 

ton (T). These units, which are frequently used in engineering, have equivalences 

with the newton as follows: 

1 kgf = 9.8 N, 1 lbf = 0.46 kgf :::::: 4.45 N, 

1 pdl = 0.031 lbf :::::: 0.138 N, 1 T = 2000 lbf :::::: 8900 N. 

It is customary in engineering practice, when referring to pounds-force and to 

kilograms-force, to say simply "pounds" and "kilograms," although these actually 

refer to units of mass. 

4.2 Composition of Concurrent Forces 

If the forces are concurrent (i.e., if they are all applied at the same point), their 

resultant is their vector sum, obtained according to the method explained in Sec

tion 3.6. Therefore, the resultant R of several concurrent forces F 1, F 2 , Fa, ... is 

(4.1) 

If the forces are coplanar, say in the XY-plane, we have, in view of Eq. (3.16), 

that R = uxRx + uyRy, where 

Rx= I:,Fix = I:,Fi cos <Xi, Ry= I:,Fiy = I:,Fi sin ai, (4.2) 

The magnitude of R is R = .../ R'fc + Ri, and its direction is given by the angle a 

such that tan a = Ry/Rx, We must assume that the resultant R is physically 

equivalent to the components F 1 , F2 , Fa, .... 

EX AMP LE 4.1. Find the resultant of the following forces acting on a body at O 

(Fig. 4-1). Force F1 is equal to 1200 lbf, force F2 is equal to 900 lbf, force F 3 is 300 lbf, 

and force F4 is 800 lbf. The directions are as indicated in the figure. 
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Solution: First we express each force in terms of its components along the X- and Y

axes, using in each case the angle between the positive X-axis and the force. Thus 

Fi = Ux(1200) ]bf, 

F2 = ux(F2 cos 40°) + uy(F2 sin 40°) = Ux(689.4) + uy(578.5) lbf, 

Fa = ux(Fa cos 120°) + Uy(Fa sin 120°) = ux(-150) + uy(259.8) lbf, 

F 4 = ux(F 4 cos 230°) + uy(F 4 sin 230°) = ux(-514.2) + uy(-612.8) lbf. 

Then since R = F1 + F2 + Fa + F4, we have 

Rx = 1200 + 689.4 - 150 - 514.2 = 1225.2 lbf, 

Ry = 0 + 578.5 + 259.8 - 612.8 = 225.5 lbf, 

or R = ux(1225.2) + uy(225.5) lbf, from which the magnitude and direction of the re

sultant force can be found to be R = 1245.4 lbf and a = 10.4°. 

y 

/ 

/ 

B /" e ~?""'A ____ F_ 
O c 

Figure 4-1 Fig. 4-2. Torque of a force. 

4.3 Torque 

Consider a force F acting on a body C that can rotate about point O (Fig. 4-2). 

If the force does not pass through 0, the net effect will be to rotate the body around 

0. Our daily experience suggests that the rotating effectiveness of F increases with 

the perpendicular distance (called lever arm) b = OB from O to the line of action 

of the force. For example, when we open a door, we always push or pull as far as 

possible from the hinges and attempt to keep the direction of our push or pull per

pendicular to the door. This experience therefore suggests the convenience of 

defining a physical quantity r that will be called torque, according to 

r = Fb, (4.3) 

or torque = force X lever arm. Accordingly, torque must be expressed as the 

product of a unit of force and a unit of distance. Thus in the MKSC system, 

torque is expressed in newtons meter or N m. But other units, such as kgf m or 

lbf ft, are also used. 
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Noting from the figure that b = r sin (), 

we also may write 

r = Fr sine. (4.4) 

Comparing this equation with Eq. (3.21), 

we conclude that the torque may be con

sidered as a vector quantity given by the 

vector product 

T = r X F, (4.5) 

where r is the position vector, relative to 

0, of the point A on which the force is 

acting. According to the properties of the 

Torque 59 

Fig. 4-3. Vector relation between 
torque, force, and position vector. 

vector product, the torque is represented by a vector perpendicular to both r 

and F; that. is, perpendicular to the plane that may be drawn through both rand 

F, and directed according to the sense of advance of a right-handed screw rotated 

in the same sense as the rotation produced by F around 0. This is indicated in 

Fig. 4-3. 

Remembering that r = UxX + uyy + UzZ and F = uxFx + uyFy + UzFz, we 

have, by application of Eq. (3.26), 

Ux Uy Uz 

T = X y z = ux(YFz - zFy) + Uy(zFx - xFz) + Uz(XFy - yFx); (4.6) 

Fx Fy Fz 

or Tx = yFz - zFy, Ty = zFx - xFz, and Tz = xFy - yFx. In particular, if 

both rand Fare in the XY-plane, z = 0 and Fz = 0, so that 

T = Uz(XFy - yFx), (4.7) 

and is parallel to the Z-axis, as illustrated in Fig. 4-4. In magnitude, we have 

T = xFy - yFx. (4.8) 

Note that a force may be displaced along its line of action without changing its 

torque because the distance b remains the same. Thus when x and y are left ar

bitrary, Eq. (4.8) expresses the equation of the line of action of the force having 

a torque -r. 

EXAMPLE 4.2. Determine the torque applied to the body in Fig. 4-5, where Fis 6 N 

and makes an angle of 30° with the X-axis and r is 45 cm long and makes an angle of 50° 

with the +X-axis. Find also the equation of the line of action of the force. 

Solution: We may proceed in two different ways. First, from the figure we see that the 
lever arm of F (since r = 45 cm = 0.45 m) is b = r sin 20° = (0.45 m) (0.342) = 0.154 m. 
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Thus the torque around O is 

T = Fb = (6 N) (0.154 m) = 0.924 Nm. 

Strictly speaking, we must write -0.924 Nm, because the rotation around O is clock

wise, corresponding to a screw advancing in the -z direction, or into the paper. 

As a second method, we may use Eq. (4.8), since the problem is in two dimensions. 
Now 

Thus 

x = r cos 50° = 0.289 m, 

Fx = F cos 30° = 5.196 N, 

y = r sin 50° = 0.345 m, 
Fy F sin 30° = 3.0 N. 

T = xFy - yFx = 0.867 - 1.792 -0.925 Nm, 

in agreement with our previous result. 
also giving the sign. 

This method has the additional advantage of 

z 
y 

1" 

y 

x 

Figure 4-4 Figure 4-5 

To obtain the equation of the line of action of F, we simply leave x and y arbitrary in 
Eq. (4.8), resulting in 

-0.925 3x - 5.196y. 

4.4 Torque of Several Concurrent Forees 

Consider now the case of several concurrent forces F 1 , F 2 , Fa, ... acting on a 

point A (Fig. 4-6). _The torque of each Fi relative to O is Ti = r x Fi; note that 

we write r and not ri because all forces are applied at the same point. The torque 

of the resultant R is T = r X R, where R = F 1 + F 2 +Fa+ · · · and r is 
again the common position vector. Applying the distributive property of the vec

tor product, we have 

r x R = r x (F1 + F2 + Fa + · · ·) 
r X F 1 + r X F2 + r X Fa + · · · 
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Therefore 

T = T1 + T2 + T3 + • · · = L Ti, (4.9) 

In words, the torque of the resultant is equal 

to the vector sum of the torques of the com

ponent forces if they are concurrent. 

If all the forces are coplanar, and O is also 
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R 

in the same plane, all torques appearing in o 
Eq. (4.9) have the same direction perpen

dicular to the plane, and the relation (4.9) can Fig. 4-6. When the forces are con
current, the torque of the resultant 
is equal to the vector sum of the 
torque of the components. 

be written as 

(4.10) 

Equation (4.9) proves that a system of concurrent forces can be replaced by a single 

force, its resultant, that is completely equivalent to the system in so far as transla

tional and rotational effects are concerned. 

EXAMPLE 4.3. Consider three forces applied at 

point A of Fig. 4-7, with r = 1.5 ft and 

F1 u.,(6) + uy(O) + u.(O) lbf, 

Ux(6) - Uy(7) + u.(14) lbf, 

ux(5) + uy(O) - u.(3) lbf. 

x 
Using O as the reference point, find the resultant 

torque due to these forces. 
Figure 4-7 

z 

Solution: First, using the concept T r X R, where R = :EF,, we have 

R u.,(6 + 6 + 5) + uy(O - 7 + O) + uz(O + 14 - 3) lbf 

ux(l 7) - uy(7) + u.(11) lbf. 

y 

Using this value along with r = ux(l.06) + uy(l.06) ft, we can write the resultant 

torque, using Eq. (4.6), as 

T = r X R = Ux(ll.66) - uy(ll.66) - u.(25.44) ft-lbf. 

The resultant torque can also be found by applying Eq. (4.9) as T 

Now, again applying Eq. (4.6) to each component force, we have 

Ux(O) + Uy(O) - u.(6.36) ft-lbf, 

Tl+ T2 + T3. 

r x F1 

r X F2 

r x F3 

Ux(l4.84) - uy(l4.84) - u.(13.78) ft-lbf, 

-ux(3.18) + Uy(3.18) - uz(5.30) ft-lbf. 
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Adding the three torques, we obtain our previous result for T. In this way we have veri
fied Eq. (4.9). The student should verify that T • R = 0, indicating that T and R are 
perpendicular for concurrent forces. 

4.5 Composition of Forces Applied to a Rigid Bodu 

When the forces are not applied to the same point, but act on a rigid body, it is 

necessary to distinguish two effects: translation and rotation. The translation of 

the body is determined by the vector sum of the forces; that is, 

(4.11) 

In this case the point of application of R is still undetermined. The rotational 

effect on the body is determined by the vector sum of the torques of the forces, all 

evaluated with respect to the same point: 

B ------

(4.12) 

At first sight it seems logical to suggest, then, that 

force R should be applied at a point chosen in such 

a way that the torque due to R is equal to T, a 

situation that, as we know, always holds in the 

case of concurrent forces. If that is possible, the O 

force R so applied is equivalent to the system, Fig. 4-8. Couple. 
both in translation and rotation. 

---

Generally, however, this is not possible because the torque of R is a vector per

pendicular to R and in many cases R and T, given by Eqs. (4.11) and (4.12), are 

not perpendicular. Therefore, in general, a system of forces acting on a rigid body 

cannot be reduced to a single force or resultant equal to the vector sum of the 

forces. 

As a simple example let us consider a couple, which is defined as a system of 

two forces of equal magnitude but opposite directions acting along parallel lines 

(Fig. 4-8). The resultant or vector sum of the two forces is obviously zero, R = 

F 1 + F 2 = 0, indicating that the couple produces no translational effect. On the 

other hand, the vector sum of the torques, taking into account the fact that F 2 = 

-F1 , is 

T = !1 + T2 = r1 X F1 + r2 X F2 = r1 X F1 - r2 X F1 

(r1 - r 2) X F1 = b X Fi, (4.13) 

where b = r 1 - r 2 is called the lever arm of the couple. Therefore T ,:.::: 0, and 

the couple produces a rotational effect. Note that bis independent of the position 

of 0, and therefore the torque of the system is independent of the origin about 

which the torque is computed. Obviously it is impossible to find a single force 

satisfying all these conditions. 
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Returning to the general case, we observe that a 

system of forces can always be reduced to a force 

and a couple. The force is chosen equal to R for 

translational equivalence and is applied at the point 

about which the torques were evaluated, so that its 

torque is zero. The couple with a torque equal to -r 

is then chosen for rotational equivalence. 

EXAMPLE 4.4. Find the resultant force and the re

sultant torque of the system illustrated in Fig. 4-9, where 

F1 Ux(3) + Uy(4) + u.(4) N 
and 

Ux(-2) + Uy(5) + u.(1) N, 
Figure 4-9 

and the points of application are A (0.4 m, 0.5 m, O) 

and B (0.4 m, -0.1 m, 0.8 m). 

Solution: We first find the resultant, 

R = F1 + F2 = Ux(l) + uy{9) + u.(5) N. 

Next we find the torque of each force about 0: 

Therefore 

Ux(2) + uy(-1.6) + u.(0.1) Nm. 

Ux(-4.1) + Uy(-2.0) + u.(1.8) N m. 

T = Tl + T2 = ux(-2.1) + uy(-3.6) + u.(1.9) N m. 
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To see now if R can be located so that its torque is equal to -r, we must discover first if 

T and Rare perpendicular. Applying Eq. (3.20), we find 

-r • R = (-2.1)(1) + (-3.6)(9) + (1.8)(5) = -25.5 Nm. 

So T • R is different from zero. Therefore the system of Fig. 4-9 cannot be reduced to a 

single force. 

4.6 Composition of Coplanar Forces 

When the forces are all in a plane, it is always possible to reduce the system to 

one resultant force R, given by Eq. (4.1) (unless it reduces to a couple if R = 0 

but -r -¢ 0), because in this case T is always perpendicular to R. Placing the 

origin of coordinates O at the center of torques in the plane of the forces, we note 

that -r 1 , -r 2 , ... and also -r = Li Ti are all perpendicular to the plane, as we see 

by application of Eqs. (4.6) or (4.7), and from Fig. 4-4. Therefore, R and -rare 

perpendicular, and it is possible to place R at such a distance r from O that its 

torque is equal to -r, that is, r x R = -r. In this case the vector relation -r = 

Li Ti can be replaced by the scalar equation r = Li Ti, where each Ti is computed 
according to Eq. (4.8), because all vectors have the same direction. Therefore, if 

Rx and Ry are the rectangular components of R, then R must be placed at a point 
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(x, y) such that 

xRy - yRx = T. (4.14) 

This is the equation of a straight line that corresponds to the line of action of the 

resultant force; i.e., there is not a single point of application, but rather a line of 

application. 

More elaborate reasoning shows that this result holds even when the center of 

torques is outside the plane of the forces. 

EXAMPLE 4.5. Determine the resultant of the system of forces illustrated in Fig. 4-10, 

all acting in one plane. The magnitudes of the forces are F1 = 10 kgf, F2 = 8 kgf, 

F3 = 7 kgf. The side of each square is 0.1 m. 

Solution: We first write each force in vector form: 

Fi Ux(lO) kgf, 

u,x(F2 cos 135°) + uy(F2 sin 135°) 

-uy(7) kgf. 

ux(-5.66) + uy(5.66) kgf, 

The resultant force R = Fi+ F2 + F3 is thus 

R = ux( 4.34) + uy( -1.34) kgf 

or R = 4.54 kgf, and it makes an angle a = -17.1° with the X-axis. 

The coordinates of the points of application of the forces are A (0.2 m, 0), B (0.5 m, 

0.3 m), and C (0, 0.5 m). Using Eq. (4.8), we compute 
y 

71 -(0.3 m) (10 kgf) = -3.00 kgf m, Fz 

01'.c 72 -(0.5 m) (-5.66 kgf) = +2.83 kgf m, 45 

73 (0.2 m)(-7 kgf) = -1.40 kgf m. 

Thus 7 = 71 + 72 + 73 = -1.57 kgf m, and 
is a vector along the Z-axis. To find the line of 

action of the resultant we apply Eq. (4.14), 

leaving x and y arbitrary. Then 

x(-1.34) - y(4.34) = -1.57 

or 

1.34x + 4.44y = 1.57, 

corresponding to the straight line SU. 

4. 7 Composition of Parallel Forces 

s, ---

0 

-- F1 

-.............. ii,.. __ B 
R --- ,-u 

A x 

Figure 4-10 

Let us consider a system of forces parallel to a unit vector u. Then Fi = uFi, 

where Fi is positive or negative depending on whether the direction of Fi is the 

same as u or opposite. The vector sum is 

(4.15) 
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and therefore is also parallel to u. The magnitude of the resultant is then 

R = Li Fi. 

The vector sum of the torques is 

T = Li ri X Fi = Li ri X uFi = (Li riFi) X u, 
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(4.16) 

which is perpendicular to u and therefore also perpendicular to R. Accordingly, 

by placing Rat a proper position re, it is possible to equate its torque to T; that is, 

re x R = T. Introducing the expressions for Rand T given above, we may write 

or 

This equation is satisfied if re(Li Fi) = Li riFi or 

Li riFi riFi + r2F2 + · · · r - - . 
e - Li Fi - Fi + F2 + ... (4.17) 

The point defined by re above is called the center of parallel forces. We conclude 

that a system of parallel forces can be reduced to a single force, parallel to each 

of the forces, given by Eq. (4.15), and acting on the point given by Eq. (4.17). 

The vector equation (4.17) can be separated into its three component equations: 

(4.18) 

where we have designated by Xe, Ye, and Ze the coordinates of the point defined by 

re. 

y 

t • F3 = 300 lbf 

I IR 
I I 

I F 1 = 200 lbf : 
I I 
I I 
I I I :t'c ___ _...I 

I I 
1 8. I r- m 
I I 

A=====4-c===..;..........i_ ----X 
+----20 in -IB 

F2 = 100 lbf Figure 4-11 

EXAMPLE 4.6. Find the resultant of the forces acting on the bar of Fig. 4-11. 

Solution: Taking the upward direction as positive and using Eq. (4.16), we find the 
resultant to be 

R = Li Fi = Fi - F2 + Fa = 400 lbf. 



66 Forces (4.8 

To determine its point of application we use Eq. (4.18). Only the first equation is required, 
since all the forces are on a line. Taking point A as the origin, we obtain 

(200 lbf) (8 in) + ( -100 lbf) (20 in) + (300 lbf) ( 40 in) = 29 in. 

400 lbf 

The point taken as the origin is immaterial. To show that this is so, let us take point D 

as the origin. Then 

Xe = 
(200 lbf) ( -12 in) + ( -100 lbf) (O in) + (300 lbf) (20 in) = 9 in. 

400 lbf 

This point is exactly the same as before, since AD 20 in. 

4.B Center of Mass 

Every particle subject to the earth's gravitational field is acted on by a force W, 

called its weight. The direction of this force, if extended, passes through the center 

of the earth. In Section 7.6, it will be seen that when mis the mass of the particle 

and g the acceleration due to gravity, the following .relation exists: 

W= mg. (4.19) 

Although the weights intersect at the center of the earth, they may be considered 

parallel when they act on particles comprising a body of relatively small dimen

sions. Therefore the resultant weight of a body is given by W = Li mig, where 
the sum extends over all particles comprising the body, and is applied at a point 
given by 

Li rimig Li miri 
re = Li mig = Li mi ' (4.20) 

in accordance with Eq. (4.17). Using Eq. (4.18), we may write the components 

of Eq. (4.20) as 

(4.21) 

A point defined by Eqs. (4.20) or (4.21) is called the center of mass of the system 

of particles, abbreviated CM.* The concept of center of mass is important not only 

in relation to the composition of parallel forces. It also plays an essential role in 

the analysis of the motion of a system of particles and, in particular, of a rigid 

body, as will be seen in Chapters 9 and 10. 

* Actually the weight is applied at a slightly different point called the center of gravity. 
For practical purposes there is no difference between the points unless the body is very 
large. 
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TABLE 4-1 Centers of Mass 

I 
I.,,. 

---.A"
.,,. I 

I 
---1-

1 

Figure 

ED 

Center of mass 

Position of CM 

Triangular plate 

Point of intersection of the 
three medians _ 

Regular polygon and circular plate 

At the geometrical center of 
the figure 

Cylinder and sphere 

At the geometrical center of 
the figure 

Pyramid and cone 

On line joining vertex with 
center of base and at :!-
of the length measured from 
the base 

Figure with axial symmetry 

Some point on the axis of 
symmetry 

Figure with center of symmetry 

At the center of symmetry 
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Considering a body composed of a large number of particles, all very compact, 

we may assume that it has a continuous structure. If pis its density at each point, 

we may divide the volume into volume elements dV, and the mass in each will be 

dm = p dV. Therefore, when we replace the sums in Eq. (4.21) by integrals, 
the center of mass is given by 

f,px dV 
Xe= fp dV' 

fpydV 
Ye= fp dV' 

fpzdV 
z = . 

e fpdV 
(4.22) 

If the body is homogeneous, p is constant and cancels out from Eqs. (4.22), re

sulting in 

fxdV f xdV 
Xe = f dV = -----=v-' (4.23) 

with similar equations for Ye and ze. In this case the center of mass is determined 

exclusively by the geometry of the body.* 

When the homogeneous body has some symmetry, the calculation is simplified 

because the center of mass must coincide with the symmetry element. If a body 

has a center of symmetry, such as a sphere, a 

parallelepiped, etc., the center of mass coin

cides with it. If the body has an axis of sym

metry, such as a cone, the center of mass is on 

the axis. (See Table 4-1.) 

EXAMPLE 4.7. Find the center of mass of the 

particles located as shown in Fig. 4-12. The 

values of the masses are m1 = 5 kg, m2 = 30 kg, 

m3 = 20 kg, m4 = 15 kg. The side of each 

square is 5 cm. 

Solution: We must find first the total mass m: 

y 

m4 

m1 

0 

Figure 4-12 

m = Li mi = 5 kg+ 30 kg+ 20 kg+ 15 kg = 70 kg. 

mz 

x 

CM 

m3 
x 

Next we apply the first and second equations of (4.21). We omit the units for brevity. 

The result is 

(5)(0) + (30)(15) + (20)(30) + (15)(-15) 
70 = 11.8 cm, Xe 

Ye = 
(5)(0) + (30)(20) + (20)(0) + (15)(10) = 10_7 cm. 
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The center of mass is thus located at the point indicated by CM in Fig. 4-12. 

* For the technique of computing the center of mass, see any calculus text; for example, 
Calculus and Analytic Geometry, third edition, by G. B. Thomas. Reading, Mass.: Addison
Wesley, 1962, Sections 5-9, 15-3, and 15-6. 
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4.9 Statics. Equilibrium of a Particle 

Statics is the branch of mechanics that deals with the equilibrium of bodies. A 

particle is in equilibrium if the sum of all the forces acting on it is zero; that is, 

(4.24) 

The above equation is equivalent to 

Li Fix= O; Li Fiy = O; LiFiz = 0. (4.25) 

We shall now illustrate how to solve some simple problems involving equilibrium 

of a particle. 

EXAMPLE 4.9. Discuss the equilibrium of three forces acting on a particle. 

Solution: We shall consider the three forces illustrated in Fig. 4-13. If the forces 

are in equilibrium, it means that 

so that if we draw a polygon with the three forces we must obtain a triangle, as shown 

in Fig. 4-14. This indicates that the three concurrent forces in equilibrium must be in 

one plane. Also, applying the Law of Sines (M.15) to this triangle, we get 

--=--=--• 
sin a sin {3 sin 'Y 

(4.26) 

which is a very useful formula relating the magnitudes of the forces and the angles be

tween them. 

Figure 4-13 Figure 4-14 

\ 
\ 
\ 

TV \ 

Fig. 4-15. Equilibrium on an inclined 
plane. 

EXAMPLE 4.10. Discuss the equilibrium of a particle on a smooth inclined plane. 

Solution: The particle O resting on inclined plane AB (Fig. 4--15) is subject to the fol

lowing forces: its weight W, the pull F, and the normal reaction of the plane N. We wish 

to express F and Nin terms of W, a, and 0. We may proceed in two different ways. 
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Using the Law of Sines, Eq. (4.26), and considering the geometry of Fig. 4-15, we have 

F N 

sin (180° - a) sin (90° + a + ()) 
or 

F N w 
= =--, 

sma cos (a+ fJ) cos (J 

giving for F and N 

Wsina 
F = cos() I 

N 
W cos (a+ fJ) 

cos() 

w 
sin (90° - fJ) 

As an alternative procedure, we may introduce axes X and Y as shown in the figure 

and apply the first two equations of (4.25). The result is 

F cos () - W sin a = 0, 

F sin () - W cos a + N = 0. 

From the first we obtain 

F cos (J = W sin a or F = Wsina, 
cos (J 

in agreement with our previous result. From the second, using the expression already 

found for F, we have 

N = W cos a - F sin () W W sin a sin (J 
cos a - () 

cos 

= W cos a cos (J - sin a sin (J = W cos (a+ 8) , 

cos (J cos (J 

which again is the previously obtained result. The student must decide, in each particular 

problem, which method is more direct or convenient. 

4.10 Statics. Equilibrium of a Rigid Bod-,, 

When forces are acting on a rigid body, it is necessary to consider equilibrium 

relative to both translation and rotation. Therefore the two following conditions 

are required: 

I. The sum of all ~he forces must be zero (translational equilibrium): 

(4.27) 

II. The sum of all the torques relative to any point must be zero (rotational 

equilibrium) : 

Li Ti= 0. (4.28) 
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If the forces are all in one plane, the above conditions reduce to the following three 

algebraic equations: 

Li Ti= 0. (4.29) 

Since these are three simultaneous equations, problems in plane statics are deter

mined only if there are three unknown quantities. We now iilustrate the technique 

of solving some typical problems of plane statics. -

y 

F 

F' 

F 1 =200 kgf 

F2 =500 kgf Figure 4-16 

EXAMPLE 4.11. The bar of Fig. 4-16 is resting in equilibrium on points A. and B, 

under the action of the forces indicated. Find the forces exerted on the bar at points A. 

and B. The bar weighs 40 kgf and its length is 8 m. 

Solution: Applying first the condition (4.27) for translational equilibrium, we have 

LF i = F + F' - 200 - 500 - 40 - 100 - 300 = 0 
or 

F + F' = 1140 kgf. (4.30) 

Second, we apply condition (4.28) for rotational equilibrium. It is more convenient to 

compute the torques relative to A., because in this way the torque of force Fis zero. Thus 

Li Ti = (-200)(-1) + F(O) + (-500)(2) + (-40)(3) -+ (-100) (4.5) + F' (5.5) • (300) (7) = O 

or F' = 132.7 kgf. Combining this result with Eq. (4.30), we obtain F 
which solves the problem. 

1007.3 kgf, 

EXAMPLE 4.12. A ladder AB weighing 40 lbf rests against a vertical wall, making an 

angle of 60° with the floor. Find the forces on the ladder at A. and B. The ladder is pro

vided with rollers at A. so that the friction with the vertical wall is negligible. 
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Solution: The forces acting on the ladder are illustrated in Fig. 4-17. The weight W 

is at the center C of the ladder. Force F 1 is required to prevent the. ladder from sliding 

and results from friction with the floor. Forces F2 and F3 are the normal reactions at the 
floor and the vertical wall. Using the three conditions of equilibrium, as stated in Eq. 
(4.29), we have 

"'E,Fiz = -F1 + F3 

"'E,Fiy = -W + F2 

o, 
0. 

(4.31) 

Calling L the length of the ladder and taking torques around 

B so that the torques of the unknown forces F1 and F2 are 

zero, we have for the third equation of equilibrium, 

or 
L,Ti = W(-!L cos 60°) - F3(L sin 60°) 0 

F
3 

= W cos 60° 
2 sin 60° 

11.52 lbf. 

Then Eqs. (4.31) give 

F1 F3 = 11.52 lbf 
and 

W = 40 lbf. Figure 4-17 

Note that if the ladder has no roller at A, a frictional force parallel to the vertical wall 

is also present at A. Thus we have four unknown forces, and some additional assumption 
is required to solve the problem. 
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Problems 

4.1 A telephone pole is held in a vertical 

position by means of a cable that is fixed 

on the pole at a height of 10 m and also 

fixed to the ground 7 m from the base of 

the pole. If the tension in the cable is 

500 lbf, what are the horizontal and verti

cal forces exerted on the pole by the cable? 

4.2 A block weighing 6 kgf is on a smooth 

horizontal surface. It is pushed with a 

stick (which forms a 30° angle with the 

horizontal) by a force of 6 kgf. (a) What 

is the total perpendicular force exerted on 

the surface? (b) What is the force parallel 

to the surface? 

4.3 An inclined plane is 2 m high and 5 m 

long. There is a stone block (weight 

10 kgf) on the plane, held in place by a 

fixed obstacle. Find the force exerted by 

the block (a) on the plane and (b) on the 

obstacle. 

y 

6 lbf 

73 

forces are, consecutively, 50°, 30°, and 60°. 

Calculate the magnitude of the resultant 

force and the angle it makes with the 

30-N force. 

4.6 Given the following three forces: F1 = 
u.,(500) lbf; F2 = u.,(O) + uy(-200) + 

u.(100) lbf; F3 = u.,(-100)+uy(50)+ 

u.(-400) lbf. (a) Determine the magni

tude and direction of the resultant force. 

(b) Determine the resultant torque of the 

above forces, if they are all applied at the 

point (4, -3, 15), with respect to the 

origin 0. Use the resultant force to deter

mine the resultant torque. 

4.7 Find the torque, with respect to the 

origin 0, of each force given in Problem 

4.6, when each is applied at the point 

(4, -3, 15). Prove that the resultant 

torque is perpendicular to the resultant 

force. 

4.8 (a) Find the resultant torque about 

point O of the forces listed in Problem 4.6 

when they are applied at different points: 

F1 at (3, 8, 10); F2 at (-2, 0, 4); F3 at 

(4, -25, 10). (b) Find R · T and indicate 

-_.i_,,--3j-8;;..;.;;1b;.;.f--X the minimum reduction of the system. 
30° 

(a) 

Figure 4-18 

12 lbf 

(b) 

y 

(c) 

4.4 Find the magnitude and direction of 

the resultant of the system of forces repre

ted in Fig. 4-18. 

4.5 Four coplanar forces (30 N, 40 N, 

20 N, and 50 N) are all acting concur

rently on a body. The angles between the 

y 

Figure 4-19 

4.9 Calculate the torque of the force in 

Fig. 4-19 with respect to the origin. 

Determine the equation of the line of 

action of the force. 

4.10 Determine (Fig. 4-20) the resultant 

force and resultant torque about O of 

three forces, 50 N, 80 N, and 100 N, all 
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y 

100 N 

z 

Figure 4-20 

( -2, 2) 

Figure 4-22 

x 

y 

z 

(2, 2) 

-- --A.I F
1 

= 10 lbf 

I 
I 
I 
I 

0 

C (0, -2) 

x 

mutually perpendicular to one another 

(a) if they are concurrent; (b) if the line 

of action of the 100-N force is 1.2 m from 

the point of concurrency of the other two. 

4.11 A rigid rectangle ABCD, with AB = 

CD = 0.4 m and BC = DA = 0.6 m, 

has five forces acting on it: at A, a 6-N 

force acting in the direction AB, a 4-N 

force acting along AC, and a 3-N force 

acting along AD; at C, a 5-N force acting 

in direction CD and a 4-N force acting in 

the direction CB. Determine the resultant 

force, also the torque with respect to points 

A, B, and the geometric center. 

4.12 Two parallel forces, with the same 

sense, are 0.2 m apart. If one of the forces 

is 13 N and the resultant has a line of ac

tion 0.08 m from the other force, find 

(a) the magnitude of the resultant and (b) 

the magnitude of the other force. 

Figure 4-21 

~ 
10 lb(\ 

I\ 
\ 
\ 

' \ 
\ 

Figure 4-23 
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4.13 Two parallel forces, with the same 

sense, have magnitudes of 20 N and 30 N. 

The distance from the line of action of the 

resultant to the larger force is 0.8 m. Find 

the distance between the forces. 

4.14 Solve the previous two problems, 

assuming that the forces have opposite 

senses. 

4.15 A cube of uniform density, which 

weighs 10 lbf and is 2 ft on each side, rests 

on a point at one of its vertices (Fig. 4-21). 

Where must a gas-filled balloon (that has 

an upward lifting capability of 8 lbf) 

be attached so that the cube "floats" in 

the horizontal position shown in the figure? 

What is the force at O? 

4.16 Find the magnitude and position of 

the resultant of the system of forces repre

sented in Fig. 4-22. The coordinates of 

the points A, B, and C are given in feet. 
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Figure 4-24 

F 1 = 10 kgf F3 =25 kgf 

F2=5 kgf 

Figure 4-26 

4.17 Find the magnitude and position of 

the resultant of the forces represented in 
Fig. 4-23. Each square is 1 ft on a side. 

4.18 Reduce the system of forces in 
Fig. 4-24. 

4.19 Reduce the system of forces repre

sented in Fig. 4-25. Squares are 1 cm2 • 

4.20 Prove that if R = Li Fi is the re
sultant of a system of concurrent forces and 

TO is their torque relative to the point 0, 
the torque relative to A is 

TA = To+ rAo X R. 

4.21 A stick is 2 m long and its weight is 

5 gmf (4900 dynes). There are forces of 

3000, 2000, and 1500 dynes acting down
ward at O, 50, and 200 cm from one end, 

and forces of 5000 and 13,000 dynes acting 
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y 

' 

I 

25 kgf 

-

50 kgf 

10 kgf 
I I 

() 15 kgf 
- x 

Figure 4-25 

I 

3.0 n1 

.~1·---2.0 n1------+ 

50 kg 150 kg 

Figure 4-27 

upward at 20 and 100 cm from the same 

end. Determine the magnitude and line of 
action of the resultant. 

4.22 Find the magnitude and position of 

the resultant of the system of forces repre

sented in Fig. 4-26. Each segment of the 

beam AB is 1 decimeter. Also find the 

force needed at A and B to balance the 
other forces. 

4.23 The beam AB is uniform and has a 

mass of 100 kg. It is resting on its ends A 

and B and is supporting the masses, as 

shown in Fig. 4-27. Calculate the reac
tions at the supports. 

4.24 Determine the tensions on the ropes 

AC and BC (Fig. 4-28) if M weighs 40 lbf. 

4.25 The body represented in Fig. 4-29 
weighs 40 kgf. It is held in equilibrium by 
means of the rope AB and under the action 
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A B 
50° 50° 

M 

(a) 

Figure 4-28 (d) 

of the horizontal force F. Given that 
AB = 150 cm and the distance between 
the wall and the body is 90 cm, calculate 
the value of the force F and the tension in 
the rope. 

4.26 For Fig. 4-30, calculate the angle () 

and the tension in the rope AB if M 1 = 
300 lbf and M 2 = 400 lbf. 

4.27 A boy weighing 120 lbf is holding 
onto a chinning bar. What force does 
each of his arms exert on the bar when 
(a) his arms are parallel to each other and 
(b) each arm makes an angle of 30° with 
the vertical? Plot the force as a function 
of the angle. What do you conclude from 
the graph? 

4.28 A rope ABC D is hanging from the 
fixed points A and D. At B there is a 

weight of 12 kgf and at C an unknown 

A 

() 

B 
B F 

lV 

Figure 4-29 Figure 4-30 

(b) 

M 

( c) 

B 

.-1 
(e) 

weight. If the angle of AB with the hori
zontal is 60°, BC is horizontal, and CD 

forms an angle of 30° with the horizontal, 

calculate the value W would have to have 
in order for the system to be in equi
librium. 

4.29 Three ropes, located in a vertical 
plane, are fixed to different points on a 
horizontal ceiling. The other extremes are 
held at a point A, from which a weight W 

is hanging. The angles formed by the 
ropes with the horizontal are, respectively, 
35°, 100°, and 160°. The tensions in the 
first two ropes are, respectively, 100 kgf 
and 75 kgf. Calculate the tension in the 
third rope, and also the weight W. 

4.30 Prove that if three forces are in 
equilibrium, they must be concurrent; that 
is, their lines of action, extended, must 
meet at the same point. 

Figure 4-31 Figure 4-32 
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Figure 4-33 (a) 

4.31 A sphere whose weight is 50 kgf is 
leaning on two smooth planes, respectively 
inclined 30° and 45° with respect to the 
horizontal. Calculate the reactions of the 
two planes on the sphere. 

4.32 A sphere (Fig. 4-31) weighing 50 lbf 

is leaning against a smooth wall, held there 
by a smooth inclined plane that forms a 
60° angle with the horizontal. Calculate 
the reaction of the wall and the plane on 
the sphere. 

4.33 A sphere of weight W is held by the 
rope AB (Fig. 4-32) and leans on the 
smooth vertical wall AC. If a is the angle 
between the rope and the wall, determine 
the tension in the rope and the reaction of 
the wall on the sphere. 

4.34 Determine the forces (Fig. 4-33) 
that the beam BA and the cable AC exert 
on A, assuming that M weighs 40 kgf and 

Figure 4-34 
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(b) ( c) 

the weight of the cable and the beam may 
be neglected. 

4.35 Determine the horizontal and verti
cal reactions (Fig. 4-33) at the point B 

and the tension in the cable AC, assuming 
that the beam has a 20-kg mass. 

4.36 Find the forces F, F', N, and H in 
Fig. 4-34. CE and DC are cables. Neglect 
the weight of the boom. 

4.37 Discuss the result of the previous 
problem as the distance b = AG tends 
toward zero. 

!+-------- .l' ----- I 

,~2.5m--- JJ 
C h B 

Figure 4-35 

4.38 The uniform beam AB in Fig. 4-35 
is 4.0 m long and weighs 100 kgf. There is 
a fixed point C around which the beam can 
rotate. The beam is resting on point A. 

A man weighing 7 5 kgf is walking along 
the beam, starting at A. Calculate the 
maximum distance the man can go from A 

and still maintain equilibrium. Plot the 

reaction at A as a function of the dis
tance x. 

4.39 There are forces acting on the beam 
AB as shown in Fig. 4-36. Determine the 
magnitude and position of the resultant. 
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Figure 4-36 

4.40 The beam AB in Fig. 4-37 is 1.2 m 
long and is of negligible weight. The 
spheres C and D (respectively 40 kg and 
20 kg), linked by the beam CD, are rest
ing on it. The distance between the cen
ters of the spheres is 0.3 m. Calculate the 
distance x so that the reaction at Bis -! of 
the reaction at A. 

c 

~ 

I 
~ 

1---------------x--l 
Figure 4-37 

4.41 A bridge 100 m long and weighing 
10,000 kgf is held up by two columns at 
its ends. What are the reactions on the 
columns when there are three cars on the 
bridge at 30 m, 60 m, and 80 m from one 
end, whose weights are, respectively, 
1500 kgf, 1000 kgf, and 1200 kgf? 

4.42 Consider the three cars of Problem 

4.41, all moving at the same speed, 
10 m s-1, and in the same direction. 

Plot the reactions of the columns as a 
function of time, with t = 0 at the posi
tion given in Problem 4.41. Extend your 
plot until all cars are off the bridge. 

4.43 A 20-kg plank, 8.0 m long, rests on 
the banks of a narrow creek. A 100-kg 
man walks across the plank. Plot the re
action at each end of the plank as a func

tion of the distance of the man from the 
end. 

F 

(a) (b) 

F 

Figure 4-38 (c) 

4.44 Find the force F needed to maintain 
equilibrium, in terms of Q, for each case 
shown in Fig. 4-38. The pulleys marked 
Care movable. 

4.45 Calculate the weight P needed to 
maintain equilibrium in the system shown 
in Fig. 4-39, in which A is 100 kgf and Q 
is 1 O kgf. The plane and the pulleys are 
all smooth. Rope AC is horizontal and 
rope AB is parallel to the plane. Also 
calculate the reaction of the plane on the 

weight A. 

4.46 A stick of mass m and length l 

(Fig. 4-40) is placed into a perfectly smooth 

Q= 10 kgf 

Figure 4-39 

B 

p 



Figure 4-40 

Figure 4-41 

hemisphere of radius r. Find the position 

of equilibrium of the stick. Calculate the 

reactions of the hemisphere on the stick. 

Discuss the solution for l > 2r and l < 2r. 

4.47 A stick of mass 6 kg and length 0.8 m 

is placed on the smooth right angle shown 

in Fig. 4-41. Determine the position of 

equilibrium and the reaction forces as a 

function of the angle a. 

4.48 Two identical spheres are placed in 

the system shown in Fig. 4-42. Calculate 

the reactions of the surfaces on the spheres. 

Show that each sphere is independently in 

equilibrium. 

4.49 Repeat Example 4.12 of the text 

with a (vertical) frictional force that is 

always exactly 0.3 F3. Everything else in 

the example remains the same. 

4.50 Prove that the resultant of the forces 

F 1 and F 2 in Fig. 4-17 passes through the 

point of intersection of F3 and W, and is 

Figure 4-42 
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equal and opposite to their resultant. Was 

this result to be expected? 

4.51 Find the center of mass of the three 

homogeneous bodies shown in Fig. 4-43. 

4.52 Find the center of mass of (a) the 

earth-moon system and (b) the sun-earth 

system. Use the data listed in Table 13-1. 

4.53 Find the coordinates of the center of 

mass of the homogeneous body represented 

in Fig. 4--44; AB = 3 cm, BC = 2 cm, 

CD = 1.5 cm, DE = 6 cm, EF = 4 cm, 

FG = 2 cm. 

Figure 4-44 

1 
6 10 
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~t 

2 
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4.54 Determine the position of the CM of 
the following molecules: (a) CO, the dis
tance between the C and O atoms being 
1.13 X 10-10 m. (b) C02; this is a linear 

molecule with the C atom in the middle, 
equidistant from the two O atoms. (c) 
H20; this molecule is bent with the O 
atom at the vertex, the 0-H distance is 
0.91 X 10-10 m, and the angle between 

the two 0-H bonds is 105°. (d) NH3 ; this 
is a pyramidal molecule with the N atom 
at the vertex, the N-H distance is 1.01 X 
10-10 m, and the angle between two N-H 

bonds is 108°. 

4.55 Four equal masses are at the vertices 
of a regular tetrahedron of side a. Find the 
position of their CM. 
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The most fundamental and obvious phenomenon we observe around us is motion. 

Blowing air, waves in the ocean, flying birds, running animals, falling leaves

all these are motion phenomena. Practically all imaginable processes can be 

traced back to the motion of certain objects. The earth and the planets move 

around the sun; electrons move inside the atom, giving rise to absorption and 

emission of light, or they move inside a metal, producing an electric current; gas 

molecules move, giving rise to pressure. Our everyday experience tells us that the 

motion of a body is influenced by the bodies that surround it; that is, by its inter

actions with them. What the physicist and the engineer do, essentially, is to ar

range things in such a way that, under the mutual interactions of the particles, 

a certain kind of motion is produced. In a TV tube, the electron beam must move 

in a certain fashion to produce a pattern on the screen. In a thermal engine, the 

molecules of the burnt fuel must move in such a way that a piston or a turbine 

moves in a desired direction. A chemical reaction is the consequence of certain 

atomic motions resulting in a new arrangement, forming new classes of molecules. 

The role of the physicist is to discover the reasons for all these motions; and the 

role of the engineer is to arrange things so that useful motions are produced, mo

tions which will make our life easier. There are several general rules or principles 

that apply to all kinds of motion, no matter what the nature of the interactions. 

This set of principles, and the theory that underlies it, is called mechanics. 

To analyze and predict the nature of motions resulting from the different kinds 

of interactions, some important concepts have been invented, such as momentum, 

force, and energy. If the momentum, force, and/or energy are initially known, 

they can be expressed in a quantitative way and rules can be established by which 

the resulting motions can be predicted. Momentum, force, and energy are so im

portant that we can rarely analyze a process without expressing it in terms of them. 

Mechanics, which is the science of motion, is also the science of momentum, 

force, and energy. It is one of the fundamental areas of physics, and must be under

stood thoroughly before beginning a consideration of particular interactions. In 

Galileo's time this basic role of mechanics was already recognized, the idea being 

condensed in the statement, "Ignorato motu, ignoratur natura." Mechanics will 

be studied in Chapters 5 through 12. 

The science of mechanics as we understand it today is mainly the result of the 

genius of Sir Isaac Newton, who produced the great synthesis called Newton's 

principles. However, many more people have contributed to its advance. Some 

of the more illustrious names are Archimedes, Galileo, Kepler, Descartes, Huygens, 

Lagrange, Hamilton, Mach, and Einstein. 
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5.1 Introduction 

We say that an object is in motion relative to another when its position, measured 

relative to the second body, is changing with time. On the other hand, if this 

relative position does not change with time, the object is at relative rest. Both 

rest and motion are relative concepts; that is, they depend on the condition of the 

object relative to the body that serves as reference. A tree and a house are at 

rest relative to the earth, but in motion 

relative to the sun. When a train passes 

a station we say that the train is in motion 

relative to the station. But a passenger in 

the train might as well say that the 

station is in motion relative to the train, 

moving in the opposite direction. 

x 

z 

p 
• 

y 

To describe motion, therefore, the 

observer must define a frame of reference 

relative to which the motion is analyzed. 

In Fig. 5-1 we have indicated two ob

servers O and O' and a particle P. These 

observers use frames of reference XYZ 

and X'Y'Z', respectively. If O and 0' are 

at rest relative to each other, they will ob

serve the same motion of P. But if O and 

0' are in relative motion, their observa

tions of the motion of P will be different. 

Fig. 5-1. Two different observers study 
the motion of P. 

For example, let us consider two observers, one on the sun and the other on the 

earth (Fig. 5-2), both studying the motion of the moon. To the terrestrial observer 

using frame X'Y'Z', the moon appears to describe an almost circular path around 

\ 
----~,------ :~) 7 ---- __..-, 

Path of ..... \ .,, I ---- .,,......--/ 
moon relativ~ l ~----, 

to the sun .,,. , 

/ ""' 
Path of . (_ ?~--' ) :\loon 

moon relative-, 0 y1 
to the earth '- --\... __ _Y-.--/ 

xi Eart~\\ 

-\/ 
,...-I:" ... 

.,. I 

y 

z 
Sun 

Fig. 5-2. Moon's orbit relative to the earth and the sun. The 
moon-earth distance is only 4 X 10-3 the earth-sun distance. 
The wiggles in the moon's orbit are greatly exaggerated here. 

( /I 
Path of 

earth relative 
to the sun 



5.2) Rectilinear motion: velocity 85 

the earth. However, to the solar observer, using frame XYZ, the moon's orbit 
appears as a wavy line. However, if the observers know their relative motion, 

they can easily reconcile their respective observations. In Chapter 6 we shall dis

cuss in more detail this important matter of comparing data gathered by ob

servers who are in relative motion. For the time being we shall assume that we 

have a well-defined frame of reference. 

5.2 Bectilinear Motion: Velocity 

The motion of a body is rectilinear when its trajectory is a straight line. Let us take 

the OX-axis of Fig. 5-3, coincident with the trajectory. The position of the object is 

defined by its displacement x from an arbitrary point 0, or origin. In principle, the 

displacement can be correlated with the time by means of a functional relation 
x = f(t). Obviously, x may be positive or negative. Suppose that at time t the 

object is at position A, with OA = x. At 

a later time t', it is at B, with OB = x'. 

The average velocity between A and B is 

defined by 

x' - x Ax 
Vave = =-, 

t' - t At 

(5.1) 

1--.(lx-1 
-+---------'"=4t----~B:..___ ____ X 

0 x 
t 
v 

Figure 5-3 

x' 
t' 
v' 

where Ax = x' - x is the displacement of the particle and At = t' - t is the 

elapsed time. Thus the average velocity during a certain time interval is equal to the 

average displacement per unit time during the time interval. To determine the in

stantaneous velocity at a point, such as A, we must make the time interval At as 
small as possible, so that essentially no changes in the state of motion occur during 

that small interval. In mathematical" language this is equivalent to computing 

the limiting value of the fraction appearing in Eq. (5.1) when the denominator 

At approaches zero. This is written in the form 

1. 1. Ax 
V = 1n1 Vave = Im - · 

At---->O At---->0 At 

But this is the definition of the time derivative of x; that is, 

dx 
V=-, 

dt 
(5.2) 

so that we obtain the instantaneous velocity by computing the time derivative of the 

displacement. Operationally, the instantaneous velocity is found by observing 

the moving body at two very close positions separated by the small distance dx 

and measuring the small tim~ interval dt required to go from one position to the 

other. In the future the term "velocity" will always refer to instantaneous velocity. 
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If we know v = f(t), we may solve Eq. (5.2) for x by the process of integration. 
That is, from Eq. (5.2) we have dx = v dt; then, integrating, we have 

rx dx = rt v dt, 
Jxo J to 

where x 0 is the value of x at time t0 . And, since f ;0 dx = x - x0 , 

X = Xo + rt V dt. 
J to 

(5.3) 

To understand the physical meaning of Eq. (5.3), the student should realize 

that v dt represents the displacement of the body in the short time interval dt. 

Thus, dividing the time interval t - t0 into successive small intervals dt1, dt2, 

dt 3, ... , we find that the corresponding displacements are v1 dt 1, v2 dt2, v3 dt3, ... , 

and the total displacement between t0 and t is the sum of all these. It should be 

noted that v1 , v2 , v3 , ... are the values of the velocity in each time interval. Then, 

according to the meaning of a definite integral, 

Displacement = V1 dt1 + V2 dt2 + V3 dt3 + · · · = I: Vi dti = rt V dt. 
i J to 

This displacement is of course x - x0 , in agreement with Eq. (5.3). We must ob

serve that the displacement Ax (or dx) may be positive or negative depending on 

whether the motion of the particle is to the right or to the left, resulting in a positive 

or negative sign for the velocity. Thus the sign of the velocity in rectilinear motion 

indicates the direction of motion. The direction is along +OX if the velocity is 
positive and along -OX if it is negative. 

Sometimes the concept of speed is used, defined as distance/time. It is always 

positive, and is numerically equal to the magnitude of the velocity; i.e., speed = 

/v/. However, in general, the average speed does not have the same value as the 

average velocity. Also, it is important not to confuse the "displacement" x - x 0 

in the time t - t0 with the "distance" moved in the same time. The displacement 

is computed by Eq. (5.3), but the distance is obtained by n0 /v/ dt. For example, 

in going from city A to city B, which is 100 mi east of A, a driver may first go 

to city C, which is 50 mi west of A, and then turn back and go to B. The dis

tance covered has been 200 mi, but the displacement is still 100 mi. If the motion 

takes place in 4 hr the average speed is 200 mi/4 hr = 50 mi hr- 1, but the average 

velocity is 100 mi/4 hr = 25 mi hr- 1• 

In the MKSC system of units, velocity is expressed in meters per second, or 

m s-1, this being the-velocity of a body moving through one meter in one second 

with constant velocity. Of course, the velocity can also be expressed in any com

bination of space and time units, such as miles per hour, feet per minute, etc. 

EXAMPLE 5.1. A particle moves along the X-axis in such a way that its position at 
any instant is given by x = 5t2 + 1, where xis in meters and tis in seconds. Compute 
its average velocity in the time interval between (a) 2 s and 3 s, (b) 2 s and 2.1 s, (c) 2 s 
and 2.001 s, (d) 2 sand 2.00001 s. Also compute (e) the instantaneous velocity at 2 s. 
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Solution: We call to 2 s, which is common for the entire problem. Using x = 5t2 + 1, 

we have x0 = 5(2) 2 + 1 = 21 m. Therefore, for each question, Ax = x - xo = x - 21 

and At = t - to = t - 2. 

(a) For t = 3 s, we have At = 1 s, x = 5(3) 2 + 1 = 46 m, and Ax = 46 m -

21 m = 25 m. Thus 

Ax 25 m -1 
Vave = - = -- = 25 m S 

ilt 1 s 

(b) Fort 

Thus 
2.1 s, we have At = 0.1 s, x 5(2.1) 2 + 1 23.05 m, and Ax = 2.05 m. 

Vave 
Ax 

At 

2.05 m 

0.1 s 
20.5 m s-1. 

(c) For t = 2.001 s, we have At 

Ax = 0.020005 m. Thus 

0.001 s, x 5(2.001) 2 + 1 21.020005 m, and 

Vave 
= Ax = 0.020005 m = 20 005 m -1 

At 0.001 s . s . 

(d) The student may verify for himself that fort = 2.00001 s, Vave = 20.00005 m s-1 • 

(e) We note then that as At becomes smaller, the velocity approaches the value 20 m s-1 . 

We may thus expect that this is the instantaneous velocity at t = 2 s. In fact, 

dx d 2 
v = dt = dt (5t + 1) = lOt. 

When we sett = 2 s, then we obtain v = 20 m s- 1, which is the answer to (e). 

5.3 Rectilinear Motion: Acceleration 

In general, the velocity of a body is a function of time. If the velocity remains con

stant, the motion is said to be uniform. Again referring to Fig. 5-3, suppose that 

at time t the object is at A with velocity v, and at time t' it is at B with velocity v'. 

The average acceleration between A and B is defined by 

v' - v Av 
aave = t' - t = At ' (5.4) 

where Av = v' - v is the change in velocity and, as before, At = t' - t is the 

elapsed time. Thus the average acceleration during a certain time interval is the change 

in velocity per unit time during the time interval. 

The instantaneous acceleration is the limiting value of the average acceleration 

when the time interval At becomes very small. That is, 

resulting in 

a= 1. 1. Av 
lm aave = lm At I 

li.t---->O li.t---->0 .u. 

dv 
a= dt' (5.5) 
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so that we obtain the instantaneous acceleration by computing the time derivative 

of the velocity. Operationally, the instantaneous acceleration is found by ob
serving the small change of velocity dv that takes place in a very small time interval 

dt. In the future, whenever we say "acceleration," we shall mean the instantaneous 

acceleration. 
In general, the acceleration varies during the motion. If the rectilinear motion 

has constant acceleration, the motion is said to be uniformly accelerated. 

If the velocity increases in absolute value with time, the motion is said to be 
"accelerated"; but if the velocity decreases in absolute value with time, the motion 

is termed retarded or "decelerated." 
If we know the acceleration, we may compute the velocity by integrating 

Eq. (5.5). From Eq. (5.5) we have dv = a dt, and, integrating, we obtain 

J, v dv = rt a dt, 
vo J to 

where v0 is the velocity at the time t0 . Then, since f ;0 dv = v - v0, 

V = Vo + {t a dt. 
J to 

(5.6) 

As in the case of displacement, the physical meaning of Eq. (5.6) is readily under

stood. We know that a dt gives the change in velocity during a short time interval 

dt. Thus, again dividing the time interval t - t0 into successive small time inter

vals dt 1 , dt 2 , dt 3 , ••• , we find that the corresponding changes in velocity are 
a 1 dt 1 , a2 dt 2 , a 3 dt 3 , ••• , where a 1 , a2 , a 3 , •.• are the values of the acceleration in 

each time interval, and the total change v - v0 of the velocity between t0 and t is 
the sum of these. That is, 

Change in velocity = v - v0 = a 1 dt 1 + a2 dt2 + a 3 dt3 + · · · 

I: ai dti = ft a dt. 
i to 

The acceleration is also related to the position by combining Eqs. (5.2) and (5.5). 

That is, 

or 

(5.7) 

Another important relation between position and velocity can be obtained in 

the following way. From Eq. (5.5) we write dv = a dt. When we multiply the 

left-hand side of this equation by the left-hand side of Eq. (5.2) and repeat for the 

right-hand sides, we have 

v dv = a dt ( !~) = a dx. 



5.4) Vector representation of velocity and acceleration 89 

v and a positive v and a negative 

(a) Accelerated motion (va> 0) 

v positive and a negative v negative and a positive 

p 

(b) Retarded motion (va<O) 

Fig. 5-4. Vector relation between velocity and acceleration m rectilinear motion. 

Integrating, we obtain 

J, v v dv = rx a dx 
v0 lx0 

or 

1 2 1 2 1x d 
~ - 2 vo = a x. 

Xo 
(5.8) 

This equation is particularly useful in computing the velocity when the relation 

between x and a is known, so that the integral on the right-hand side may be 
computed. 

In the MKSC system, the acceleration is expressed in meters per second per 
second, or (m/s)/s = m s-2 , this being the acceleration of a body whose velocity 

increases one meter per second in one second, with constant acceleration. But the 

acceleration may also be expressed in other units, such as (mi/hr)/s. 

5.4 Vector Bepresentatwn of Velocitu and Acceleratwn in 
Rectilinear Motion 

The velocity in rectilinear motion is represented by a vector whose length is given 

by Eq. (5.2) and whose direction coincides with that of the motion (Fig. 5-4). 

The acceleration is also represented by a vector of magnitude given by Eq. (5.5) 
and in the direction OX or the opposite, depending on whether it is positive or 

negative. If u is a unit vector in the positive direction of the X-axis, we may 

write in vector form 

dx 
V =UV= U dt and 

dv 
a= u-· 

dt 

Vectors v and a point along u or in the opposite direction, depending on the signs 

of dx/dt and dv/dt, respectively. The motion is accelerated or retarded, depending 
on whether v and a point in the same direction or in opposite directions (Fig. 5-4). 
A simple rule is: If v and a have the same sign, the motion is accelerated; if the signs 

are opposite, the motion is retarded. 
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v x 

----x=x0+v(~ L--

---v= canst ~ 
--i 

XQI 
I 

I 
I 
I 

0 0 to 

(a) Graph of velocity (b) Graph of displacement 

Fig. 5-5. Graph of velocity and displacement in uniform motion. 

EXAMPLE 5.2. Uniform rectilinear motion. 

Solution: In this case vis constant. Therefore a = dv/dt 

tion. Also from Eq. (5.3), when v is constant, we have 

0; i.e., there is no accelera-

X = XO+ t V dt = XO+ V rt dt = XO+ V(t - to). 
J to J to 

In Fig. 5-5(a), we plot v as a function oft. We also, in Fig. 5-5(b), plot x as a function 

of t. 

EXAMPLE 5.3. Uniformly accelerated rectilinear motion. 

Solution: In this case a is constant. Therefore, from Eq. (5.6), we have 

V = VO+ rt a dt = VO+ a rt dt = VO+ a(t - to), 
J to J to 

(5.10) 

and from Eq. (5.3), we have 

X = XO+ rt [vo + a(t - to)] dt = XO+ VO rt dt + a rt (t - to) dt, 
J to J to J to 

or 

x = xo + vo(t - to) + !a(t - to) 2 • (5.11) 

It is also useful to obtain the relation derived from Eq. (5.8), 

.12 .!.2- l"a - ( ) 2V - 2VO - a, X - a X - xo . 
Xo 

Then 
2 2 

v = vo + 2a(x - xo). (5.12) 

The most important case of uniformly accelerated motion is that of free vertical motion 

under the action of gravity. In this case, taking the upward direction as positive, we 

define a = -g, the minus sign being due to the fact that the gravitational acceleration 

is downward. The value of g varies from one place on the earth's surface to another, but 
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v x 

j 

v 
v / x=vot+~a~ 

V=V~ V" 

~ 

v 
J 

v "1 v 
Vo 

i I/ 
0 vo 

(a) Graph of velocity (b) Graph of displacement 

Fig. 5-6. Graph of velocity and displacement in uniformly accelerated motion. 

is always very close to g = 9.8 m s-2 = 32.2 ft s-2• This value is the same for all 

bodies, and may be considered independent of height, so long as we do not go far from the 

earth's surface, since the acceleration of gravity decreases when the distance above or 

below the earth'-s surface increases (Chapter 13). 

We may plot both v and x against time. When, for simplicity, we set to = 0 and 

xo = 0, Eq. (5.10) becomes v = vo + at and Eq. (5.11) becomes x = vot + iat2• Both 
equations have been plotted in Fig. 5-6. Graphs of this kind are very useful in analyzing 

all types of motion. 

EXAMPLE 5.4. A body moves along the X-axis according to the law 

x = 2t3 + 5t2 + 5, 

where x is in feet and t is in seconds. Find (a) the velocity and the acceleration at any 

time, (b) the position, velocity, and acceleration at t = 2 s and 3 s, and (c) the average 

velocity and acceleration between t = 2 sand t = 3 s. 

Solution: (a) Using Eqs. (5.2) and (5.5), we may write 

dx d 3 2 2 -1 
v = dt = dt (2t + 5t + 5) = 6t + lOt ft s , 

dv d 2 -2 
a = dt = dt (6t + lOt) = 12t + 10 ft s . 

(b) At t = 2 s, using the respective expressions, we have 

x = 41 ft, v = 44fts-1 , a = 34 ft s-2 • 

Similarly, fort = 3 s, the student may verify that 

x = 104 ft, v = 84 ft s-1 , a = 46 ft s-2 • 
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(c) To find the average velocity and acceleration between t = 2 sand t 

t:.t = 1 s, and from (b) we have t:.x = 63 ft, t:.v 40 ft s-1. Thus 

Vave 
t:.x 

t:.t 
63 ft = 63 f -1 

1 s ts ' aave 
t:.v 

t:.t 

40 ft s-1 

1 s 

(5.4 

3 s, we have 

EXAMPLE 5.5. The acceleration of a body moving along the X-axis is a = (4x - 2) 

m s-2 , where x is in meters. Given that vo = 10 m s-1 at xo = 0 m, find the velocity 

at any other position. 

Solution: Since the acceleration is expressed here as a function of position rather than 

as a function of time, we cannot use the definition a = dv/dt for obtaining the velocity 

by integration. Instead we must use Eq. (5.8), with vo = 10 m s-1 and xo = 0. Thus 

2 2 rx 
iv - !(10) = Jo (4x - 2) dx 

or 

v2 = 100 + 2(2x2 - 2x)o = 4x2 - 4x + 100 

and thus 

v = v' 4x2 - 4x + 100. 

Should we write a ± sign in front of the radical? If so, what would its meaning be? 

We suggest that the student make a plot of the velocity v as a function of the position x. 

We leave the student to find x as a function of time t by using the definition v = dx/dt, 

and from that result to obtain v and a as functions of time. [For obtaining x(t), it may be 

necessary to look at a table of integrals.] 

EXAMPLE 5.6. A bullet is fired straight upward with a velocity of 98 m s-1 from the 

top of a building 100 m high. Find (a) its maximum height above the ground, (b) the 

time required to reach it, (c) the velocity it has when it reaches the ground, and (d) the 

total time which elapses before the bullet reaches the ground. 

x 

IB 

Solution: Ref erring to Fig. 5-7 and using Eqs. 

(5.10) and (5.11), with to = 0, vo = 98 m s-1, 

xo = XA = 100 m (the origin of coordinates C 

has been placed at the street) and a = -g = 
-9.8 m s-2, we have at any time t, 

v = () ----,---

v = 98 - 9.8t, 

x = 100 + 98t - 4.9t2 . 

-
At the point of maximum height v = 0. Thus 

98 - 9.8t = 0 or t = 10 s. Replacing this value 

in the expression for x, we have 

XB = 100 + 98(10) - 4.9(10) 2 

= 590 m. 

v0 =98 m s-1 

A 

X.t =Xo=llOO ~ 

To obtain the time required to reach the ground Figure 5-7 

' XB 

c 
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(that is, point C), we set Xe 0, since C is our origin of coordinates. Then 

0 = 100 + 98t - 4.9t2 • 

This is a second-degree equation int, whose roots are 

t = -0.96 s and t = 20.96 s. 

The negative answer corresponds to a time previous to the shooting (t = O) and must 

be discarded, since it has no physical meaning in this problem (it may have in others). 
To obtain the velocity at C, we introduce the value t = 20.96 s in the expression for ve, 

o btain.in.g 

Ve = 98 - 9.8(20.96) = -107.41 m s-1 . 

The negative sign means that the bullet is moving down.ward. It is suggested that the 

student verify the results for XB and Ve by 

using Eq. (5.12), which for this problem reads 

v2 = 9604 - 19.6(x - 100). 

Also the student should solve the problem by 

placing the origin of coordinates at A. Then 

xo = XA = 0 and Xe = -100 m. 

EXAMPLE 5.7. A particle moves along the 

X-axis according to the law x = t3 - 3t2 -

9t + 5. During which intervals of time is the 
particle moving in the positive X-direction 
and during which is it moving in the negative 

X-direction? Duiing which time intervals is 

the motion accelerated and during which is it 

retarded? Make a plot of x, v, and a as 
functions of time. 

Solution: By applying Eq. (5.2), we can 

fiad the velocity of the particle at any time to 

be v = dx/dt = 3t2 - 6t - 9. This may be 

rewritten in the form v = 3(t + 1) (t - 3). 

Using Eq. (5.5), we can find the acceleration 
to be a = 6t - 6 = 6(t - 1). The graphs 

of x, v, and a as functions of time are shown 
in Fig. 5-8. We note that, for t < -1, the 

velocity is positive and the motion is in the 

positive X-direction. At t = -1, x = 10, 

and the velocity is zero. For -1 < t < 3, 

the velocity is negative and the motion is 

reversed, the particle moving in the negative 
X-direction. At t = 3, when x = -22, the 
velocity is again zero. Fort > 3, the velocity 

is once more positive and the motion is again 

(t= 3) B(._ __ ....,.•:-
) .1 (t= -1) 

~~ ... ~~~~--~~--

.. 

-30 -20 -10 

(a) 

( c) 

v(m ;;-1) 

2() 

a (m s-2) 

20 

10 

0 10 20 

5 6 7 

-+---+--+---+-"7"1~+---+--+--+---,f--+- t (s) 
3 4 5 6 7 

-20 
(d) Figure 5-8 
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reversed, the particle now moving in the positive X-direction. The whereabouts of 

the particle are shown in Fig. 5-S(a); the turning points, where the velocity is zero, 

are marked A and B. 

Looking at the graph of the velocity as well as the acceleration, we see that for t < -1 

the motion is retarded (the magnitude of v decreases, or v and a have opposite signs). For 

-1 < t < 1, the motion is accelerated; for 1 < t < 3, the motion is again retarded; 

finally, for t > 3, it is accelerated. 

This example illustrates how useful the graphs of x, v, and a as functions of time are in 

disclosing the characteristics of the motion. 

5.5 Curvilinear Motion: Velocitu 

Let us now consider a particle describing a curvilinear path P, as illustrated in 

Fig. 5-9. At time t the particle is at point A, given by position vector r = 0A = 
uxx + uyy + UzZ. At a later time t', the particle will be at B with r' = OB = 

uxx' + uyy' + uzz'. Although the particle has moved along the arc AB = Lls, 

the displacement, which is a vector, is AB = Llr. Note from the figure that r' = 
r + Llr, and therefore 

AB = Llr = r' - r = ux(x' - x) + uy(y' - y) + Uz(z' - z) 

= nx(Llx) + uy(Lly) + Uz(Llz), (5.13) 

where Llx = x' - x, Lly = y' - y, and Llz = z' - z. The average velocity, also 

a vector, is defined by 

Llr 
Vave = Llt' 

or, using Eq. (5.13), 

Vave = 

(5.14) 

(5.15) 

The average velocity is represented by a vector parallel to the displacement 

AB = Llr. To compute the instantaneous velocity we must, as in previous cases, 

make Llt very small. That is, 

1. 1. Llr 
V = lffi Vave = lffi Llt • 

/:!,. t---->0 /:!,. t---->0 

(5.16) 

Now when Llt approaches zero, point B approaches point A, as indicated by the 

points B', B", ... irr Fig. 5-10. During this process the vector AB = Llr changes 

continuously in magnitude and direction, and so does the average velocity. In 

the limit when B is very close to A, the vector AB = Llr coincides in direction 

with the tangent AT. In curvilinear motion, therefore, the instantaneous velocity 

is a vector tangent to the path, and is given by 

dr 
v= -· 

dt 
(5.17) 
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z 
T 

y 
x 

Fig. 5-9. Displacement and average ve
locity in curvilinear motion. 

Fig. 5-10. The velocity is tangent to the 
path in curvilinear motion. 

Or, if we take into account Eq. (5.15), the velocity is 

dx dy dz 
V = Ux dt + Uy dt + Uz dt' (5.18) 

indicating that the components of the velocity along the X-, Y-, and Z-axes are 

dx 
Vx = -, 

dt 

dy 
Vy=-, 

dt 

dz 
Vz = -, 

dt 

and the magnitude of the velocity, often called the speed, is 

v = V v; + v; + v;. 

(5.19) 

(5.20) 

In passing from Eq. (5.16) to Eq. (5.17), we may proceed in a slightly different 

way. Let 0 0 (Fig. 5-9) be an arbitrary reference point on the path. Then s = 

0 0A gives the position of the particle as measured by the displacement along the 

curve. As in the rectilinear case, s may be positive or negative, depending on 

which side of 0 0 the particle is. When the particle moves from A to B, the dis

placement As along the curve is given by the length of the arc AB. Multiplying 

and dividing Eq. (5.16) by As = arc AB, we obtain 

1. Ar As ( 1. Ar) ( 1. As) v= 1m--= 1m- 1m-, 
d t--->O As At ds--->O As d t--->0 At 

in which we indicate in the first factor that As ----+ 0 when At ----+ 0 (see Fig. 5-10). 

Now from Fig. 5-9 we can see that the magnitude of Ar is about equal to As, and 

the closer Bis to A, the closer the magnitude of Ar is to As. Therefore limds----,o Ar/ As 

represents a vector having unit magnitude and a direction tangent to the path. 
That is, 

dr = lim Ar = UT. 

ds ds----,o As 
(5.21) 

On the other hand, 

lim As= ds. 
dt ...... o At dt 

(5.22) 
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Therefore we can write v in the form 

ds 
v = UT dt = UTV, (5.23) 

where ds/dt = v gives the value of the velocity, and the unit vector UT gives the 

direction of the velocity. The fact that v = ds/dt is the value of the velocity is in 
agreement with our previous definition of velocity in Eq. (5.2), since now ds is the 

displacement along the curvilinear path in the time dt. So ds plays the same role 

in curvilinear motion as dx does in rectilinear motion. The only difference between 
Eqs. (5.23) and (5.2) is the inclusion of the direction element, as given by the 

tangent unit vector uT, which was previously introduced in Section 5.4. 

5.6 Curvilinear Motion: Acceleration 

In curvilinear motion the velocity, in general, changes both in magnitude and in 

direction. The magnitude of the velocity changes because the particle may speed 

up or slow down. The direction of the velocity changes because the velocity is 

tangent to the path and the path bends continuously. Figure 5-11 indicates the 

velocity at times t and t', when the particle is at A and B, respectively. The vector 

change in velocity in going from A to Bis indicated by Av in the vector triangle; 

that is, since, from the triangle, v + Av = v', then Av = v' - v. Hence the 

average acceleration, in the time interval At, which is a vector, is defined by 

Av 
aave = At' (5.24) 

and is parallel to Av. Since v = UxVx + UyVy + UzVz, we have that Av = Ux Avx + 
Uy AVy + Uz AVz and 

aave = 

(5.25) 

The instantaneous acceleration, which 

in the future will be referred to simply 

as acceleration, is defined by 

1. 1. Av 
a = 1m aave = 1m At 

6. t->0 6. t->0 .u. 

or 

dv 
a=-· 

dt 
(5.26) 

x 

t' 
B 

y 

~v 

v' 

Fig. 5-11. Acceleration in curvilinear 
motion. 

Acceleration is a vector that has the same direction as the instantaneous change 

in velocity. Since velocity changes in the direction in which the curve bends, 

acceleration is always pointing toward the concavity of the curve, and in general 
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Fig. 5-12. Vector relation between velocity and ac
celeration in curvilinear motion. 
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is neither tangent nor perpendicular to the path, as indicated in Fig. 5-12. Re

membering Eq. (5.17), we can also write Eq. (5.26) in the form 

From Eq. (5.25) we observe that 

so that the components of the acceleration along the X-, Y-, and Z-axes are 

dvx ax=-, 
dt 

dvy 
ay = dt' 

or, by virtue of Eq. (5.19) or Eq. (5.27), 

The magnitude of the acceleration is 

a= Va;+ a;+ a;. 

dvz 
az = dt' 

(5.27) 

(5.28) 

(5.29) 

(5.30) 

(5.31) 

In curvilinear motion we usually know the equation of the path; that is, we know 

the coordinates of the moving particle as functions of time. These coordinates are 

given by the equations 

x = x(t), y = y(t), z = z(t). 

By applying Eqs. (5.19) and (5.29), we can compute the velocity and the ac

celeration. In other cases the problem is the opposite: we know the components 

of the acceleration as a function of time; that is, 

ax = ax(t), 

Then, by using Eq. (5.29) and integrating, we obtain the components of the 

velocity, and by integrating Eq. (5.19) we obtain the coordinates as functions of 
time. 
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5.7 Motwn Vnder CoDtltant Acceleration 

The case in which acceleration is constant, both in magnitude and direction, is 

of special importance. If a = const we have, by integrating Eq. (5.26), 

t dv = rt a dt = a rt dt = a(t - to), 
lvo J to J to 

(5.32) 

where v 0 is the velocity at time t0• Then, since f ~
0 

dv = v - v0 , 

v = Vo + a(t - to) (5.33) 

gives the velocity at any other time. Substituting this result in Eq. ( 5.17), and 

integrating, we obtain 

r dr = r [vo + a(t - to)] dt = Vo dt + a (t - to) dt, r t ft ft 

J,0 J t0 to t0 

where r 0 gives the position at time t0 • Then 

r = ro + vo(t - t0 ) + -!a(t - t0 ) 2, (5.34) 

which gives the position of the particle at any time. These results must be com

pared with Eqs. (5.10) and (5.11) obtained for rectilinear motion under constant 

acceleration. In rectilinear motion, both the velocity ·and the acceleration have 

the same (or opposite) direction. However, in the more general case we are dis
cussing now, v 0 and a may have different directions. Therefore v as given by 

Eq. (5.33) is not parallel to a, but is always in the plane defined by v 0 and a. Also, 

from Eq. (5.34), we see that the endpoint of the vector r is always in the plane 

parallel to v 0 and a, and which passes through the point defined by r0 . We conclude 

then that motion under constant acceleration 

is always in a plane. Also Eq. (5.34) indi

cates that the path of the motion is a 

parabola (see Problem 3.33). 

One of the most interesting uses of these 

equations is their application to the motion 

of a projectile. In this case a = g = accel

eration of gravity. We shall choose the XY

plane coincident with the plane defined by 

v0 and a = g, the Y-axis directed upward so 

that g = -uyg, and the origin O coincident 

with r 0 (Fig. 5-13). Then 

Vo = UxVox + UyVOy, 
where 

y 

g g 

Vox = Vo COS a, Voy = v0 sin a. 
Fig. 5-13. When the acceleration is 

(5.35) constant the path is a parabola. 
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Equation (5.33) can be separated into its components (setting t0 = 0) by writing 

or 

Vx = Vox, Vy= Voy - gt, (5.36) 

indicating that the X-component of v remains constant, as it should, since there 

is no acceleration in that direction. Similarly, Eq. (5.34) with -r0 = 0 and t0 = 0, 

when separated into its components, becomes 

or 

X = Voxt, (5.37) 

which gives the coordinates of the particle as functions of time. The time required 
for the projectile to reach the highest point A is obtained by setting Vy = O in 

Eq. (5.36) since, at that point, the velocity of the projectile is horizontal. Then 

t = Voy 
g 

or t = v0 sm a. 
g 

(5.38) 

The maximum height h is obtained by substituting this value of t in the second 

equation of (5.37), resulting in 

2 · 2 
h = v0 sm a 

2g 
(5.39) 

The time required for the projectile to return to ground level at B, called the time 

of flight, can be obtained by making y = 0 in Eq. (5.37). The time is obviously 

twice the value given by Eq. (5.38), or 2v0 sin a/g. The range R = OB is the 

total horizontal distance covered, and is obtained by substituting the value for 

the time of flight in the first equation of (5.37), resulting in 

or 

2 . 2 2 • 
R = Vox _1!.Q_Sm a = Vo sm a cos a 

g g 

2 . 2 
R = v0 sm a 

g 
(5.40) 

Note that the range is a maximum for a = 45°. The equation of the path is ob

tained by eliminating the time t between the two equations in (5.37), giving 

y = - 2 g x 2 + x tan a, 
2v 0 cos2 a 

(5.41) 

which is the equation of a parabola, since both tan a and the quantity multiplying 
x 2 are constants. 

The results we have obtained are valid when: (1) The range is small enough 

so that the curvature of the earth may be neglected. (2) The altitude is small 
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Fig. 5-14. The path of the long-range pro
jectile is not a parabola, but an arc of an 
ellipse. 
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Fig. 5-15. Effect of air resistance on the 
motion of a projectile. 

enough so that the variation of gravity with height may be neglected. (3) The 

initial velocity is small enough so that air resistance may be neglected. For a long

range projectile, such as an ICBM, the situation is as depicted in Fig. 5-14, where 

all g-vectors point toward the center of the earth and vary with height. The path 

is, in this case, an arc of an ellipse, as will be discussed in Chapter 13. If we take 

into account the resistance of the air, the path departs from a parabola, as shown 

in Fig. 5-15, and the range is diminished. 

EXAMPLE 5.8. A gun fires a bullet with a velocity of 200 m s-1 at an angle of 40° 

with the ground. Find the velocity and position of the bullet after 20 s. Also find the 

range and the time required for the bullet to return to ground. 

Solution: From Fig. 5-16, noting that vo = 
200 m s-1 and a = 40°, we have that 

Vox = vo cos a = 153.2 m s-1 and VOy = vo 

sin a = 128.6 m s-1. Thus the components 
of the velocity at any time are given by 

v,, = 153.2 m s-1 and Vy = 128.6 - 9.8t 

m s-1, and the coordinates of the bullet are 

x = 153.2t m, y = 128.6t - 4.9t2 m. 

For t = 20 s, we have simply v,, = 153.2 

m s-1 and Vy = -67.4 m s-1 . The fact that 

y 

A 

Vy is negative means that the bullet is de- Fig. 5-16. Velocity in projectile motion. 

scending. The velocity is v = v' v~ + vi = 
167.4 m s-1• Similarly the position of Pis given by x = 3064 m and y = 612 m. The 
student must verify that the height of A is 843.7 m, that the range R = OB is 4021 m, 

and that the time required to go from O to B is 26.24 s. 
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y 

Uy 

--,~-U-x--~~_..e..~--'-~~~~-x 

Fig. 5-17. Tangential and normal accel
eration in curvilinear motion. 

Figure 5-18 

5.B Tangential and Normal Components of Acceleration 

Consider a particle describing a curved path (Fig. 5-17). For simplicity we shall 

assume that the curve is plane but the results we shall derive will be valid for 

motion along any curve. At time t the particle is at A with velocity v and accelera

tion u. Since u is pointing toward the concave side of the path, we may decompose 

it into a tangential component UT-parallel to the tangent AT and called tangential 

acceleration-and a normal component UN-parallel to the normal AN and called 

normal acceleration. Each of these components has a well-defined physical meaning. 

When the particle moves, the magnitude of the velocity may change, and this 

change is related to the tangential acceleration. Also the direction of the velocity 

changes, and this change is related to the normal acceleration. That is: 

Change in magnitude of velocity: tangential acceleration. 

Change in direction of velocity: normal acceleration. 

Let us draw at A (Fig. 5-18) the unit vector UT tangent to the curve. The ve

locity, according to Eq. (5.23), is expressed as v = uTv. Thus the acceleration 

will be 
dv d dv duT 

U = dt = dt ( UTV) = UT dt + dt V. 

If the path were a straight line, the vector UT would be constant in magnitude 

and direction and duT/dt = 0. But when the path is curved, the direction of uT 

varies along the curve, giving a non vanishing value for duT/ dt. To proceed we 

must compute duT/dt. Let us introduce the unit vector uN, normal to the curve 

and directed toward the concave side. Letting cf, be the angle that the tangent to 

the curve at A makes with the X-axis, we may write, using Eq. (3.9), 

UT = Ux COS <p + Uy sin cp, 

UN= uxcos(cf, + ;) + uysin(cf, + ~) 
-ux sin cf, + uy cos cf,. 
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Thus 

duT . dcp dcp dcp 
dt -ux sm ct, dt + Uy cos ct, dt = UN dt. 

This indicates that duT/dt is normal to the curve. Now 

dct, dct, ds dct, 
dt= ds dt=vds' 

where ds = AA' is the small arc through which the particle moved in the time dt. 

The normals to the curve at A and A' intersect, at a point C called the center of 

curvature. Calling p = CA the radius of curvature and using Eq. (2.4), we may 

write ds = p dct, or dct,/ds = I/p. Thus dct,/dt = v/p and 

duT V 
-- = UN-· 

dt p 
(5.42) 

Introducing this result in the expression for dv/dt, we finally obtain 

dv v2 

a= UT-+ UN-· 
dt p 

(5.43) 

The first term [uT(dv/dt)] is a vector tangent to the curve, and is proportional 

to the time rate of change of the magnitude of the velocity; it corresponds to the 

tangential acceleration aT. The second term [uN(v 2/p)] is a vector normal to the 

curve, and corresponds to the normal acceleration aN. It is associated with the 

change in direction because it corresponds to duT/dt. For the magnitudes, we may 

write 

dv 
aT = -, 

dt 
(5.44) 

The magnitude of the acceleration at point A is then 

If the curvilinear motion is uniform (i.e., if the magnitude of the velocity re

mains constant), v = constant, so that aT = 0 and there is no tangential acceler

ation. On the other hand, if the motion is rectilinear (i.e., if the direction of the 

velocity does not change), the radius of curvature is infinite (p = oo), so that 

aN = 0 and there is no normal acceleration. It must be pointed out that the 

results we have obta1ned are valid for plane motion as well as for motion in space. 

EXAMPLE 5.9. A disk D (Fig. 5-19) is rotating freely about its horizontal axis. A 
cord is wrapped around the outer circumference of the disk, and a body A, attached to 
the cord, falls under the action of gravity. The motion of A is uniformly accelerated but, 
as will be seen in Chapter 10, its acceleration is less than that due to gravity. At t = 0 
the velocity of body A is 0.04 m s-1 , and 2 slater A has fallen 0.2 m. Find the tangential 
and normal accelerations, at any instant, of any point on the rim of the disk. 
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Fig. 5-19. The multiflash photograph in (b) shows that the mass falls with uniformly 
accelerated motion. (Verify this by taking actual measurements on the photograph.) 

Solution: Given that the origin of coordinates is at the position t = O, the equation of 
the uniformly accelerated motion of A is x = vot + }at2• But we know that v0 = 

0.04 m s-1• Thus 

x = 0.04t + }at2 m. 

Setting t 2 s, we must have x ':"' 0.2 m. Thus a 0.06 m s-2 • That is, 

x = 0.04t + 0.03t2 m. 

Therefore the velocity of A is 

dx + 6 -I 
v = dt = 0.04 0.0 t m s . 

This equation also gives the velocity of any point B on the rim of the disk. The tan
gential acceleration of Bis thus the same as the acceleration of A 1 

while, since p 

dv -2 
aT = dt = 0.06 m s , 

0.1 m, the normal acceleration of Bis 

2 
v 

aN = -
p 

(0.04 + 0.06t)
2 

= 0.016 + 0.048t + 0.036t2 m s-2• 
0.1 

The total acceleration of point B is thus a 
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5.9 Circular Motion: Angular Velocity 

Let us now consider the special case in which the path is a circle; i.e., circular 

motion. The velocity v, being tangent to the circle, is perpendicular to the radius 

R = CA. When we measure distances along the circumference of the circle from 

point 0, we have, from Fig. 5-20, thats = Re, according to Eq. (2.5). Therefore, 

applying Eq. (5.23) and considering the fact that R remains constant, we obtain 

v _ ds _ R de. 
- dt - dt (5.45) 

The quantity 

(5.46) 

is called angular velocity, and is equal to the time 

rate of change of the angle. It is expressed in 
radians per second, rad s- 1, or simply s- 1 . Then 

v = wR. (5.47) 

e 
C ----0 -x 

The angular velocity may be expressed as a vector Fig. 5-20. Circular motion. 

quantity whose direction is perpendicular to the 

plane of motion in the sense of advance of a right-handed screw rotated in the same 

sense as the particle moves (Fig. 5-21). From the figure we see that R = r sin 'Y 

and that w = Uz de/dt; therefore we may write, instead of Eq. (5.47), 

v = wr sin 'Y, 

indicating that the following vector relation holds, both in magnitude and direction: 

v = w X r. (5.48) 

Note that this is valid only for circular or 

rotational motion (motion with constant 

rand 'Y). 

Of special interest is the case of uniform 

circular motion; i.e., motion with w = 
co~stant. In this cas~, the motion is 
periodic and the particle passes through 

each point of the cir:cle at regular inter

vals of time. The period P is the time 

required for a complete turn or revolution, 

and the frequency v is the number of 

revolutions per unit time. So if in time t 

the particle makes n revolutions, the 

period is P = t/n and the frequency is 

v = n/t. Both quantities are then 

x 

Fig. 5-21. Vector relation between 
angular velocity, linear velocity, and 
position vector in circular motion. 
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related by the following expression, which we shall often use, 

1 
v = -· p (5.49) 

When the period is expressed in seconds, the frequency must be expressed in 

(seconds)- 1 or s- 1, which is a unit called a hertz, abbreviated Hz. The colloquial 

term is revolutions per second (rps) instead of s- 1 or Hz. -The unit was named 

hertz after the German physicist H. R. Hertz (1857-1894), who was the first to 

prove experimentally the existence of electromagnetic waves. Sometimes the fre

quency of a motion is expressed in revolutions per minute (rpm), which is the same 

as saying (minute)- 1. Obviously 1 min- 1 = lo Hz. 

The concepts of period and frequency are applicable to all periodic processes 

that occur in cyclic form; that is, those processes that repeat themselves after 

completing each cycle. For example, the motion of the earth around the sun is 

neither circular nor uniform, but periodic. It is a motion that repeats itself every 

time the earth completes one orbit. The period is the time required to complete 

one cycle, and the frequency is the number of cycles per second, one hertz cor

responding to one cycle per second. 

If w is constant, we have, integrating Eq. (5.46), 

re d() = rt w dt = w rt dt 
Je 0 J t0 J t0 

or () = 00 + w(t - t0). 

The student should compare this relation, which is valid for uniform circular mo

tion, with the comparable expression for uniform rectilinear motion obtained in 

Example 5.2. Usually one sets () 0 = 0 and t 0 = 0, giving 

() = wt or 
() 

w = -· 
t 

(5.50) 

For a complete revolution, t = P and () = 21r, resulting in 

(5.51) 

EXAMPLE 5.10. Find the angular velocity of the earth about its axis. 

Solution: The first impulse of the student would naturally be to use Eq. (5.51), with 

w = 2rr/P, and write for the period P the value of 8.640 X 104 s, corresponding to one 
mean solar day. However, if one worked it out this way, the result would be incorrect. 

Let us refer to Fig. 5-22 (not drawn to scale) and consider a point P. When the earth 

has completed one revolution about its polar axis, which is called a sidereal day, it will 

then be at E', due to its translational motion, and the point will be at P'. But to com

plete one day, the earth still has to rotate through the angle 1' until the point is at P", 

again facing the sun. The period of revolution of the earth (sidereal day) is then slightly 
less than 8.640 X 104 s. Its measured value is 

P = 8.616 X 104 s, 
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or about 240 s shorter than the mean solar day. The angular 
velocity of the earth is then 

21r 7 -5 d -1 
w = p = .292 X 10 ra s . 

It is relatively simple to estimate this difference of 240 s. 

The earth covers its complete orbit around the sun in 365 

days, which means that the angle 'Y corresponding to one day 
is slightly less than 1 ° or 0.017 45 radian. The time required 

to move through this angle with the angular velocity given 

above is, by Eq. (5.50), 

() 1.745 X 10-2 rad 
t = - = = 239 s, 

w 7.292 X 10-5 rad s-1 

which is in excellent agreement with our previous result. 
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Fig. 5-22. Sidereal day. 

5.10 Circular Motion: Angular Acceleration 

When the angular velocity of a particle changes with time, the angular acceleration 

is defined by the vector 

dw 
a=-· 

dt 
(5.52) 

Since the circular motion is plane, the direction of w remains the same, and the 

relation Eq. (5.52) also holds for the magnitudes of the quantities involved. That is, 

dw d20 
a= dt = dt 2 • (5.53) 

When the angular acceleration is constant (i.e., when the circular motion is uni

formly accelerated), we have, by integration of Eq. (5.53), 

rw dw = rt a dt = a rt dt 
lwo J to J to 

or 

w = Wo + a(t - to), (5.54) 

where w0 is the value of w at time t0 . Substituting Eq. (5.54) in (5.46), we obtain 

dO/dt = w0 + a(t - t0 ), and integrating again, 

rlJ d() = rt Wo dt + a rt (t - to) dt, 
J !Jo J to J to 

so that 

0 = Oo + wo(t - t0) + !a(t - t0 ) 2 . (5.55) 

This gives the angular position at any time. 
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In the particular case of circular motion, we find, 

combining Eqs. (5.43) and (5.47) with Eq. (5.53), that 

the tangential (or transverse) acceleration is 

dv 
ar = 

dt 

(5.56) 

and the normal (or centripetal) acceleration is 

c 

v2 2 
aN = R = w R. (5.57) Fig. 5-23. Tangential and 

normal acceleration in cir

The tangential and normal components of the accel- cular motion. 

eration in circular motion are illustrated in Fig. 5-23. 

Note that in uniform circular motion (no angular acceleration, a = O), there 

is no tangential acceleration, but there is still a normal or centripetal acceleration 

due to the change in the direction of the velocity. 

In this case of uniform circular motion we 

may compute the acceleration directly by using 

Eq. (5.48). Then, since w is constant, 

dv dr 
a= 

dt 
w x dt = w x v, 

(5.58) 

since dr/dt = v. Using Eq. (5.48) again, we 

may write the acceleration in the alternative 

form 

a= w X (w X r). (5.59) 

Since the circular motion is uniform, the accel

eration given by Eqs. (5.58) or (5.59) must 

be the centripetal acceleration. This can be 

verified very easily. Referring to Fig. 5-24, 

z 
c.b 

x 

Figure 5-24 

we see that the vector w x v points toward the center of the circle, and its 

magnitude is· 1w x vi = wv = w2 R, since w and v are perpendicular and v = wR. 

This value coincides with our previous result (5.57). 

EX AMP LE 5.11. The earth rotates uniformly about its axis with an angular velocity 
w = 7.292 X 10-5 s~ 1 . Find, in terms of the latitude, the velocity and the acceleration 
of a point on the earth's surface. 

Solution: Due to the rotational motion of the earth, all points on its surface move with 
uniform circular motion. The latitude of point A (Fig. 5-25) is defined as the angle >... 
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made by the radius r = CA with the radius CD 

lying on the equator. When the earth rotates 
around NS, a point such as A describes a circle of 
center Band radius R = AB such that 

R = r cos X. 

The velocity of a point on the earth's surface is 
tangent to the circle, and thus parallel to the 
equator. Its magnitude, by Eq. (5.47), is 

v = wR = wr cos X. 

The acceleration a is centripetal because the motion 

is uniform, and is thus directed toward B. Its 
magnitude, by Eq. (5.57), is 

a = w2 R = w2r cos A. (5.60) 

Introducing the values of the angular velocity (w 

of the earth (r = 6.35 X 106 m), we have 

v = 459 cos X m s - 1, 

and the acceleration is 

a = 3.34 X 10-2 cos X m s-2 • 

(5.11 

Fig. 5-25. Velocity and accelera
tion of a point on the earth. 

7.292 X 10-5 s-1) and of the radius 

(5.61) 

The maximum value of v occurs at the equator, at which v = 459 m s-1 or 1652 km hr-1 

or about 1030 mi hr-1! We do not feel the effects of such great velocity, because we have 

always been moving at that speed and our bodies and senses are accustomed to it. But 
we would immediately notice a change in it. Similarly, the maximum value of the ac
celeration is 3.34 X 10-2 m s-2 , which is about 0.3% of the acceleration due to gravity. 

5.11 General Curvilinear Motion in a Plane 

Consider Fig. 5-26, in which a particle Y 

describes a plane curved path. When it is at 

A, its velocity is given by v = dr/dt. Using 

the unit vectors Ur (parallel to r) and u9 

(perpendicular tor), we may writer = urr. 

Therefore 

(5.62) uo 

~---,,,J,.._.....;.U•r.,.._~~~~~~~~~x 

Now, using the rectangular components of Figure 5-26 
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the two unit vectors, 

Ur = Ux COS () + Uy Sin () and u 8 = -ux sin()+ uy cos e, 

we see that 

dur . d() d() d() 
dt - Ux sm () dt + Uy cos () dt = uo dt , 

and therefore we may write the velocity of the particle as 

(5.63) 

The first part of this equation [ ur( dr / dt)] is a vector parallel to r and is called the 

radial velocity; it is due to the change in the distance r of the particle from 0. The 

second part [u0r(de/dt)] is a vector perpendicular to rand is due to the change in 

the direction of r, or the rotation of the particle around O; it is called the trans

verse velocity. That is, 

dr 
Vr = dt' 

d() 
VIJ = r- = wr, 

dt 
(5.64) 

since w = de/ dt is the angular velocity in this case. In circular motion there is no 

radial velocity because the radius is constant; that is, dr/dt = 0. The velocity is 

entirely transverse, as we can see by comparing Eq. (5.45) with the second relation 

in Eq. (5.64). 
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Problems 

5.1 An electron falling on a TV screen 

has a velocity of 3 X 106 m s-1 . Assum

ing that if it has been accelerated from 

rest through a distance of 0.04 m, find its 
average acceleration. 

5.2 A body is moving with an initial 
velocity of 3 m s-1, and has a constant 

acceleration of 4 m s-2 in the same direc

tion as the velocity. What is the velocity 

of the body and the distance covered at 

the end of 7 s? Solve the same problem for 
a body whose acceleration is in the direc

tion opposite to that of the velocity. 

Write the expression for its displacement 
as a function of time. 

5.3 An airplane, in taking off, covers a 
600-m path in 15 s. Assuming a constant 

acceleration, calculate the takeoff velocity. 

Also calculate the acceleration in m s-2 . 

5.4 An automobile, starting from rest, 
reaches 60 km hr-1 in 15 s. (a) Calculate 

the average acceleration in m min - 2 and 

the distance moved. (b) Assuming that the 
acceleration is constant, how many more 

seconds will it take for the car to reach 80 

km hr-1? What has been the total distance 
covered? 

5.5 A car starts from rest and moves with 
an acceleration of 1 m s - 2 for 1 s. The 

motor is then turned off and the car is al

lowed to decelerate, due to friction, for 10 
s at a rate of 5 cm s-2 • Then the brakes 

are applied and the car is brought to rest 

in 5 more seconds. Calculate the total dis
tance traveled by the car. Make a plot of 

x, v, and a versus t. 

5.6 A body moving with uniformly ac

celerated rectilinear motion travels 55 ft 

in 2 s. During the next 2 s, it covers 77 ft. 
Calculate the initial velocity of the body 

and its acceleration. How far will it travel 

in the next 4 s? 

5.7 A car travels along the line OX with 

uniformly accelerated motion. At times 

t1 and t2, its position is x1 and x2, respec-

tively. Show that its acceleration is 

a = 2(x2ti - x1t2)/t1t2(t2 - t1). 

5.8 A car starts from rest with an accel
eration of 4 m s-2 for 4 s. During the next 

10 s it moves with uniform motion. The 

brakes are then applied and the car decel
erates at a rate of 8 m s-2 until it stops. 

Make a plot of the velocity versus the time 

and prove that the area bounded by the 
curve and the time axis measures the total 

distance traveled. 

5.9 A . car is waiting for a red light to 

change. When the light turns green, the 

car accelerates uniformly for 6 s at a rate 
of 2 m s-2 , after which it moves with uni

form velocity. At the instant that the car 
began to move at the light, a truck moving 

in the same direction, with a uniform mo
tion of 10 m s-1, passed by. In what 

length of time, and how far from the light, 
will the car and truck meet again? 

5.10 An automobile is moving at the rate 

of 45 km hr-1 when a red light flashes on 
at an intersection. If the reaction time of 

the driver is 0.7 s, and the car decelerates 
at the rate of 7 m s-2 as soon as the driver 

applies the brakes, calculate how far the 

car travels from the time the driver notices 

the red light until the car is brought to a 

stop. "Reaction time" is the interval be
tween the time the driver notices the light 

and the time he applies the brakes. 

5.11 Two cars, A and B, are traveling in 
the same direction with velocities VA and 

VB, respectively. When car A is a distance 
d behind car B, the brakes on A are applied, 
causing a deceleration at the rate a. Dem

onstrate that in order that there be a colli

sion between A and B, it is necessary that 
VA -- VB > y2ad. 

5.12 Two cars, A and B, are moving in 

the same direction. When t = 0, their 

respective velocities are 1 ft s-1 and 3 ft 

s-1, and their respective accelerations are 
2 ft s-2 and 1 ft s-2 • If car A is 1.5 ft 



ahead of car B at t = 0, calculate when 

they will be side by side. 

5.13 A body is moving along a straight 

line according to the law x = 16t - 6t2 , 

where x is measured in meters and t in 

seconds. (a) Find the position of the body 

at t = 1 s. (b) At what times does the body 

pass the origin? (c) Calculate the average 

velocity for the time interval O < t < 2 s. 

(d) Find the general expression for the 

average velocity for the interval to < t < 
(to + t:i.t). (e) Calculate the instantaneous 

velocity at any given time. (f) Calculate 

the instantaneous velocity at t = 0. (g) At 

what times and positions will the body be 

stationary? (h) Find the general expression 

for the average acceleration for the time in

terval to < t < (to+ t:i.t). (i) Find the gen

eral expression for the instantaneous 

acceleration at any time. (j) At what times 

is the instantaneous acceleration zero? 

(k) Plot on a single set of axes x versus t, v 

versus t, and a versus t. (I) At what times(s) 

is the motion accelerated and at what 

time(s) is it retarded? 

5.14 A body is moving along a straight 

line according to the law v = t3 + 4t2 + 2. 

If x = 4 ft when t = 2 s, find the value of 

x when t = 3 s. Also find its acceleration. 

5.15 The acceleration of a body moving 

along a straight line is given by a = 4 -

t2 , where a is in m s - 2 and t is in seconds. 

Find the expressions for the velocity and 

displacement as functions of time, given 

that when t = 3 s, v = 2 m s-1 and x = 
9m. 

5.16 A body is moving along a straight 

line. Its acceleration is given by a = -2x, 
where x is in feet and a is in ft s-2 • Find 

the relationship between the velocity and 

the distance, given that when x = 0, v = 
4 ft s-1 . 

5.17 The acceleration of a body moving 

along a straight line is given by a = -Kv2 , 

where K is a constant and where it is given 

that at t = 0, v = vo. Find the velocity 
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and the displacement as functions of time. 

Also find x as a function of t and v as a 

function of x. 

5.18 For a body in rectilinear motion 

whose acceleration is given by a = 32 -

4v (the initial conditions are x = 0 and 

v = 4 at t = 0), fin_d v as a function of t, 

x as a function oft, and x as a function of v. 

5.19 The position of a moving body in 

terms of time is given in Fig. 5-27. Indi

cate (a) where the motion is in the positive 

or negative X-direction, (b) when the mo

tion is accelerated or retarded, (c) when the 

body passes through the origin, and (d) 

when the velocity is zero. Also make a 

sketch of the velocity and the acceleration 

as functions of time. Estimate from the 

graph the average velocity between (a) t = 
1 sand t = 3 s, (b) t = 1 s and t = 2.2 s, 

(c) t = 1 sand t = 1.8 s. 

X(m) 

Fig. 5-27. Acceleration due to the earth's 
rotation. 

5.20 A stone falls from a balloon that is 

descending at a uniform rate of 12 m s-1 . 

Calculate the velocity and the distance 

traveled by the stone after 10 s. Solve 

the same problem for the case of a balloon 

rising at the given velocity. 

5.21 A stone is thrown vertically upward 

with a velocity of 20 m s-1 . When will its 

velocity be 6 m s-1 and what will its alti

tude be? 

5.22 A stone is thrown upward from the 

bottom of a well 88 ft deep with an initial 
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velocity of 240 ft s- 1. Calculate the amount 

of time it will take the stone to reach the 

edge of the well, and its velocity. Discuss 

the possible answers. 

5.23 A man standing at the top of a build

ing throws a ball vertically upward with a 

velocity of 40 ft s-1. The ball reaches the 

ground 4.25 slater. What is the maximum 

height reached by the ball? How high is 

the building? With what velocity will it 

reach the ground? 

5.24 A falling body travels 224 ft in the 

last second of its motion. Assuming that 

the body started from rest, determine the 

altitude from which the body fell and how 

long it took to reach the ground. 

5.25 A stone is thrown vertically upward 

from the roof of a building with a velocity 

of 29.4 m s-1 . Another stone is dropped 4 s 

after the first is thrown. Prove that the 

first stone will pass the second exactly 4 s 

after the second was dropped. 

5.26 One body is dropped while a second 

body, at the same instant, is thrown down

ward with an initial velocity of 100 cm s - 1. 

When will the distance between them be 

18 m? 

5.27 Two bodies are thrown vertically 

upward, with the same initial velocity of 

100 cm s-1, but 4 s apart. How long after 

the first one is thrown will they meet? 

5.28 A body is allowed to drop freely. 

Show that the distance it travels during the 

nth second is (n - !)g. 

5.29 A stone is dropped from the top of a 

building. The sound of the stone hitting 

the ground is heard 6.5 s later. If the 

velocity of sound is 1120 ft s- 1, calculate 

the height of the building. 

5.30 Calculate the angular velocity of a 

disk rotating with uniform motion of 13.2 

rad every 6 s. Also calculate the period 

and frequency of rotation. 

5.31 How long will it take the disk in the 

previous problem (a) to rotate through an 

angle of 780°, and (b) to make 12 revolu

tions? 

5.32 Calculate the angular velocity of the 

three hands of a clock. 

5.33 Calculate the angular velocity, the 

linear velocity, and the centripetal accel

eration of the moon, deriving your answer 

from the fact that the moon makes a com

plete revolution in 28 days and that the 

average distance from the earth to the 

moon is 38.4 X 104 km. 

5.34 Find (a) the magnitude of the veloc

ity and (b) the centripetal acceleration of 

the earth in its motion around the sun. 

The radius of the earth's orbit is 1.49 X 

1011 m and its period of revolution is 

3.16 X 107 s. 

5.35 Find the magnitude of the velocity 

and the centripetal acceleration of the sun 

in its motion through the Milky Way. The 

radius of the sun's orbit is 2.4 X 1020 m and 

its period of revolution is 6.3 X 1015 s. 

5.36 A flywheel whose diameter is 3 m is 

rotating at 120 rpm. Calculate: (a) its 

frequency, (b) the period, (c) the angular 

velocity, and (d) the linear velocity of a 

point on the rim. 

5.37 The angular velocity of a flywheel 

increases uniformly from 20 rad s - l to 

30 rad s-1 in 5 min. Calculate the angular 

acceleration and the total angle through 

which it has rotated. 

5.38 A flywheel whose diameter is 8 ft has 

an angular velocity which decreases uni

formly from 100 rpm at t = 0 to a stand

still at t = 4 s. Calculate the tangential 

and the normal acceleration of a point on 

the rim of the wheel at t = 2 s. 

5.39 An electron whose velocity is 4.0 X 

105 m s-1 is acted on by a magnetic field 

that forces it to describe a circular path 

of radius 3.0 m. Find its centripetal 

acceleration. 

5.40 A body, initially at rest (() = 0 and 

w = 0 at t = O) is accelerated in a circu

lar path of radius 1.3 m according to the 

equation a = 120t2 - 48t + 16. Find 

the angular position and angular velocity 



of the body as functions of time, and the 

tangential and centripetal components of 

its acceleration. 

5.41 A point is moving on a circle accord

ing to the law s = t3 + 2t2 , where s is 

measured in feet along the circle and t is 

in seconds. If the total acceleration of the 

point is 16y2 ft s-2 when t = 2 s, calcu

late the radius of the circle. 

5.42 A particle is moving in a circle accord

ing to the law () = 3t2 + 2t, where () is 

measured in radians and t in seconds. Cal

culate the angular velocity and angular 

acceleration after 4 s. 

5.43 A wheel starts from rest and accel

erates in such a manner that its angular 

velocity increases uniformly to 200 rpm in 

6 s. After it has been rotating for some time 

at this speed, the brakes are applied, and it 

takes 5 min to stop the wheel. If the total 

number of revolutions of the wheel is 3100, 

calculate the total time of rotation. 

... ...... 

-i c 
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• 

\\ 
1 • 

0 
3ft 

j 

Figure 5-28 

5.44 The rod BC in Fig. 5-28 is oscillating 

due to the action of the rod AD. The point 

A is attached to the rim of a flywheel whose 

diameter is 9 in. and which is rotating at 

an angular velocity of 60 rpm and an angu

lar acceleration of 6 rad s-2 . Calculate (a) 

the linear velocity at the point D, (b) the 

angular velocity of BC, (c) the tangential 

and normal accelerations of point C, (d) 

the angular acceleration of BC, (e) the 

tangential acceleration at D. 
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5.45 A flywheel 4 ft in radius is rotating 

about a horizontal axis by means of a rope 

wound about its rim and having a weight 

at its end. If the vertical distance trav

eled by the weight is given by the equation 

x = 40t2 , where x is measured in feet and 

t in seconds, calculate the angular veloc

ity and acceleration of the flywheel at any 

time. 

5.46 The angular position of a particle 

moving along the circumference of a circle 

5 ft in radius is given by the expression 

() = 3t2 , where () is given in radians and t 

in seconds. Calculate the tangential, nor

mal, and total acceleration of the particle 

when t = 0.5 s. 

Figure 5-29 

5.47 The wheel A (Fig. 5-29) whose ra

dius is 30 cm starts moving from rest and 

increas(ls its angular velocity uniformly at 

the rate of 0.41r rad s- 1. It transmits its 

motion to the wheel B by means of the 

belt C. Obtain a relation between the 

angular velocities and the radii of the two 

wheels. Find the time necessary for wheel 

B to reach an angular velocity of 300 rpm. 

5.48 A ball is moving due north at 300 cm 

s-1 when a force is applied for 40 s, causing 

an acceleration of 10 cm s-2 due east, after 

which the force is removed. Determine (a) 

the magnitude and direction of the ball's 

final velocity, (b) the equation of its path, 

(c) its distance from the starting po.int, (d) 

its displacement from the starting point. 

5.49 A train is moving at 72 km hr- 1 

when a lantern which is hanging on the 

end of the train, 4.9 m above the ground, 

shakes loose. Calculate the distance cov

ered by the train in the time it takes for 

the lamp to fall to the ground. Where does 
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the lamp fall relative to the train and to 

the tracks? What is its path relative to 

the train and to the track? 

5.50 A car is traveling in a plane curve 
such that its rectangular coordinates, as a 

function of time, are given by x = 2t3 -

3t2 , y = t2 - 2t + 1. Assuming that t 

is given in seconds and the coordinates in 

meters, calculate (a) the position of the 

car when t = 1 s, (b) the rectangular com
ponents of the velocity at any time, (c) 

the rectangular components of the velocity 

when t = 1 s, (d) the velocity at any time, 

(e) the velocity when t = 0 s, (f) the 

time(s) when the velocity is zero, (g) the 

rectangular components of the accelera
tion at any time, (h) the rectangular com

ponents of the acceleration when t = 1 s, 
(i) the acceleration at any time, (j) the 

acceleration when t = 0 s, (k) the time(s) 

at which the acceleration will be parallel 

to the Y-axis. 

5.51 A baseball player hits the ball so that 

it has a velocity of 48 ft s-1 and an angle 

of 30° above the horizontal. A second 

player, standing 100 ft from the batter and 
in the same plane as the ball's trajectory, 

begins to run the instant the ball is struck. 

Calculate his minimum velocity if he can 

reach up to 8 ft above the ground and the 

ball was 3 ft high when it was struck. How 

far did the second player have to run? 

5.52 The coordinates of a moving particle 

are given by x = t2 , y = (t - 1)2. Find 
its average velocity and acceleration in the 

time interval between t and t + D.t. Apply 

the results to the case when t = 2 s and 

D.t = 1 s, and compare with the values of 
the velocity and acceleration at t = 2 s. 

Graphically represent all vectors involved. 

5.53 The position of a particle at time t 

is given by x = A sin wt. Find its velocity 

and acceleration as a function of t and of x. 

5.54 A point is moving with constant 
speed of 3 ft s-1• The velocity has a direc

tion such that it makes an angle of (1r/2)t 

rad with the positive OX-axis. If x = 

y = 0 when t = 0, find the equation of 
the trajectory of the particle. 

5.55 The coordinates of a moving body 

are x = t2 , y = (t - 1) 2 . (a) Find the 
Cartesian equation of the trajectory. 

[Hint: Eliminate t from the above equa
tions.] (b) Draw a graph of the trajectory. 

(c) When is the velocity a minimum? 

(d) Find the coordinates when the veloc
ity is 10 ft s-1• (e) Calculate the tangential 

and normal accelerations at any time. 
(f) Calculate the tangential and normal ac

celerations when t = 1 s. 

5.56 A particle is moving along a parabola 

y = x2 in such a manner that at any time 

Vx = 3 ft s-1. Calculate the magnitude 

and direction of the velocity and the accel

eration of the particle at the point x = ! ft. 

5.57 The coordinates of a moving body 
are x = 2 sin wt, y = 2 cos wt. (a) Find 

the Cartesian equation of the trajectory. 

(b) Calculate the value of the velocity at 

any time. (c) Calculate the tangential and 

normal components of the acceleration at 

any time. Identify the type of motion 

described by the above equations. 

5.58 If the coordinates of a moving body 

are x = at, y = b sin at, demonstrate that 

the value of the acceleration is proportional 
to the distance from the object undergoing 

this motion and the X-axis. Make a plot 

of the path. 

5.59 A point is moving in the XY-plane 

in such a manner that Vx = 4t3 + 4t, Vy = 
4t. If the position of the point is (1, 2) 

when t = 0, find the Cartesian equation of 

the trajectory. 

5.60 A particle is moving in the XY-plane 

according to the law ax = -4 sin t, ay = 
3 cos t. If we are given that at t = 0, 

x = 0, y = 3, Vx = 4, Vy = 0: Find (a) 
the equation of the trajectory and (b) cal

culate the value of the velocity when t = 
1r/4 s. 

5.61 A projectile is shot with a velocity of 

600 m s-1 at an angle of 60° with the hori-



zontal. Calculate (a) the horizontal range, 

(b) the maximum height, (c) the velocity 

and height after 30 s, (d) the velocity and 

the time when the projectile is 10 km high. 

5.62 A bomber plane is flying horizontally 
at an altitude of 1.2 km with a velocity of 
180 km hr-1. (a) How long before the 

plane is over its target should it drop a 
bomb? (b) What is the velocity of the 

bomb when it reaches the ground? (c) 

What is the bomb's velocity 10 s after it 

is dropped? (d) What is the bomb's veloc
ity when it is 200 m high and when it 

strikes the ground? (e) What is the angle 

of the bomb's velocity as it strikes the 
ground? (f) What is the horizontal dis

tance covered by the bomb? 

5.63 A projectile is shot out at an angle 
of 35°. It strikes the ground at a horizontal 

distance of 4 km from the gun. Calculate 
(a) the initial velocity, (b) the time of the 
flight, (c) the maximum altitude, (d) the 

velocity at the point of maximum altitude. 

5.6-4 A machine gun is situated at the top 
of a cliff at an altitude of 400 ft. It shoots 
a projectile with a velocity of 786 ft s-1 

at an angle of 30° above the horizontal. 
Calculate the range (horizontal distance 

from the base of the cliff) of the gun. If 

a car is heading directly for the cliff at a 
velocity of 60 mi hr-1 along a horizontal 

road, how far away from the cliff should 
the car be for the gun to begin firing and 

hit it? Repeat the problem for a firing 

angle below the horizontal. Repeat the 

problem for a car moving away from the 
cliff. 

5.65 A gun is placed at the base of a hill 
whose slope makes an angle </J with the ... 
horizontal. If the gun is set at an angle a 

with the horizontal and has a muzzle veloc

ity vo, find the distance, measured along the 

hill, at which the bullet will fall. 

5.66 An airplane is flying horizontally at 

an altitude h with a velocity v. At the in
stant the plane is directly over an antiair

craft gun, the gun fires at the plane. Cal-
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culate the mm1mum velocity vo and the 

aiming angle a which the projectile would 
need in order to hit the plane. 

5.67 A machine gun shoots a bullet with 
a velocity of 650 ft s-1. Determine the 

angles at which the bullet will hit a target 

450 ft away and 18 ft high. 

5.68 Find the radius of curvature at 

the highest point of the path of a projec

tile fired at an initial angle a with the 
horizontal. 

5.69 A hunter points at a squirrel on a 

branch of a tree. At the moment he fires 

his gun, the squirrel drops off the branch. 
Show that the squirrel should not have 

dropped if it had wanted to stay alive. 

5.70 An airplane is flying horizontally at 

an altitude of 1 km and a velocity of 200 

km hr- 1 • It drops a bomb which is meant 

to hit a ship moving in the same direction 
at a velocity of 20 km hr- 1• Prove that 
the bomb should be dropped when the hori

zontal distance between the plane and the 

ship is 730 m. Solve the same problem for 
the case in which the ship is moving in the 

opposite direction. 

5.71 Prove that for plane motion under a 

constant acceleration a, the following rela
tions hold: 

v2 vo + 2a • (r - ro) 

and 

r = !(v + vo)t. 

5. 72 A wheel of radius R rolls with con

stant velocity vo along a horizontal plane. 
Prove that the position of any point on its 

edge is given by the equations x = R(wt -

sin wt) and y = R(l - cos wt), where w = 
vol R is the angular velocity of the wheel 

and t is measured from the instant when 
the point is initially in contact with the 

plane. Also find the components of the 

velocity and the acceleration of the point. 

5. 73 A wheel of radius R rolls along a 
horizontal plane. Prove that at each in

stant the velocity of each point is perpen-
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dicular to the line joining the point with 
the point of contact of the wheel with the 
plane. If p is the distance between these 
points, prove that the magnitude of the 
velocity of the moving point is wp. What 

do you conclude from these results? 

5.74 Using the method explained in Sec
tion 5.11, prove that 

duo/ dt = -Ur d() / dt. 

5.75 Show that the components of the 
acceleration along the unit vectors ur and 
u 8 (Fig. 5-26) are 

[Hint: Use the expression (5.63) for the 
velocity and take into account the values of 

dur/dt and duo/dt.] 
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6.1 Introduction 

In the previous chapter we indicated that motion is a relative concept in that it 

must always be referred to a particular frame of reference, chosen by the observer. 

Since different observers may use different frames of reference, it is important to 

know how observations made by different observers are related. For example, 

most of the observations made on earth are related to a frame of reference attached 

to it, and therefore moving with the earth. Astronomers still prefer to refer the 

motion of a celestial body to the so-called fixed stars. In atomic physics the motion 

of the electrons is determined relative to the nucleus. An experimenter·usually 

chooses a frame of reference in which his data-taking and analysis are most easily 

accomplished. 

The possibility of defining an absolute system of reference at rest relative to empty 

space is a matter that has been discussed for centuries by physicists and philoso

phers. When it was assumed that empty space was "filled" with an imaginary sub

stance called ether, having rather contradictory and impossible properties, the 

absolute system of reference was defined as one at rest relative to the ether. How

ever, once people discarded the artificial and unnecessary idea of an ether, it be

came impossible to define such an absolute system, because in empty space there 

are no elements that can serve as reference points. As we shall show in this chap

ter, the matter has no relevance any more. 

6.2 .llelative JTelocity 

Let us consider two objects A and Band an observer 0, using as frame of reference 

the axes XYZ (Fig. 6-1). The velocities of A and B relative to Oare 

VB= drB. 
dt 

(6.1) 

The velocities of B relative to A and of A relative to B are defined by 

drBA 
VBA = at' z 

VAB = drAB, 
(6.2) 

dt 

where /" rBA =AB= rB - rA, 
rBA 

rAB =BA= 

B I)' rA - rB, rB A 

(6.3) VB 

Note that, smce rAB = -rBA, we also y 

have x 

VBA = -VAB· (6.4) Fig. 6-1. Definition of relative velocity. 
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In other words, the velocity of B relative to A is equal and opposite to the velocity 

of A relative to B. Taking the derivative of Eq. (6.3) with respect to time, we 
obtain 

drBA 

dt 

drB drA 
---
dt dt 

or, using Eqs. (6.1) and (6.2), we have 

(6.5) 

Therefore, to obtain the relative velocity of two bodies, one subtracts their veloci

ties relative to the observer. Again taking the derivative of Eq. (6.5), we find that 

dVBA dVB dVA 
dt=Tt-Tt' 

with a similar expression for dVAB! dt. The first term is called the acceleration of 
B relative to A, and is designated by aBA· The other two terms are, respectively, 

the accelerations of Band A relative to 0. Therefore 

and ffAB = ffA - ffB· (6.6) 

EXAMPLE 6.1. An airplane A (Fig. 6-2) flies toward Nat 300 mi hr-1 relative to the 

ground. At the same time another plane B flies in the direction N 60° Wat 200 mi hr-1 

relative to the ground. Find the velocity of A relative to B and of B relative to A. 

Solution: In Fig. 6-2, the velocities of planes A and B relative to the ground have been 

represented at the left. On the right we have the velocity of A relative to B, that is, 

VAB = VA - VB, and of B relative to A, that is, VBA = VB - VA. We may note 
that VAB = -VBA, as it should be according to Eq. (6.4). 

To compute VAB, we use Eq. (3.6), noting that the angle e between VA and VB is 60°. 
Thus 

VAB = y3002 + 2002 - 2 X 300 X 200 X cos 60° = 264.6 mi hr-1• 
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To obtain the direction of VAB, we use the law of sines, Eq. (3.4), 

VB 

sin a 

VAB 

sin 60° 
or sin a = VB ;in 600 

= 0.654, 
AB 

(6.3 

giving a 40.7°. Therefore, to a passenger in plane B it seems as if plane A moves at 

264.6 mi hr- 1 in the direction N 40.7° E. The relative velocity VBA has the same magni

tude, 264.6 mi hr- 1, but the opposite direction, S 40.7° W. 

6.3 llniform Belative Translational Motion 

Let us consider two observers O and O' who move, relative to each other, with 

translational uniform motion. That is, the observers do not rotate relative to each 

other. Therefore, observer O sees observer O' moving with velocity v, while 0' 

sees O moving with velocity -v. We are interested in comparing their descriptions 

of the motion of an object, as, for example, when one observer is on the platform 

of a railroad station and another is in a passing train moving in a straight line, 

and both observers are watching the flight of a plane overhead. 

We choose, for simplicity, the X- and X'-axes along the line of the relative mo

tion (Fig. 6-3) and the YZ- and Y'Z'-axes parallel to each other; the coordinate 

axes will always remain parallel because 

of the absence of relative rotation. We 

shall also assume that at t = 0, 0 and 0' 

are coincident, so that, with v as their 

constant relative velocity, we may write, 

00' = vt 

and 

V = UxV, 

Consider now a particle at A. From 

Fig. 6-3, we see that OA = 00' + O'A 
and since OA = r, O'A = r', and 00' = 
vt, the position vectors of A as measured 

by O and 0' are related by 

r' = r - vt. (6.7) 
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Fig. 6-3. Frames of reference in uni
form relative translational motion. 

The above vector equation can be separated into its three components, taking into 

account the fact that vis parallel to OX. Therefore 

x' = x - vt, y' = Y, z' = z, t' = t. (6.8) 

We have added t' = t to the three space equations to emphasize that we are as, 

suming that the two observers are using the same time; that is, we assume that 

time measurements are independent of the motion of the observer. This seems very 

reasonable, but it is only an assumption, which may be disproved by experiment. 
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The set of equations (6.8) or the single vector equation (6.7), combined with 

t' = t, are called a Galilean transformation. 

The velocity V of A relative to O is defined by 

dr dx dy dz 
V = dt = Ux dt + Uy dt + U z dt 

and the velocity V' of A relative to O' is, 

dr' dx' dy' dz' 
V' = dt = Ux' dt + Uy' dt + Uz' dt · 

Note that we do not write dr' /dt' because we have assumed that t = t', and hence 

dr'/dt' is the same as dr' /dt. Taking the derivative of Eq. (6.7) relative to time and 

noting that v is constant, we have 

V' = V - v, (6.9) 

or noting that Vx = dx/dt, v;, = dx'/dt, etc., we may separate Eq. (6.9) into 

the three velocity components: 

V;, = Vx - v, V~, = Vz. (6.10) 

These can also be obtained directly by taking the time derivative of Eqs. (6.8). 

Equations (6.9) or (6.10) give the Galilean rule for comparing the velocity of a 

body as measured by two observers in relative translational motion. For example, 

if A moves parallel to the OX-axis, we simply have 

V' = V - v, (6.11) 

the other components being zero. But if A moves parallel to the OY-axis, Vx = 
Vz = 0, Vy= V, then V~, = -v and V~, = V, v;, = 0, so that 

V' = yV2 + v2. (6.12) 

The acceleration of A relative to O and O' is a = dV / dt and a' = dV' / dt, 

respectively. Note again 'that we use the same tin both cases. From Eq. (6.9), 

noting that dv/dt = 0 because vis constant, we obtain 

dV 

dt 

dV' 

dt 
or a'= a, 

which, expressed in rectangular coordinates, is 

and 

(6.13) 

(6.14) 

In other words, both observers measure the same acceleration. That is, the ac

celeration of a particle is the same for all observers in uniform relative translational 

motion. This result offers us an example of a physical quantity-the acceleration 

of a particle-that appears to be independent of the motion of an observer; in other 

words, we have found that acceleration remains invariant when passing from one 
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frame of reference to any other which is in uniform relative translational motion. This 
is the first time we see a physical quantity remain invariant under transformation. 

Later on we shall find other physical quantities that behave in the same manner. 
This result, as we shall see, has a profound influence on the formulation of laws 
in physics. 

EXAMPLE 6.2. The velocity of sound in still air at 25°C (or 77°F) is 358 m s-1 . Find 

the velocity measured by an observer moving with a velocity of 90 km hr-1 (a) away from 

the source, (b) toward the source, (c) perpendicular to the direction of propagation in 

air, (d) in a direction such that the sound appears to propagate crosswise relative to the 
moving observer. Assume that the source is at rest relative to the ground. 

Solution: Let us use a frame of reference XYZ (Fig. 6-4) fixed on the ground, and thus 

at rest relative to the air, and a frame X' Y'Z' moving with the observer, with the X

and X'-axes parallel to the velocity of the observer, as in Fig. 6-3. Relative to XYZ, 

the sound source is at 0, the velocity of the observer O' is v = 90 km hr-1 = 25 m s-1, 

and the velocity of sound is V = 358 m s-1. The velocity of sound, relative to X'Y'Z', 

as recorded by the moving observer O', is V'. Applying Eq. (6.9) or (6.10), we have for 
case (a) V' = V - v = 333 m s-1. In case (b), we note that O' moves along the nega

tive direction of the X-axis. Thus we now have that v = -u,,v, changing Eq. (6.11) 
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into V' = V + v = 383 m s-1• For situation (c) we use Eq. (6.12), so that V' = 
vv2 + v2 = 358.9 m s-1• To the moving observer, the sound appears to propagate 

in a direction which makes an angle a' with the X' -axis such that 

I V~, v 2 tan a = - = - = -15.3 or a' = 93.7°. 
" V~, -v 

Finally, in case ( d), the direction of propagation of the sound in air is-such that it appears 

to O' to be moving in the Y'-direction. Thus V~, = 0, V~, = V', and v;, = 0. There

fore, using Eq. (6.10), we have O = V., - v or V., = v and V' = Vy. Thus V 2 = V; + 
v; = v 2 + V' 2 or V' = vV2 - v2 = 357.1 m s-1. In this case sound propagates 

through the still air in a direction making an angle a with the X-axis such that 

Vy 
tana = V., 

V' 
v 

= 14.385 or a = 86.0°. 

6.4 llniform Belative Botational Motion 

Let us now consider two observers O and 0' rotating relative to each other but 

with no relative translational motion. For simplicity we shall assume that both 

O and O' are in the same region of space and that each uses a frame of reference 

attached to itself but with a common origin. For example, observer 0, who uses 

the frame XYZ (Fig. 6-5), notes that the frame X'Y'Z' attached to 0' is rotating 

with angular velocity w. To 0', the situation is just the reverse; O' observes frame 

XYZ rotating with angular velocity -w. The position vector r of particle A 

referred to XYZ is 

(6.15) 

and therefore the velocity of particle A as measured by O relative to its frame of 

reference XYZ is 

V = dr 
dt 

dx dy dz 
Ux dt + Uy dt + Uz dt. 

(6.16) 

Similarly, the position vector of A re

ferred to X'Y'Z' is 

'+ '+ ' r = UxrX Uy'Y Uz1Z ) 

(6.17) 

where, because the origins are coincident, 

the vector r is the same as in Eq. (6.15); 

z 

x r 
X' 

Fig. 6-5. Frames of reference in uniform 
relative rotational motion. 



124 Relative motion (6.4_ 

that is the reason why we have not written r'. The velocity of A, as measured by 

O' relative to its own frame of reference X'Y'Z', is 

dx' dy' dz' 
V' = Ux' dt + Uy 1 dt + Uz' dt ' (6.18) 

In taking the derivative of Eq. (6.17), observer O' has assumed that his frame 

X'Y'Z' is not rotating, and has therefore considered the unit vectors as constant 

in direction. However, observer O has the right to say that, to him, the frame 

X'Y'Z' is rotating and therefore the unit vectors ux,, uy,, and Uz' are not constant 

in direction, and that in computing the time derivative of Eq. (6.17) one must 

write 

dr dx' dy' dz' dux, , duy, , duz' 1 

dt Ux' dt + Uy' dt + Uz' dt + dt X + dt y + dt z , 

(6.19) 

Now the endpoints of vectors ux', Uy', and Uz' are (by assumption) in uniform 
circular motion relative to 0, with angular velocity w. In other words, dux, / dt 

is the velocity of a point at unit distance from O and moving with uniform cir

cular motion with angular velocity w. Therefore, using Eq. (5.48), we have, 

dux, 
dt = W X Ux', 

duy' 
dt = W X Uy', 

duz, 
dt = W X Uz'· 

Accordingly, from Eq. (6.19) we may write 

dux, , duy' , duz, , , , 
dt X + dt Y + dt Z = W X UxrX + W X Uy'Y + W X 

= W X (ux,X 1 + Uy,y' + Uz1Z1) 

= w X r. (6.20) 

Introducing this result in Eq. (6.19), and using Eqs. (6.16) and (6.18), we finally 

get 

V = V' + w x r. (6.21) 

This expression gives the relation between the velocities V and V' of A, as recorded 

by observers O and 0' in relative rotational motion. 

To obtain the relation between the accelerations, we proceed in a similar way. 

The acceleration of A, as measured by O relative to XYZ, is 

dV dVx dVy dVz 
a = dt = Ux dt + Uy dt + Uz dt · (6.22) 

The acceleration of A, as measured by 0' relative to X'Y'Z', when he again ignores 

the rotation, is 

, dVi:, dV~, dVi, 
a = Ux' dt + Uy' dt + Uz' dt · (6.23) 
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When we differentiate Eq. (6.21) with respect to t, remembering that we are as

suming that w is constant, we obtain 

dV dV' dr 
a = dt = dt + w X dt . (6.24) 

Now, since V' = Ux' v;, + Uy' V~, + Uzi v;,' we obtain by differentiation 

dV' dVi:, dV~, dV~, 
dt Ux' dt + Uy' dt + Uz' dt 

dux, 1 duy' 1 duz' 1 + dt Vx, + dt Vy,+ dt Vz'· 

The first three terms are just a', as given by Eq. (6.23), and the last three, by a 

procedure identical to that used to derive Eq. (6.20), are w x V'. That is, by 
substituting the appropriate quantities into Eq. (6.20), we have 

W X Ux,Y~, + W X Uy,V~, + W X Uz1V~, 

= w X (ux,Vi:, + Uy,V~, + Uz,V~,) = w X V'. 

Therefore dV' /dt = a' + w x V'. Also from Eqs. (6.16) and (6.21), dr/dt = V = 

V' + w x r, so that 

dr 
w X dt = w X (V' + w X r) = w X V' + w X (w X r). 

Substituting both results in Eq. (6.24), we finally obtain 

a = a' + 2w X V' + w X (w X r). (6.25) 

This equation gives the relation between the accelerations a and a' of A as re

corded by observers O and 0' in uniform relative rotational motion. The second 
term, 2w x V', is called the Coriolis acceleration. The third term is similar to 

Eq. (5.59) and corresponds to a centripetal acceleration. Both the Coriolis and cen
tripetal accelerations are the result of the relative rotational motion of the ob

servers. In the next section we shall illustrate the use of these relations. 

6.5 Motion Relative to the Earth 

One of the most interesting applications of Eq. (6.25) is the study of a body's 
motion relative to the earth. As indicated in Example 5.10, the angular velocity of 
the earth is w = 7.292 X 10-5 rad s-1. Its direction is that of the axis of rotation 

of the earth. Consider a point A on the earth's surface (Fig. 6-6). Let us call g0 the 

acceleration of gravity as measured by a nonrotating observer at A. Then g0 corre

sponds to a in Eq. (6.25). Solving Eq. (6.25) for a', we obtain the acceleration 
measured by an observer rotating with the earth: 

a' = g0 - 2w X V' - w X (w X r). (6.26) 
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(a) Northern hemisphere (b) Southern hemisphere 

Fig. 6-6. Centrifugal acceleration due to earth's rotation. 

We shall first consider the case of a body initially at rest, or moving very slowly, 

so that the Coriolis term -2w x V' is zero or negligible when compared with the 

last term -w x (w x r). The acceleration a' measured in this case is called the 
effective acceleration of gravity, and is designated by g. Thus --

g = go - w X (w X r). (6.27) 

This is the acceleration measured with a pendulum, as will be discussed in Chapt~r 

12. Assuming that the earth is spherical (actually it departs slightly from this 

shape) and that there are no local anomalies, we may consider that g0 is pointing 

toward the center of the earth along the radial direction. Because the second term 

in Eq. (6.27), the direction of g, called the vertical, deviates slightly from the 

radial direction; it is determined by a plumb line. Liquids always rest in equilib

rium with their surface perpendicular to g. However, for practical purposes, and 

in the absence of local disturbances, the vertical may be assumed to coincide with 

the radial direction. 

Let us now analyze in more detail the last term in Eq. (6.27); that is, -w x 
(w x r). This is called the centrifugal acceleration because, due to its reversed or 

negative sign, it points in the outward direction DA, as can be seen in Fig. 6-6. 

The angle A that r = CA makes with the equator is the latitude. Therefore the 

vector w makes an angle 90° - "11. with CA in the northern hemisphere and 90° + A 

in the southern hemisphere. The magnitude of w x r is then 

wr sin (90° ± "11.) = wr cos A, 

and the direction of w x r, being perpendicular to w, is parallel to the equator. 
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Fig. 6-7. Radial and horizontal components of the centrifugal acceleration. 
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Remembering Example 5.11, we find that the magnitude of the centrifugal accel
eration -w x (w X r) is 

I- w x (w x r)I = w2rcost.. = 3.34 X 10-2 cost..ms-2 , (6.28) 

where r = 6.35 X 106 m, which is the radius of the earth. This acceleration de

creases from the equator to the poles, but is always very small when compared 
with the acceleration of gravity g0 = 9.80 m s-2 • Its maximum value, at the 

equator, is about 0.3% of g0 (see Example 5.11). 
We shall now find the components of -w x ( w x r) along the radial direction 

AB and along the north-south (NS) line at A. In Fig. 6-7, as in Fig. 6-6, the line 
AB, which is the extension of CA, is the radial direction. The vector w obviously 

makes an angle t.. with NS. As indicated before, the acceleration of gravity g0 

points downward along AB. The centrifugal acceleration -w x (w x r) is at an 

angle t.. with AB; its component along AB is therefore obtained by multiplying its 

magnitude, given by Eq. (6.28), by cos A. That is, 

1-w X (w X r)I cos A = w2r cos2 t... 

The component of the centrifugal acceleration along the line NS is pointing south 

in the Northern hemisphere (and north in the Southern hemisphere), and is ob

tained by multiplying its magnitude by sin t.., resulting in 

1-w X (w X r)I sint.. = w2rcost..sint... 

The two components are illustrated in Fig. 6-7. According to the definition of g 

given by Eq. (6.27), the components of g along the radial and horizontal directions 



128 Relative motion 

B 

i w2r cos A sin A 
N----- ,------8 

A : Horizontal plane 
I 
I 
I 

Radial1----- \ Vertical 
direction1 ,direction 

(a) Northern hemisphere 

B 

w2r cos A sin " I 

(6.5 

N-- -----S 

A Horizontal plane 

Vertical 
direction/- - - - - - , Radial 

I direction 

(b) Southern hemisphere 

Fig. 6-8. Definition of vertical direction and effective acceleration of free fall. 

are as shown in Fig. 6-8. Because of the smallness of the centrifugal term, the an

gle a is very small and the magnitude of g does not differ appreciably from its com

ponent along the radial direction AB. Thus we may write, as a good approximation, 

that 

(6.29) 

Although the last term is very small, it accounts for the observed increase in the 

value of the acceleration of gravity with latitude, as reflected in Table 6-1. 

The component of the centrifugal acceleration along the NS-direction tends, 

in the Northern hemisphere, to displace the body slightly toward the south from 

the radial direction AB and toward the north in the Southern hemisphere. There

fore the path of a falling body will be deviated, as illustrated in Fig. 6-9. The body 

will thus land at A' instead of landing at A, as would happen if there were no 

rotation. Because of the small value of a, this deviation is negligible. 

Let us consider next the Coriolis term, -2w X V'. In the case of a falling body, 

the velocity V' is essentially pointing downward along the vertical AB (Fig. 6-10) 

and w X V' points toward the west. Therefore the Coriolis term --2w X V' is 

TABLE 6-1 Values of the Acceleration of Gravity, Expressed in m s-2 

Location Latitude Gravity 

North pole 90° O' 9.8321 

Anch.9rage 61 ° 101 9.8218 

Greenwich 51 ° 29' 9.8119 

Paris 48° 50' 9.8094 

Washington 38° 53' 9.8011 

Key West 24° 34' 9.7897 

Panama 8° 55' 9.7822 

Equator 0° O' 9.7799 
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Fig. 6-9. Deviation of the direction of a freely falling body due to centrifugal accel
eration: southward (northward) in the Northern (Southern) hemisphere. 

pointing east, and the falling body will be deviated in that direction, reaching the 

ground at A", slightly to the east of A. Combining this Coriolis effect with the 

centrifugal effect, the body will fall on a point southeast of A in the Northern 

hemisphere and northeast of A in the Southern hemisphere. This effect, which is 

negligible in most cases, must be carefully taken into account both in high-altitude 

bombing and in intercontinental ballistic missiles. Coriolis acceleration also seri

ously affects the paths of rockets and of satellites, due to their great velocities. 

In the case of a body moving in the horizontal plane, the vector -2w x V', 

perpendicular to w and V', makes an angle equal to 1r /2 - A with the horizontal 

plane. It has a horizontal component aH and a vertical component av (Fig. 6-11). 

,.. __ 
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(b) Southern hemisphere 

Fig. 6-10. Deviation to the east in the Northern (Southern) hemisphere of a falling body 
due to Coriolis acceleration. 
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direction - 2wx V1 

(a) Northern hemisphere (b) Southern hemisphere 

Fig. 6-11. Coriolis acceleration. When a body moves in a horizontal plane, the hori
zontal component of the Coriolis acceleration points to the right (left) of the direction of 
motion in the Northern (Southern) hemisphere. Here V' is in the horizontal plane, w is in 
the plane defined by AB and NS, and an is perpendicular to V'. 

(a) Northern 
hemisphere s 

(c) 

(b) Southern 
hemisphere s 

Fig. 6-12. Counterclockwise (clockwise) 
whirling of wind in the Northern (South
ern) hemisphere resulting from a low 
pressure center combined with Coriolis 
acceleration. Part (c) shows a low-pres
sure disturbance photographed by a Tiros 
satellite. (Photograph courtesy of NASA/ 
Goddard Space Center.) 
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Fig. 6-13. Rotation of plane of oscillation of pendulum as a result of Coriolis accel
eration. " (Rotation in the Southern hemisphere is in the opposite direction to that in 
Northern.) 

The horizontal component an tends to make the path deviate from a straight line, 

to the right in the Northern hemisphere and to the left in the Southern hemisphere. 

The component an decreases as one moves from the poles toward the equator, 

where it is zero. Thus at the equator the Coriolis acceleration produces no hori

zontal effect on the horizontal motion. The vertical effect is small compared with 

the acceleration of gravity, and in most instances may be neglected. 

The horizontal effect may be seen in two common phenomena. One is the whirl

ing of wind in a hurricane. If a low-pressure center develops in the atmosphere, 

the wind will flow radially toward the center (Fig. 6-12). However, the Coriolis 

acceleration deviates the air molecules toward the right of their paths in the north

ern latitudes, resulting in a counterclockwise or whirling motion.* In the Southern 

hemisphere the rotation is clockwise. 

As a second example, let us consider the oscillations of a pendulum. When the 

amplitude of the oscillations is small, we can assume that the motion of the bob is 

along a horizontal path. If the pendulum were initially set to oscillate in the east

west direction and were released at A (see Fig. 6-13), it would continue oscillating 

between A and B if the earth were not rotating. But because of the Coriolis ac

celeration due to the earth's rotation, the path of the pendulum is deflected con

tinuously to the right in the Northern hemisphere and to the left in the Southern 

hemisphere. Therefore, at the end of the first oscillation, it reaches B' instead of B. 

On its return, it goes to A' and not to A. Therefore, in successive complete oscilla

tions, it arrives at A", A'", etc. In other words, the plane of oscillation of the 

pendulum rotates clockwise in the Northern hemisphere and counterclockwise in 

* The pressure and temperature of the air also have a profound effect on its motion. 
This effect leads to a phenomenon which is too complicated to be adequately described 
here. The end result is the cyclonic motion illustrated in Fig. 6-12(c). 
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the Southern hemisphere. We leave to the student the verification of the fact that 
the angle through which the plane of oscillation rotates each hour is 15° sin X. The 

effect has been much exaggerated in Fig. 6-13; it is maxinnun at the poles and zero 
at the equator. ~- ---- - · 

This effect was spectacularly demonstrated by the French physicist Jean Leon 

Foucault, when in 1851, from the dome of Les Invalides, in Paris, he hung a pen

dulum 67 m long. During each oscillation, the pendulum's bob dropped sand on 

a circle, experimentally demonstrating that its plane of oscillation rotated at the 
rate of 11 ° 15' each hour. There is a Foucault pendulum in the lobby of the 

Smithsonian Institution in Washington, D.C., as well as in the lobby of the United 
Nations building in New York. Foucault's experiment is an effective proof of the 

rotation of the earth. Even if the earth had always been covered by clouds, this 

experiment would have told physicists that the earth was rotating. 

EXAMPLE 6.3. Compute the deviation of a falling body due to the Coriolis accel

eration. Compare it with the deviation due to the centrifugal term. 

Solution: From Fig. 6-10 we see that the velocity V' of a falling body makes an angle 

90° + X with w. Thus the magnitude of the Coriolis acceleration -~ X V' is 

2w V' sin (90° + X) or 2w V' cos X. 

This is the acceleration d2x/dt2 of the falling body with the easterly direction taken as 

the X-axis. Therefore 

2 

d x ' dt2 = 2wV cos X. 

For V' we use, as a good approximation, the free-fall value obtained in Chapter 5. That 
is, V' = gt, and 

d2x 
dt2 = 2wgt cos X. 

Integrating, and assuming that the body starts falling from rest (dx/dt 

we have 

dx 2 
dt = wgt cos X. 

O fort O), 

Again integrating and considering that at t 

has x = 0, we get 

O the falling body is above A and therefore 

x = !wgt3 cos X, 

which gives the eastward displacement in terms of the time of fall. If the body is dropped 

from the height h we may again write its value for free fall, h = -!gt2, so that 

Sh -5 3/2 
( 

3)1/2 
x = iw g cos.A = 1.53 X 10 h cos X. 
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For example, for a body falling from a height of 100 m we have x = 1.53 X 10-2 cos Am, 

and thus it is a relatively small amount when compared with the distance fallen. 

The southward acceleration due to the centrifugal term is w2r2 cos A sin A = 3.34 X 

10-2 cos A sin A, and the amount of deflection, using h = !gt2 , is 

y = !(w2r cos A sin )l.)t2 = w2r (h/ g) cos A sin A = 0.342h cos A sin A m. 

6.6 The Lorentz Transformation 

At the end of the nineteenth century, when it was still assumed that space, empty 

of matter, was filled with "ether," there was a great discussion as to how bodies 
moved through that ether and how this motion would affect the velocity of light 

as measured on the earth. Physicists in earlier days had assumed that vibrations 
of this hypothetical ether were related to light in the same way that vibrations in air 

are related to sound. Assuming the ether stationary, we find that light moves 

relative to the ether with a velocity of c = 2.9974 X 108 m s-1. If the earth moves 

through the ether without disturbing it, then the velocity of light relative to the 

earth should depend on the direction of light propagation. For example, it 

should be c - v for a ray of light propagating in the same direction the earth is 

moving and c + v for the opposite direction. However, if the light's path as ob
served from the earth is perpendicular to the earth's motion, its velocity relative 

to the earth would be v c2 - v2. (Remember Example 6.2d for a similar case 
pertaining to sound.) 

In 1881 the American physicists Michelson and Morley started a memorable 

series of experiments for measuring the velocity of light in different directions 

relative to the earth. To their great surprise they found that the velocity of light 

was the same in all directions.* However, Galileo's transformation indicates that 

no body may have the same velocity relative to two observers in uniform relative 

motion, and that relative velocity depends on the direction of motion of the ob
server. This is emphasized particularly by Eqs. (6.9) and (6.10). One possible 

alternative explanation would be that the earth drags the ether with it, as it drags 
the atmosphere, and therefore close to the earth's surface the ether should be at 

rest relative to the earth. This is a rather improbable explanation, since the ether 
drag would manifest itself in other phenomena connected with light propagation. 

Such phenomena have never been observed. For the above reasons, the idea of an 
ether has been discarded by physicists. 

The puzzle of the Michelson and Morley experiment was settled in 1905 when 
Einstein stated his principle of relativity, which will be discussed in more detail 

in Section 11.3. This principle states that 

all laws of nature must be the same (i.e., must remain invariant) for all 

observers in uniform relative translational motion. 

* For a critical review of the experiments performed to determine the velocity of light 
relative to the earth in different directions, consult R. S. Shankland, et al., Reviews of 

Modern Physics 27, 167 (1955). 
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Einstein assumed that the velocity of light is a physical invariant, having the same 

value for all observers. As we shall see later, this is required when we apply the 

principle of relativity to the laws of electromagnetism. Under this assumption, 

Galileo's transformation cannot be the correct one. In particular, the fourth equa

tion in (6.8), t' = t, can no longer be correct. Since velocity is distance divided 

by time, we may have to adjust the time as well as the distance if the quotient of 

the two is to remain the same for observers in relative motion as it does in the case 

of the velocity of light. In other words, the time interval between two events 

does not have to be the same for observers in relative motion. Therefore we must 

replace Galileo's transformation by another, so that the speed of light is invariant. 

As in the case of Galileo's transformation, we shall assume that observers O and 

O' are moving with relative velocity v and that the X- and X'-axes will point in 

the direction of their relative motion, the axes YZ and Y'Z' being parallel, re

spectively (Fig. 6-14). We may also assume that both observers set their clocks 

so that t = t' = 0 when they coincide. 

Suppose that at t = 0 a flash of light is emitted at their common position. After 

a time t observer O will note that the light has reached point A and will write 

r = ct, where c is the speed of light. 
Since Y Y1 

we may also write 

x2 + y2 + z2 = c2t2. 

(6.30) 

Similarly, observer O' will note that the 

light arrives at the same point A in a 

time t', but also with velocity c. There

fore he writes r' = ct', or 

x'2 + y'2 + z'2 = c2t,2. 

(6.31) 
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Fig. 6-14. Frames of reference in uniform 
relative translational motion. 

Our next task is to obtain a transformation relating Eqs. (6.30) and (6.31). The 

symmetry of the problem suggests that y' = y and z' = z. Also since 00' = vt 

for observer 0, it must be that x = vt for x' = 0 (point 0'). This suggests making 

x' = k(x - vt), where k is a constant to be determined. Since t' is different, we 

may also assume that t' = a(t - bx), where a and bare constants to be determined 

(for the Galilean transformation k = a = 1 and b = 0). Making all these sub

stitutions in Eq. (6.31), we have 

k 2(x 2 - 2vxt + v2t2) + y2 + z2 = c2a2(t2 - 2bxt + b2x2), 

or 

(k2 - b2a2c2)x2 - 2(k2v - ba2c2)xt + y2 + z2 

= (a 2 - k?v 2 /c 2)c2t2 • 
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This result must be identical to Eq. (6.30). Therefore 

Solving this set of equations, we have 

k =a= -----;:===l==== 
Vl - v2/c 2 

and (6.32) 

The new transformation, which is compatible with the invariance of the velocity 

of light, is then 

x' = k(x - vt) 

y' = Y, 

z' = z, 

t' = k(t - bx) 

x - vt 

Vl - v2 /c 2 

t - vx/c2 

Vl - v2/c2 

(6.33) 

This set of relations is called the Lorentz transformation because it was first ob

tained by the Dutch physicist Hendrik Lorentz, about 1890, in connection with 

the problem of the electromagnetic field of a moving charge. 

When we note that c is a velocity very large compared with the great majority 

of velocities that we encounter on the earth, so that the ratio v/c is very small, 

the terms v2 /c 2 and vx/c 2 are, in general, negligible, and k is practically equal to 
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one (see Fig. 6-15). From the practical point of view, then, there is no difference 

between Lorentz' and Galileo's transformations, and we may keep using the 

latter in most of the problems we encounter. However, when we are dealing with 

very fast particles, such as the electrons in atoms or particles in cosmic rays, we 

must use the Lorentz-or relativistic-transformation. 

Even though in the majority of instances the numerical results of the Lorentz 

transformation do not differ to any great extent from those of the Galilean trans

formation, from a theoretical point of view the Lorentz transformation represents a 

most profound conceptual change, especially with regard to space and time. 

EXAMPLE 6.4. Obtain the Lorentz transformation that expresses the coordinates 

x, y, z and the time t measured by O in terms of the coordinates x', y', z' and the time t' 
measured by O'. 

Solution: This is the Lorentz transformation inverse to that expressed by Eq. (6.33). 

Of course, the second and third relations do not off er any difficulty. A straightforward 

method of handling the first and fourth equations is to look at them as a set of two simul

taneous equations and, by a direct algebraic procedure, solve them for x and t in terms 

of x' and t'. We shall leave this method as an exercise to the student, however, and pro

ceed along a more physical line of reasoning. From the point of view of observer O', 

observer O recedes along the -X' direction with a velocity -v. Thus O' is entitled to 

use the same Lorentz transformation to obtain the values x and t measured by O in terms 

of the values x' and t' which O' measures. For that observer O' has only to replace v by 
-v in Eq. (6.33) and exchange x, t and x', t'. Thus 

x' + vt' 
x 

-Vl - v2/c2 

y y', 

z z' 
(6.34) 

' 
t' + vx' ;c2 

-Vl - v2/c2 

which give the inverse Lorentz transformation. 

6.? Transformation of Velocines 

Next let us obtain the rule for comparing velocities. The velocity of A as measured 

by O has components 

dx 
Vx = -, 

dt 

dy 
Vy=-, 

dt 

dz 
Vz = dt. 

Similarly, the components of the velocity of A as measured by O' are 

dx' 
V' -

x' - dt' ' 
dy' 

V I -

y' - dt' ' 
dz' 

Vi, = dt'. 

(6.35) 
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Note that we now use dt' and not dt, because t and t' are no longer the same. Dif

ferentiating Eqs. (6.33), we have 

dx - vdt 
dx' = -----

Vl - v2/c 2 

dy' = dy, 

dz' = dz, 

dt' = dt - vdx/c2 = 
vl - v2/c 2 

Vx - v dt 

Vl - v2/c 2 ' 

1 - vVx/c 2 dt. 

Vl - v2/c 2 

In the first and last equations, dx has been replaced by V x dt, according to 

Eq. (6.35). Therefore, dividing the first three of these equations by the fourth, 
we obtain 

V' dx' Vx - v 
x' = dt' = 1 - vVx/c 2 ' 

, dy' Vy'Vl - v2 /c 2 

Vy, = dt' = 1 - vVx/c2 ' 
(6.36) 

dz' Vzvl - v2 /c 2 

V~, = dt' = 1 - vVx/c2 • 

This set of equations gives the law for the Lorentz transformation of velocities; 
that is, the rule for comparing the velocity of a body as measured by two observers 

in uniform relative translational motion. Again this reduces to Eq. (6.10) for rela
tive velocities which are very small compared with the velocity of light. For par

ticles moving in the X-direction, we have Vx = V, Vy= Vz = 0. Therefore, 
with V~, = V', since the two other components oi V' are zero, Eq. (6.36) becomes 

V' = V - v 
1 - vV/c2 

(6.37) 

To verify that Eq. (6.37) is compatible with the assumption that the velocity of 
light is the same for both observers O and O', let us consider the case of a light 

signal propagating along the X-direction. Then V = c in Eq. (6.37) and 

V' = c - v = c 
1 - vc/c2 • 

Therefore observer 0' also measures a velocity c. Solving Eq. (6.37) for V, we get 

V' + v 
V = 1 + vV' /c2 ' 

(6.38) 

which is the reverse transformation of Eq. (6.37). Note that if V' and v are both 

smaller than c, then V is also smaller than c. Furthermore, the velocity v cannot 
be larger than c because the scaling factor yl - v2/c2 would become imaginary. 

We can ascribe no physical meaning at the present time to such a scaling factor. 
Therefore the velocity of light is the maximum velocity that can be observed. 
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It must also be noted that Eqs. (6.37) or (6.38) relate the velocity of the same 

body as measured by two observers in relative motion. However, a given ob

server combines different velocities in his own frame of reference according to the 
rules established in Chapter 3. 

EXAMPLE 6.5. Verify the fact that the transformation of velocities, Eq. (6.36), is 

compatible with the assumption that the velocity of light is the same for both observers 

by considering a ray of light moving along (a) the Y-axis relative to XYZ, (b) the Y'-axis 

relative to X'Y'Z'. 

Solution: (a) In this case we must make V"' = 0, Vy = c, and V z 

becomes 

V~, = -v, v:, = 0. 

Then the velocity relative to X'Y'Z' is 

V' = VV~7 + V~7 = yv2 + c2(1 - v2/c2) = c, 

0. Thus Eq. (6.36) 

and observer O' also measures a velocity c for light, as was required when deriving the 

Lorentz transformation. Light appears to the moving observer O' to be propagating rela

tive to the X 1 Y'Z' frame in a direction making an angle with the X'-axis given by 

V1 
I -c 

tanc/ = _Y = -yl - v2/c2. 
V I V 

x' 

(b) Let us now consider the case in which the observer O' sees the ray of light propa

gating along the Y1-axis. Then V~, = 0, and the first two expressions in Eq. (6.36) give 

0 = Vx - v , 
1 - vVx/c2 

From the first equation we get V x 

V I - Vy 
y' - ---;======= 

Vl - v2/c2 

I Vy,Yl - v2/c2 
V,= . 

y 1 - vVx/c2 

v, which, when placed in the second equation, yields 

But for observer 0, who measures the velocity of light as c, we have 

or VY = yc2 - v2 = cyl - v2/c2, 

which, when replaced in the previous expressions for v;,, gives v;, = c. Once more we 

verify that observer O' also measures the velocity of light as c. The direction in which 

observer O sees the ray of light makes an angle a with the X-axis given by 

Vy CV tan a = - = -1 - v2 / c2. 
Vx v 

The results of this problem must be compared with those of Example 6.2 for sound, in 

which the Galilean transformation was used. 
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EXAMPLE 6.6. Obtain the relation between the acceleration of a particle as measured 

by two observers in relative motion. For simplicity, suppose that, at the instant of the 

comparison, the particle is at rest relative to observer O'. 

Solution: The X-component of the acceleration of the particle, as measured by O', is 

I dV~, dV~, dt 
ax, = 7 = dt dt' . 

Using the value of v;, from the first relation of Eq. (6.36) and inserting the appropriate 

derivatives, we have 

I ax + (Vx - v)vax/c v 1 - v2/c2 (1 - v /c ) [ 
2] _ / 2 2 3/2 

ax, = 1 - vVx/c2 (1 - vVx/c2)2 1 - vVx/c2 = ax (l - vVx/c2)3 

At the moment when the particle is at rest relative to O', V x v and 

/ ax 3 
ax' = = k ax. 

(1 - v2/c2)3/2 

By a similar analysis we find that 

1 - v2/c2 

2 
k ay, 

az 2 
a:, = = k az. 

1 - v2/c2 

This result differs from Eq. (6.14) for the Galilean transformation, since in this case the 

acceleration is not the same for both observers in uniform relative motion. In other words, 

the requirement that the velocity of light be invariant in all frames of reference which are 

in uniform motion relative to each other destroys the invariance of the acceleration. 
It is important to know the relation between the magnitudes of the accelerations ob

served by O and O'. Now 

But v 

fore 

,2 
a ,2 + ,2 + ,2 ax' ay, az, 

2 2 2 
ax + ay + az 

(1 _ v2/c2)3 (1 - v2/c2)2 (1 - v2/c2)2 

a;+ (a;+ a;)(l - v2 /c2) 
(1 - v2/c2)3 

a2 - v2(a~ + a;)/c2 

(1 - v2/c2)3 

UxV and v X a = -uyva 2 + u 2vay, so that (v X a) 2 

2 2 2 
a - (v X a) /c 

(1 - v2/c2)3 

v2 ( a~ + a~). There-

(6.39) 

which is the desired relation. When the acceleration is parallel to the velocity, v X a = 0 

and a' = a/(l - v2/c2)312. This agrees with the result for ax and a;,. When the ac

celeration is perpendicular to the velocity, (v X a) 2 = v2a2 and a' = a/(l - v2/c2), 

which is the result foray, a 2 and a~,, a;,. 
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6.B Consequences of the Lorentz Transformation 

The scaling factor k = 1/Vl - v2/c2 that appears in Eq. (6.33) suggests that the 
lengths of bodies and the time intervals between given events may not be the same 

when measured by observers in relative motion. We shall now discuss this impor
tant question. 

(1) Length Contraction. The length of an object may be defined as the dis
tance between its two endpoints. However, if the object is in motion relative to 

the observer wishing to measure its length, the positions of the two endpoints must 
be recorded simultaneously. Let us consider a bar at rest relative to 0' and parallel 

to the O'X'-axis. Designating its two extremes by a and b, its length as measured 

by 0' is L' = x~ - x~. Simultaneity is not essential for 0' because he sees the 

bar at rest. However, observer 0, who sees the bar in motion, must measure the 
coordinates Xa and xb of the endpoints at the same time t, obtaining L = xb - Xa, 

Applying the first relation in Eq. (6.33), we find that 

, Xa - vt 
Xa = ------;==== 

Vl - v2/c2 

and 

I Xb - Vt 
Xb = -;==== 

Vl - v2/c2 

Note that we write the same tin both expressions. Now, subtracting 

, , Xb - Xa 
Xb - Xa = -;:==== 

Vl - v2/c2 
or L = Vl - v2/c 2 L'. (6.40) 

Since the factor ,Vl - v2/c 2 is smaller than unity, we have a situation in which 

L is smaller than L'; that is, observer 0, who sees the object in motion, measures 

a smaller length than observer O', who sees the object at rest. In other words, 

objects in motion appear to be shorter; that is, Lmotion < Lrest· 

(2) Time Dilation. A time interval may be defined as the time elapsed between 

two events, as measured by an observer. An event is a specific occurrence that 

happens at a particular point in space and at a particular time. Thus, in terms of 

these definitions, when the bob of a pendulum reaches its highest point during a 

swing, this constitutes an event. After a certain period of time it will return to 

this same position; this is a second event. The elapsed time between these two 
events is then a time-interval. Thus a time interval is the time it takes to do some

thing: for a pendulum to oscillate, for an electron to rotate around a nucleus, for a 
radioactive particle to decay, for a heart to beat, etc. 

Let us consider two events that occur at the same place x' relative to an ob

server O'. The time interval between these events is T' = t~ - t~. For an ob

server O with respect to whom O' is moving at a constant velocity v in the positive 
X-direction, the time interval is T = tb - ta. To find the relation between the 

times at which the two events occurred, as recorded by both observers, we use the 
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last of Eqs. (6.34). This gives us 

t~ + vx' /c2 

ta= ' 
Vl - v2/c2 

tb + vx' /c2 

tb = . 
Vl - v2/c2 

Note that we write the same x' in both expressions. 

from tb, we have 

Therefore, by subtracting ta 

tb - ta = tb - t~ or T = -;:==T=,..== 
Vl - v2/c2 Vl - v2/c2 

(6.41) 

Now T' is the time interval measured by an observer 0' at rest with respect to the 

point where the events occurred, and Tis the time interval measured by an ob

server O relative to whom the point is in motion when the events occurred. That 

is, observer O saw the events occur at two different positions in space. Since 

the factor 1/Vl - v2/c2 is larger than one, Eq. (6.41) indicates that Tis greater 

than T'. Therefore processes appear to take a longer time when they occur in a body in 

motion relative to the observer than when the body is at rest relative to the observer; 

that is, T motion > Trest· 

It is informative to analyze time dilation and length contraction in greater de

tail, since these results are so contrary to our a priori expectations. We shall show 

in a more direct way that time dilation and length contraction are direct conse

quences of the invariance (constancy) of the velocity of light. Let us consider two 

observers O and 0' in relative motion along the X-axis with velocity v. In Fig. 6-16, 

M' is a mirror at rest relative to 0' and at a distance L from the origin along the 

Y'-axis. This is the same distance as measured by 0, since the mirror is at a posi

tion perpendicular to the direction of motion. Suppose that, when O and O' are 

coincident, a light signal is flashed from their common origin toward the mirror. 

For the system that sees the mirror in motion, the light signal must be sent out 

at an angle dependent on the velocity of the mirror and the distance L. Let T 

and T' be the times recorded by O and O' for the light signal to return to 0' after 

it has been reflected from the mirror. In the 0' -system, the light will return to 

the origin, but in the 0-system, the light will cross the X-axis at a distance vT from 

the origin. Relative to 0', the path of the light signal is O'M'O' = 2L and the time 
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Figure 6-17 

elapsed is T' = 2L/c, since 0' measures the velocity of light as c. This time 

interval corresponds to two events taking place at the same point (O') relative to 0'. 

Relative to observer 0, who also measures the velocity of light as c, the path 

of the light signal is OPO', and thus O sees the time relationship (from Fig. 6-16b) 

as being (!cT) 2 = (!vT) 2 + L 2 or T = (2L/c)/v1 - v2;c2. Therefore T = 
T' /yl - v2/c 2 , which is just Eq. (6.41). Note that we have obtained time dilation 
specifically by requiring that the velocity of light be invariant for all inertial 
observers. 

Next let us consider the mirror M' placed along the X'-axis and oriented per

pendicular to it. We place it a distance L' from 0' and consider the mirror at rest 
in the 0'-system. The arrangement is shown in Fig. 6-17. Again when O and 0' 

are coincident, a light signal is flashed toward the mirror. The times T and T' for 

the light to return to O' are again measured. The interval for 0', who measures 
the velocity of light as c, is T' = 2L' /c. The distance O'M' may not be the same 

for observer 0, and we therefore call the distance L. Now the time, t1, for the 

light to travel from O to the mirror is found from the relation ct1 = L + vt1 or 

t1 = L/(c - v), since M' has advanced the distance vt1• On reflection, 0 measures 
a time t 2 for the light to reach 0', who has moved a distance vt2 in that time (see 

Fig. 6-17c). Thus ct2 = L - vt2 or t2 = L/(c + v). The total time required for 
the light to reach O', as measured by 0, is thus 

L L 2L 1 
T = ti+ t2 = c - v + c + v = c 1 - v2/c 2 

But T and T' correspond to two events occurring at the same place, relative to O', 

and are therefore related by Eq. (6.41). Thus 

2L/c 2L' /c 

1 - v2/c2 Vl - v2/c2 
or L = ~v2/c2 L'. 

This equation is identical to Eq. (6.40), since L' is a length at rest relative to 0'. 

From these two special examples, we see that the constancy of the velocity of 
light for all inertial observers affects, in a very particular way, the results obtained 

by observers in relative motion. 
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EXAMPLE 6.7. Analysis of the Michelson

M orley experiment. At the beginning of Sec

tion 6.6, we mentioned the Michelson-Morley 

experiment. We shall describe it briefly now, 

and analyze the results. The experimental 
arrangement is shown schematically in 

Fig. 6-18, where Sis a monochromatic source 

of light and M 1 and M 2 are two mirrors 
placed at the same distance L' from the glass 

plate P (as measured by a terrestrial ob

server). Light coming from S, when it 

reaches P, is partially transmitted toward M 1 

and partially reflected toward M 2. Rays re

flected at M 1 and M 2 retrace their paths and 
eventually reach the observer at O'. Note 
that the light path drawn in Fig. 6-18 is 

relative to a frame X'Y'Z' moving with the 

s 

Source of 
light 

o~J 

c-v ----c+v 

Terrestrial 
observer 

Earth's motion ---~v ~ 

Fig. 6-18. Basic components of the 
Michelson-Morley experiment. 

earth and relative to which the instrument, called an interferometer, is at rest. [Drawing the 

path of light as seen by an observer relative to whom the earth is moving with a velocity v 

is suggested as an exercise for the student.] The actual experimental arrangement used by 

Michelson and Morley is illustrated in Fig. 6-19. 

Solution: Let c be the velocity of light as measured by an observer stationary relative 
to the ether. Let us call v the velocity of the earth relative to the ether, and orient the 

interferometer so that the line PM 1 is parallel to the motion of the earth. 

LIGHT SOURCE ADJUSTABLE MIRROR UNSILVERED GLASS PLATE 

~W:!JlUt!----ll!:1J __ +--s1-jLv[lil~Ra'rn1G_L_As_,_"~"'"'°"' 

Fig. 6-19. Interferometer used by Michelson and Morley in their measurements of the 
velocity of light. Sandstone table holding mirrors is fixed to a wooden ring which floats on 
mercury. The series of mirrors serves to lengthen the total path of light. The unsilvered 
plate is placed along one path to compensate for the fact that the other path must pass 
through the glass of the mirror. The telescope permits one to observe the interference 
fringes. (Drawing courtesy of Scientific American.) 
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When we use the Galilean transformation, we find, following the results of Example 6.2, 
that, relative to the earth, the velocity of light going from P to M 1 is c - v, that from 

M1 to Pit is c + v, and that from P to M2 or from M2 to Pit is yc2 - v2. Thus the 

time required by light to go from P to M 1 and back to P, as measured by the terrestrial 
observer O', is 

L' L' 2L'c 
tf, = --+-- = ---

c - v c + v c2 - v2 

2L'/c 

1 - v2/c2' 

while the time required to go from P to M2 and back to P, as measured by O', is 

2L' 
t1- = ----

,Vc2 - v2 Vl - v2/c2 

2L' /c 

We note that t/1 and t{ are different, and therefore the rays that reach observer O' have 

a certain path difference and (according to the theory presented in Chapter 22) should 

result in a certain interference pattern. Surprisingly, no such interference pattern is ob

served, as previously indicated in Section 6.6.* This suggests that t
1
~ = t~. To solve 

this puzzle Lorentz, and independently Fitzgerald, proposed that all objects moving 

through the ether suffer a "real" contraction in the direction of motion, and that this 

contraction was just enough to make t(1 = t{. That means that the length that appears 

in t (1 must not be the same as the length in t {, because the first is in the direction of the 

earth's motion and the other is perpendicular to it. Writing L for L' in the expression for 
I 

t 11 , we must have 

2L/c tf, = ----
1 - v2/c2 

Equating t/
1 

and t~, we obtain, after simplifying, 

L = Vl - v2/c2 L'. (6.42) 

This expression relates the lengths PM 1 and PM 2 as measured by an observer O at 

rest relative to the ether. Observer O' should not notice this contraction, because the 

measuring stick he uses to measure the distance PM 1 is also contracted to the same degree 

as PM 1 when placed in the direction of the earth's motion! Thus, to him, the lengths PM 1 

and PM2 are equal. But observer O would laugh at the worries of O', since he realizes 

that O' is in motion and, according to the Lorentz-Fitzgerald hypothesis, the objects he 
carries are all shortened in the direction of motion. Thus O concludes that the "real" 

length of PM1 is Land that of PM2 is L', this "real" difference in length being the source 

of the negative result obtained when the interference of the two light beams was examined. 

Of course, an alternative explanation of the negative result of the Michelson-Morley 

experiment is to assume that the speed of light is always the same in all directions, no 

matter what the state of motion of the observer. Then observer O' uses c for all paths of 

Fig. 6-18, and then t/1 = t~ = 2L' /c. This was the position adopted by Albert Einstein 

when he was formulating his principle of relativity. The student may, however, at this 

* In the actual experiment performed by Michelson, the two arms of the interferometer, 
or to be more precise the optical lengths of both light paths, were slightly different, result
ing in an interference pattern. Therefore Michelson, to compensate for this difference 
and actually increase the precision of his measurement, rotated the instrument (Fig. 6-19). 
And although the theory, which was based on the Galilean transformation, predicted a 
shift in the interference pattern as a result of the rotation, no such shift was observed. 
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moment say that the "real" contraction assumed by Lorentz to explain the negative re

sult of the Michelson-Morley experiment is exactly the same as the contraction we found 

in Eq. (6.40) by using the Lorentz transformation and the principle of the invariance of 

the velocity of light. There is, however, a fundamental difference between the two under

lying hypotheses used for obtaining these two apparently identical results: (1) The con

traction (6.42), obtained by means of the Galilean transformation, is assumed to be a 

real contraction suffered by all bodies moving through the ether, and the v appearing in 

the formula is the velocity of the object relative to the ether. (2) Contraction (6.40) 

refers only to the measured value of the length of the object in motion relative to the ob

server, and is a consequence of the invariance of the velocity of light. The v appearing 
in the formula is the velocity of the object relative to the observer, and thus the contrac

tion is different for different observers. It was the genius of Einstein that led him to 

realize that the idea of an ether was artificial and unnecessary, and that the logical 

explanation was the second one. This was- the basic postulate which Einstein used to 

formulate the principle of relativity, as we shall see in Chapter 11. 
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Problems 

6.1 Two trains, A and B, are running on 
parallel tracks at 70 km hr-1 and 90 km 

hr-1 , respectively. Calculate the relative 

velocity of B with respect to A, when: (a) 

they move in the same direction, (b) they 

move in opposite directions. 

6.2 Solve the previous problem if the 

tracks are set at an angle of 60° with re

spect to each other. 

6.3 A train leaves city A at 12 noon for 
city B 400 km away, and maintains a con

stant speed of 100 km hr-1• Another train 

leaves city Bat 2:00 P.M. and maintains a 
constant speed of 70 km hr- 1. Determine 

the time at which the trains pass and the 

distance to city A if (a) the second train 

heads toward city A, and (b) the second 

train heads away from city A. 

6.4 A man driving through a rainstorm at 

80 km hr-1 observes that the raindrops 

make tracks on the side windows that have 

an angle of 80° with the vertical. When he 

stops his car, he observes that the rain is 

actually falling vertically. Calculate the 

relative velocity of the rain with respect to 
the car (a) when it is still, and (b) when it 

is moving at 80 km hr-1. 

6.5 Two cars moving along perpendicular 

roads are traveling north and east, respec
tively. If their velocities with respect to 
the ground are 60 km hr - l and 80 km 

hr-I, calculate their relative velocity. 

Does the relative velocity depend on the 
position of the cars on their respective 

roads'? Repeat the problem, assuming 

that the second car moves west. 

6.6 A boat is moving in the direction N 60° 
W at 4.0 km hr- 1 relative to the water. 

The current is in such a direction that the 

resultant motion relative to the earth is 

due west at 5.0 km hr-1. Calculate the 

velocity and direction of the current with 

respect to the earth. 

6.7 The velocity of a speedboat in still 

water is 55 km hr- 1. The driver wants to 

go to a point located 80 km away at S 20° 
E. The current is very strong at 20 km hr-1 

in the direction S 70° W. (a) Calculate 

which direction the speedboat should be 

headed so that it travels in a straight line. 
(b) Determine the length of time for the 

trip. 

6.8 A river flows due north with a velocity 
of 3 km hr-1. A boat is going east with a 

velocity relative to the water of 4 km hr-1. 

(a) Calculate the velocity of the boat rela

tive to the earth. (b) If the river is 1 km 

wide, calculate the time necessary for a 

crossing. (c) What is the northward devia

tion of the boat when it reaches the other 

side of the river'? 

6.9 Two places, A and B, are 1 km apart 

and located on the bank of a rectilinear 
(perfectly straight) river section. A man 

goes from A to B and back to A in a row
boat that is rowed at 4 km hr-1 relative 

to the river. Another man walks along the 

bank from A to B and back again at 4 km 
hr-I. If the river flows at 2 km hr-1, cal

culate the time taken by each man to make 

the round trip. 

6.10 Using the data of the previous prob

lem, determine the speed of the river so 

that the time difference for the two round 

trips is 6 min. 

6.11 A river is 1 km wide. The current is 
2 km hr-I. Determine the time it would 

take a man to row a boat directly across 

the river and back again. Compare this 

time with the time it would take a man to 
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rowboat moves with a constant velocity of 

4 km hr-1 with respect to the water. 

6.12 Using the data of the previous prob

lem, determine the current velocity if the 

time difference between the two round trips 

is 10 minutes. 

6.13 Given a coordinate system fixed with 
respect to the earth (assume the earth flat 

and "motionless"). Consider a bullet that 

has a muzzle velocity of 800 ft s-1 fired 

from the tail gun of an airplane moving 

with a velocity of 700 ft s-1 (approximately 
440 mi hr- 1). Describe the motion of the 

bullet (a) in the earth's coordinate system, 

(b) in the coordinate system attached to 

the plane. (c) Calculate the angle at which 

the gunner must point the gun so that the 

bullet has no horizontal component of 

velocity ip. the earth's coordinate system. 

6.14 The position of a particle Q in a co

ordinate system O is measured as r = 

Ux(6t2 - 4t) + Uy(-3t3 ) + u 2 3 m. (a) 

Determine the constant relative velocity of 

system O' with respect to O if the position 

of Q is measured as r' = ux(6t2 + 3t) + 
uy(-3t3 ) + u 2 3 m. (b) Show that the ac

celeration of the particle is the same in 
both systems. 

6.15 A train passes through a station at 
30 m s-1. A ball is rolling along the floor 

of the train with a velocity of 15 m s-1 

directed (a) along the direction of the 

train's motion, (b) in the opposite direc

tion, and (c) perpendicular to the motion. 

Find, in each case, the velocity of the ball 

relative to an observer standing on the 
station platform. 

6.16 A particle with a velocity of 500 m s-1 

relative to the earth is heading due south 

at latitude 45° N. (a) Compute the cen

trifugal acceleration of the particle. (b) 

Compute the Coriolis acceleration of the 

particle. (c) Repeat the problem for the 
position latitude 45° S. 

6.17 A body falls from a height of 200 m 

at a point whose latitude is 41 ° N. Find the 

eastward deviation with respect to the 
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point directly (radially) below. Repeat 

this problem for a point at latitude 41 ° S. 

6.18 A river is flowing southward (north

ward) at a rate of 9 km/hr at 45° latitude 

N (S). Find the Coriolis acceleration. Show 

that in the Northern (Southern) hemi

sphere it pushes the water against the right 

(left) bank. This effect produces a some

what larger erosion on the right (left) bank 

that has been noticed in some cases. 

6.19 You are flying along the equator 
due east in a jet plane at 450 m s-1 (about 

1000 mi hr-1). What is your Coriolis 

acceleration? 

6.20 The planet Jupiter rotates on its 

axis once in 9 hr and 51 min, has a radius 

of approximately 7 X 104 km, and the 

acceleration due to gravity at its surface 
is 26.5 m s-2 . What is the maximum devi

ation of the plumb line from the radial 
direction on the surface of Jupiter? 

6.21 Compare the values of the accelera
tion of gravity given in Table 6-1 with the 

theoretical values predicted by Eq. (6.29). 

6.22 A body is thrown vertically upward 

with a velocity vo. Prove that it will fall 

back on a point displaced to the west by a 

distance equal to (!)w cos AV8h3 /g, where 

h = v5/2g. 

6.23 Obtain the expressions for the veloc

ity and acceleration of a point as recorded 

by two observers O and O' moving with 
relative angular velocity w, when w is not 

constant. Consider this problem when the 

origins coincide and then when they are 

displaced. 

6.24 Observers O and O' are in relative 

translational motion with v = 0.6c. (a) 

Observer O sees that a stick, aligned paral

lel to the motion, is at rest relative to him 

and measures 2.0 m. How long is the stick 

according to O'? (b) If the same stick is 

at rest in O', and is aligned parallel to the 
motion, how long is the stick according to 

O and O'? 

6.25 Determine the relative velocity of a 
stick which has a measured length equal 

to ! of its rest length. 



148 Relative motion 

6.26 By what amount does the earth ap

pear shortened along its diameter to an 
observer at rest relative to the sun? (The 

orbital velocity of the earth relative to the 

sun is 30 km s- 1, and the radius of the 

earth is given in Table 13-1.) 

6.27 A rocket ship heading toward the 

moon passes the earth with a relative 

velocity of O.Sc. (a) How long does the 

trip from the earth to the moon take, ac

cording to an observer on the earth? (b) 

What is the earth-moon distance, accord

ing to a passenger on the rocket? (c) How 

long does the trip take, according to the 
passenger? 

6.28 The average lifetime of a neutron, as 

a free particle at rest, is 15 min. It dis

integrates spontaneously into an electron, 
proton, and neutrino. What is the average 

minimum velocity with which a neutron 

must leave the sun in order to reach the 

earth before breaking up? 

6.29 A µ-meson is an unstable particle 

whose mean life is 2 X 10-6 s as measured 

by an observer at rest relative to the meson. 

vYhat will be its mean life to an observer 
who sees the meson moving with a velocity 

of 0.9c? If a large burst of such mesons is 

produced at a certain point in the at

mosphere, but only 1 % reach the earth's 

surface, estimate the height of the point 

where the burst originated. 

6.30 A radioactive nucleus is moving with 

a velocity of O.lc relative to the laboratory 

when it emits an electron with a velocity 

of O.Sc relative to the nucleus. What is the 

velocity and direction of the electron rela

tive to the laboratory if, relative to the 

frame of reference attached to the decay

ing nucleus, the electron is emitted (a) in 

the direction of motion, (b) in the opposite 

direction, ( c) in the perpendicular direction? 

6.31 Observers O and O' are in relative 

translational motion, with v = 0.6c. They 

coincide at t = t' = 0. When five years 
have passed, according to 0, how long does 

it take a light signal to get from O to O''? 

With this information known by both O 

and O', how much time has elapsed accord-

ing to O' since O and O' coincided? A light 
placed at O is turned on for one year. How 
long is the light on, according to O'? 

6.32 Answer the previous problem when 

the relative translation motion is 0.9c. 

6.33 A rocket, whose rest length is 60 m, 

is moving directly away from the earth. 
The ship is fitted with mirrors at each end. 

A light signal, sent from the earth, is re

flected back from the two mirrors. The 

first light signal is received after 200 s and 

the second 1.74 µslater. Find the distance 

of the rocket from the earth and its veloc

ity relative to the earth. 

6.34 An astronaut wishes to go to a star 

five light years away. Calculate the veloc

ity of his rocket relative to the earth so that 

the time, as measured by the astronaut's 
own clock, is one year. What will be the 

time for this mission as recorded by a ter
restrial observer? 

6.35 A student is given an examination to 
be completed in one hour, as measured by 

the professor's clock. The professor moves 

at a velocity of 0.97 c relative to the student 

and sends back a light signal when his clock 

reads one hour. The student stops writing 

when the light signal reaches him. How 

much time did the student have for the 
examination? 

6.36 A scientist wishes to use the Michel

son-Morley method to measure wind veloc
ity, by sending out sound signals on two 

perpendicular paths. He assumes the veloc
ity of sound to be 300 m s- 1 and the path 

length to be 100 m. What minimum wind 

velocity can he detect if he can measure a 

time difference t:.t ~ 0.001 s? 

6.37 Prove that the general Lorentz 

transformation when the coordinate axes 

used by O and O' are not parallel to the 

relative velocity is 

(r • v)v 
r' = r + (k - 1) v2 - kvt, 

2 
t' = k(t - r · v/c ). 

[Hint: Resolve vectors rand r' into compo

nents parallel and perpendicular to v; note 

that r' = r(1 + r { and r 11 = (r · v)v/v2 .] 
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6.38 Prove that if V and V' are the magnitudes of the velocity of a particle as measured 

by observers O and O' moving along the X-axis with relative velocity v, then 

-yl - V'2/c2 
-y(l - v2/c2)(1 - V2/c2) 

1 - vV,,jc2 
and 

Vl - V2/c2 
-y(l - v2/c2)(1 - V'2/c2) 

1 + vvvc2 

6.39 Prove that the general transformation for the acceleration of a particle as measured 

by O and O', when the particle moves with velocity V relative to 0, is 

a~ 
ax(l - v2 /c2)3/2 

(1 - vVx/c2)3 ' 

a' y 
1 - v2 /c2 ( vVy/c2 ) 

(1 - vV x/c2)2 ay + ax 1 - vV x/c2 ' 

a~ 
1 - v2 / c2 

( + V V z/ c2 ) ------ a. ax . 
(1 - vVx/c2)2 1 - vVx/c2 

6.40 Prove that when v is almost equal to 

c, then k ~ l/V2(1 - v/c), and that 

when v is very small compared with c, 

then k ~ 1 + v2 /2c2 • 

6.41 A cubical box, of side Lo as measured 

by ~n observer O' at rest with it, moves 

with velocity v parallel to one side relative 

to another observer 0. Prove that the 
volume measured by O is L~Vl - v2/c2. 

6.42 A particle moves relative to an ob

server O so that its position at time t is 

x = vt, y = !at2 and its path is a parabola. 
Describe its motion relative to an observer 

O' who moves relative to O with a velocity 
v. In particular, find its path and its ac

celeration. 

6.43 A meter stick is held at an angle of 
45° with respect to the direction of motion 

in a moving coordinate system. What is 

its length and its orientation, measured in 
the laboratory system, if the moving sys

tem has a velocity of O.Sc? 

6.44 Discussion of simultaneity. (a) Prove 

that if two events occur relative to observer 

O at times ti and t2 and at places x1 and 

x2, and if T = t2 - ti, L = x2 - x1, 

the events appear to observer O' (moving 

relative to O with velocity v along the X

axis) at times t~ and t; such that, if 

T' = t; - t~, 
then 

T' = k(T - vL/c2). 

(b) In general, are events that appear as 

simultaneous to O also simultaneous to O'? 

Under what conditions are events that ap

pear simultaneous to O also simultaneous to 

all other observers in uniform relative mo

tion? (c) Obtain the relation between Land 

T such that the order in which two events, 

as observed by O', is reversed for 0. (d) 

Suppose that events (xi, ti) and (x2, t2) 

observed by O are related causally [that is, 

(x2, t2) is the result of some signal trans

mitted from (x1, ti) with velocity V = 

L/T, by necessity smaller than or equal 

to c]. Can the order of the events appear 

reversed to O'? [Note that if the answer is 

yes, then the theory requires that V > c.] 
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6.45 Prove that the law of transformation of velocities can be written in vector form as 

1 [ V·v J 
V' = k(l - V, v/c2) V + (k - 1) ~ v - kv . 

6.46 Prove that the law of transformation of accelerations can be written in vector 

form as 

I 1 [ (1 ) U ' V 1 J 
a = k3(1 - V. v/c2)3 a+ k - 1 ~ v - c2 v X (a X V) . 
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7.1 Introduction 

In Chapter 5, which dealt with kinematics, we discussed the elements that enter 
into the "description" of the motion of a particle. Let us now investigate the rea

sons why particles move the way they do. Why do bodies near the surface of the 

earth fall with constant acceleration? Why does the earth move around the sun 

in an elliptical orbit? Why do atoms bind together to form molecules? Why does 

a spring oscillate when it is stretched? We want to understand these and many 

other motions that we continually observe around us. This understanding is im
portant not only to our basic knowledge of nature, but also for engineering and 

practical applications. Understanding how motions in general are produced en

ables us to design machines and other practical devices that move as we desire. 

The study of the relationship between the motion of a body and the causes for this 
motion is called dynamics. 

From daily experience we know that the motion of a body is a direct result of 

its interactions with the other bodies around it. When a batter hits a ball, he is 

interacting with it and modifying its motion. The path of a projectile is but a re

sult of its interaction with the earth. The motion of an electron around a nucleus 
is the result of its interactions with the nucleus and perhaps with other electrons. 

Interactions are conveniently described by a mathematical concept called force. 

The study of dynamics is basically the analysis of the relation between force and 

the changes in· motion of a body. 

The laws of motion which we shall present in the following discussion are gen
eralizations arising from a careful analysis of the motions we observe around us 
and the extrapolation of our observations to certain ideal or simplified experiments. 

7.2 The Lam of Inertia 

A free particle is one that is not subject to any interaction. Strictly speaking, there 

is no such thing, because each particle is subject to interactions with the rest of the 

particles in the world. Therefore a free particle should either be completely iso

lated, or else be the only particle in the world. But then it would be impossible 

to observe it because, in the process of observation, there is always an interaction 

between the observer and the particle. In practice, however, there are some parti

cles which may be considered free, either because they are sufficiently far away 

from others for their interactions to be negligible, or because the interactions with 

the other particles cancel, giving a zero net interaction. 

Let us now consider the law of inertia, which states that 
-

a free particle always moves with constant velocity, or (which amounts 

to the same thing) without acceleration. 

That is, a free particle either moves in a straight line with constant speed or is 

at rest (zero velocity). This statement is also called Newton's first law, because it 
was stated initially by Sir Isaac Newton (1642-1727). It is the first of three 

"laws" which he enunciated in the seventeenth century. 
We recall from Chapters 5 and 6 that motion is relative. Therefore, when we 

state the law of inertia we must indicate to whom or what the motion of the free 
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particle is referred. We assume that the motion of the particle is relative to an 
observer who is himself a free particle or system; i.e., who is not subject to inter
actions with the rest of the world. Such an observer is called an inertial observer, 

and the frame of reference he uses is called an inertial frame of reference. We as
sume that inertial frames of reference are not rotating, because the existence of 
rotations would imply that there are accelerations ( or changes in velocity due 
to changes in direction), and therefore that there are interactions, which would 
be contrary to our definition of the inertial observer as being a "free particle," or 
one without acceleration. According to the law of inertia, different inertial ob
servers may be in motion, relative to each other, with constant velocity. There
fore their observations are correlated through either the Galilean or the Lorentz 
transformation, depending on the magnitude of their relative velocities. 

Because of its daily rotation and its interaction with the sun and the other 
planets, the earth is not an inertial frame of reference. However, in many cases 
the effects of the earth's rotation and interaction are negligible, and the frames of 
reference attached to our terrestrial laboratories can, without great error, be con
sidered inertial. Nor is the sun an inertial frame of reference. Because of its inter
actions with the other bodies in the galaxy, it describes a curved orbit about the 
center of'the galaxy (Fig. 7-1). However, since the sun's motion is more nearly 
rectilinear and uniform than that of the earth (the orbital acceleration of the earth 
is 15 million times that of the sun), the sun's resemblance to an inertial frame is 
much greater. 

Let us illustrate some experiments performed in our terrestrial laboratories that 
support the law of inertia. A spherical ball resting on a smooth horizontal surface 
will remain at rest unless acted upon. That is, its velocity remains constant, with 
value equal to zero. We assume that the surface on which the ball is resting bal
ances the interaction between the ball and the earth, and hence that the ball is 
essentially free of interactions. When the ball is hit, as in billiards, it momentarily 
suffers an interaction and gains velocity, but afterward is free again, moving in a 
straight line with the velocity it acquired when it was struck. If the ball is rigid 
and perfectly spherical, and the surface perfectly horizontal and smooth, we may 

1------sx 1020 m---..... 1 

Fig. 7-1. A coordinate system attached to the earth is not inertial because of its daily 
rotation and its accelerated motion around the sun. Nor is the sun an inertial frame 
because of its motion about the center of the galaxy. However, for practical purposes, 
either of these two bodies may be used to define an inertial frame. 
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assume that the ball will continue moving that way indefinitely. In practice this 

is not the case, for the ball slows down and eventually stops. We say that there 
has been an additional interaction between the ball and the surface. This inter
action, called friction, will be discussed later. 

7.3 Linear Momentum 

In Section 2.3 we gave an operational definition of mass by saying that it is a num
ber we attach to each particle or body and that it is obtained by comparing the 

body with a standard body, using the principle of an equal arm balance. Mass, 
therefore, is a coefficient that distinguishes one particle from another. Our opera

tional definition of mass gives us its value, assuming that the particle is at rest. 
However, we do not know from that definition whether the mass will be the same 

when the particle is in motion; therefore, to be precise, we should use the term 
rest mass. But let us assume, for the time being, that the mass is independent of 

the state of motion and call it simply mass. Later on, in Chapter 11, we shall make 

a more careful analysis of this important aspect and verify that our assumption is 
a good approximation so long as the velocity of the particle is very small compared 
with the velocity of light. 

The linear momentum of a particle is defined as the product of its mass and its 
velocity. Designating it by p, we write 

p = mv. (7.1) 

Linear momentum is a vector quantity, and it has the same direction as the velocity. 
It is a very important physical concept because it combines the two elements that 

characterize the dynamical state of a particle: its mass and its velocity. Henceforth 
we shall write the word momentum instead of "linear momentum." In the MKSC 

system, momentum is expressed in m kg s- 1 (no special name has been given to this 
unit). 

That momentum is a more informative dynamical quantity than velocity alone 

can be seen from several simple experiments. For example, a loaded truck in mo
tion is more difficult to stop or to speed up than an empty one, even if the velocity 

is the same for each, because the momentum of the loaded one is greater. 
We may now restate the law of inertia by saying that 

a free particle always moves with constant momentum. 

7.4 Prineiple of Conservation of Momentum 

One immediate consequence of the law of inertia is that an inertial observer recog
nizes that a particle is not free (i.e., that it is interacting with other particles) 

when he observes that the velocity or the momentum of the particle fails to remain 
constant; or in other words, when the particle experiences an acceleration. 

Let us now consider an ideal situation. Suppose that, instead of observing one 
isolated particle in the universe, as assumed in the law of inertia, we observe two 

particles which are subject only to their mutual interaction and are otherwise 
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isolated from the rest of the world. As a result of their interaction, their individual 

velocities are not constant but change with time, and their paths in general are 

curved, as indicated in Fig. 7-2 by curves (1) and (2). At a particular time t, 

particle 1 is at A with velocity v1 and particle 2 is at B with velocity v 2 . At a 

later time t', the particles are at A' and B' with velocities v~ and v;, respectively. 

Denoting the masses of the particles by m1 and m 2 , we say that the total momentum 

of the system at time t is 

P =Pi+ P2 

(7.2) 

At a later time t', the total momentum of the 
system is 

(7.3) 

In writing this equation we have maintained 

(1) 

(2) 

our assumption that the masses of the particles Fig. 7-2. Interaction between 
are independent of their states of motion; thus two particles. 

we have used the same masses as in Eq. (7.2). 

Otherwise we would have to write P' = m~ v~ + m~v~. The important result of 

our experiment is that no matter what the times t and t' are, we always find, as a 

result of our observation, that P = P'. In other wo:rds, 

the total momentum of a system composed of two particles which are 

subject only to their mutual interaction remains constant. 

This result constitutes the principle of the conservation of momentum, one of the 

most fundamental and universal principles of physics. For example, consider a 

hydrogen atom, composed of an electron revolving around a proton, and let us 

assume that it is isolated so that only the interaction between the electron and the 

proton has to be considered. Then the sum of the momenta of the electron and 

the proton relative to an inertial frame of reference is constant. Similarly, con

sider the system composed of the earth and the moon. If it were possible to 

neglect the interactions due to the sun and the other bodies of the planetary sys

tem, then the sum of the momenta of the earth and the moon, relative to an in

ertial frame of reference, would be constant. 

Although the above-stated principle of the conservation of momentum con

siders only two particles, this principle holds also for any number of particles 

forming an isolated system; i.e., particles which are subject only to their own 

mutual interactions and not to interactions with other parts of the world. There

fore, the principle of conservation of momentum in its general form says that 

the total momentum of an isolated system of particles is constant. 
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For example, consider a hydrogen molecule composed of two hydrogen atoms 
(therefore of two electrons and two protons). If the molecule is isolated, so that 
only the interactions among these four particles have to be considered, the sum 

of their momenta relative to an inertial frame of reference will be constant. 

Similarly, consider our planetary system, composed of the sun, the planets, and 

their satellites. If we could neglect the interactions with all other heavenly bodies, 
the total momentum of the planetary system relative to an inertial frame of ref

erence would be constant. 
No exceptions to this general principle of conservation of momentum are known. 

In fact, whenever this principle seems to be violated in an experiment, the physi
cist immediately looks for some unknown or hidden particle which he has failed 

to notice and which may be responsible for the apparent lack of conservation of 
momentum. It is this search which has led physicists to identify the neutron, the 
neutrino, the photon, and many other elementary particles. Later on we shall 

have to reformulate the principle of conservation of momentum in a slightly dif

ferent way; but for the great majority of the problems we shall discuss, we may use 

it in the form in which it has been stated here. 
The conservation of momentum may be expressed mathematically by writing 

the following equation: 

P = LiPi = Pi + pz + p3 + · · · = const, (7.4) 

which implies that, in an isolated system, the change of momentum of a particle 

during a particular interval of time is equal to the negative of the change of momen
tum of the rest of the system during the same time interval. So, for example, in 
the case of an isolated hydrogen molecule, the change of momentum of one of the 

electrons is equal and opposite to the sum of the changes of momenta of the other 
electron and the two protons. 

For the particular case of two particles, 

Pi + P2 = const (7.5) 
or 

Pi + P2 = Pi + pz. (7.6) 

Note, from Eq. (7.6), that 

P 11 - P 1 = P2 - pz . 

- -(pz - pz). 

(7.7) 

Fig. 7-3. Momentum exchange as a 
result of the interaction between two 
particles. 

Or, calling p' - p = Ap the change in momentum between times t and t', we 

can write . 
fl.pi = -tl.pz. (7.8) 

This result indicates that, for two interacting particles, the change in momentum 
of one particle in a certain time interval is equal and opposite to the change in 
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momentum of the other during the same time interval (Fig. 7-3). Thus the above 

result may ,also be expressed by saying that 

an interaction produces an exchange of momentum, 

so that the momentum "lost" by one of the interacting particles is equal to the 

momentum "gained" by the other particle. 

The law of inertia stated in Section 7.2 is just one particular case of the prin

ciple of conservation of momentum. Because if we have only one isolated particle 

instead of several, Eq. (7.4) has only one term and becomes p = const or its 

equivalent, v = const, which is the law of inertia. 

We continually find around us examples of the principle of conservation of 

momentum. The recoil of a firearm is one. Initially the system of gun plus bullet 

is at rest, and the total momentum is zero. When the gun is fired, it recoils to com

pensate for the forward momentum gained by the bullet. When a nucleus disin

tegrates, emitting (for example) an elec

tron and a neutrino, the total momentum 

of the electron, the neutrino, and the 

resultant nucleus must add to zero, since 

initially the system was at rest with 

respect to an inertial frame attached- to 

the laboratory. Similarly, if a grenade or 

bomb explodes in flight, the total momen

tum of all the fragments immediately 

after the explosion must add to a value 

equal to the momentum of the grenade 

immediately before exploding (Fig. 7-4). Fig. 7-4. Momentum is conserved in the 
explosion of a grenade. 

EXAMPLE 7.1. A gun whose mass is 0.80 kg fires a bullet whose mass is 0.016 kg with 
a velocity of 700 m s-1. Compute the velocity of the gun's recoil. 

Solution: Initially both the gun and the bullet are at rest and their total momentum is 
zero. After the explosion the bullet is moving forward with a momentum 

Pl = m1v1 = (0.016 kg) X (700 m s-1) = 11.20 m kg s-1• 

The gun must then recoil with an equal but opposite momentum. Therefore we must 
have also 

or, since m2 = 0.80 kg, 

EXAMPLE 7.2. 
particles. 

ll_.2_0_m_k_g_s_-_1 = 14.0 m s -1. 

0.80 kg 

Analysis of conservation of momentum in interactions between atomic 
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(a) (b) 

Fig. 7-5. Momentum conservation in the collision of an a-particle (helium nucleus) and 
a proton (hydrogen nucleus). 

Solution: The cloud-chamber photograph in Fig. 7-5(a) shows an incoming alpha par

ticle (or helium nucleus) interacting with an atom of hydrogen which was initially at rest, 

and which was part of the gas in the chamber. The alpha particle is deflected from its 

original direction and the atom of hydrogen is set in motion. If we know the respective 

masses, which in this case are in the ratio of 4 to 1, and measure their velocities (by special 

techniques devised to analyze cloud-chamber photographs), we can draw the momentum 

diagram of Fig. 7-5(b). When, after the interaction, the two momenta are added,. the 

result is equal to the momentum of the incoming alpha particle; that is, Pa = p~ + PH· 

So far conservation of momentum has been observed to hold in· all atomic and nuclear 

interactions. 

7.5 Redefinition of Mass 

Using definition (7.1) of momentum, and assuming that the mass of a particle is 

constant, we may express the change in momentum of the particle in a time f:.t as 

f:.p = f:.(mv) = m f:.v. 

Hence Eq. (7.8) reads m1 f:.v 1 = ~m2 f:.v 2 or, considering only the magnitudes, 

we have 

m2 Jf:.v1J 
m1 = Jf:.v2J ' (7.9) 

which indicates that the ratio of the masses of the particles is inversely propor

tional to the magnitude of the changes of velocity. This result allows us to define 

mass dynamically. In fact, if particle 1 is our "standard" particle, its mass m 1 

may be defined as unity. By letting any other particle-let us call it 2-interact . 

with the standard particle and applying Eq. (7.9), we may obtain its mass m 2 . 

This result indicates that our previous operational definition of mass in Section 2.3 

can be replaced by this new operational definition, derived from the principle of 

conservation of momentum and the assumption that mass does not change with 

velocity. 
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7.6 Nemton~s Seeond and Third Lams; Coneept of Poree 

In many cases we observe the motion of only one particle, either because we have 

no way of observing the other particles with which it interacts or because we 

purposely ignore them. In this situation it is rather difficult to use the principle 

of conservation of momentum. However, there is a practical way of circumvent

ing this difficulty, by introducing the concept of force. The corresponding mathe

matical theory is called dynamics of a particle. 

Equation (7.8) relates the changes in momentum of particles 1 and 2 during the 

time interval t::..t = t' - t. Dividing both sides of this equation by t::..t, we may 

write 

!::..p2 ---, 
t::..t 

(7.10) 

which indicates that the average rates of (vector) change of momentum of the 

particles in a time interval t::..t are equal in magnitude and opposite in direction. 

If we make t::..t very small, i.e., if we find the limit of Eq. (7.10) as t::..t - 0, we get 

dp1 dp2 
dt=-dt, (7.11) 

so that the instantaneous rates of (vector) change of momentum of the particles, 

at any time t, are equal and opposite. Thus, using our previous examples, we can 

see that the rate of change of momentum of the electron in an isolated hydrogen 

atom is equal and opposite to the rate of change of momentum of the proton. Or, 

if we assume that the earth and the moon constitute an isolated system, the rate 

of change of momentum of the earth is equal and opposite to the rate of change of 

momentum of the moon. 

We shall designate the time rate of change of momentum of a particle by the name 

''force." That is, the force "acting" on a particle is 

F= dp_ 
dt 

(7.12) 

The word "acting" is somewhat misleading because it suggests the idea of some

thing applied to the particle. Force is a mathematical concept which, by defini

tion, is equal to the time rate of change of momentum of a given particle, which 

in turn is due to the interaction of the particle with other particles. Therefore, 

physically, we may consider force as an expression of an interaction. If the particle 

is free, p = const and F = dp/ dt = 0. Hence we can say that no force acts on 
a free particle. 

Expression (7.12) is Newton's second law of motion; but, as we can see, it is more 

a definition than a law, and is a direct consequence of the principle of conservation 
of momentum. 

Using the concept of force, we can write Eq. (7.11) in the form 

(7.13) 
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where F 1 = dpif dt is the force on particle 1 due to its interaction with particle 2 

and F2 = dp2 /dt is the force on particle 2 due to its interaction with particle 1. 

Then we conclude that 

when two particles interact, the force on one particle is equal and oppo

site to the force on the other. 

This is Newton's third law of motion, again a consequence of the definition of force 

and the principle of the conservation of momentum. It is sometimes called the 

law of action and reaction. 

In numerous problems F 1 (and of course also F 2 ) can he expressed as a function 

of the relative position vector of the two particles, r 12 , and perhaps also as a func

tion of their relative velocity. According to Eq. (7.9), if m 2 is very massive com

pared with m 1 , the change in velocity of m 2 is very small compared with that of 

m 1, and we may assume that particle 2 remains practically at rest in some inertial 

frame of reference. Then we may speak of the motion of particle 1 under the 

action of the force F 1 (Fig. 7-6), and F 1 can be considered as a function of the posi

tion or the velocity of m 1 only. It is in these cases that Eq. (7.12) is particularly 

useful. For example, this is the case for terrestrial bodies moving under the gravi

tational action of the earth, or an electron moving relative to a nucleus in an atom. 

The determination of F(r12) for the many interactions found in nature is one 

of the most important problems of physics. It is precisely because the physicist 

has been able to associate specific functional forms of F(r12) with different inter

actions observed in nature that the concept of force has been so useful to him. 

Remembering the definition (7.1) of momentum, we may write Eq. (7.12) in 

the form 

F _ d(mv) 
- dt ' 

and if m is constant, we have 

F- dv 
- m dt or F= ma. 

We may express Eq. (7.15) in words by saying: 

Force is equal to mass times acceleration, if the mass is constant. 

(7.14) 

(7.15) 

Note that in this case the force has the same direction as the acceleration. From 

Eq. (7.15) we see that if the force is constant, the acceleration, a = F/m, is also 

constant and the motion is uniformly accelerated. This is what happens to bodies 

falling near the earth's surface: All bodies fall toward the earth with the same 

acceleration g, and thus the force of gravitational attraction of the earth, called 

weight, is 

W=mg. (7.16) 

(Strictly speaking, we should write W = mg0 , where g and g0 are related by 

Eq. 6.27.) 
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Fig. 7-6. As a result of momentum con- Fig. 7-7. Resultant force on the particle. 
servation, action and reaction are equal 
and opposite. 

In writing Eq. (7.12) we have assumed that the particle interacts with only one 

other particle, as follows from the discussion preceding Eq. (7.12), and illustrated 
in Fig. 7-6. However, if particle m interacts with particles m1 , m2 , ma, ... (Fig. 7-7), 

each one produces a change in the momentum of m that is characterized by the 
respective forces F 1 , F2 , Fa, ... , according to Eq. (7.12). Then the total rate of 

change of momentum of particle m is 

<;f; = F1 + F2 + Fa + · · · = F. 

The vector sum on the right-hand side is called the resultant force F acting on m. 

This rule for computing the resultant force has already been applied in Chapter 4. 
In Fig. 7-7 we have not indicated the possible interactions between m1 and m 2 , m1 

and ma, m 2 and ma, etc., because these interactions are irrelevant to our present 

purpose. Also we have implicitly assumed that the interaction between m and m1, 

for example, is not altered by the presence of ma, m4 , ..• ; in other words, we have 

assumed that there are no interference effects. 
In succeeding sections of this chapter, in which we shall discuss the motion of a 

particle, we shall assume that the resultant force F is a function of the coordinates 
of the particle only, thus ignoring the motion of the other particles with which it 

interacts. This very useful approximation, as we said before, constitutes what is 
known as the dynamics of a particle. In later chapters we shall consider the motions 

of systems of particles and the forces associated with the different interactions 
known to the physicist. 

7.7 Critique of t'he Concept of Force 

Let us now present a critical appraisal of the concept of force. We introduced this 
concept (that is, F = dp/dt) in Eq. (7.12)-as a mathematical concept which is 
convenient for describing the rate of change of the momentum of a particle due to 

its interactions with other particles. However, in daily life we have a somewhat dif-
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ferent .image of the concept of force. We "feel" a force (actually an interaction) 

when a batter hits a ball, a hammer drives a nail, a boxer jabs at the face of his 

opponent, or a weight pulls on a string. And obviously it is difficult to reconcile 

this sensory image of force with the force or interaction between the sun and the 

earth. In both cases, however, we have an interaction between two bodies. The 

student may say: yes, but there is a very large distance between the sun and the 

earth, while the batter "touches" the ball. And this is precisely the point at which 

things are not so different as they may seem. No matter how compact a solid may 

appear, its atoms are all separated and held in position by interactions in the same 

way that the planets are held in position as a result of their interactions with the 

sun. The bat is never in contact with the ball in the microscopic sense, although 

its molecules do come very close to those of the ball, producing a temporary dis

turbance in their arrangement as a result of their interactions. Thus all forces in 

nature correspond to interactions between bodies a certain distance apart. In 

some cases the distance is so small by human standards that we tend to extrapolate 

and think it is zero. In other cases the distance is very large by human standards. 

However, from the physical point of view, there is no essential difference in the 

two kinds of forces. Hence we must apply such sensory or macroscopic concepts 

as "contact" very carefully when we are dealing with processes on an atomic scale. 

The fact that two particles interact when they are separated a certain distance 

means that we must consider a mechanism for the transmission of the interaction. 

This mechanism will be considered in later chapters; we shall only state here that 

our discussion will require a revision of Eq. (7.5). In the form in which it is written, 

Eq. (7.5) presumes that the interaction between two particles is instantaneous. 

However, interactions propagate with a finite velocity presumably equal to that of 

light, as will be discussed in later chapters. In order to take into account the re

tardation in the interaction due to the finite velocity of propagation, an additional 

term will have to be incorporated into Eq. (7.5). When this is done, the concept 

of force passes into a secondary role and the law of action and reaction loses its 

meaning. However, so long as the particles move very slowly compared with the 

velocity of light, or interact very weakly, Eq. (7.5) and the theory developed from 

it constitute an excellent approximation for describing the physical situation. 

7.8 l!nits al Force 

From Eqs. (7.12) or (7.15), we see that the unit of force must be expressed in 

terms of the units of mass and acceleration. Thus in the MKSC system the force 

is measured in m kg s-2 , a unit that is called a newton and is denoted by N; that 

is, N = m kg s-2 • Accordingly, we define the newton as the force that is applied 

to a body whose mass is one kg to produce an acceleration of 1 m s-2 . 

Still in frequent use is the cgs unit of force called a dyne, and defined as the force 

applied to a body whose mass is one gram, to produce an acceleration of 1 cm s-2 ; 

that is, dyne = cm g s-2 . Noting that 1 kg = 103 g and 1 m = 102 cm, we see 

that N = m kg s-2 = (10 2 cm) (103 g) s-2 = 105 dynes. 
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The British unit of force, very seldom used, is the poundal, defined as the force 

acting on a body whose mass is one pound and whose acceleration is 1 ft s-2 , and 

abbreviated pdl; that is, poundal = ft lb s-2• Recalling that 1 lb = 0.4536 kg and 

that 1 ft = 0.3048 m, we may write poundal = (0.3048 m) (0.4536 kg) s-2 = 
0.1383 N. 

Two other units are used frequently by engineers. They are based on Eq. (7.16), 

which defines the weight of a body. One is the kilogram fo~e, abbreviated kgf, 

defined as a force equal to the weight of a mass equal to one kilogram. Thus, 

setting m = 1 kg in Eq. (7.16), we have kgf = g N "" 9.807 N. Similarly the 

pound force, abbreviated lbf, is defined as a force equal to the weight of a mass 

equal to one pound. Thus, setting m = 1 lb in Eq. (7.16), we have lbf = g pdl ,......, 

32.17 pdl = 4.448 N. 

Note that mass measured in kilograms or pounds and weight measured in kilo

grams force or pounds force are expressed by the same number. So a mass of 

7.24 lb weighs 7.24 lbf or 238.7 poundals. The introduction of kgf and lbf for meas

uring forces requires the definition of new units of mass if we want to use these 

units of force in conjunction with the equation of motion F = ma. For example, 

in the British system we would have that 

lbf = (new mass unit) X (ft s-2). 

Calling the new mass unit a slug, we see that 

I = __!~ = 32.17 pdl = 32 17 lb 
s ug ft s-2 · ft s-2 · ' 

or 1 lb = 0.0311 slug. A slug is thus the mass of a body whose acceleration is 

1 ft s-2 when acted on by a force of 1 lbf. 

Although weight, being a force, should be expressed in N or poundals, it is cus

tomary, especially in engineering and household uses, to express it in kilograms 

force or pounds force. In practice, however, one speaks of a force of so many 

pounds and not pounds force. 

EXAMPLE 7.3. An automobile whose mass is 

1000 kg moves uphill along a street inclined 20°. 

Determine the force which the motor must pro
duce if the car is to move (a) with uniform motion, 

(b) with an acceleration of 0.2 m s-2• Find also in 

each case the force exerted on the automobile 
by the street. 

Solution: We designate the mass of the automo

bile by m; the forces acting on it are illustrated in 

Fig. 7-8. They are its weight W = mg, pointing 

downward, the force F due to the motor, pointing 

uphill, and the force N due to the street and 

perpendicular to it. Using a set of axes as indi-

y 
I 
\ 

Figure 7-8 
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cated in the figure, and employing Eq. (7 .15), we find that the motion along the X-direction 

satisfies the equation 

F - mg sin a = ma or F = m(a+ gsina). 

The car has no motion along the Y-axis, and thus 

N - mg cos a= 0 or N = mg cos a. 

We note that the force N due to the street is independent of the acceleration of the car 

and, to introduce numerical values, is equal to 9210 N. But the force F due to the motor 
does depend on the acceleration of the car. When the car moves with uniform motion, 

a = 0 and F = mg sin a; in our example it is 3350 N. When it moves with the accelera

tion of 0.2 m s-2 , then F = 3550 N. 
We suggest that the student solve the problem again, this time for a car moving down

hill. 

EXAMPLE 7.4. Determine the acceleration with which the masses m and m' of Fig. 7-9 

move. Assume that the wheel can rotate freely around O and disregard any possible 

effects due to the mass of the wheel (these effects will be considered later, in Chapter 10). 

Solution: Let us assume that the motion is in the direction shown by the arrow, so that 

mass m is falling and mass m' rising. Both masses move with the same acceleration a if 

the string is inextensible, as we may assume. The masses interact through the string, the 

equal and opposite forces they exert on each 

other being designated by F. Then the down- // 

ward motion of m with acceleration a is ff 
mg - F = ma, and the upward motion of 

m' with the same acceleration a is F -
m'g = m'a. 

Thus, by adding the two equations, we 
eliminate F, and obtain 

m - m' 
a - g 

- m+ m' 

for their common acceleration. Then the 

tension in the string is 

2mm' 
F = + 1 g. Figure 7-9 

m m 

A device similar to the arrangement of Fig. 7-9, and which is called Atwood's machine, 

is sometimes used to study the laws of uniformly accelerated motion. One advantage of 

using it is that, by setting m very close to m', we can make the acceleration a very small, 

which makes it easier to observe the motion. 

EXAMPLE 7.5. A particle of mass 10 kg, subject to a force F = (120t + 40) N, 

moves in a straight line. At time t = 0 the particle is at xo = 5 m, with a velocity vo = 
6 m s-1. Find its velocity and position at any later time. 
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Solution: Using Eq. (7.15), we obtain 

120t + 40 = lOa or a = (12t + 4) m s-2 • 

From now on we proceed as in Example 5.2. Since for rectilinear motion a dv/dt, 

dv 
dt = 12t + 4. 

Integrating, we have 

{ dv = { (12t + 4) dt or v = (6t2 + 4t + 6) m s-1 . 

Now, setting v = dx/dt and integrating again, we have 

{' dx = { v dt = { (6t2 + 4t + 6) dt 

or 

x = (2t3 + 2t2 + 6t + 5) m, 

which allows us to find the position at any later time. 

7.9 Frietional Forees 

Whenever there are two bodies in contact, such as in the case of a book resting on 

a table, there is a resistance which opposes the relative motion of the two bodies. 

For example, suppose that we push the book along the table, giving it some velocity. 

After we release it, it slows down and eventually stops. This loss of momentum 

is indicative of a force opposing the motion; the force is called sliding friction. It is 

due to the interaction between the molecules of the two bodies, sometimes referred 

to as cohesion or adhesion depending on whether the two bodies are of the same or 

different materials. The phenomenon is rather complex and depends on many fac

tors such as the condition and nature of the surfaces, the relative velocity, etc. We 

can experimentally verify that the force of friction F1 has a magnitude that, for 

most practical purposes, may be considered as proportional to the normal force N 

pressing one body against the other (Fig. 

7-10). The constant of proportionality is 

called the coefficient off riction, and is desig

nated by f. That is, in magnitude, 

Ff = sliding friction = fN. 

(7.17) 

The force of sliding friction always opposes 

the motion of the body, and so has a direc

tion opposite to the velocity. We can write 

Eq. (7.17) in vector form by recognizing 

:\Iotion 

-u,.JN 

N 

u,. -
F 

Fig. 7-10. The force of friction op
poses the motion and depends on the 
normal force. 
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TABLE 7-1 Coefficients of Friction (All Surfaces Dry)* 

Material J. /k 

Steel on steel (hard) 0.78 0.42 

Steel on steel (mild) 0.74 0.57 

Lead on steel (mild) 0.95 0.95 

Copper on steel (mild) 0.53 0.36 

Nickel on nickel 1.10 0.53 

Cast iron on cast iron 1.10 0.15 

Teflon on Teflon ( or on steel) 0.04 0.04 

* These values must be considered as only average, since 
the coefficients of friction are macroscopic quantities that 
depend on microscopic properties of both materials, and 
fluctuate greatly. 

(7.9 

that a unit vector in the direction of motion is obtained by dividing the velocity 

vector by the velocity magnitude, uv = v/v. This allows us to write Eq. (7.17) 
in the vector form F1 = -uv iN. For example, in the case of Fig. 7-10, if Fis 

the applied force moving the body to the right (possibly a pull on an attached 

string), the resultant horizontal force to the right is F - uv i N, and the equation 

of motion of the body, applying Eq. (7.15), is 

ma= F- uviN. 

In general there are two kinds of coefficient of friction. The static coefficient of 

friction, is, when multiplied by the normal force, gives the minimum force required 

to set in relative motion two bodies that are initially in contact and at relative rest. 

The kinetic coefficient of friction, i k, when multiplied by the normal force, gives 

the force required to maintain the two bodies in uniform relative motion. It has 

been found experimentally that fs is larger than ik for all materials so far tested. 

Table 7-1 lists representative values of is and fk for several materials. 

Friction is a statistical concept, since the force Ff represents the sum of a very 

large number of interactions between the molecules of the two bodies in contact. 

It is, of course, impossible to take into account the individual molecular inter

actions; hence they are determined in a collective way by some experimental 

method and represented approximately by the coefficient of friction. 

In the following examples we illustrate how to handle dynamical problems in

volving friction between solids. 

EXAMPLE 7.6. A body whose mass is 0.80 kg is on a plane inclined 30°. What force 

must be applied on the body so that it moves (a) uphill and (b) downhill? In both cases 

assume that the body moves with uniform motion and with an acceleration of 0.10 m s-2 • 

The coefficient of sliding friction with the plane is 0.30. 

Solution: Let us first consider the body moving uphill. The forces acting on the body 

are illustrated in Fig. 7-ll(a). They are the weight }F = mg, pointing downward, the 
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applied force F (which we assume uphill), and the force of friction F 1, which is always 

against the motion and thus in this case must be downhill.* When we separate the weight 

into its component along the plane and its component perpendicular to the plane, the 

motion of the body along the plane, using Eq. (7.15), is 

F - mg sin a - F 1 = ma. 

Now, according to Eq. (7.17), we must write F1 = JN. But from Fig. 7-ll(a) we see 

that the normal force pressing the body against the plane is mg cos a. Thus Ff = 

f mg cos a. And the equation of motion becomes 

F - mg (sin a + f cos a) = ma. 

This equation serves two purposes. If we know the acceleration a, we can find the ap

plied force F. Conversely, if we know the force F we can find the acceleration. In the 

first case we have 

F = m[a + g (sin a+ f cos a)]. 

For example, if the motion is uniform, a = 0, and when we insert the corresponding 

numerical values, F = 5.95 N. When the body is moving with an acceleration of 0.10 m 

s-2 , we obtain F = 6.03 m s-2 . 

When the body moves downhill, the forces are as illustrated in Fig. 7-ll(b). Now we 

have assumed that F is downhill, but we could also have made the opposite assumption. 

However, the force of friction F1 must be uphill to oppose the motion. Taking downhill 

as the positive direction, the student may verify that the equation of motion is now 

F + mg (sin a - f cos a) = ma 

or 

F = m[a - g (sin a -fcosa)]. 

If the motion is uniform (a = 0), when we insert numerical values, we obtain F = 

-1.88 N, while if it slides down with an acceleration of 0.10 m s - 2 , we get F = -1.80 N. 

* Another force that has not been shown in the figure is the force exerted by the plane 
on the body. We need not consider this force in this problem. 



168 Dynamics of a particle (7.10 

The negative sign in each case means that the force F is uphill instead of downhill, as 

we had assumed. 

We suggest that the student determine the motion of the body if no force Fis applied, 

and in view of the result obtained, justify the negative sign for F obtained previously. 

?.J.O Frictional Forces in Fluids 

When a body moves through a fluid, such as a gas or a liquid, at a relatively low 

velocity, the force of friction may be approximated by assuming that it is propor

tional to the velocity, and opposed to it. We therefore write 

F1 = fluid friction = -K.,,v. (7.18) 

The coefficient K depends on the shape of the body. For example, in the case of a 

sphere of radius R, laborious calculation indicates that 

K = 61rR, (7.19) 

a relation known as Stokes' law. The coefficient '1/ depends on the internal friction of 

the fluid (i.e., the frictional force between different layers of the fluid moving with 

different velocities). This internal friction is also called viscosity and '1/ is called the 

coefficient of viscosity.* The coefficient of viscosity in the MKSC system is ex

pressed in N s m-2• This can be seen as follows. From Stokes' law, Eq. (7.19), 

we see that K is expressed in meters (the same applies to bodies of different 

shapes). Thus, according to Eq. (7.18), '1/ must be expressed in N/m(m s-1), 

which is the same as the unit indicated above. Remembering that N = m kg s-2, 

we may also express viscosity in m- 1 kg s-1 . Viscosity may also be expressed 

in cm-1 g s-1, a unit called the poise, and abbreviated P. The poise is equal 

to one-tenth of the MKSC unit for viscosity, since 

The coefficient of viscosity of liquids decreases with an increase of temperature 

while, in the case of gases, the coefficient of viscosity increases with increasing 

temperature. Table 7-2 presents the coefficients of viscosity of several fluids. 

When a body moves through a viscous fluid under the action of a force F, the 

resultant force is F - K TJV and the equation of motion is 

ma= -F- K.,,v. (7.20) 

Assuming the force F constant, the acceleration a produces a continuous increase 

in v and a corresponding increase in fluid friction, so that eventually the right-hand 

side becomes zero. At that moment the acceleration is also zero and there is no 

further increase in velocity, the fluid friction being exactly balanced by the applied 

* In Chapter 24, a more general definition of coefficient of viscosity will be given. 
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TABLE 7-2 Coefficients of Viscosity, in Poises* 

Liquids 1/ x 102 Gases 1/ x 104 

Water (0°C) 1.792 Air (0°C) 1.71 

Water 1.005 Air 1.81 

Water (40°C) 0.656 Air (40°C) 1.90 

Glycerine 833 Hydrogen - 0.93 

Castor oil 9.86 Ammonia 0.97 

Alcohol 0.367 Carbon dioxide 1.46 

* All at 20°C, except where noted. 

force. The particle continues moving in the direction of the force with a constant 

velocity, called the limiting or terminal velocity, which is given by 

F 
VL= ~· 

K11 
(7.21) 

Therefore the limiting velocity depends on 1/ and K; that is, on the viscosity of the 
fluid and the shape of the body. In free fall under the influence of gravity, F = 

mg, and Eq. (7.21) becomes 

mg 
VL=~· 

K11 
(7.22) 

Equation (7.22) has to be corrected for the buoyant force exerted by the fluid, 
which, according to Archimedes' principle, is equal to the weight of the fluid dis

placed by the body. If m1 is the mass of fluid displaced by the body, its weight is 
m1g, so that the upward buoyant force is B = -m1g, and the net downward force 

will be mg - m1g = (m - m1)g. This yields, instead of Eq. (7.22), 

(7.23) 

The three forces acting on the body in this case are 

illustrated in Fig. 7-12. For large bodies and large 
velocities, the fluid friction is proportional to a higher 

power of the velocity, and the discussion of the 
previous paragraphs is insufficient to describe 
physical events. 

F1=K11v B=m1g 

(fluid friction) (buoyancy) 

W=mg 
(weight) 

Fig. 7-12. Forces acting on 
a body falling through a fluid. 

EXAMPLE 7.7. Find the limiting velocity of a raindrop. Assume a diameter of 10-3 m. 

The density of air relative to water is 1.30 X 10-3 . 

Solution: Assuming that raindrops are spherical, of radius r, we find, using Eq. (1.1), 
that their masses are 
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where p is the density of water. Also if Pf is the density of the fluid (in this case air), we 
have that 

so that 

Also, using Eq. (7 .19), K = 61rr because the drops are spherical. By applying Eq. (7 .23), 

we find that the limiting velocity is given by 

VL = 
2(p - P1)r2g 

917 

Substituting numerical values, including 17 = 1.81 X 10-5 N s m - 2 and p = 103 kg m - 3, 

we find that VL = 30 m s-1 , or about 107 km hr- 1 or 66 mi hr- 1 ! A larger drop will not 

have a very different terminal velocity, due to the considerations mentioned in the para

graph previous to this example. 

EXAMPLE 7.8. Obtain the velocity of a particle moving through a viscous fluid as a 

function of time, assuming that Eq. (7.20) holds with a constant force, and that the motion 

is in a straight line. 

Solution: Since the motion is in a straight line, we may write Eq. (7.20) (remembering 

that a = dv/dt) as 

dv 
m dt = F - K17v, 

so that 

Separating variables and integrating, we have 

dv = _ K11 dt j •V 1t 
•o v - F / K 17 m o ' 

or 

ln (v - ;,,) - ln (vo - ; 11) 
K11 

= --t. 

Or, using Eq. (M.18), in which In ex = x, we obtain 

v = .£._ + (vo - .£._) e-(K~/ml t. 

K17 K17 

m 

The second term decreases very rapidly, soon becoming negligible, so that the velocity 

becomes constant, and equal to F/K17, in agreement with Eq. (7.21). In other words, the 

terminal velocity is independent of the initial velocity. If vo = 0, 
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Fig. 7-13. Velocity as a function of time for a body falling through a viscous fluid. 

The variation of v with t is illustrated in Fig. 7-13. The relaxation time is defined as 

r = m/Kr,. This is the time at which vis 63% of VL, as the student may verify directly. 
We suggest that the student proceed one step further and, using the previous result for v, 

obtain by integration the distance moved in terms of the time. Also find the distance 
corresponding to the time r. 

7.11 s-,,stems with Y ariable Mass 
~ 

The great majority of systems we encounter in physics may be considered as hav

ing constant mass. However, in certain cases the mass is variable. The simplest 

example is that of a raindrop. While it falls, moisture may condense on its surface 

or water may evaporate, resulting in a change of mass. Suppose that the mass of 

the drop ism when it is moving with velocity v and that moisture, whose velocity is 

v 0 , condenses on the drop at the rate dm/dt. The total rate of change of momentum 

is the sum of m dv/dt, corresponding to the acceleration of the drop, and (dm/dt) 

( v - v0), corresponding to the rate of gain of momentum of the moisture. Thus 

the equation of motion of the drop, using Eq. (7.14), is 

dv dm 
F = m dt + dt (v - v 0 ). 

To solve this equation it is necessary to make some assumptions as to how the 

mass varies with time. 

A conveyor on which material is dropped at one end and/or discharged at the 

other end is another example of variable mass. Let us consider, for example, the 

conveyor system of Fig. 7-14, where material is dropped continuously on the mov

ing belt at the rate of dm/dt kg s-1. The conveyor is moving at the constant veloc

ity v and a force F is applied to move it. 

If M is the mass of the belt and m is the 

mass of the material already dropped at 

time t, the total momentum of the system 

at that time is P = (m + M)v. There

fore the force applied to the belt is 

F = dP = v dm. 
dt dt 

Y(f 
,"::,:-·· 

v 

m 

0 0 :X8y·:a, '"c'.)''' '8 6 0 __.f.._ 

Figure 7-14 
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Note that the force in this case is entirely due to the change in mass and not to 
the change in velocity. 

Perhaps the most interesting example is that of a rocket, whose mass decreases 

because it consumes the fuel it carries. In the following example we shall analyze 

the dynamics of a rocket. 

EXAMPLE 7.9. Discuss the motion of a rocket. 

Solution: A rocket is a missile which, instead of receiving an initial impulse from the 
expansion of gases in a gun barrel, is acted on by a continuous force derived from the 

exhaust produced in the combustion chamber within the missile itself. The rocket at 

takeoff has a certain amount of fuel which it uses gradually, and therefore its mass de

creases. 

Let us call v the velocity of the rocket relative to an inertial system, which we shall 

assume with good approximation to be the earth, and v' the exhaust velocity of the gases, 

also relative to the earth. Then the exhaust velocity of the gases relative to the rocket is 

Ve = V 1 
- V. 

This velocity is always opposed to v, and is usually constant. Let m be the mass of the 

rocket, including its fuel, at any time. During a very small time interval dt, the mass of 

the system experiences a small change dm, which is negative because the mass decreases. 

In the same time interval the velocity of the rocket changes by dv. The momentum of 

the system at time t is p = mv. The momentum at time t + dt, since -dm is the posi

tive value of the mass of the expelled gases, is 

or 

p' = (m + dm)(v + dv) + (-dm)v' 
'---y---" 

Rocket Gases 

p' = mv + m dv - Ve dm, 

mv+ mdv - (v' - v) dm 

where we have neglected the second-order term dm dv. The change in momentum in the 

time dt is 

dp = p' - p = m dv - Ve dm, 

and the change of momentum of the system per unit time is 

dp dv dm 
- = m~ -v -· 
dt dt "dt 

If F is the external force acting on the rocket, the equation of motion, according to 
Eq. (7.12), is 

dv dm 
m dt - Ve dt = F. (7.24) 

The second term on the left in Eq. (7.24) is often designated as the thrust of the rocket, 

since it is equal to the "force" due to the escaping exhaust. To solve this equation we 

must make some assumption about v •. In general it is assumed that v. is constant. Also, 

neglecting air resistance and the variation of gravity with altitude, we may write F = 
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mg, so that Eq. (7.24) becomes 

dv Ve dm 
- - - - = g. 
dt m dt 

(7.25) 

To simplify, consider that the motion is vertical. Then v is directed upward and Ve and 

g downward, and Eq. (7.25) becomes 

dv + Ve dm _ 
dt m dt - -g. 

Multiplying by dt and integrating from the beginning of the motion (t 

velocity is Vo and the mass is mo, up to an arbitrary time t, we have 

Then 

or 

1. dv + Ve rm dm = -g t dt. 

•o Jmo m Jo 
m 

v - vo + v. In - = -gt, 
mo 

v = vo + v e In ( :o) - gt. 

0), when the 

(7.26) 

If t is the time required for burning all the fuel, then, in Eq. (7 .26), m is the final mass 

and v is the maximum velocity attained by the rocket. In general vo = 0, and the last 

term (in many cases) is negligible. For example, if a rocket has an initial mass of 3000 
tons, a final mass of 2780 tons after the fuel is burned, and the gases are expelled at 

a rate of 2840 lb s-1 (or 1290 kg s- 1), then t = 155 s. If we assume an exhaust velocity 

of 55,000 m s-1 and vo = 0, the maximum velocity of this stage of the rocket will be 

v I 3000 -1 ( -2)( ) 55,000 n 2780 ms - 9.8 ms 155 s 

(55,000 In 1.08 - 1520) m s-1 = 2710 m s-1 . 

This speed is almost 9000 ft s-1, or approximately 6000 mi hr- 1• These figures refer to 

the Centaur rocket, which has five engines, each of which is capable of developing 1.5 

million lbf of thrust at takeoff. 

7.12 Curvilinear Motion 

In the examples given so far, we have discussed rectilinear motion. Let us now con

sider the case of curvilinear motion. If the force has the same direction as the 

velocity, the motion is in a straight line. To produce curvilinear motion, the re

sultant force must be at an angle with respect to the velocity, so that the accelera

tion has a component perpendicular to the velocity which will account for the 

change in the direction of the motion. On the other hand, we recall that (if the 

mass is constant) the force is parallel to the acceleration. The relation of all these 

vectors in curvilinear motion is illustrated in Fig. 7-15. 
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Fig. 7-15. Relationship between the tan
gential and normal components of the force 
and the acceleration in curvilinear motion. 

Fig. 7-16. Relationship between the 
rectangular components of the force and the 
acceleration in curvilinear motion. 

From the relation F = ma and both Eqs. (5.44), we conclude that the com

ponent of the force tangent to the path, or the tangential force, is 

Fr= mar or 
dv 

Fr= m dt, (7.27) 

and the component of force perpendicular to the path, or the normal or centripetal 

force, is 

or 
mv2 

FN = --, 
p 

(7.28) 

where p is the radius of curvature of the path. The centripetal force is always 

pointing toward the center of curvature of the trajectory. The tangential force is 

responsible for the change in the magnitude of the velocity, and the centripetal 
force is responsible for the change in the direction of the velocity. If the tangential 

force is zero, there is no tangential acceleration and the motion is uniform circular 

motion. If the centripetal force is zero, there is no normal acceleration and the 

motion is rectilinear. 

In the particular case of circular motion, p is the radius R of the circle and 

v = wR, so that the force is also 

(7.29) 

For uniform circular motion the only acceleration is aN, which can be written, 

using Eq. (5.58), in vector form: a = w x v. Therefore F = ma = mw X v = 
w X (mv), and since p = mv, 

F = w x p. (7.30) 

This is a useful mathematical relation between the force, the angular velocity, 

and the linear momentum of a particle in uniform circular motion. 
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Sometimes it may be more convenient to use the rectangular -components of F 

(Fig. 7-16). For example, in the case of plane motion, the vector equation F = ma 

may be split into the following two equations: 

Fx = max and Fy = may 

or 

Fx = 
dvx 

mdt and 
dvy 

Fy=mdt· (7.31) 

By integrating these equations, we may obtain the velocity and the position of the 

particle at any time. 

In general, when we include the case in which the mass is variable, we must use 

F = dp/dt. But p, being parallel to the velocity, is tangent to the path. Thus 

we may write p = urp and, using Eq. (5.42), we have 

Therefore, instead of Eqs. (7.27) and (7.28), we have 

dp 
Fr= dt and 

pv 
FN =-· 

p 

EXAMPLE 7.10. Railroad tracks and highways are banked at curves to produce the 

centripetal force required by a vehicle moving along a curve. Find the angle of banking 

in terms of the velocity of the vehicle along the curve. 

Solution: Figure 7-17 illustrates banking, although the angle has been exaggerated. 

The forces acting on the car are its weight W = mg and the normal force N due to the 

tracks. Their resultant FN must be enough to produce the centripetal force given by 

Front 
view 

--

(a) 

Fig. 7-17. Banking of curves to produce a centripetal force. 
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Eq. (7.28). Thus FN = mv2 /p, where pis the radius of the curve. Then from the figure 

we have that 

tan a 

2 
v 

pg 

The result is thus independent of the mass of the body. Since a is fixed once the tracks 

have been laid, this formula gives the correct speed to traverse the curve so that there 

will be no sidewise forces acting on the vehicle. For smaller or somewhat larger speeds 

there is no great problem with the curve, because the tracks provide the balancing force 

necessary. However, for much larger speeds the car will tend to jump off the curve. 

EXAMPLE 7.11. A mass m suspended from a fixed point by a string of length L is 

made to rotate around the vertical with angular velocity w. Find the angle of the string 

with the vertical. This arrangement is called a conical pendulum. 

Solution: The system has been illustrated in Fig. 7-18. 

The mass A moves around the vertical OC, describing a 

circle of radius R = CA = 0 A sin a = L sin a. The 

forces acting on A are its weight lV = mg and the tension F 

of the string. Their resultant FN must be just the centripetal 

force required to describe the circle. Thus, using Eq. (7 .29), 

we have 

FN = mw2 R = mw2L sin a. 

From the figure we see that 

FN w2L sin a 
tan a= - = ----

TV g 

or, since tan a = sin a/cos a, 

g 
cosa = --· 

w2L 

___ _!__ 

I 

I 
I 

Fig. 7-18. Conical pendulum. 

Therefore the larger the angular velocity w, the larger the angle a, as experiment shows. 

For this reason the conical pendulum has long been used as a speed regulator for engines; 

it closes the steam-intake valve when the velocity goes above a prefixed limit and opens 

it when it falls below. 

EXAMPLE 7.12. Analyze the effect of the earth's rotation on the weight of a body. 

Solution: In Section 6.5 we discussed, from a kinematical point of view, the motion of 

a body relative to a frame of reference rotating with the earth. In this example we shall 

look at the same problem dynamically. 

Figure 7-19 shows a particle A on the earth's surface. The gravitational force due to 

the earth's attraction is designated by Wo. If the earth were not rotating, the acceleration 

of a body near the earth's surface would be go = Wo/m. However, due to the earth's 

rotation, part of this force must be used to produce the centripetal force FN required for A 

to move in a circle of radius CA = r cos X with angular velocity w. That is, using Eq. 

(7.29), we have FN = mw2r cos X. The difference Wo - FN gives the net force W, which 

produces a downward pull on the particle. Thus the effective acceleration of gravity is 
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Fig. 7-19. Effect of earth's rotation on 
the weight of a body. 
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Figure 7-20 

g = W /m. If the particle A is suspended from a point by means of a string (as with a 
plumb line), the string will lie in the same direction as W. Also, the upward pull on A 

produced by the string must be equal to W. Therefore, when a spring is used to determine 

the weight of a body, it is the force W that is measured. Only at the poles and along the 

equator do Wo and W have the same direction, and only in those places is a plumb line 

along the radial line. 

EXAMPLE 7.13. Calculate the tangential and normal forces acting on a projectile 

thrown horizontally from the top of a building. 

Solution: If the projectile is thrown with an initial horizontal velocity Vo (Fig. 7-20), 

then at point P its horizontal velocity is still vo but its vertical velocity is gt, where t is 
the time required for the projectile to drop the distance y, or travel the horizontal distance 

x = vot. Therefore the total velocity of the projectile is 

y 2 2 2 
V =Vo+ g t , 

Thus Eq. (7.27) gives the tangential force as 

2 
dv mg t 

FT= m- = 

dt vv~ + g2t2 

To find the centripetal force we could use Eq. (7.28), but that would require the previous 

calculation of the radius of curvature of the path, which is a parabola. We can circumvent 

it in this case because we know that the resultant force is 

TV = mg = vF~ + F'i,;. 
Therefore 
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?.13 Angular Momentum 

The angular momentum around point O 

(Fig. 7-21) of a particle of mass m moving 

with velocity v (and therefore having 

momentum p = mv) is defined by the 

vector product 

L=rXp 

or (7.32) 

L = mr xv. 

The angular momentum is therefore a vec-

(7.13 

Fig. 7-21. Angular momentum of a 
particle. 

tor perpendicular to the plane determined by r and v. The angular momentum of 

the particle in general changes in magnitude and direction while the particle moves. 

However, if a particle moves in a plane, and the point O lies in the plane, the 

direction of the angular momentum remains the same, that is, perpendicular to 

the plane, since both r and v are in the plane. In the case of circular motion (Fig. 

7-22), when O is the center of the circle, the vectors r and v are perpendicular, 

and v = wr, so that 

L = mrv = mr2w. (7.33) 

The direction of Lis the same as that of w, so that Eq. (7.33) can be written vec

torially as 
(7.34) 

If the plane motion is not circular, but curvilinear, we can decompose the velocity 

into its radial and transverse components, as explained in Section 5.11; that is, 

v = Vr + vo (Fig. 7-23). Then we may write the angular momentum as 

L = mr X (vr + vo) = mr X vo, 

since r x Vr = 0 (the two vectors are parallel). Then, for the magnitude of L, 

we have L = mrvo. Or, since v11 = r(dO/dt) according to Eq. (5.64), we may write 

L = mr2 d() · 
dt 

(7.35) 

This expression is identical to Eq. (7.33) for circular motion, since w = dO/dt, 

but in the general case r is not constant. Remembering Eq. (3.26) for the vector 

product, we may write the angular momentum of a particle as 

Ux Uy Uz 

L=rXp= x y z 

Px Pu Pz 

or, in terms of the components, 

Lx = YPz - zpu, Lz = Xpy - YPx· (7.36) 
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L 
L 

Fig. 7-22. Vector relation between angu
lar velocity and angular momentum in 
circular motion. 

Fig. 7-23. Relation between angular 
momentum and the transverse component 
of the velocity. 

We may note that for motion in a plane, let us say the XY-plane, we have z = 0 

and Pz = 0, so that Lx = Ly = 0, and only the Lz-component remains. That 

is, the angular momentum is perpendicular to the plane, as we have indicated 

previously, using a different logic. 

Let us now take the time derivative of Eq. (7.32). This gives 

dL dr dp 
dt= dt xp+r x dt. 

But dr/dt = v, and p = mv is always parallel to v, so that 

dr 
dt x p = v X p = mv x v = 0. 

(7.37) 

On the other hand, dp/dt = F according to Eq. (7.12). Therefore, Eq. (7.37) 

becomes dL/dt = r x F. Or, when we remember that according to definition (4.5), 

the torque of F around O is T = r x F, we finally obtain 

dL 
dt = T. (7.38) 

The student must note that this equation is correct only if L and -r are measured 

relative to the same point. 

Equation (7.38), which bears a great resemblance to Eq. (7.12), with the linear 

momentum p replaced by the angular momentum L, and the force F replaced by 

the torque -r, is fundamental to the discussion of rotational motion. It simply 
states that 

the time rate of change of the angular momentum of a particle is equal 

to the torque of the force applied to it. 

This implies that the change dL in the angular momentum in a short interval dt 

is parallel to the torque -r applied to the particle. 
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?.14 Central Forces 

If the torque on a particle is zero (T = r x F = O), then according to Eq. (7.38), 

we must have dL/dt = 0 or L = constant vector. Thus the angular momentum 

of a particle is constant if the torque is zero. This condition is fulfilled if F = O; 

that is, if the particle is free. From Fig. 7-24, we have L = mvr sin() = mvd, 

where d = r sin fJ. This quantity remains a constant because all factors involved 

are also constants, since the path of the free particle is in a straight line and the 

velocity does not change. 

Fig. 7-24. Angular momentum is constant 
for a free particle. 

Fig. 7-25. Angular momentum is constant 
for motion under a central force. 

The condition r x F = 0 is also fulfilled if Fis parallel to r; in other words, if 

the direction of F passes through the point 0. A force whose direction always 

passes through a fixed point is called a central force (Fig. 7-25). Therefore, when a 

body moves under the action of a central force its angular momentum remains 

constant, the converse being also true. Another way of stating this is to say that 

when the force is central, the angular momentum relative to the center of 

force is a constant of motion, and conversely. 

This result is very important because many forces in nature are central. For 

example, the earth moves around the sun under the influence of a central force 

whose direction is always through the center of the sun. The earth's angular 

momentum relative to the sun is thus constant. The electron in a hydrogen atom 

essentially moves under the central force due to the electrostatic interaction with 

the nucleus, with the direction of the force being always pointed toward the nu

cleus. Thus the angular momentum of the electron relative to the nucleus is con

stant. 

In atoms having many electrons, the force on each electron is not rigorously cen

tral because, in addition to the central interaction with the nucleus, there are also 

the interactions with the other electrons. However, in general, the average force 

on the electron may be considered as central. Also, in certain nuclei, we may assume 

as a first approximation that their components (protons and neutrons) move under 

average central forces. 
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In a molecule, on the other hand, the force on 

an electron is not central, because it is the result 

of the attraction produced by the different 

nuclei and the repulsion of the other electrons. 

Therefore the angular momentum of the elec

trons is not constant. In a diatomic molecule, 

an interesting situation arises (Fig. 7-26). An 

electron e revolves around the two nuclei P 1 

and P 2 , subject to their forces F 1 and F 2 , 

whose resultant F = F 1 + F2 always lies in 

the plane determined by Oe = r and the line 

through the two nuclei, or the Z-axis. The 
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resultant torque on the electron relative to the x 
center of mass O of the molecule (if we neglect 

all other electron interactions) is 

From Fig. 7-26 we see that this torque is per

pendicular to the plane determined by the 

position vector r and the Z-axis. Thus the 

Fig. 7-26. For motion under an 
axial force, the component of the 
angular momentum along the axis 
is constant. 

torque is in the XY-plane, or Tz = 0. Accordingly, Eq. (7.38) gives dLz/dt = 0 

or Lz = const. Thus, although the angular momentum of the electron is not 

constant, its component along the molecular or Z-axis is constant. This result is 

valid not only for a diatomic molecule but for any linear molecule, or in a more 

general form, for motion under a force that always passes through a fixed axis. 

Such a force is called an axial force. Therefore, 

when the force is axial, the component of the angular momentum along 

the axis is constant. 

This result is very useful when we study the structure of atoms and molecules. 

The motion due to a central force is always in a plane because L is constant. 

Therefore, using Eq. (7.35), we have y 

2 d() 
r dt = const. (7.39) 

When the particle moves from P to P' (Fig. 7-27), 

the radius vector r sweeps out the shaded area, 

corresponding to the triangle OPP'. Therefore 

dA = area t:..OPP' = !r2 do, 

and the area swept out in unit time is 

dA 

dt 

1 2 d() 
-r -· 
2 dt 

I 

Fig. 7-27. Under central forces, 
the position vector sweeps out 
equal areas in equal times. 
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Comparing this result with Eq. (7.39), we see that dA/dt = const, indicating that 

in the motion under central forces, the radius vector of the particle sweeps out equal areas 

in equal times. This result is of historical interest in connection with the discovery 

of the laws of planetary motion, and is known as Kepler's second law. We shall 

refer to it in more detail in Chapter 13, when we discuss planetary motion. 

EXAMPLE 7.14. In the case of the projectile of Example 7.13, find the angular momen

tum and the torque around 0. Then verify that Eq. (7.38) holds. 

Solution: When we set our X- and Y-axes as indicated in Fig. 7-20, the coordinates of 

point P are x = OA = vot, y = AP = -fgt2, and the components of the velocity of 

P are v,, = vo, Vy = -gt. Recalling that p = mv and using the third equation of 

(7.36), we may write 

Lz = Xpy - YPx = m(XVy - yv,,) = -fmgvot2• 

Also the components of the force applied to P are F,, = 0, Fy 

Eq. (4.8), we obtain 

Tz = xFy - yF,, = -mgvot. 

-mg. Thus, using 

The student may verify that in this case dLz/dt = Tz, so that Eq. (7.38) holds. 

EXAMPLE 7.15. Estimate the angular momentum of the earth around the sun, and 

that of an electron around the nucleus in a hydrogen atom. In both cases assume, for 

simplicity, that the orbit is circular, so that the relations of Fig. 7-22 apply. 

Solution: The mass of the earth is 5.98 X 1024 kg and its mean distance from the sun 

is 1.49 X 1011 m. Also, from our definition of the second given in Section 2.3, we con
clude that the period of revolution of the earth around the sun is 3.16 X 107 s. Thus 

the average angular velocity of the earth around the sun is, from Eq. (5.51), 

271' 
w = - = p 

271' -7 -1 
3.16 X 107 s = 1.93 X 10 8 . 

Therefore, from Eq. (7.33), the angular momentum of the earth relative to the sun is 

L = mr2w = (5.98 X 1024 kg)(l.49 X 1011 m) 2(1.98 X 10-7 s-1) 

= 2.67 X 1040 m2 kg s-1. 

On the other hand, an electron in a hydrogen atom has a mass of 9.11 X 10-31 kg, its 
mean distance to the nucleus is 5.29 X 10-11 m, and its angular velocity is 4.13 X 

1016 s-1. Thus, again using Eq. (7.33), we find the angular momentum of the electron 

around the nucleus to be 

L = mr2w = (9.11 X 10-31 kg) (5.29 X 10-11 m) 2(4.13 X 1016 s-1) 

= 1.05 X 10-34 m2 kg s-1. 
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This numerical value constitutes one of the most important constants in physics, and is 

designated by the symbol Ii, read h-bar. The angular momentum of atomic and funda

mental pal·ticles is usually expressed in units of h. The quantity h = 21rh is called Planck's 

constant. 

The student must realize the tremendous disparity in the values of the physical quan

tities that enter into the two situations we have worked out, and he may wonder if the 

same laws apply in both cases. We may answer here by saying that in both cases, since the 

forces are central, the angular momentum is constant. However, -in the electron's case, 

when we refer to an atomic particle, a certain revision of our methods will be required; the 

new technique is called quantum mechanics, but we shall not take up this subject at this 

time. We may state in advance, however, that the result we shall obtain will essentially 
agree with the one we have obtained in this example. 

EXAMPLE 7.16. Scattering of a particle by a central repulsive inverse-square force. 

Solution: Let us look at the deviation or scattering that a particle suffers when it is 

subject to a repulsive force which is inversely proportional to the square of the distance 

from the moving particle to a fixed point or center of force. This problem is of special 

interest because of its application in atomic and nuclear physics. For example, when a 

proton, accelerated by a machine such as a cyclotron, passes near a nucleus of the target 

material, it is deflected or scattered under the action of a force of this kind, due to the 
electrostatic repulsion of the nucleus. 

Let O be the center of the force and A a particle thrown against O from a great distance 

with velocity vo (Fig. 7-28). The distance b, called the impact parameter, is the perpen

dicular distance between the line of action of vo and a line drawn through O parallel to it. 
Assuming that the force between A and O is repulsive and central, the particle will follow 

the path AMB. The form of the curve depends on how the force varies with the distance. 

If the force is inversely proportional to the square of the distance, that is, if 

F = k/r2 , (7.40) 

the path is a hyperbola, as will be proved in 

Section 13.5. When the particle is at A its 

angular momentum is mvob. In any position 

such as Jlf, its angular momentum, according 

to Eq. (7.35), is mr2 (d8/dt). Therefore, since 

the angular momentum must remain con
stant because the force is central, 

2 d() 
mr dt = mv0b. (7.41) 

The equation of motion in the ¥-direction is 

obtained by combining Eq. (7.40) with the 

second of Eqs. (7.31); that is, 

dvy 
m

dt 
F sin() 

k sin() 

r2 
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Fig. 7-28. Scattering of a particle 
under an inverse-square central force. 
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Eliminating r2 by using Eq. (7.41), we may write 

dv11 k . d8 
- = --sm8-· 
dt mvob dt 

To find the deflection of the particle, we must integrate this equation from one ex

treme of the path to the other. At A the value of Vy is zero because the initial motion is 

parallel to the X-axis, and also 8 = 0. At B we have Vy = vo sin</, and 8 = 11' - </,. 

Note that at B the velocity is again vo because, by symmetry, the velocity lost when the 

particle approaches O must be regained when it recedes from 0. (The principle of con
servation of energy, to be discussed in the next chapter, also verifies this.) Then 

or 

1"osin<J, 11r-q, 
dvy = _!_b sin 8 d8 

o mvo o 

vo sin</, = _!_b (1 + cos</,). 
mvo 

Remembering that cot !<t, = (1 + cos </,)/sin</,, we finally get 

2 
1 _ mvo b 

cot 2 </, - k . 

This relation gives the scattering angle</, in terms of the impact parameter b. 

(7.42) 

In Section 14.7 we shall apply this equation to the scattering of charged particles by 

nuclei. Note that result (7.42) is valid only for an inverse-square force. If the force de

pends on the distance in a different manner, the angle of scattering satisfies a different 
equation. Therefore, scattering experiments are very useful when we wish to determine 

the law of force in interactions between particles. 

In nuclear physics laboratories, scattering experiments are performed by accelerating 

electrons, protons, or other particles by means of a cyclotron, a Van de Graaff accelerator, 

or some other similar device, and observing the angular distribution of the scattered 
particles. 

7.15 Equilibrium and Best 

We conclude this chapter with a brief review of the concepts of rest and equilib

rium. A particle is at rest relative to an inertial observer when its velocity, as meas

ured by the observer, is zero. A particle is in equilibrium relative to an inertial 

observer when its acceleration is zero (a = 0). Then, from Eq. (7.15), we conclude 

that F = 0; that is, a particle is in equilibrium when the resultant of all the 

forces acting on it i~ zero. This definition was used in Chapter 4. 

A particle may be at rest relative to an inertial observer, but may not be in 

equilibrium. For example, when we throw a stone vertically upward, the stone is 

momentarily at rest when it reaches its maximum height. However, it is not in 

equilibrium because it is subject to the unbalanced downward pull of the earth. 

For that reason the stone immediately begins to fall. 

Also, a particle may be in equilibrium and yet not be at rest relative to an in

ertial observer. An example of this is a free particle. Since no forces act on it, 
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there is no acceleration and the particle is in equilibrium. However, the particle 

may not be at rest relative to many inertial observers. The most common situa

tion one encounters is that of a particle which is both at rest and in equilibrium 

at the same time. For that reason many people erroneously consider the two 

concepts synonymous. Of course a particle in equilibrium may always be at rest 

in some inertial frame of reference. 
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Problems 

7.1 A particle of mass 3.2 kg is moving due 
west with a velocity of 6.0 m s-1. Another 

particle of mass 1.6 kg is moving due north 

with a velocity of 5.0 m s-1. The two par

ticles are interacting. After 2 s the first par

ticle is moving in the direction N 30° E with 

a velocity of 3.0 m s-1. Find: (a) the mag

nitude and direction of the velocity of the 
other particle, (b) the total momentum of 

the two particles, both at the beginning 

and after the 2 s have elapsed, (c) the 

change in momentum of each particle, (d) 

the change in velocity of each particle, and 
(e) the magnitudes of these changes in ve

locity; verify Eq. (7.9). 

7 .2 A log whose mass is 45 kg is floating 

downstream at a constant velocity of-8 km 

hr-1. A 10-kg swan attempts to land on the 
log while flying at a rate of 8 km hr-1 in 

the upstream direction. The swan slides 
the length of the log and falls off the end 

wi'th a velocity of 2 km hr-1 . Calculate the 

final velocity of the log. Neglect water 

friction. Is it necessary to convert the ve
locities tom s-1 ? 

7 .3 In the chemical reaction H + Cl -
HCl, the H atom initially was moving to 

the right with a velocity of 1.57 X 105 m 

s-1, while the CI atom was moving in a per

pendicular direction with a velocity of 3.4 X 

104 m s- 1 . Find the magnitude and direc

tion (relative to the original motion of the 
H atom) of the resulting HCI molecule. 

Use the atomic masses of Table A-1. 

7.4 Write an equation expressing the con

servation of momentum in the chemical 

reaction A + BC - AB + C. 

7 .5 A particle whose mass is 0.2 kg is mov
ing at 0.4 m s-1 along the X-axis when it 

collides with another particle, of mass 0.3 

kg, which is at rest. After the collision the 
first particle moves at 0.2 m s-1 in a direc

tion making an angle of 40° with the X

axis. Determine (a) the magnitude and 

direction of the velocity of the second par
ticle after the collision, and (b) the change 

in the velocity and the momentum of each 

particle. (c) Verify relation (7.9). 

7.6 Find the momentum acquired by a 

mass of 1 gm, 1 kg, and 106 kg when each 

falls through a distance of 100 m. Since the 
momentum acquired by the earth is equal 

and opposite, determine the velocity (up

ward) acquired by the earth. The mass of 
the earth is listed in Table 13-1. Deter

mine the magnitude of the force in each 

case. 

Figure 7-29 

7.7 Two carts, A and B, are pushed to
ward each other (Fig. 7-29). Initially B 

is at rest, while A moves to the right at 
0.5 m s-1• After they collide, A rebounds 
at 0.1 m s-1, while B moves to the right at 

0.3 m s-1. In a second experiment, A is 

loaded with a mass of 1 kg and pushed 

against B with a velocity of 0.5 m s-1• Af

ter the collision, A remains at rest, while B 

moves to the right at 0.5 m s-1. Find the 

mass of each cart. 

7 .8 Consider the earth-moon system (ig

nore the motion of this system around the 

sun). In 28 days, the moon rotates about 

the earth in a circle of radius 4.0 X 108 m. 

(a) What is the change in the momentum 
of the moon in 14 days? (b) What must 

be the change in momentum of the earth 

in 14 days? (c) Is the earth stationary in 

the earth-moon system? (d) The mass of 

the e-'1,rth is 80 times that of the moon. 

What is the change in velocity of the earth 

in 14 days? 

7.9 Two objects, A and B, which are mov

ing without friction in a horizontal line, in

teract. The momentum of A is PA = po -

bt, where po and bare constants and tis the 

time. Find the momentum of Bas a func

tion of time if: (a) B is initially at rest and 

(b) the initial momentum of B was -po. 



7.10 A grenade moving horizontally at 8 
km s-1 relative to the earth explodes into 

three equal fragments. One continues to 
move horizontally at 16 km s-1, another 

moves upward at an angle of 45° and the 

third moves at an angle of 45° below the 
horizontal. Find the magnitude of the 

velocities of the second and third fragment. 

7.11 A satellite is moving "horizontally" 

at a velocity of 8 km s-1 relative to the 

earth. We wish to drop a 50-kg load straight 

down toward the earth by ejecting it hori

zontally from the satellite. Calculate the 
velocity of the satellite after the ejection 

of the load if the total mass (including the 
load) is 450 kg. (What is the load's velocity, 

relative to the earth, immediately after 

ejection?) 

7.12 An empty railroad car of mass 105 kg 

coasts with a velocity of 0.5 m s-1 beneath 

a stationary coal hopper. If 2 X 105 kg of 
coal are dumped into the car as it passes 

beneath the hopper, then: (a) What is the 

car's final velocity? (b) What will be the 

car's velocity if the coal is allowed to leave 

the car through bottom hoppers and the 

coal falls straight down relative to the car? 
(c) Suppose that it were possible to throw 

all the coal at one time out the rear of the 

car so that the coal would be at rest relative 

to the earth. Calculate the resultant veloc

ity of the car under such circumstances. 

(d) Under what conditions would the re

sult be the same as in (c) if the coal were 

thrown off at an angle relative to the car's 

motion? 

7.13 A cart having a mass of 1.5 kg moves 

along its track at 0.20 m s-1 until it runs 

into a fixed bumper at the end of the track. 

What is its change in momentum and the 

average force exerted on the cart if, in 0.1 s, 
it: (a) is brought to rest, (b) rebounds with 

a velocity of 0.10 m s-1 ? Discuss the con

servation of momentum in the collision. 

7.14 What constant force is needed in 
order to increase the momentum of a body 
from 2300 kg m s-1 to 3000 kg m s-1 in 

50 s? 
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7.15 An automobile has a mass of 1500 kg 

and its initial speed is 60 km hr- 1. When 
the brakes are applied to produce a con

stant deceleration, the car stops in 1.2 min. 

Determine the force applied to the car. 

7.16 How long a time should a constant 

force of 80 N act on a body of 12.5 kg in 
order to stop it, providing that the initial 

velocity of the body is 72 km hr-1? 

7.17 A body with a mass of 10 g falls 

from a height of 3 m onto a pile of sand. 

The body penetrates the sand a distance of 

3 cm before stopping. What force has the 

sand exerted on the body? 

7.18 Two mules are pulling a barge up a 

canal by ropes tied to the prow of the barge. 

The angle between the ropes is 40° and the 

tension in the ropes is 2500 N and 2000 N, 

respectively. (a) Given that the mass of the 

barge is 1700 kg, what would its accelera
tion be if the water offered no resistance? 
(b) If the barge moves with uniform mo

tion, what is the resistance of the water? 

7.19 A man is standing on the flat bed of a 
truck moving at the speed of 36 km hr- 1• 

At what angle, and in which direction, 
should the man lean to avoid falling if, in 

2 s, the speed of the truck changes to (a) 
45 km hr - 1, (b) 9 km hr - 1 ? 

7 .20 An elevator whose mass is 250 kg is 
carrying three persons whose masses are 

60 kg, 80 kg, and 100 kg, and the force 

exerted by the motor is 5000 N. With what 
acceleration will the elevator rise? Starting 

from rest, how high will it go in 5 s? 

7 .21 Suppose that the 100-kg man in the 

previous problem is standing on a scale. 
How much does he "weigh" as the elevator 

accelerates? 

7.22 An empty elevator having a mass of 

5000 kg is moving vertically downward 

with a constant acceleration. Starting from 

rest, it moves 100 ft during the first 10 s. 

Calculate the tension in the cable holding 
the elevator. 

7 .23 A boy whose mass is 60 kg is stand
ing on a scale. If he suddenly pushes him-
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self up with an acceleration of 245 cm s-2, 

what will the scale read? Discuss the effect 
associated with this problem as it applies 

to a machine that measures the accelera

tion of the body by measuring the force 

exerted. (Such a machine, called an ac

celerometer, is an extremely useful tool in 

industry and research laboratories.) 

7 .24 A 200-gm mass is moving with a con

stant velocity v = ux 50 cm s-1• When the 

mass is at r = -ux 10 cm, a constant force 

F = - Ux 400 dyn is applied to the body. 

Determine: (a) the time for the mass to 
stop, and (b) the position of the mass at 

the instant it stops. 

7 .25 A man whose mass is 90 kg is in an 

elevator. Determine the force the floor 

exerts on him when: (a) the elevator goes 

up with uniform speed, (b) the elevator 

goes down with uniform speed, (c) the ele

vator accelerates upward at 3 m s-2 , (d) the 
elevator accelerates downward at 3 m s-2, 

and (e) the cable breaks and the elevator 
falls freely. 

7.26 A body whose mass is 2 kg is moving 

on a smooth horizontal surf ace under the 

action of a horizontal force F = 55 + t2 , 

where F is in newtons and t in seconds. 

Calculate the velocity of the mass when 

t = 5 s (the body was at rest when t = 0). 

7 .27 A body of mass m is moving along 

the X-axis according to the law x = 

A cos (wt+ cj,), where A, w, and cj, are 
constants. Calculate the force acting on 

the body as a function of its position. 

What is the direction of the force when x 

is (a) positive, (b) negative? 

7.28 The resultant force on an object of 

mass m is F = Fo - kt, where Fo and k 

are constants and t is- the time. Find the 

acceleration. By integration, find the ve

locity and position equations. 

7 .29 A particle of mass m, initially at 

rest, is acted on by a force F = Fo 

[1 - (t - T) 2 /T 2 ] during the interval 

0 :S: t :S: 2T. Prove that the velocity of 

the particle at the end of the interval is 

4FoT/3m. Note that it depends only on 

the product Fo(2T) and, if T is made 

smaller,' the same velocity is attained by 
making Fo proportionately larger. Make 

a plot of F against t. Can you think of 

some physical situation of which this 

problem could be an adequate description? 

7.30 A body which is initially at rest at xo 

moves in a straight line under the action of a 

force F = -K/x2 . Show that its velocity 

at x is v2 = 2(K/m)(l/x - 1/xo). This 

method can be used to determine the ve

locity of a body falling toward the earth 

from a great height. 

7 .31 Repeat Example 7 .3 for the case of 
a car moving downhill. 

7 .32 A body with a mass of 1.0 kg is on a 

smooth plane inclined at an angle of 30° 

with the horizontal. With what accelera

tion will the body move if there is a force 

of 8.0 N applied parallel to the plane and 

directed (a) upward, (b) downward. 

7.33 A truck of mass 5000 kg is traveling 
north at 30 m s-1 when, in 20 s, it turns 
into a road N 70° E. Find (a) its change 

in momentum, (b) the magnitude and 

direction of the average force exerted on 

the truck. 

Figure 7-30 

7.34 The bodies in Fig. 7-30 have masses 
10 kg, 15 kg, and 20 kg, respectively. A 

force F, equal to 50 N, is applied to C. 

Find the acceleration of the system and the 

tensions in each cable. Discuss the same 

problem when the system moves vertically 

instead of horizontally. 

7.35 Calculate the acceleration of the 

bodies in Fig. 7-31 and the tension in the 

string. First solve the problem algebraically 

and apply to the case m1 = 50 g, m2 = 

80 g, and F = 105 dyn. 

7.36 The bodies in Fig. 7-32 are connected 

by a string as shown. Assuming that the 

pulleys are smooth, calculate the accelera-



Figure 7-31 

(a) 

Figure 7-33 (b) 

y, 

Figure 7-35 (a) (b) 

tion of the bodies and the tension in the 

string. Solve the problem algebraically 

first, and apply to the case m1 = 8 kg, 

m2 = 2 kg. 

7 .37 Determine the acceleration with 
which the bodies in Fig. 7-33(a) and (b) 

move, and also the tensions in the strings. 

Assume that the bodies slide without fric

tion. Solve the problem generally first, and 

then apply to the case m1 = 200 g, m2 = 
180 g, a = 30°, {3 = 60°. 

7.38 Repeat the above problem when 

there is friction, with coefficients Ji on the 

first surface and h on the second. Discuss 

all possible motions. 
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Figure 7-32 
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Figure 7-34 

( c) 

7.39 (a) Prove that the beam AB in Fig. 

7-34 will be in equilibrium under the con

dition that the following equation holds: 

(b) Find the force that the pivot point 
exerts on the bar. 

7.40 Calculate the acceleration of the 

bodies m1 and m2 and the tension in the 

ropes (Fig. 7-35). All pulleys are weight

less and frictionless and the bodies slide 

without friction. Which device may ac

celerate m 1 faster than in free fall? Solve 

first algebraically; then apply to the case 

m1 = 4 kg, m2 = 6 kg. 
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(a) 

Figure 7-36 (b) 

7.41 Show that the accelerations of the 

bodies in Fig. 7-36, with 

P = g/(m1m2 + m1m3 + 4m2m3), 

are 

(a) a1 

a2 

a3 

(b) a1 

a2 

a3 

4m2m3P, 

(m1m3 - m1m2 - 4m2m3)P, 

(m1m3 - m1m2 + 4m2m3)P; 

(4m2m3 - m1m2 - m1m3)P, 

(3m1m3 - m1m2 - 4m2m3)P, 

(m1m3 - 3m1m2 + 4m2m3)P. 

7.42 The masses of A and B in Fig. 7-37 

are 3 kg and 1 kg, respectively. If an up

ward force F = 5t2N is applied to the 
pulley, find the acceleration of A and B as 

functions of t. What happens after B 

reaches the pulley? 

F 

Figure 7-37 F 

m 

Figure 7-39 

7.43 The masses of A and B in Fig. 7-38 

are, respectively, 10 kg and 5 kg. The co
efficient of friction of A with the table is 

0.20. Find the minimum mass of C that 

will prevent A from moving. Compute the 

acceleration of the system if C is lifted up. 

7.44 Determine the frictional force exerted 

by the air on a body whose mass is 0.4 kg 
if it falls with an acceleration of 9.0 m s-2. 

7.45 Repeat Example 7.6 for a case in 
which there is no applied force. The initial\ 

velocity of the body is 2 m s-1 up the plane. 

How far up the plane will the body move 

before it stops? What is the least value for 

the coefficient of static friction so that the 
body, once stopped, will not come back 

down? 

7.46 A block of mass 0.2 kg starts up a 

plane inclined 30° with the horizontal with 

a velocity of 12 m s-1. If the coefficient 

of sliding friction is 0.16, determine how 

far up the plane the block travels before 

stopping. What is the block's speed when 

(if) it returns to the bottom of the plane? 

7.47 A train having a mass of 100 tons is 

going up an incline that rises 1 ft per 224 
ft of length. The traction of the train is 

9000 lbf and its acceleration is 1 ft s-2. 

Calculate the force of friction. 

7.48 Find the acceleration of min Fig. 7-39 

if the coefficient of friction with the floor is 

Figure 7-38 

F 
5kg 

Figure 7-40 



f. Find also the force exerted by the floor 

on the body. Apply to m = 2.0 kg, f = 
0.2, and F = 1.5 N. 

7.49 A block of mass 3 kg is placed on top 

of another block of mass 5 kg (Fig. 7-40). 

Assume that there is no friction between the 
5-kg block and the surface on which it rests. 

The coefficients of static and sliding friction 

between the blocks are 0.2 and 0.1, respec

tively. (a) What is the maximum force that 

may be applied to either block to slide the 
system and still keep the blocks together? 

(b) What is the acceleration when the max

imum force is applied? (c) What is the 

acceleration of the 3-kg block if the force 

is larger than the above maximum force 
and is applied to the 5-kg block? \Vhat if 

it is applied to the 3-kg block? 

7.50 Find the limiting velocity of a sphere 

having a radius of 2 cm and a density 1.50 
g cm - 3 falling through glycerine (density = 

1.26 g cm - 3). Also find the velocity of the 

sphere when its acceleration is 100 cm s-2 . 

7 .51 A body having a mass of 45 kg is 

launched vertically with an initial velocity 

of 60 m s- 1 . The body encounters an air 

resistance F = -3v/100, where F is in 

newtons and v is the velocity of the body 
in m s-1 . Calculate the time from launch 

to the maximum altitude. What is the 
maximum altitude? 

7.52 A body falls from a height of 108 m 
in 5 s, starting from rest. Find its limiting 

velocity if the resistance is proportional to 

the velocity. 

7 .53 Using the results of Example 7 .8, 
find the time it takes the raindrops of Ex

ample 7.7 to reach 0.50 and 0.63 of its 

limiting velocity. Also find the distance 
covered in the time T. 

7 .54 Plot the velocity of a body falling 

through a viscous fluid as a function of t 

when the initial velocity is not zero. Con

sider both when vo is smaller and larger 

than F /Kri. What happens when vo = 

F/Kri? 
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7.55 The electron in a hydrogen atom 

revolves around the proton, following an 

almost circular path of radius 0.5 X 

10-10 m with a velocity which is esti

mated to be about 2.2 X 106 m s-1 . 

Estimate the magnitude of the force be

tween the electron and the proton. 

7.56 A stone whose mass is 0.4 kg is tied 

to the end of an 0.8-m rope. If the stone 

is spun in a circle at the rate of 80 rev /min, 

what is the magnitude of the force the rope 

exerts on the stone? If the rope breaks 

when the tension is greater than 50 kgf, 
what is the largest possible angular veloc

ity of the stone? 

7 .57 A small block with a mass of 1 kg is 

tied to a rope 0.6 m and is spinning at 60 

rev /min in a vertical circle. Calculate the 
tension in the rope when the block is (a) 

at the highest point of the circle, (b) at 

the lowest point, (c) when the rope is hori

zontal. (d) Calculate the linear velocity 

the block must have at the highest point 

in order for the tension in the rope to be 
zero. 

7.58 A train rounds a banked curve at 63 

km hr- 1• The radius of the curve is 300 m. 

Calculate: (a) the degree of banking the 
curve must have in order that the train 

will experience no sideways forces, (b) the 

angle a chain hanging from the ceiling of 

one of the cars makes with the vertical. 

7.59 A highway is 24 ft wide. Calculate 

the difference in level between the external 

and internal edges of the road in order for 

a car to be able to travel at 50 mi hr-1 

(without experiencing sideways forces) 

around a curve whose radius is 2000 ft. 

7.60 A highway curve whose radius is 

1000 ft is not banked. Assume that the 
coefficient of friction between rubber and 

dry asphalt is 0.75, between rubber and 

wet asphalt is 0.50, and between rubber 

and ice is 0.25. Determine the maximum 

safe speed for traversing the curve on (a) 

dry days, (b) rainy days, (c) icy days. Why 

are these values independent of the car's 
mass? 
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Figure 7-41 

7 .61 A body D which has a mass of 12 lb 

(Fig. 7-41) is on a smooth conical surface 

ABC, and is spinning about the axis EE1 

with an angular velocity of 10 rev /min. 

Calculate: (a) the linear velocity of the 

body, (b) the reaction of the surface on the 

body, (c) the tension in the thread, and 

(d) the angular velocity necessary to re

duce the reaction of the plane to zero. 

Figure 7-42 

7 .62 A small ball of mass m, initially at A, 

slides on the smooth circular surface A DB 

(Fig. 7-42). When the ball is at the point 

C, show that the angular velocity and the 

force exerted by the surface are w = 

V2g sin a/r, F = mg(l + 2 sin a). 

,\ 
J;~. 

I A 
I 

Figure 7-43 I 

7 .63 Referring to the conical pendulum of 

Fig. 7--43 rotating in a horizontal circle 

with an angular velocity w, calculate the 

tension in the rope and its angle with re

spect to the vertical for the case when 

M = 12 kg, L = 1.16 m and w = 30 rad 
s-1. 

7 .64 Show that the periods of two conical 

pendulums hung from the same ceiling and 

having different lengths, but moving so that 

both bobs are at the same height above the 

floor, are equal. 

7.65 A particle of density PI is suspended 

in a rotating liquid of density p2. Prove 

that the particle will spiral outward (in

ward) if PI is greater (smaller) than p2. 

7.66 Prove that if a body moves under 

the action of a force F = ku X v, where 

u is an arbitrary unit vector, the motion 

is circular with angular velocity w = ku 

or, in a more general case, a spiral parallel 

to u. 

7 .67 At t = 0, a body of mass 3.0 kg is 

located at r = ux 4 m, with a velocity 

v = (ux + Uy 6) m s-1. If a constant 

force F = Uy 5 N acts on the particle, find 

(a) the change in the (linear) momentum of 

the body after 3 s, (b) the change in the 

angular momentum of the body after 3 s. 

7.68 A ball of mass 200 gm is moving due 

north with a velocity of 300 cm s-1. When 

a force of 2000 dyn in the due-east direc

tion is applied, obtain the equation of the 

trajectory and calculate after 40 s: (a) the 

magnitude and direction of the velocity, 

(b) the distance from the initial point, (c) 

the displacement from the initial point. 

7 .69 A particle moving with a velocity vo 

along the X-axis is acted on by a force F 

parallel to the Y-axis while moving in the 

region O ~ x < L. Find the change in its 

direction of motion. At what distance from 

the X-axis will the particle strike a wall 

placed at x = L? 

7.70 A point mass is moving in the XY

plane under the action of a constant force 

whose components are Ji\ = 6 N and Fu = 



Figure 7-44 

-7 N. When t = 0 s, x = o, y = 0, Vx = 

-2 m s-1, and Vy = O; find the position 

and velocity when t = 2 s. Assume that 

the mass of the particle is 16 kg. 

7 .71 The position vector of a body of mass 

6 kg is given as: r = ux(3t2 - 6t) + 
Uy(-4t3) + Uz(3t + 2) m. Find: (a) the 
force acting on the particle, (b) the torque, 

with respect to the origin, acting on the 

particle, (c) the momentum and angular 

momentum of the particle with respect to 

the origin. (d) Verify that F = dp/dt and 

T = dL/dt. 

7. 72 At t = 0 s, a 3-kg mass is located at 

r = ux 5 m and has a velocity of Uy 10 m 
s -l. There are no forces acting on the 

mass. Determine the angular momentum 

of the mass with respect to the origin at 

(a) t = 0 s and (b) t = 12 s. 

7.73 One end of a rubber band has a disk 

attached to it; the other end of the band is 

fixed. The disk can move on a frictionless 

horizontal table. If the rubber band is ex
tended and the disk is pushed at an angle, 

it describes the path shown in the multi
flash photograph in Fig. 7-44 (the time 

Figure 7-45 
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interval between flashes is 0.5 s). By actual 

measurement on the photograph, show that 

the law of areas holds for this motion. From 

the physical situation described, is the 

force on the disk central? 

7.74 A I-kg mass rests on a 10-kg mass, 

which in turn rests on a horizontal surface, 

as shown in Fig. 7-45: The force F varies 

with time t (measured in seconds), such 

that F = 0.2t N. If the coefficient of 

static friction is 0.2 and the coefficient of 

sliding friction is 0.15 between all surfaces, 

find the motion of each block as a function 
of time. 

7.75 When the earth is at aphelion (the 

position at which it is farthest away 
from the sun), June 21, its distance is 

1.52 X 1011 m and its orbital velocity is 
2.93 X 104 m s-1 . Find its orbital veloc

ity at perihelion (the position at which 

it is closest to the sun) about six months 

later, when its distance from the sun is 

1.47 X 1011 m. Do these variations in 

velocity affect the duration of the solar 

day? Also find the angular velocity of the 

earth about the sun for both cases. [Hint: 

both at aphelion and at perihelion the ve

locity is perpendicular to the radius vector.] 

7.76 A 103-kg rocket is set vertically on 

its launching pad. The propellant is ex
pelled at the rate of 2 kg s-1. Find the 

minimum velocity of the exhaust gases so 

that the rocket just begins to rise. Also 

find the rocket's velocity 10 s after igni

tion, assuming the minimum exhaust 

velocity. 

7.77 A rocket, launched vertically, ex

pels mass at a constant rate equal to 5 X 

10-2mo kg s- 1, where mo is its initial mass. 

Figure 7-46 
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The exhaust velocity of the gases relative 
to the rocket is 5 X 103 m s-1. Find the 

velocity and the height of the rocket after 

10 s. 

7. 78 A flexible chain of length L and 

weight W (Fig. 7-46) is initially placed at 

rest on a smooth frictionless surface ABC, 

with D the distance L - a from B. 

Prove that when the end D arrives at the 

point B the velocity of the chain is v = 

V (g/ L) (L2 - a2) sin a. 

7.79 A uniform rope of mass Mand length 

L (Fig. 7-47) passes over a smooth peg of 
very small radius. When the motion starts, 

BC = b. Show that the acceleration and 

velocity when BC = iL are a = g/3, v = 
V2g/L(!L2 + 2bL - b2). Apply your re

sults to L = 12 ft, b = 7 ft. 

B 

1 
b 

J 
Figure 7-47 c 

7.80 A mass M, attached to an end of a 
very long chain having a mass m per unit 

length, is thrown vertically upward with an 

initial velocity vo. Show that the maximum 

height reached by M is h = (M /m) 

[ v" 1 + 3mv~/2M g -1], and that the ve
locity of M when it returns to the ground 
is v = v2gh. 

7.81 Water vapor condenses on a raindrop 

at the rate of m mass units per unit time; 
the drop initially has a mass M and starts 

from rest. Show that the distance it falls 

in time tis !gH-t2 + (M/m)t - (M2/m2) 

In [1 + (m/ M)t]}. Neglect the resistance 
due to the air. 

7 .82 A particle moves under a constant 
force through a fluid resisting the motion 

with a force proportional to the velocity. 

Show that, if the force is cut off after the 

particle reaches the limiting velocity, the 
velocity at time t will be v = VLe-<klm)t 

and the distance moved will be x = 

(m/k)vL[l - e-<klm)t]. Verify that the 

distance moved before stopping is VL(m/k). 

Show that the velocity of the particle will 

reduce to 1/e of its value after the time 

t = m/k. 

7 .83 A body moves under the action of a 

constant force F through a fluid which op

poses the motion with a force proportional 

to the square of the velocity; that is, F1 = 

-kv2• Show that the limiting velocity is 

VL = VF /k. Prove that the relationship 

between the velocity and the distance is 
v 2 = (F /k) + [v~ - (F /k)Je-2<klm)x. Plot 

v 2 against x for vo = 0. If the force is 
suppressed after the body reaches the 

limiting velocity, show that the velocity of 

the particle will fall to 1/ e of the limiting 

velocity after traversing the distance m/k. 

7 .84 Prove that when a body is in motion under a resisting force proportional to the 

square of the velocity, the velocity at time tis: 

( + ) (kvL/m) t + ( ) -(kvL/m) t 
vo VL e vo - VL e 

v=~ . ( + ) (kvL/m) t ( ) -(kvL/m) t 
Vo VL e - VO - VL e 
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B.l Introduction 

In this chapter we shall continue to discuss various aspects of the dynamics of a 

particle. Accordingly, we shall observe only one particle, and reduce its inter

actions with the rest of the universe to a single term which we have called force. 

When we are solving the fundamental equation of the dynamics of a particle (that 

is, F = dp/dt), we can always perform a first integration if we know the force as 

a function of time, because from this equation we obtain by integration 

rp dp = rt Fdt 
}Po J to 

or 

P - Po = rt F dt = l. 
J to 

(8.1) 

The quantity I = n0 F dt appearing on the right is called the impulse. Therefore, 

Eq. (8.1) tells us that 

the change in momentum of the particle is equal to the impulse. 

Since impulse is essentially force multiplied by time, a very strong force acting 

through a short time may produce the same change in momentum as a weaker 

force acting for a longer time. For example, when a batter hits a ball he produces 

a large force during a very short time, resulting in an appreciable change in the 

momentum of the ball. However, gravity, to produce an equivalent change in 

momentum, would have to act on the ball for a much longer time. 

When we replace p by its equivalent mv, it is possible to integrate again and 

obtain the position of the particle as a function of time. That is, 

mv - mv0 = I or 

Recalling that v = dr/dt, we may write 

1 
v = v 0 +-I. 

m 

Jr dr = { t (vo + l_ 1) dt 
o J t 0 m 

or r = ro + vot +.!:._ft I dt, 
m to 

which gives r in terms of t, and thus formally solves the dynamical problem. In 

fact, in Example 7 .5 we solved a problem of this type for the case of rectilinear 

motion. 

However, in the important problems encountered in physics, the force on a 

particle is not known as a function of time but as a function of position given by 

r or x, y, z; that is, F(r) or F(x, y, z). Hence we cannot evaluate the integral ap

pearing in Eq. (8.1) until we know x, y, and z as functions of time; that is, until 

we have solved the problem that we attempt to solve with Eq. (8.1) ! To cir

cumvent this apparent vicious circle we must resort to other mathematical tech

niques which will lead us to the definition of two new concepts: work and energy. 

These powerful methods will enable us to solve problems even in cases in which 

we do not know the force, but can make reasonable assumptions about its properties. 
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EXAMPLE 8.1. A ball whose mass is 0.1 kg is allowed to fall from a height of 2 m and, 

after hitting the floor, it bounces back up to a height of 1.8 m. Determine the impulse it 

received from gravity while it was falling and the impulse it received when it struck the 

floor. 

Solution: We first use Eq. (5.12) to find the velocity of the particle when it arrives 

at the floor; that is, v1 = v'2gh1, where h1 = 2 m. Thus v1 = 6.26 m s-1. Since the 

velocity is directed downward, we must write v1 = -uy(6.26 m s.-1). The initial mo

mentum is zero, and thus the total change in momentum during the fall is mv1 - 0 = 

-uy(0.626 kg m s-1). This is the impulse due to gravity. We may also compute this 

impulse directly by using the definition I = J:0 F dt. In this case to = 0 and t = vi/g = 
0.639 s. Also F = mg = -uymg = -uy(0.98 N). Thus direct calculation again gives 

-uy(0.626 kg m s-1) for the impulse due to gravity during the fall. 

But when the ball hits the ground a new force acts during a very short time. We do 

not know the force, but we may obtain the impulse by computing the momentum of the 

ball when it bounces back. Since it goes to a height h2 = 1.8 m, the velocity when it 

bounces back is v2 = v'2gh2 = 5.94 m s-1, or in vector form v2 = uy(5.94 m s-1), since 

the body is moving upward. Thus the change in momentum is expressed by 

P2 - Pl = mv2 - mv1 = uy(l.221 kg m s- 1), 

which also gives the impulse. Comparing this value with the result for free fall, and 

noting that the collision with the ground takes place in a very short time interval, we 

conclude that the force acting in this second case is much stronger. If we could measure 

the time interval, we could obtain the average force on the ball. 

B.2 Work 

Let us consider a particle A moving along a 

curve C under the action of a force F (Fig. 

8-1). In a very short time dt it moves from 

A to A', the displacement being TI' = dr. 

The work done by the force F during that 

displacement is defined by the scalar product 

dW = F · dr. (8.2) 

Designating the magnitude of dr (that is, the 

distance moved) by ds, we may also write 
Eq. (8.2) in the form 

dW = F ds cos 8, (8.3) 

/ 
/ 

/ 

\)90° 

.,, T 

c 

Fig. 8-1. Work is equal to displace
ment multiplied by the component of 
the force along the displacement. 

where 8 is the angle between the direction of the force F and the displacement dr. 

Now F cos 8 is the component Fr of the force along the tangent to the path, 
so that 

dW = Frds. (8.4) 

' 
./ 
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In words, we may express this by saying that 

work is equal to the displacement times the component of the force along 

the displacement. 

Let us note that if a force is perpendicular to the displacement ( () = 90°), the 

work done by the force is zero. For example, this is the case for the centripetal 

force FN in circular motion (Fig. 8-2a), or the force of gravity mg when a body 

is moved on a horizontal plane (Fig. 8-2b). 

Displacement -

J:+;L· mg 

(a) (b) 

Fig. 8-2. Forces that do no work. Fig. 8-3. The total work is the sum 
of many infinitesimal works. 

Equation (8.2) gives the work for an infinitesimal displacement. The total 
work done on the particle when moving from A to B (Fig. 8-3) is the sum of all 

the infinitesimal works done during successive infinitesimal displacements. That is, 

or 

Before we can perform the integral that 

appears in Eq. (8.5), we must know Fas 
a function of x, y, and z. Also, in general, 
we must know the equation of the path 

along which the particle moves. Alter

natively, we must know F, x, y, and z as 
functions of time or some other variable. 

Sometimes it is convenient to represent 
FT graphically. In Fig. 8-4 we have 

plotted FT as a function of the distance s. 

The work dW = FT ds done during a 
small displacement ds corresponds to the 
area of the narrow rectangle. Thus we 

(8.5) * 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

0 A ds B 
s 

Fig. 8-4. The total work done in going 
from A to B is equal to the area under 
the curve. 

* For any vector V which is a function of position, an integral of the form f ! V · dr 

along some path joining points A and B is called the line integral of V. It will appear 
many times in this book. 
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can find the total work done on the par
ticle in Fig. 8-3 in order to move it from 

A to B by first dividing the whole shaded 
area in Fig. 8-4 into narrow rectangles 

and then adding their areas. That is, the 

work done is given by the total shaded 

Work 

Motion---

r----, 
I I F 
l •--t---------t~B·----~-
I A i 

li+----~s ~-------..T 
I I 
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area in Fig. 8-4. Fig. 8-5. Work of- a force that is con-
An interesting particular case is that in stant in magnitude and direction. 

which the force is constant in magnitude 
and direction and the body moves in a straight line in the direction of the force 

(Fig. 8-5). Then Fr = F and Eq. (8.5) yields 

(8.6) 

or work = force X distance, which is the expression normally found in elementary 

textbooks. 

If Fx, Fy, and F~ are the rectangular components of F and dx, dy, and dz are 

the rectangular components of dr (Fig. 8-6), application of Eq. (3.20) indicates 

that 

(8.7) 

When the particle is acted on by several forces F 1 , F 2 , F 3 , ... , the work done 

by each force during a displacement AA' = dr (Fig. 8-7) is dW 1 = F 1 • dr, 

dW2 = F 2 • dr, dW3 = F 3 • dr, and so forth. Note that dr is the same for all 
forces because all are acting on the same particle. The total work dW done on the 

z 

x 

/r--/ -- --/ --/ F, -:;1 
/ / 

/ / 

(-__ / -- / _t ____ -// 
/ ---. i 

<lz F-1,?., 
f---- i' /: I 
I --( I 

: dr : I 
1dx A ;.._1dy 
I II~ 

I 1/r ~ 

----J,....'l Y// 

,- Fx I / 

~ - - :--------_ I // 

----- i-/~ 
- - -.1,,' --------

y 

0 

Fig. 8-6. The work done by a force is 
equal to the sum of the works done by its 
rectangular components. 

Fig. 8-7. When several forces act on a 
particle, the work of the resultant is the 
sum of the works done by the components. 



200 Work and energy (8.4 

particle is obtained by adding the infinitesimal works dW 1 , dW 2 , dW 3 , ... , done 
by each of the forces. Thus 

dW = dW 1 + dW 2 + dW 3 + · · · 
= F 1 • dr + F 2 • dr + F 3 • dr + · · · 

(F 1 + F 2 + F 3 + · · ·) · dr 

= F·dr, 

(8.8) 

where F = F 1 + F 2 + F 3 + · · · is the resultant force. But the last result in 
Eq. (8.8) is the work done by the resultant force acting on the particle. This 
proves then that the work of the resultant of several forces applied to the same 

particle is equal to the sum of the works of the component forces. 

8.3 Power 

In practical applications, especially in connection with machines and engineering, 

it is important to know the rate at which work is done. The instantaneous power 

is defined by 

p = dW. (8.9) 
dt 

That is, power is defined as the work done per unit time during a very small time 
interval dt. Using Eqs. (8.2) and (5.17), we may also write 

dr 
P=F·-=F·v 

dt ' 
(8.10) 

and thus power can also be defined as force times velocity. The average power 

during a time interval t is obtained by dividing the total work W, as given in 

Eq. (8.5), by the time t, yielding Pave = W /t. 
From the engineering point of view, the concept of power is very important be

cause, when an engineer designs a machine, it is the rate at which it can do work 

that matters, rather than the total amount of work the machine can do. 

8.4 llnits of Work and Power 

From Eqs. (8.2) or (8.6), we see that work must be expressed as the product of a 
unit of force and a unit of distance. In the MKSC system, work is expressed in 

newton meters, a unit called the joule, abbreviated J. Thus one joule is the work 

done by a force of one newton when it moves a particle one meter in the same 
direction as the force. Recalling that N = m kg s-2 , we have that J = Nm = 

m 2 kg s-2• The name joule was chosen to honor James Prescott Joule (1816-1869), 

a British scientist famous for his research on the concepts of heat and energy. 

In the cgs system, work is expressed in dynes centimeters, a unit called an 
erg. Thus: erg = dyn cm. Recalling that 1 N = 105 dyn and 1 m = 102 cm, we 
have that 1 J = (10 5 dyn) (102 m) = 107 ergs. For the unit of work in the British 
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system, called the foot-pound, and abbreviated ft-lb, we refer the student to Prob

lem 8.4. 

According to definition (8.9), power must be expressed as the ratio between a 

unit of work and a unit of time. In the MKSC system power is expressed in joules 

per second, a unit called a watt, abbreviated W. One watt is the power of a machine 

that does work at the rate of one joule every second. Recalling that J = m 2 kg s-2 , 

we have that W = J s-1 = m 2 kg s-3 • The name watt w3:.s chosen in honor of 

the British engineer James Watt (1736-1819), who improved the steam engine 

with his inventions. Two multiples of the watt generally used are the kilowatt 

(kW) and the megawatt (MW), defined by: 1 kW = 103 Wand 1 MW = 10 6 W. 

A unit of power commonly used by engineers is the horsepower, abbreviated hp, 

and defined as 550 ft lb per second, or 746 W. 

Another unit used to express work is the kilowatt-hour. The kilowatt-hour is 

equal to the work done during one hour by an engine having a power of one kilo-

watt. Thus: 1 kilowatt-hour = (103 W) (3.6 X 103 s) 3.6 X 106 J. 

EXAMPLE 8.2. An automobile having a mass Y 

of 1200 kg moves up a long hill inclined 5° with a 

constant velocity of 36 km per hour. Calculate 

the work the engine does in 5 minutes and the 

power developed by it. Neglect all frictional 

effects. 

Solution: The motion of the automobile along 

the hill is due to the force F, exerted by the 

engine, and to the force W sin a, due to the 

weight of the automobile (Fig. 8-8). Thus we 

must write, using W = mg, Figure 8-8 

F - mg sin a = ma. 

Since the motion is uniform, a = 0, and F mg sin a = 1.023 X 103 N. The velocity 

of the automobile is v = 36 km hr- 1 = 36(103 m)(3.6 X 103 s)-1 = 10 m s-1, and in 5 

minutes (or 300 s) it moves the distances = (10 m s-1)(300 s) = 3 X 103 m. Therefore, 

if we use Eq. (8.6), the work done by the engine is 

W = Fs = (1.023 X 103 N)(3 X 103 m) = 3.069 X 106 J. 

The average power can be computed in two different ways. First we may say that 

p = W = 3.069 X IO 
6 J = l.023 X 104 W. 

t 3 x 102 s 

Alternatively, we may say that 

P = Fv = (1.023 X 103 N)(10ms- 1) = 1.023 X 104 W. 

EXAMPLE 8.3. Calculate the work required to expand the spring of Fig. 8-9 a dis

tance of 2 cm without acceleration. It is known that when a body whose mass is 4 kg is 

hung from the spring, the spring's length increases by 1.50 cm. 
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Solution: When no body is hanging from the spring, the spring's length extends from O 

to the horizontal level A. It has been verified experimentally that to extend a spring a 

small distance x without acceleration, a force proportional to the distance is required; 

that is, F = kx. If the spring is extended without acceleration, it produces an equal and 

opposite force. This is the principle of the spring balance or dynamometer, commonly used 

for measuring forces. To determine the proportionality constant k, we use the fact that 

when the body m exerts the force of its weight on the spring, the spring expands the dis

tance x = 1.50 cm = 1.50 X 10-2 m. The force F is, in this case, the weight mg = 

39.2 N. Thus, making mg = kx, we obtain 0 ~~~~~~~~~W.:~W.:~W.:~W.:~~ 

k 
39.2 N 

1.50 X 10-2 m 

2.61 X 103 Nm- 1. 

To extend the spring a distance x, without A 

acceleration, we now apply a force F = kx. 

This can be accomplished by slowly pulling 

on a cord attached to the spring. The force 

necessarily increases steadily as x increases. 

To find the work done, we must use Eq. 

(8.5), which yields 

x=l.50 cm 

B-! t~ 
~g 

W = 1: Fdx = 1: kxdx = fkx 2
• 

Fig. 8-9. Work done m stretching a 
spring. 

This is the work done for any displacement x. Introducing corresponding numerical 

values for x and k, we obtain the work required to extend the spring by 2 cm, which is 

W = 5.22 X 10-1 J. 

EXAMPLE 8.4. A force F = 6t N acts on a particle whose mass is 2 kg. If the particle 

starts from rest, find the work done by the force during the first 2 s. 

Solution: In the preceding example it was easy to calculate the work because we knew 

the force as a function of the position (F = kx). But in this example we know the force 

only as a function of the time (F = 6t). Thus we cannot directly calculate the work by 

W = J F dx. Instead we must first find the displacement in terms of the time, using the 

equation of motion, F = ma. Thus a = F /m = 3t m s-2 • Using Eq. (5.6), with vo = 0 

because the particle starts from rest, we may write 

rt 2 1 
v = lo (3t) dt = 1.5t ms-. 

Now, if we use Eq. (5.3) with x0 = O, and if we place our origin of coordinates at the 

starting point, we obtain 

x = { (1.5t2
) dt = 0.5t3 m. 

Now that we have the position x as a function of time t, we may proceed in two different 

ways. 
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(a) Solving fort, we get t = (x/0.5)113 = I.260x 113, and the force in terms of position 

is then F = 6t = 7.560x113 N. Using Eq. (8.5), we then have 

W = fox (7.560x 113) dx = 5.670x413. 

When t = 2, we have that x = 0.5(2) 3 = 4 m, and thus W = 36.0 J. 
(b) We may also proceed in a different way: From x = 0.5t3, we have dx l.5t2 dt. 

Then, using for the force its expression in terms of time, F = 6t, we may write 

w = L (6t)(I.5t2 dt) = 2.25t4 J, 

and if we make t = 2 s, then W = 36.0 J, in agreement with the previous result. 
This second method is the one we normally must use when we know the force as a 

function of time, because even after solving the equation of motion it may be, in general, 
difficult to express force as a function of position. 

B.5 Kinetic Energfl 

From Eq. (7.27), we have that the tangential force is Fr = m dv/dt. Therefore 

dv ds 
FT ds = m dt ds = m dv dt = mv dv, 

since v = ds/dt, according to Eq. (5.23). Therefore the integral appearing in Eq. 
(8.5) for the total work is 

(8.11) 

where VB is the particle's velocity at Band VA is the particle's velocity at A. The 
result (8.11) indicates that no matter what the functional form of the force F and 

the path followed by the particle, the value of the work W done by the force is 

always equal to the difference of the quantity !mv2 evaluated at the end and at 
the beginning of the path. This important quantity, called kinetic energy, is desig

nated by Ek. Therefore 

E 1 2 
k = 2mV or 

p2 
Ek=-, 

2m 

since p = mv. Equation (8.11) can then be expressed in the form 

which can be expressed in words as: 

(8.12) 

(8.13) 

the work done on a particle is equal to the change in its kinetic energy, 

and is a result which is valid in general, no matter what the nature of the force. 
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We can see that, in view of Eq. (8.13), kinetic energy is obviously measured in 

the same units as work; i.e., in joules in the MKSC system and in ergs in the cgs 
system. This can also be verified by noting, from Eq. (8.12), that Ek in the MKSC 
system must be expressed in m 2 kg s-2 , which is the dimensional expression for 

joules in terms of the fundamental units. 
Let us mention in passing that another unit of energy widely used by physicists 

to describe chemical and nuclear processes is the electron volt, abbreviated eV, 
whose precise definition will be given in Section 14.9 (Vol. II). Its equivalence is: 
eV = 1.60210 X 10-19 J. A useful multiple of the electron volt is the MeV, 

which is equal to 10 6 eV or 1.60210 X 10-13 J. 
Result (8.13), relating the change in kinetic energy Ek of a particle to the work 

W done by the force, bears a great resemblance to Eq. (8.1), relating the change in 
momentum p of a particle to the impulse I of the force. The difference is that 

the impulse, since it is a time integral, is useful only when we know the force as a 
function of time. But work, since it is a space integral, can easily be computed 

when we know the force as a function of position. We usually do know the force 
as a function of position, and it is for this reason that the concepts of work and 

energy play such an important role in physics. 
Let us remind the student that these concepts of work and energy, as used in 

physics, have very precise meanings that must be understood thoroughly, and 
must not be confused with the same terms as they are loosely used in daily life. 

EXAMPLE 8.5. Using the data of Ex-
ample 8.4, compute directly the kinetic :0. · 

energy which the particle gains in a time t. (a) 

Solution: We recall from the solution of 
Example 8.4 that the velocity at time t is 
v = 1.5t2 m s-1, and thus the kinetic 

energy of the particle is 

imv2 = !(2 kg)(l.5t2 m s-1) 2 (b) 

2.25t4 J. 

The particle's initial kinetic energy, at 
t = 0, is zero, and therefore the gain in 
kinetic energy of the particle in the time 

interval t is Ek - Ek,O = 2.25t4 J, which 
is just equal to the work W done on the 
particle, according to -the second result of 
Example 8.4. 

EXAMPLE 8.6. The spring of Example 
8.3 is placed in horizontal position, as shown (d) 

in Fig. 8-10. The mass m is moved to the 
right the distance a, and then released. Cal
culate its kinetic energy when it is at dis-
tance x from the equilibrium position. Figure 8-10 

Equilibrium 
position 

F=O 
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Solution: According to our explanation in Example 8.3, the spring will exert a force 

F = -kx on the mass m when it is at distance x from the unextended position. (The 

minus sign indicates that the force produced by the spring is to the left when the body is 

displaced to the right.) At the equilibrium position x = 0, and thus F = 0. At position 

(b), when the mass is about to be released, x = a, F = -ka, and the velocity is zero 

(vo = O) resulting in an initial kinetic energy of zero. Let us call v the velocity at the 

intermediate position x. Then, using Eq. (8.11), we find that 

or 

v = y(k/m)(a2 - x2), 

which gives us 'the velocity of the particle in terms of the position. Note that the velocity 

depends on the square of x. What is the physical meaning of this dependence? With what 

velocity does the particle reach the position x = O? Should we put a ± sign in front of 

the square root in the expression for v? Is there any limitation on the possible values of 

x? Can the student arrive at a pictorial representation of the resulting motion? 

B.6 Work of a Force Constant in Magnitude and Direction 

Consider a particle m moving under the action of a force F which is constant in 
magnitude and direction (Fig. 8-11). There may be other forces acting on the 
particle that may or may not be constant, but we do not wish to be concerned with 

them now. The work of F when the particle moves from A to B along path (1) is 

W = 1: F · dr = F · 1: dr = F · (rB - rA), (8.14) 

One important conclusion derived from Eq. (8.14) is that the work in this case 

is independent of the path joining points A and B. For example, if the particle, 
instead of moving along path (1), moves along path (2), which also joins A and B, 

the work will be the same because the vector difference r B - r A = AB is still 

Fig. 8-ll. Work done by a force which is 
constant in magnitude and direction. 

y 

Uy 

r B- r ,1 _-,.--__ 

mg 

: YB-YA. 
__ J _J_ 

Fig. 8-12. Work done by gravity. 



206 Work and energy (8.6 

the same. Note that Eq. (8.14) can also be written in the form 

W=F·rB-F·rA, (8.15) 

and is therefore equal to the difference between the quantity F · r evaluated at 
one end of the path and at the other. 

An important application of Eq. (8.14) is to be found in the work done by the 
force of gravity (Fig. 8-12). In this case F = mg= -uymg and rB - rA = 
ux(XB - XA) + uy(yB - YA). Therefore, substituting in Eq. (8.14) and using 
Eq. (3.19) for the scalar product, we have 

(8.16) 

Obviously in Eq. (8.16) there is no reference to the path, and the work depends 
only on the difference y B - YA between the heights of the two endpoints. 

EXAMPLE 8.7. A mass of 2 kg attached to a string one meter long is displaced an 
angle 30° with the vertical and released. Find its velocity when the string forms an angle 
of 10° with the vertical, on the same side and on the opposite side. 

Solution: A mass hanging from a string is commonly called a pendulum. When the 
string is pulled out to an angle eo (Fig. 8-13) and released, its initial velocity is zero. 
Under the action of its weight mg and the pull FN of the string, it describes an arc of a cir
cle while approaching point A. After passing point A it moves tQ the left until it reaches 
a symmetrical position. From then on the motion continues back and forth, resulting in 
the well-known oscillation of a pendulum. (Oscillatory motion will be discussed in detail 
in Chapter 12.) 

In order to obtain v by using the principle of energy, Eq. (8.11), we should compute 

first the work done by the forces acting on the particle. The centripetal force FN does no 
work, because at each position it is perpen

dicular to the velocity. And the work of the 
force of gravity mg can be computed with the 

aid of Eq. (8.16); that is, W = mgyo -

mgy = mg(yo - y). Now, measuring the 
height from an arbitrary horizontal level, we 

obtain Yo - y = B'C' = OC' - OB'. But 
OB' = l cos eo and OC' = l cos e. Thus 
Yo - y = l (cos() - cos eo) and 

W = mg(yo - y) 

= mgl (CO_§() - COS (Jo). 

The kinetic energy at position C is Ek = 

!mv2 , and at B is zero. Thus, using Eq. 
(8.13), we obtain 

mgl ( cos () - cos eo) 

or 

v = y2gl (cos() - cos eo) . 

F.v v=O 

--- ---- --t 

v ,Tl - --;; C ,_'_1-+Y~;_:Y 

~ 
Arbitrary 

reference plane 

Fig. 8-13. Energy relations in motion 
of a pendulum. 
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We note that the result is independent of the mass. Introducing the numerical values, we 
have 

v = V2(9.8 m s-2)(1 m)(cos 10° - cos 30°) = 1.526 ms - 1. 

Note that at the symmetric position D, which makes an angle of -10° with the vertical, 
we get the same result, since cos (-()) = cos 0. 

B. 7 Potential Energy 

The situation illustrated in the previous section is just one example of a large and 

important class of forces, which are called conservative forces, for reasons to be ex

plaineq in later sections of this chapter. 
A force is conservative if its dependence on the position vector r or on the co

ordinates x, y, z of the particle is such that the work W can always be expressed 
as the difference between a quantity Ep(x, y, z) evaluated at the initial and at the 

final points. The quantity Ep(x, y, z) is called the potential energy, and is afunction 
of the coordinates of the particles. Then, if Fis a conservative force, 

W = f: F · dr = Ep,A - Ep,B· (8.17) 

Note that we write Ep,A - Ep,B and not Ep,B - Ep,Ai that is, the work done is 
equal to EP at the starting point minus EP at the endpoint. In other words, 

potential energy is a function of the coordinates such that the dijf erence 

between its value at the initial and final positions is equal to the work 

done on the particle to move it from the initial to the final position. 

Strictly speaking, the potential energy Ep must depend on the coordinates of 

the particle considered, as well as on the coordinates of all the other particles of 

the world which interact with it. However, as we mentioned in Chapter 7 when 
we were dealing with the dynamics of a particle, we assume the rest of the world 

essentially fixed, and thus only the coordinates of the particle under consideration 

appear in EP" 
The student must realize, comparing Eq. (8.17) with the kinetic energy relation 

(8.12), that Eq. (8.12) is generally valid no matter what the force F may be. It 

is always true that Ek = fmv 2 , while the form of the function Ep(x, y, z) depends 
on the nature of the force F, and not all forces may satisfy the condition set by 

Eq. (8.17). Only those satisfying it are called conservative. For example, com

paring Eq. (8.17) with Eq. (8.16), we note that the force of gravity is conservative, 

and the potential energy due to gravity is 

Ep = mgy. (8.18) 

Similarly, from Eq. (8.15), we see that the potential energy corresponding to a 
constant force is 

Ep = -F· r. (8.19) 
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Potential energy is always defined within an arbitrary constant, because, for 

example, if we write mgy + C instead of Eq. (8.18), Eq. (8.16) still remains the 

same, since the constant C, appearing in the two terms, cancels out. Because of 

this arbitrariness, we can define the zero or reference level of potential energy 

wherever it best suits us. For example, for problems of falling bodies, the earth's 

surface is the most convenient reference level, and so the potential energy due to 

gravity is taken as zero at the earth's surface. For a satellite, either natural or 

man-made, the zero of potential energy is usually defined at an infinite distance. 

The work done by conservative forces is independent of the path. 

We can see this from the defining Eq. (8.17) since, no 

matter what the path joining points A and B, the dif

ference Ep,A - Ep,B remains the same because it de

pends only on the coordinates of A and B. In par

ticular, if the path is closed (Fig. 8-14) so that the final 

point coincides with the initial point (that is, A and B 

are the same point), then Ep,A = Ep,B and the work 

is zero (W = 0). This means that during part of the 

path the work is positive and during the other part it is 

negative by the same amount, giving a zero net result. 

When the path is closed, the integral appearing in Eq. 

(8.17) is written .f/. The circle on the integral sign 

indicates that the path is closed. Therefore, for con

servative forces, 

W o = 1 F · dr = 0. (8.20)* 

Fig. 8-14. The work done 
by a conservative force 
along a closed path is zero. 

Conversely, it can be proved that the condition expressed by Eq. (8.20) may 

be adopted as the definition of a conservative force. In other words, if a force F 

satisfies Eq. (8.20) for any closed path arbitrarily chosen, then it can be proved 

that Eq. (8.17) is correct. 

To satisfy Eq. (8.17) it is necessary that 

F· dr = -dEp, (8.21) 

because then 

W = J: F · dr = - f: dEp 

-(Ep,B - Ep,A) = Ep,A - Ep,B, 

in agreement with Eq. (8.17). Note that the negative sign appearing in Eq. (8.21) 

is necessary if we are to obtain Ep,A - Ep,B instead of Ep,B - Ep,A· 

* For any vector V which is a function of the position, an integral of the form .fl V • dr 
along a closed path is called the circulation of V. It will appear many times in this book. 
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Since F · dr = F ds cos(), where () is the angle between the force and the dis
placement, we may write instead of Eq. (8.21) 

F cos e = - dE P • 

ds 
(8.22) 

Now, as explained in connection with Fig. 8-1, F cos () is the component of the 
force in the direction of the displacement ds; therefore if we know Ep(x, y, z), we 
may obtain the' component of F in any direction by computing the quantity 
-dEp/ds which is the negative of the space rate of change of Ep in that direction. 
This is called the directional derivative of Ew When a vector is such that its compo
nent in any direction is equal to the directional derivative of a function in that 
direction, the vector is called the gradient of the function. Thus we say that F 

is the negative of the gradient of Ep, and write Eq. (8.22) in the general form: 

F = -grad Ep, 

where "grad" stands for gradient. When we are interested in the rectangular com
ponents of F along the X-, Y-, and Z-axes, F cos() in Eq. (8.22) becomes Fx, Fy, 
and Fz, and the displacement ds becomes dx, dy, and dz, respectively, so that 

aEP --, 
ax 

aEP --, 
az 

(8.23) 

or 

(8.24) 

Note that when we write Eq. (8.24) we use the symbol for partial derivative for 
the first time in this book. This terminology is necessary because the potential 
energy Ep(x, y, z) is, in general, a function of all three variables x, y, and z. But 
when a particle is displaced a distance dx along the X-axis, for example, the co
ordinates y and z remain unchanged. Thus, instead of writing dEp/dx, we must 
use the notation aEP/ ax adopted by the mathematicians for these cases. 

If the motion is in a plane and the coordinates r, () are used (Fig. 8-15), the dis
placement along the radius vector r is dr and 
the displacement perpendicular to the radius 
vector is r de. Thus the radial and transverse 
components of the force are 

aEP --, 
ar 

Fo = - ! aEP · 
r ae 

(8.25) 

Note that again we use the partial derivative 
notation. Figure 8-15 
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An important case is that in which the potential energy Ep depends on the dis
tance r but not on the angle e; that is, instead of Ep(r, e), we have Ep(r). Then 

aEP/ae = 0 and, according to Eq. (8.25), F8 = 0. The force then does not have 
a transverse component, but only a radial one, so that the force is central, and its 

line of action always passes through the center. Conversely, if the force is central 

there is only a radial component, and F9 = 0, yielding aEp/ae = 0, which im
plies that Ep is independent of e. As a result, a central force depends only on the 

distance of the particle from the center. This important result can be stated by 
saying that 

the potential energy associated with a central force depends only on the 

distance of the particle from the force center, and conversely. 

When the forces are not central, there is a torque around point O given by 

T = F9 r, since the radial force does not contribute to the torque. Using the second 

relation in Eq. (8.25), we have that the torque around O is 

aEp 
7 = - ae · (8.26) 

This is a general expression that gives the torque in a direction perpendicular to 
the plane on which the angle e is measured. Therefore, since a torque produces a 

corresponding change in angular momentum [cf. Eq. (7.38)], we conclude that 

whenever the potential energy depends on an angle, a torque is applied 

to the system, resulting in a change in the angular momentum in a direc

tion perpendicular to the plane of the angle. 

Note on the concept of gradient. We shall often encounter expressions in physics 

similar to Eq. (8.24); therefore it is important to have a clear understanding of the mean

ing of gradient. Let us consider a function V(x, y, z) that depends on the three coordinates 

of a point. We draw the surfaces 

V(x, y, z) = C1 and V(x, y, z) = C2 

(Fig. 8-16). In moving from a point A on C1 to any point Bon C2, the function V always 

experiences a change C2 - C1. If C1 and C2 differ by an infinitesimal amount, we may 

write dV C2 - C1. The change in V per unit length, or the "directional derivative" 

of V, is 

dV /ds = (C2 - C1)/ds. 

Let us consider the case when A and B are along a normal N common to the two sur

faces. The directional derivative along the normal AN is dV /dn. But from Fig. 8-16, 

we see that dn = ds cos e. Thus 

~V = dV dn = dV cos e 
ds dn ds dn ' 

which relates the directional derivative along the normal with the directional derivative 

• 
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along any other direction. Since cos 8 has its maximum value for 8 = 0, we conclude that 

dV /dn gives the maximum directional derivative of V. Introducing the unit vector uN, 

perpendicular to the surface at A, we define the gradient of V by 

dV 
grad V = UN dn , 

and thus the gradient is a vector perpendicular to the surface E(x, y, z) = const, and 

is equal to the maximum directional derivative of V(x, y, z). Then we may write 

dV 
ds = lgrad VI cos 8, 

which indicates that the space rate of change in the direction AD, or the directional deriva

tive of V(x, y, z), is equal to the component of the vector grad Vin that direction. This 
is the relation that was used to go from Eq. 

(8.22) to Eqs. (8.23) and (8.24). A dif

ferential operator, identified by the symbol 

v', read "del," has been introduced to shorten 

notation. It is expressed as: 

In terms of this operator, the gradient may 

be written as 

grad V = v'V. 

For further information concerning the 

gradient of a function, the student is referred 

to Calculus and Analytic Geometry (third 

edition), by G. B. Thomas. Reading, Mass.: 

Addison-Wesley, 1962. 

z 
N 

D 

x 

Fig. 8-16. The gradient of V(x, y, z) is 
a vector function which at each point is 
perpendicular to the surface V = const. 

EXAMPLE 8.8. Compute the potential energy associated with the following central 

forces: (a) F = kr, (b) F = k/r2 • In both cases if k is negative the force is attractive 

and if k is positive the force is repulsive. 

Solution: Using Eq. (8.25), for case (a), we have F = -dEp/dr = kr or dEp = -kr dr. 

Integrating, we obtain 

Ep = J -kr dr = -ikr2 + C. 

The constant of integration C is determined by assigning a value of EP to a given posi

tion. In this case it is customary to make EP = 0 at r = 0, so that C = 0 and EP = 
-ikr2. Considering that r2 = x2 + y2 + z 2, we may also write Ep = -ik(x2 + y2 + z2). 

Using Eq. (8.23), we find that the rectangular components of the force are 

iJEp 
F,, = - - = kx ax ' 

Fv = - iJEp - ky ay - , kz, 
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a result that was to be expected, since the central force F = kr in vector form is F = 
kr = k(uxX + Uyy + u 2 z). 

For case (b) we have F = -aEP/ar = k/r2 or dEP = -k(dr/r2). Integrating, we 
have 

E = f -k dr = ~ + C. 
P r2 r 

For inverse-r forces, it is customary to determine C by making Ep = 0 at r = ~, 
so that C = 0 and EP = k/r. What are the rectangular components of the force in this 

case? 

B.B Conservation of Energu of a Particle 

When the force acting on a particle is conservative, we may combine Eq. (8.17) 

with the general Eq. (8.13), which gives us Ek,B - Ek,A = Ep,A - Ep,B or 

(8.27) 

The quantity Ek + Ep is called the total energy of the particle, designated by E; 

that is, the total energy of a particle is equal to the sum of its kinetic energy and 

its potential energy, or 

(8.28) 

Equation (8.27) indicates that 

when the forces are conservative the total energy E of the particle remains 

constant, 

since states designated by A and B are arbitrary. Thus we may write for any 

position of the particle, 

E = Ek + Ep = const. (8.29) 

In other words, the energy of the particle is conserved. This is the reason why we say 

that when there is a potential energy, the forces are conservative. For example; 

in the case of a falling body we have seen (Eq. 8.18) that EP = mgy, and the con

servation of energy gives 

E = -!mv2 + mgy = const. (8.30) 

If initially the particle is at height y0 and its velocity is zero, the total energy is 

mgy0 , and we have !mv2 + mgy = mgy0 , or v2 = 2g(yo - y) = 2gh, where 

h = y 0 - y is the height through which it has fallen. This result is the well

known formula for the velocity acquired in free fall through a height h. We must 

note, however, that Eq. (8.30) is not restricted to vertical motion; it is equally valid 

for the motion of any projectile moving at an angle with the vertical. 
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v=O 

A 
B 

mg 

Figure 8-17 

It should be noted that, for a given total energy, the magnitude of the velocity 

(irrespective of the direction of the motion) at a given point is fixed by Eq. (8.29). 

This is particularly clear in the case of motion under gravity, as shown in Eq. (8.30). 

EXAMPLE 8.9. Determine the minimum height at which a ball should start in order 

to successfully complete the loop shown in Fig. 8-17. Assume that the ball slides without 

rolling and without friction. 

Solution: We assume that the ball is released at point A at a height h above the base 

of the circle in Fig. 8-17. The ball gains velocity while moving down and starts losing 

velocity when moving up the circle. At any point on the track, the forces acting on the 

particle are its weight mg and the force F due to the track. (The force F points toward 

the center of the loop, since the track "pushes" but does not "pull.") At the highest point 

on the loop, both mg and F point toward the center 0, and according to Eq. (7.28) we 

must have 
2 

mv 
F+mg=R, 

where R is the radius of the track. Since F cannot be negative, the minimum velocity of 

the ball at B if it is to describe the circle must correspond to F = 0 or mg = mv2 / R, 

which give,s 

v2 = gR. 

If the velocity is less than v' gR, the downward pull of the weight is larger than the 

required centripetal force, and the ball will separate from the circle before it reaches 

point B, and will describe a parabola until it falls back on the circle. 

To obtain the corresponding height h, we note that at point A the total energy is 

EA = (Ek+ Ep)A = mgh, since v = 0. At B, where y = 2R and v2 = gR, 

EB = (Ek+ Ep)B = }m(gR) + mg(2R) = fmgR. 

Thus, equating the values of EA and EB, we get h = fR, which is the minimum height 

of the starting point of the ball if it is to successfully describe the circle. This result is 

correct so long as we can neglect frictional forces. If the ball rolls, the methods to be in

troduced in Chapter 10 must be used. 
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B.9 Rectilinear Motion under Conserr,atir,e Forces 

In the general case of rectilinear motion the potential energy depends on only one 
coordinate, let us say x, and Eq. (8.28) for the conservation of energy becomes 

(8.31) 

where E, the total energy, is a constant. This equation will show us the practical 
usefulness of the energy concept. For rectilinear motion v = dx/dt, and Eq. (8.31) 
becomes 

( dx)
2 

E = fm dt + Ep(x). (8.32) 

Solving for dx/dt, we obtain 

dx {2 }112 

dt = m [E - Ep(x)] . (8.33) 

Under the present conditions we may write this equation in a form in which the 
variables x and t are separated; that is, the x-variable appears on only one side 
of the equation and the t-variable appears only on the other side. For our equa

tion, we do this by writing 

dx 
{(2/m)[E - Ep(x)]} 112 = dt. 

Integrating (and setting t0 = 0 for convenience), we have 

1: {(2/m)[E ~x Ep(x)]} 112 = it. dt = t. (8.34) 

This equation allows us to obtain a relation between x and t, and thus to solve 
the problem of the rectilinear motion of the particle. Therefore, whenever we 
can find the potential energy function [and this is relatively easy if we know the 

force as a function of x, because we simply utilize Eq. (8.23) to obtain Ep(x)], 

the conservation of energy expressed by Eq. (8.34) gives us directly the solution 

of the problem of rectilinear motion. 

EXAMPLE 8.10. Use Eq. (8.34) to solve the problem of rectilinear motion under 

constant force. 

Solution: In this case F is constant. If we take the X-axis along the direction of the 

force, the first of Eqs. (8.23) gives us F = -dEp/dx or dEP = -F dx. Integrating, we 

obtain Ep = -Fx + C, and setting Ep = 0 at x = 0, we get C = 0. Thus 

Ep = -Fx 

is the expression for the potential energy associated with a constant force. This agrees 

with Eq. (8.19) if we make F = uxF; that is, the force Fis in the X-direction. Using 
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Eq. (8.34), with xo O for simplicity, we now have 

1 dx ix 

(2/m)112 o (E + Fx)l/2 = t 

or 

( )

1/2 

; (E + Fx/ 12 - ; E 112 = ! t. 

Solving for x, we get 

x = i (~) t2 + (2:)1 12 
t. 

But F /m = a, and since E = !mv2 + Fx is the total energy, we have that at t = 0, 

when x = 0, the energy Eis all kinetic and is equal to !mvi. Thus 2E/m = vi, and we 

finally obtain for x, x = iat2 + vot, which is the same expression we obtained before, in 

Eq. (5.11), with xo = 0 and to = 0. This problem is sufficiently simple for it to be more 

easily solved by the methods of Chapter 5. We have presented it here mainly as an illus

tration of the techniques for solving the equation of motion using the principle of energy. 

B.10 Motion under Conservative Central Forces 

In the case of a central force, when Ep depends only on the distance r, Eq. (8.28) 

becomes 

E = !mv 2 + Ep(r), (8.35) 

from which it is possible to determine the velocity at any distance. In many cases 
the function Ep(r) decreases in absolute value when r increases. Then, at very 

large distances from the center, Ep(r) is negligible and the magnitude of the ve
locity is constant and is independent of the direction of motion. This is the prin

ciple we applied in Example 7.16 when, in Fig. 7-28, we indicated that the final 
velocity of the receding particle at B was the same as its initial velocity at A. 

Note that, when we are dealing with motion under the influence of central 
forces, there are two conservation theorems. One is the conservation of angular 

momentum, discussed in Section 7.13, and the other is the conservation of energy, 

expressed by Eq. (8.35). When we use polar coordinates r and 0, and remember 

that the components of the velocity are Vr = dr/dt and vo = r dO/dt, we may 
write, according to Eq. (5.63), 

2 2 2 (dr)
2 

2 (d())2 

V = Vr + Vo = dt + r dt · 

But from the principle of conservation of angular momentum, using Eq. (7.35), 

L = mr2 d8/dt, we have that 
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where Lis the constant angular momentum. Therefore 

2 (dr)2 £ 2 

v = dt + ( mr) 2 • 

Introducing this result into Eq. (8.35), we have 

(dr) 2 £2 
E = !m dt + 2mr2 + Ep(r). (8.36) 

This expression closely resembles Eq. (8.32) for rectilinear motion, with velocity 

dr/dt, if we assume that, insofar as the radial motion is concerned, the particle 

moves under an "effective" potential energy 

(8.37) 

The first term is called the centrifugal potential, Ep,e(r) = L 2 /2mr 2, because the 

"force" associated with it, using Eq. (8.25), is Fe = -aEp,e/ar = L 2 /mr 3 and, 
being positive, is pointing away from the origin; that is, it is centrifugal. Of course 

no centrifugal force is acting on the particle, except the one that may be due to 

the real potential Ep(r), in the event that it is repulsive and the centrifugal "force" 

Fe is just a useful mathematical concept. Physically this concept describes the 

tendency of the particle, according to the law of inertia, to move in a straight line 

and thus avoid moving in a curve. Introducing Eq. (8.37) into Eq. (8.36), we have 

E = !m (:)
2 + Ep,eff(r), 

and solving for dr/dt, we obtain 

dr {2 }1
'
2 

dt = m [E - Ep,eu(r)] , (8.38) 

which is formally identical to Eq. (8.33) for rectilinear motion. Separating the 

variables r and t and integrating (setting t0 = 0 for convenience), we obtain 

dr = dt = t 1r ft 
ro {(2/m)[E - Ep,eff(r)]} 112 o ' 

(8.39) 

which gives us the distance r as a function of time [that is, r(t)], and therefore we 

have the solution of our dynamical problem corresponding to radial motion. 

When we solve the expression for the angular momentum, L = mr2 de/ dt for 

dO/dt, we have 

(8.40) 
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Then when we introduce r(t) as obtained from Eq. (8.39) into Eq. (8.40), we ex

press L/mr2 as a function of time, and when we integrate we have 

111 dfJ = t L 2 dt 
110 Jo mr 

or fJ = Oo + ( L 2 dt. 
Jo mr 

(8.41) 

This gives () as a function of time; that is, 0( t). In this way we can solve the prob

lem completely, giving both the radial and the angular motfons as functions of 

time. 
Sometimes, however, we are more interested in the equation of the path. Com

bining Eqs. (8.38) and (8.40) through division, we may write 

dr {(2/m)[E - Ep,eff(r)]} 112 

dfJ L/mr2 
(8.42) 

or, separating the variables r and () and integrating, 

r dr = 111 dfJ = () -
Jro (m/L)r2{(2/m)[E - Ep,eff(r)]}Il2 110 

80· 
(8.43) 

This expression relating r to fJ gives the equation of the path in polar coordinates. 
Conversely, if we know the equation of the path, so that we can compute dr/dfJ, 

Eq. (8.42) allows us to compute the potential energy and then the force. 
This section has illustrated how the principles of conservation of angular momen

tum and of energy allow us to solve for the motion of a particle acted on by a 
central force. By now the student will have recognized the fact that these princi

ples are not mathematical curiosities, but real and effective tools for solving 
dynamical problems. We must note that when the motion is due to a central force, 

the conservation of energy is not enough to solve the problem. It is also necessary 
to use the conservation of angular momentum. In the case of rectilinear motion, 

the conservation of energy is sufficient to solve the problem. This is because 

energy is a scalar quantity, and may not be used to determine the direction of 
motion, while in rectilinear motion, the direction is fixed from the outset. 

Finally, let us make it especially clear that the principles of conservation of 

angular momentum and of energy, as used in this chapter, are properties associated 

with an individual particle under the special circumstances of its motion, and there 
is no direct relation to the possible conservation of total energy of the universe. 

This subject will be discussed in more detail in the next chapter. 

B.11 Biscussion of Potential Energu Curves 

The graphs representing Ep(x) versus x in rectilinear or one-dimensional problems 

and Ep(r) versus r in central force problems are very useful in helping one to under

stand the motion of a particle, even without solving the equation of motion. In 
Fig. 8-18 we have illustrated a possible potential energy curve for one-dimensional 
motion. When we use the first of Eqs. (8.23), the force on the particle for any 
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value of xis given by F = -dEp/dx.* Ep 

Now dEp/dx is the slope of the curve Ep(x) 

Ep(x). The slope is positive whenever 
the curve is increasing or upward, and 

negative whenever the curve is decreas
ing or downward. Therefore, the force 

F (i.e., the negative of the slope), is 
negative or directed to the left whenever 

the potential energy is increasing, and 
positive or directed to the right when

ever the potential energy is decreasing. 
This situation has been indicated in Fig. 

8-18 by the horizontal arrows and the 
different regions marked below the 
figure. 

At the points where the potential 

energy is minimum or maximum, such 

K 

H 

(8.11 

(4) 

(2) 

(1) 

as M 1, M 2, and Ma, we have dEp/dx = Fig. 8-18. Relation between motion in 
0, and therefore F = O; that is, they straight line and potential energy. 

are positions of equilibrium. Those 

positions where Ep(x) is a minimum are of stable equilibrium because, when the 
particle is displaced slightly from its equilibrium position, it is acted on by a force 

that tends to restore it to that position. Where Ep(x) is maximum, the equilibrium 
is unstable, since a slight displacement from the equilibrium position causes the 
particle to experience a force that tends to move it even further away. 

Consider now a particle having total energy E, as indicated by the horizontal 

line (1) of Fig. 8-18. At any position x the potential energy Ep is given by the 

ordinate of the curve and the kinetic energy, Ek = E - Ep, is given by the dis
tance from curve Ep(x) to the E line. Now the E line intersects curve Ep(x) at 

points A and B. To the left of A and to the right of B the energy Eis less than the 
potential energy Ep(x), and therefore in that region the kinetic energy Ek = E -
Ep would be negative. But that is impossible because Ek = !mv2 is necessarily 
positive. Therefore the motion of the particle is limited to the interval AB and 

the particle oscillates between x = A' and x = B'. At these points the velocity 
becomes zero and the particle reverses its motion. These points are called turning 

points. 
If the particle has a higher energy, such as that corresponding to line (2), it 

has two possible regions of motion. One is oscillating between C and B and the 
other oscillating between F and G. However, if the particle is in one region it can 

never jump to the other, because that would require passing through the region DF 

where the kinetic energy would be negative and is therefore forbidden. We say 

* It is not necessary to use the partial derivative notation in this case because Ep 
depends on only one variable, x. 

x 
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that the two regions where the motion is allowed are separated by a potential 

barrier. At energy level (3), the motion is oscillatory between H and I. Finally 

at energy level (4) the motion is no longer oscillatory and the particle moves be

tween K and infinity. For example, if the particle is moving initially to the left, 

when it reaches K it "bounces" back, receding toward the right and never re

turning again. When we consider the motion of atomic particles, so that quantum 

mechanics applies, the description we have given requires some modification. 

( c) 

I 
I 
I 

\Ep,c(r) 
\ 
\ 

Ep, eff(r) 

Fig. 8-19. Energy relations for 
motion under central forces. 

Considering now the important case of central forces, let us assume a potential 

energy Ep(r) corresponding to a force that is attractive at all distances, that is, F = 
-aEP/ar is negative and Ep(r) is an increasing function, as indicated by curve (a) 

of Fig. 8-19. The centrifugal potential Ep,c = L 2 /2mr 2 is indicated by the dashed 

line (b). The centrifugal term is very small at large distances, but increases very 

rapidly at small distances. In many cases of physical interest the centrifugal po

tential is the dominant term at small distances, resulting in an effective potential 

energy Ep,eff = Ep,c + Ep(r) with the shape indicated by curve (c). 

If the total energy E of the particle is indicated by horizontal line (1), the 

radius of the orbit will oscillate between the minimum and maximum values r 1 

and r2 , and the orbit will have the shape illustrated in Fig. 8-20. But if the energy 

corresponds to a value such as line (2) of Fig. 8-19, the orbit is not bound, and the 

particle comes from infinity up to the point C of closest approach at distance rmin, 

and then recedes again without ever returning, as shown in Fig. 8-21. If the energy 
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Fig. 8-20. General shape of path for 
motion under central forces. 

i\ / 
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I 

I 

' ' 

(8.11 

Fig. 8-21. Distance of closest approach. 

corresponds to the minimum M of Ep, eff, as indicated by line (3), there is only one 

intersection and the distance to the center remains constant, the particle describing 
a circular path of radius r 0 . Note that the distance of closest approach increases 

with increasing value of the angular momentum, due to the effect of the centrifugal 
potential energy Ep,c(r). 

If, by some mechanism, a particle that has energy equal to level (1) of Fig. 8-19 

can absorb energy and thereby "jump" to energy level (2), it will fly away from the 

center of force; that is, it "dissociates" from the center of force. The minimum 

energy a particle requires to dissociate from energy level (1) has been indicated in 

Fig. 8-19 by Ea. On the other hand, if the particle initially in energy level (2) by 

some process loses energy when it passes near the center of force, it may jump into 

energy level (1), and then remain in a bound orbit. We say that it has been "cap

tured" by the center of force. This situation is found, for example, in molecular 

formation and dissociation. 

In the case of a diatomic molecule such as H 2 or CO, the potential energy EP 

for the interaction between the two atoms already has the shape of (c) in Fig. 8-19. 

Such a potential energy, illustrated by curve (a) of Fig. 8-22, corresponds to at

traction at large distances and repulsion at short distances, thus preventing the 

two atoms from coalescing into one single unit even in the absence of the centrifugal 

effect. The effect of the centrifugal potential Ep,c given by the dashed curve (b) is 

to raise the curve to the shape (c). We may therefore picture the atoms in the 

molecule with an energy E in a state of relative oscillation between P 1 and P 2 . If 
the molecule absorbs energy in a proper amount, it may then dissociate and sepa

rate into two component atoms which move apart. 

EXAMPLE 8.11. The potential energy for the interaction between two gas molecules 

can be approximated by the expression 
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Fig. 8-22. Intermolecular potential. Fig. 8-23. Lennard-Jones intermolecular 
potential. 

where Ep,O and ro are positive constants and r is the separation between the molecules. 
This model for molecular potential energies was introduced by the English scientist 
J. Lennard-Jones. Find the equilibrium position and the value of the potential energy 
there. The graph of Ep(r) is shown in Fig. 8-23. 

Solution: At the equilibrium position, F = -oEp/or = 0. Thus 

[ 6 12] oEp ro ro 
-= -E o -12-+12- =0 or p, r7 r13 

or r = ro. Setting r = ro in Ep(r), we have Ep = -Ep,O for the potential energy at the 
point of equilibrium. For distances less than ro, the intermolecular force is repulsive 
[Ep(r) is a decreasing function] and for distances larger than ro it is attractive [Ep(r) is 
an increasing function]. 

Which is the dominant term in Ep(r) at small distances, and which at large distances? 
We suggest that the student plot the force as a function of the separation rand determine 
the separation for which the attractive force is maximum. Also we suggest that he look 
in the literature for values of Ep,O and ro. 

B.12 Nonconservative Forces 

At first sight we find some forces in nature that are not conservative. One example 
is friction. Sliding friction always opposes the displacement. I ts work will depend 
on the path followed, and although the path may be closed, the work is not zero, 
so that Eq. (8.20) does not hold. Similarly, fluid friction opposes the velocity, and 
depends on velocity but not on position. A particle may thus be subject to con
servative and to nonconservative forces at the same time. 
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For example, a particle falling through a fluid is subject to the conservative 
gravitational force and to the nonconservative fluid friction. Calling Ep the poten
tial energy corresponding to the conservative forces and W' the work done by the 

nonconservative forces (work which, in general, is negative because frictional forces 

oppose the motion), the total work done on the particle when moving from A to B 

is W = Ep,A - Ep,B + W'. Using Eq. (8.13), we then write 

Ek,B - Ek,A = Ep,A - Ep,B + W' 

or 

(8.44) 

In this case the quantity Ek + EP does not remain constant but decreases (in
creases) if W' is negative (positive). But on the other hand, we cannot call Ek+ EP 

the total energy of the particle, because this concept is not applicable in this case, 
since it does not include all the forces present. The concept of total energy of a 

particle is meaningful only when all the forces are conservative. However, Eq. 
(8.44) is useful when we wish to make a comparison between the case in which only 

the conservative forces act (so that Ek + Ep is the total energy) and the case in 

which there are additional nonconservative forces. Then we say that Eq. (8.44) 
gives the gain or loss of energy due to the nonconservative forces. 

The existence of nonconservative forces such as friction must not be considered 
as necessarily implying that there may exist nonconservative interactions between 

fundamental particles. We must recall that frictional forces do not correspond to 
an interaction between two particles but are really statistical concepts (recall the 

discussion of Section 7.9). Sliding friction, for example, is the result of many in
dividual interactions between the molecules of the two bodies in contact. Each 

of these interactions can be expressed by a conservative force. However, the 

macroscopic effect is not conservative for the following reason: Although the body, 

when it completes a closed orbit, is macroscopically at its original position, the 
individual molecules have not returned to their original condition. Hence the final 

state is not microscopically identical to the initial one, nor is it even equivalent, 
in a statistical sense. 

The nonconservative work W' thus represents an energy transfer that, because 
it corresponds to molecular motion, is in general irreversible. The reason it cannot 

be recovered is the difficulty, even from a statistical standpoint, of restoring all the 
molecular motions to the initial state. In some cases, however, the molecular 
motions can be statjstically returned to the original conditions. That is, even if 
the final state is not microscopically identical to the initial one, they are statis
tically equivalent. This is the case, for example, when a gas expands very slowly 
while it is doing work. If after the expansion the gas is very slowly compressed 

back to the original physical conditions, the final state is statistically equivalent 
to the initial state. The work done during the compression is the negative of the 

expansion work, and the total work done is therefore zero. 
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EXAMPLE 8.12. A body is falling through a viscous fluid starting from rest at a height 

yo. Calculate the rate of dissipation of its kinetic and gravitational potential energy. 

Solution: When the body is at height y falling with velocity v, its kinetic plus its gravi

tational potential energy is !mv2 + mgy. The rate of dissipation of energy (or energy 

lost per unit time) due to the action of the nonconservative viscous forces is thus 

Let us first suggest that the student, using the results of Example 7.7, express v2 and y 

as functions of time. Then, by evaluating the above derivative, he can solve the problem. 

We propose, however, to show how the problem may be solved by a different procedure. 

According to Eq. (8.44), if points A and B are very close, we may write the equation 

d(Ek + EP) = dW' = F' dx, where F' is the nonconservative force. In our example F' 

is due to the fluid friction, and has the form F1 = -K17v given in Eq. (7.18). Thus 

d dx 
dt (Ek+ Ep) = F' dt = (-K11v)v 

For v we take the result obtained in Example 7.8, 

_ F [l -(K11/m) I] 
v - K11 - e ' 

where F 

Thus 
mg is the weight of the particle (corrected for the buoyancy due to the fluid). 

The negative sign for the rate of energy dissipation indicates that the body is losing 
kinetic and gravitational potential energy. However, this energy is not "lost," but trans

ferred to the molecules of the fluid in a form that is practically impossible to recover. 
After a certain length of time the exponential is essentially zero. Hence we may write 

d 2 2 
mg 

dt (Ek+ Ep) = - K11 ' 

and thus show that energy is lost at a constant rate. The physicist calls this a steady
state condition. 

It is interesting to look at this result from a different angle. We saw in Example 7.8 

that after a long time the velocity becomes constant and equal to F/K17, where F = mg. 

Thus the kinetic energy Ek remains constant and only the potential energy EP = mgy 

is changing. We may therefore write 

d dEp d 
dt (Ek+ Ep),. = dt = dt (mgy) 

dy 
mg-, 

dt 

where the subscript ss means that this is a steady-state problem. But dy/dt is the limit

ing velocity given in Eq. (7.21), and we may write dy/dt = -F /K17 = -mg/K17. The 

reason for the negative sign is that y is measured upward and the limiting velocity is 
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pointing downward. Substituting this value in the previous expression, we obtain 

d ~ mg ( ) 

2 2 

dt (Ek+ Ep)ss = mg - KTJ = - KTJ , 

which is the same result obtained before. We note, then, that after a certain length of 

time, all the gravitational potential energy lost by the body is dissipated into molecular 

agitation of the fluid. This is a different way of saying that the downward force of grav
ity is balanced by the opposing force due to the viscosity of the fluid. 

B.13 The Virial Theorem for a Single Particle 

This theorem (although not so important as the conservation of angular momentum 
under a central force or the conservation of energy under a conservative force) is 
useful for obtaining some practical results. 

Consider a particle of mass m moving under the action of a force F. Define the 

scalar quantity A = mv · r, where r is the position vector of the particle and v 

its velocity. Taking the time derivative of A, we have 

dA dv dr 2 
dt = m dt · r + mv · dt = ma · r + mv , 

since a = dv/dt and v = dr/dt. The last term, according to Eq. (8.12), is twice 
the kinetic energy of the particle and in the first term we may write ma = F. Thus 

If we take the time average of this equation, we have 

(8.45) 

The time average, over an interval r, of any quantity f(t) that depends on the time 

~"' defined by 

f (t)ave = ! ;·T f (t) dt. 
T O 

In our case, then, 

dA - ! dA dt - ! dA !T !T 
( dt )ave - T o dt - T o 

A - A0 

T 
(8.46) 

If the time Tis very large and if A does not increase indefinitely with time, the 
quantity (A - A 0)/r can be so small (if Tis sufficiently large) that it can be con

sidered as zero. This is the case when the particle moves in a bounded region. For 
example, an electron in an atom moves in a limited region of space and its values 

of rand v, the quantities that enter into the definition of A, always remain within 

certain values. The same may be said of the earth in its motion around the sun. 



8.14) Critique of the concept of energy 

Therefore, setting (dA/dt)ave = 0 in Eq. (8.45), we find that 

(Ek)ave = -!(F • r)ave· 

225 

(8.47) 

This is the virial theorem for a particle. The quantity -!(F · r)ave is called the 
virial of the particle. 

The virial theorem adopts a special form when the forces are central and con

servative. If Ep(r) is the potential energy, then F = -ur aEp/ar and F · r = 
-r aEP/ar because ur · r = r. Thus Eq. (8.47) becomes 

(Ek)ave = 4 (r d!p) ave. (8.48) 

Suppose that the potential energy is of the form Ep = -k/rn. Then 

aEP k 
-= n--= 
ar rn+l 

nEp 
----, 

r 

and Eq. (8.48) becomes 

(8.49) 

With this result, we obtain a relation between the time averages of the kinetic and 
potential energies of the particle. 

B.1.4 Critique of the Concept of Energg 

In this chapter we have seen how we can use the concept of energy in a very ef

fective way to solve certain problems in the dynamics of a particle when we know 
the force as a function of position. This is one of the basic reasons for introducing 
the concept of energy in physics. 

Our immediate experience leads us to recognize that the bodies around us are in 

motion. We attribute these motions to the interactions among the bodies, and 
describe the motions by means of the concepts of force or energy. These concepts 

have only one purpose: to provide useful methods for analyzing and predicting the 
motions we observe. The great usefulness of the concept of potential energy, like 

the concept of force, is that it has enabled us to associate specific forms of potential 
energy with specific interactions observed in nature. This result is not surprising, 
since the force F is related to the potential energy Ep according to Eq. (8.24). 
It is this relationship between potential energy and the interaction that really 
gives physical meaning to the idea of potential energy. 

Once we know the potential as a function of position, we can describe the motion 
qualitatively as indicated in Section 8.11, or quantitatively as explained in Sec

tions 8.9 and 8.10. In future chapters we shall discuss the fact that the interaction 

between two bodies can be described as an exchange of energy or as an exchange of 
momentum. Either of these descriptions provides a convenient and useful pic

torial representation of an interaction. The student should realize that throughout 
the rest of the book we shall describe the processes we observe in nature almost 
solely by means of the concepts of momentum and energy. 
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Problems 

8.1 A force F that lasts 20 s is applied 

to a body of mass 500 kg. The body, 

which is initially at rest, is given a sideways 

velocity of 0.5 m s-1 as a result of the force. 

If the force increases from zero linearly 

with time for 15 s and then decreases to 

zero linearly for 5 s, (a) find the impulse 

on the body caused by the force, (b) find 

the maximum force exerted on the body 

and (c) make a graph of F versus t, and 

find the area under the curve. Does this 

area agree with the result of (a)? Assume 

that F is the only force which is acting on 

the body. 

8.2 Calculate the work of a constant force 

of 12 N when its point of application moves 

7 m if the angle between the directions of 

the force and the displacement is (a) 0°, 

(b) 60°, (c) 90°, (d) 145°, (e) 180°. 

8.3 Calculate the work done by a man who 

drags a 65-kg bushel of flour 10 m along the 

floor with a force of 25 kgf and then lifts 

it up to a truck whose platform is 75 cm 

high. What is the average power developed 

if it took 2 min for the whole process? 

8.4 A foot-pound is defined as the work 

done by a force of 1 lbf when it moves a 

body a distance of 1 ft in its own direction. 

Verify that 1 ft-lb is equal to 1.356 J, and 

that 1 hp is equal to 746 W. Show that 

when the mass is given in slugs and the 

velocity is in ft s-1, kinetic energy is ex

pressed in ft-lb. 

8.5 A body with a mass of 4 kg moves up

ward on a plane inclined 20° with the hori

zontal. The following forces are acting on 

the body: an 80-N horizontal force, a 100-

N force parallel to the plane favoring the 

motion, and a constant 10-N force of fric

tion that opposes the motion. The body 

slides 20 m on the plane. Calculate the 

total work done by the system of forces 

acting on the body, as well as the work 

done by each force. 

8.6 The ring m of mass 5.0 kg slides on 

a smooth metallic arc ABC (Fig. 8-24) 



shaped as an arc of a circle with a 4-ft 

radius. Acting on the body are two forces 

F and F' whose magnitudes are, respec

tively, 40 N and 150 N. The force F re

mains tangent to the circle. The force F' 
is acting in a constant direction forming 
a 30° angle with the horizontal. Calculate 

the total work done by the system of forces 

acting on the body when it moves from A 

to Band from A to C. 

r O 
A ----------r--------- C 

m 

I 
I 
I 
I 
I 

Figure 8-24 

8.7 A body with a mass of 0.10 kg falls 

through a height of 3 m onto a sand pile. 

If the body penetrates a distance of 3 cm 

before stopping, what constant force has 

the sand exerted on the body? 

8.8 A body having a mass of 1000 kg falls 

through a height of 10 m onto a metal pile 

which is standing upright with one end 

buried in the ground. The pile is driven 

1 cm further into the ground. Calculate 

the average resistance force exerted by the 
ground on the pile. (Assume that all the 

kinetic energy of the body is transformed 

into wor'k for driving the pile.) 

8.9 A man whose mass is 80 kg goes up 

an inclined plane forming a 10° angle with 
the horizontal at a velocity of 6 km hr-I. 

Calculate the power developed. 

8.10 An elevator lifts 10 passengers 80 m 

in 3 min. Each passenger has a mass of 

80 kg, and the elevator has a mass of 

1000 kg. Calculate the horsepower of its 

motor. 

8.11 An automobile goes up a road in
clined 3° with a constant velocity of 45 km 
hr-I. The mass of the automobile is 

1600 kg. What is the power developed 
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by the motor? What is the work done in 

10 s? Neglect frictional forces. 

8.12 An automobile which weighs 2000 lbf 

and is moving on a horizontal path reaches 
a maximum velocity of 100 ft s-I when the 

motor develops its maximum power, 50 hp. 
Calculate the maximum velocity of the 

automobile when it is going up a hill whose 

slope is 5%. Assume that the resistance of 

the air is constant. 

8.13 Solve the previous problem for an 

automobile which is going down the hill. 

8.14 A constant force of 60 dyn acts dur

ing 12 s on a body whose mass is 10 g. The 

body has an initial velocity of 60 cm s-1 in 

the same direction as the force. Calculate 

(a) the work done by the force, (b) the final 

kinetic energy, (c) the power developed, 

and (d) the increase of the kinetic energy. 

8.15 Repeat the previous problem for a 

force which is perpendicular to the initial 

velocity. 

8.16 (a) What constant force must be ex

erted by the motor of an automobile whose 

mass is 1500 kg in order to increase the 

speed of the automobile from 4.0 km hr-1 

to 40 km hr-1 in 8 s? (b) Determine the 

variation of the momentum and kinetic 
energy. (c) Determine the impulse re

ceived and the work done by the force. 

(d) Compute the average power of the 

motor. 

8.17 A small steel ball of mass 1 kg is tied 

to the end of a wire 1 m long spinning in a 

vertical circle about the other end with a 

constant angular velocity of 120 rad s-1. 

Calculate the kinetic energy. If the total 

energy instead of the angular velocity of 

the ball remains constant, what is the 

change in the kinetic energy and angular 

velocity between the top and the bottom 

of the circle? Assume that the value given 

for the angular velocity is for the top of 

the circle. 

8.18 A body of mass m is moving with 

velocity V relative to an observer O and 
with velocity V' relative to O'. The relative 
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velocity of O and O' is v. Find the relation 

between the kinetic energies Ek and E{. of 

the particle as measured by O and O'. 

8.19 Express, in eV, the kinetic energy of 

an electron (mass = 9.109 X 10-31 kg) 

moving at a velocity of 106 m s-1. Repeat 

for a proton (mass = 1.675 X 10-27 kg). 

8.20 Find the velocity of an electron in a 

television tube which hits the screen with 

an energy of 1.8 X 104 e V. 

8.21 Find the velocity of a proton which 

emerges from a particle accelerator with 

an energy of 3 X 105 e V. 

8.22 When Ek is the kinetic energy in eV 

and v is the velocity in m s-1, prove that 

their relationship is Ek = 2.843 X 10-12v2 

for the electron and Ek = 5.228 X 10-9v2 

for a proton. 

8.23 The force acting on a body of mass 

10 kg is F = u,,(10 + 2t) N, where tis in 

seconds. (a) Determine the change in mo

mentum and velocity of the body after 4 s, 

as well as the impulse given the body. (b) 

How long should the force act on the body 

so that its impulse is 200 N s? Answer 

both questions for a body which is initially 

at rest and for one which has an initial 

velocity of -uy{6) m s-1• 

8.24 A 10-kg mass moves under the force 

F = [u,,(5t) + uy(3t2 - 1)] N. At t = 0 
the body is at rest at the origin. (a) Find 

the momentum and the kinetic energy of 

the body at t = 10 s. (b) Compute the 

impulse and the work done by the force 

from t = 0 to t = 10 s. Check with the 

answers in (a). 

8.25 A 20-kg mass moves under the in

fluence of the force F = u,,(lOOt) N, where 

t is measured in seconds. If, at t = 2, v = 
ux(3) m s-1, determine (a) the impulse 

delivered to the particle during the time 

interval 2 s < t < 10 s, and (b) the mo

mentum of the mass at t = 10 s. (c) Prove 

that the impulse is equal to the change in 

the momentum of the mass for the given 

time interval. (d) Find the work done on 

the particle, and (e) its kinetic energy at 

t = 10 s. (f) Prove that the change in 

kinetic energy is equal to the work done. 

8.26 Repeat the previous problem when 
v = uy(3t) m s-1 at t = 2 s. 

8.27 A particle is subject to a force F = 

ux(y2 - x 2 ) + uy(3xy). Find the work 

done by the force when the particle is 

moved from the point (0, O) to the point 

(2, 4) along each of the following paths: 

(a) along the X-axis from (0, 0) to (2, 0) 

and parallel to the Y-axis up to (2, 4); (b) 

along the Y-axis from (0, 0) to (0, 4) and 

parallel to the X-axis up to (2, 4); (c) along 

the straight line passing through both 

points; (d) along the parabola y = x2 . Is 

the force conservative,'? 

8.28 Repeat the previous problem when 

the force is F = [ux(2xy) + uy{x2 )]. 

8.29 Given F = [ux(7) - uy(6)] N. (a) 

Compute the work done when a particle 

goes from the origin to r = ux( -3) + 
uy(4) + uz(16) m. Is it necessary to spec

ify the path followed by the particle? (b) 

Compute the average power if it took 0.6 s 

to go from one place to the other. Express 

your answer in watts and horsepower. (c) 

If the mass of the particle is 1.0 kg, calcu

late the change in kinetic energy. 

8.30 The force in the previous problem is 

conservative, since it is constant. Calcu

late the potential energy difference between 

the two points. Determine the potential 

energy at the point r = ux(7) + uy{l6) + 
Uz(-42) m. 

8.31 A particle moves under an attractive 

inverse-square force, F = -k/r2 . The 

path is a circle of radius r. Show that the 

total energy is E = -k/2r, that the veloc

ity is v = (k/mr) 112, and that the angular 

momentum is L = (mkr) 112 • 

8.32 An inclined plane is 13 m long and 

its base 12 m long. A body of mass 0.80 kg 

slides from the top with an initial velocity 

of 100 cm s-1• What is the velocity and 

the kinetic energy when it reaches the bot

tom of the plane? 



8.33 Plot the kinetic and potential ener

gies as a function of (a) time and (b) 

height, as a body falls from rest from a 

height h. Verify that the curves in each 

case always add to the same constant 

value. 
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8.34 A body of mass 20 kg is launched 

vertically upward with an initial velocity 

of 50 m s- 1 . Calculate (a) the initial Ek, 
EP, and E, (b) Ek and Ep after 3 s, (c) Ek Figure 8-25 

and Ep at 100 m altitude, and (d) the 

body's altitude when Ek is reduced to 80% 

of the initial value. 

8.35 A 0.40-kg ball is launched horizon

tally from the top of a hill 120 m high with 

a velocity of 6 m s-1. Calculate (a) the 

ball's initial kinetic energy, (b) its initial 

potential energy, (c) its kinetic energy 

when it hits the ground, and (d) its veloc-

ity when it hits the ground. 

8.36 A bomb, with a mass of 10 kg, is 

dropped from a plane flying horizontally 

at 270 km hr- 1. If the plane is at 100 m 

altitude, calculate (a) the bomb's initial 

kinetic energy, (b) its initial potential 

energy, (c) its total energy, (d) its velocity 

when it hits the ground, and (e) its kinetic 

and potential energies 10 s after it is 

dropped. 

8.37 Using only energy conservation, cal

culate the velocity of the bomb in the 

previous problem when it is 50 m above 

the ground and its altitude when its kinetic 

energy has increased by 30% of the initial 

value. 

8.38 Solve Problem 8.34 for a case in 

which the body is launched in a direc

tion forming a 70° angle with the horizontal. 

8.39 A boy of mass m is seated on a hemi

spherical mound of ice as shown in Fig. 

8-25. If he starts sliding from rest (assume 

the ice to be frictionless), where is the point 

P at which the boy leaves the mound? 

8.40 Three guns fire bullets with the same 

initial velocity (Fig. 8-26) in such a man

ner that the bullets all pass through the 

same point A (not necessarily at the same 

Figure 8-26 

time). Copy Fig. 8-26, and draw their 

velocity vectors. Basing your calculations 

on energy considerations, determine the re

lationship between the magnitudes of the 

velocities of the bullets at A. Do you 

conclude from your answers that, by using 

the conservation of energy alone, you can 

determine the direction of motion? Why? 

8.41 A body of mass 0.5 kg is dropped 

from a height of 1 m onto a small vertical 

spring which is in an upright position on 

the floor and becomes attached to it. The 

constant of the spring is k = 2000 N m- 1• 

Calculate the maximum deformation of the 

spring. 

8.42 The body A in Fig. 8-27 has a mass 

of 0.5 kg. Starting from rest, it slides 3 m 

on a smooth plane forming a 45° angle with 

Figure 8-27 B 
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the horizontal, until it hits the spring M 

whose end B is fixed to the far end of the 

plane. The constant of the spring is k = 
400 N m - 1. Calculate the maximum de

formation of the spring. 

8.43 A body of mass 5 kg is hung from a 

spring whose elastic constant is 2 X 103 

N m - 1 • If the spring is allowed to expand 

very slowly, how far will the body fall? 

The body is released so that it may fall 
freely. Find (a) its initial acceleration and 

(b) its acceleration and its velocity when 

it has fallen a distance of 0.010 m, 0.0245 m, 

and 0.030 m. How far will the body go in 
this case? Use energy considerations when

ever possible. 

8.44 In the NH3 molecule the N atom oc

cupies the vertex of a tetrahedron with the 
three H atoms at the base (see Fig. 2-3). 

It is clear that the N atom has two sym

metric stable equilibrium positions. Draw 

a schematic potential-energy curve for 

the N atom as a function of its distance to 

the base of the tetrahedron and discuss its 
possible motion in terms of its total energy. 

8.45 In the ethane molecule (C2H6), the 
two CH3 groups are tetrahedra with the C 

atom at one vertex (Fig. 8-28). The two 

CH3 groups may rotate relative to each 

other around the line joining the two car

bon atoms. Symmetry suggests that there 

are two sets of positions of equilibrium for 

this motion; one set consists of stable posi
tions and the other consists of unstable 

ones. Determine these positions and make 

H 
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Figure 8-28 H 

a schematic plot of the potential energy as 

a function of the angle ct, between O and 2,r. 

Discuss the possible rotational motion for 

different values of the total energy. 

8.46 Make a plot, similar to Fig. 8-19, of 

Ep,eff for Ev(r) = -1/r and (a) Ep,c = 
!r2 , (b) Ep,c = 2/r2, where all energies are 

given in J and r is in m. Determine the 

position of the minima of Ep,eff in each 
case. Measure the energy necessary to go 

from the minimum of the first curve to 

the minimum of the second curve. 

8.47 A sled with a mass of 20 kg slides on 

a hill, starting at an altitude of 20 m. The 
sled starts from rest and has a velocity of 
16 m s- 1 when it reaches the bottom of 

the slope. Calculate the loss of energy due 

to friction. 

8.48 A ball of mass 0.5 kg which is 

launched vertically upward with an ini

tial velocity of 20 m s-1 reaches an altitude 

of 15 m. Calculate the loss of energy due 

to air resistance. 

8.49 A train starting from rest travels 

300 m down a 1 % slope. With the im

petus thus acquired, it goes 60 m up a 2% 
slope and comes to rest. Calculate the 

force of resistance to the motion of the 

train. (Assuming that a and /3 are the 

slopes of the two planes, tan a = 0.01 and 

tan /3 = 0.02.) 

8.50 A body of mass m slides downward 
along a plane inclined at an angle a. The 

coefficient of friction is f. Find the rate 
at which kinetic plus gravitational poten

tial energy is dissipated. 

8.51 Solve Example 8.12 by substituting 
the appropriate values for v and y as func

tions of t (obtained from Example 7.8) 

into the expression d/dt(Ek + Ep) = 
d/dt(!mv2 + mgy). Show that the result 
is the same as discussed in Example 8.12. 

8.52 A body of mass 8 kg rests on a hori

zontal plane in such a way that it is in 
contact with the end of a horizontal spring 

having an elastic constant of 103 N m - 1. 



The other end of the spring is attached to 

a vertical wall. When the body is pushed 

toward the wall, the spring is compressed 

by 15 cm. When the body is released, it is 

projected horizontally by the action of the 

spring. The force of friction between the 

body and the plane is constant, with a 

value of 5 N. Calculate (a) the velocity of 

the body at the time the spring returns to 

its original length, and (b) the distance 

traveled by the body before it comes to 

rest, assuming that the action of the spring 

on the body stops when the spring returns 

to its normal length. Discuss the variation 

of the kinetic energy and the potential 

energy of the body-spring system during 

the whole process. 

8.53 Apply the virial theorem to obtain 

the total energy of a body in motion under 

an attractive inverse-square force F = 

-k/r2 • Compare the answer with the re

sults of Problem 8.31. 

8.54 A particle moves under a force field 

described by one of the following potential 

energy functions: (a) Ep(x) = axn, (b) 

Ep = byn, (c) Ep = cxy, (d) Ep = cxyz, 

(e) Ep = k(x2 + y2 + z2). In each case, 

express the force field in vector form. 

8.55 A particle is subject to a force asso

ciated with the potential energy Ep(x) = 

3x2 - x3. (a) Make a plot of Ep(x). (b) 

Determine the direction of the force in each 

appropriate range of the variable x. (c) 

Discuss the possible motions of the particle 

for different values of its total energy. 
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Find its position of equilibrium (stable and 

unstable). 

8.56 The interaction between two nucleons 

can be represented with some degree of ac

curacy by the Yukawa potential Ep(r) = 

- Vo(ro/r)e-rlro, where Vo is about 50 

MeV and ro is about 1.5 X 10-15 m. Find 

the force between the two nucleons as a 

function of their separation. Find the value 

of the force at r = ro. Estimate the value 

of r at which the force is 1 % of its value at 

r = ro. 

8.57 Instead of the Yukawa interaction, 

consider an interaction of the form Ep(r) = 
-Vo(ro/r), and repeat the same calcula

tions as before. What do you conclude 
about the effect of the factor e-rlro on the 

range of the force? 

8.58 Prove that when a force is conserva

tive, then aF,,jay = aFy/ax, aFy/az = 
aF./ay, and aF./ax = aFx/az. It can be 

proved that the converse is also true, and 

therefore this provides an important test 

for determining whether a force field is 

conservative. On this basis, verify which 

of the following forces are conservative: 

(a) uxxn, (b) uxyn, (c) ux(x2 - y2) + 
Uy(3xy), (d) ux(2xy) + Uy(x 2), (e) UxYZ + 
UyZX + u,xy . x, (f) UxX + Uyy + u.z. 

8.59 Show that if the force applied to a 

body is F = ku X v, where u is an ar

bitrary unit vector, its kinetic energy 

remains constant. What is the work done 

by the force? Describe the nature of the 

resulting motion. 
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9.1 Introduction 

In the last two chapters we have discussed the theory of the dynamics of a parti

cle. In that theory, we ignored the rest of the universe and represented it by 
either a force or a potential energy, depending only on the coordinates of the parti

cle. Now we shall consider the more realistic and important problem of several 

particles. In fact, it was with a system of particles that we started our discussion 

of dynamics, when we stated the principle of conservation of momentum in Chap

ter 7. Three main results will be discussed in the first part of this chapter: the 

motion of the center of mass, the conservation of angular momentum, and the 

conservation of energy. In the second half of this chapter we shall consider sys

tems composed of a very large number of particles, which require some considera

tions of a statistical nature. Throughout this chapter we shall assume that the 

masses of the particles are constant. 

I. FIJNBAMENTAL RELATIONS 

9.2 Motion of the Center of Mass of a System of Particles 

Let us consider a system composed of particles of masses m 1, m 2 , .•• , and veloci

ties v 1, v 2 , • , . , relative to an inertial frame of reference. We shall define the 
center-of-mass velocity by 

(9.1) 

If the masses of the particles are independent of the velocities, vcM corresponds to 

the velocity of the point defined in Section 4.8 as the center of mass, and given by 

the position vector 

m 1r 1 + m2r2 + · · · 
rcM = m1 + m2 + · · · 

We can see this by taking the time derivative of Eq. (9.2), 

drcM _ __!_ ". . dri _ LimiVi _ 
dt - M L..,imi dt - M - VCM· 

Noting that Pi = mivi, we can also write Eq. (9.1) as 

1 p 
VCM = - LiPi = -

M M 
or P = MvcM, 

(9.2) 

(9.3) 

where P = LiPi is the total momentum of the system. This suggests that the 

momentum of the system is the same as it would be if all the mass were concen

trated at the center of mass, moving with velocity vcM, For that reason, vcM is 

sometimes called the system velocity. Thus when we speak of the velocity of a 

moving body composed of many particles, such as an airplane or an automobile, 

the earth or the moon, or even a molecule or a nucleus, we actually refer to its 

center-of-mass velocity vcM· 
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If the system is isolated, we know from the principle of conservation of momen
tum that P is constant. Therefore 

the center of mass of an isolated system moves with constant velocity in 

any inertial system ( assuming that the masses of the particles are in

dependent of the velocity). 

In particular, we may attach an inertial frame of reference to the center of mass 

of an isolated system and, relative to this inertial frame, the center of mass is at 

rest ( vcM = 0). This is called the center-of-mass frame of reference or C-frame of 

reference. In view of Eq. (9.3), the total momentum of a system of particles re

ferred to the C-frame of reference is always zero: 

PcM = LiPi = 0 (in CM-frame of reference). (9.4) 

For that reason the C-frame is sometimes called the zero-momentum frame. This 

C-frame is important because many experiments that we perform in our laboratory 

or frame of reference L can be more simply analyzed in the CM-frame of refer
ence. 

Next we consider what happens when a system S is not isolated; in other words, 
when the components of S are interacting with other particles in the world that 

do not belong to the system S. Let us suppose that our system Sis composed of 

the particles within the dashed line in Fig. 9-1, and that the particles in S in

teract with all those outside the dashed line, comprising another system S'. We 

may also assume that S and S' together form an isolated system. To consider 

some concrete examples, our system S may be our galaxy and S' the rest of the 

universe. Or S may be the solar system and S' may be the rest of the universe. We 

may even consider an isolated molecule, and group the atoms composing it into 

two systems Sand S'. 

We designate the particles that belong to S by the subscript i, and those that 

belong to S' by the subscript j. The principle of conservation of momentum for 

the complete isolated system S + S' is 

or 

P= LiPi + 
'------v---' 

System S 

Li Pi 
~ 

System 8' 

P = Ps + PS' = const. 

const 

(9.5) 

Then any change in the momentum of S must 

be accompanied by an equal and opposite 

change in the momentum of S'. That is, 

f:..Ps = -f:..Ps, 

or Fig. 9-1. Interaction between a 
(9.6) system S and its surroundings S'. 
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Therefore the interaction between systems S and S' can be described as an exchange 

of momentum. The student should compare Eqs. (9.5) and (9.6) with Eqs. (7.5) 

and (7.8) for the particular case of two particles, and note the similarity. 

Taking the time derivative of Eq. (9.5), we have 

dPs dPS' 
dt=-,1t• (9.7) 

We call the time rate of change of momentum of system S the external force exerted 

on S; that is, 

dPs 
dt = Fext or (9.8) 

We say external force because the time rate of change of momentum of S is due to 

its interaction with S'. The internal forces existing in S due to the interactions 

among its component particles do not produce any change in its total momentum, 

as required by the principle of conservation of momentum. Then if F;xt is the 

external force on system S', Eq. (9.7) requires that Fext = -F~xt, which is the 

law of action and reaction for the interactions between systems S and S'. 

Since, by Eq. (9.3), the velocity of the center of mass of Sis VcM = P8 /M, we 

have from Eq. (9.8) that 

dvcM 
Fext = M --zit= MacM· (9.9) 

Comparing this result with Eq. (7.15), we see that 

the center of mass of a system of particles moves as if it were a particle 

of mass equal to the total mass of the system and subject to the external 

force applied to the system. 

The results expressed by Eqs. (9.6), (9.7), (9.8), and (9.9) clearly indicate that the 

interaction between two systems of particles can be formally described in terms 

identical to those introduced in Chapter 7 

for two single particles. This justifies, a 

posteriori, the loose way in which we il

lustrated the application of the principles 

of dynamics in Chapter 7 (where bodies 

and not particles were involved) in such 

cases as the interaction between the earth 

and the moon, between two molecules, or 

in the motion of a rocket or an automobile. 

It is interesting to obtain the relation be

tween Fext and the forces acting on the in
dividual particles. For simplicity let us 

consider that our system S is composed of 

two particles (Fig. 9-2). Let us call F 12 the 
Fig. 9-2. External and internal forces 
on a system S. 
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internal force on particle m1 due to its interaction with m2 , and F 21 the internal 

force on m2 due to its interaction with m1. The law of action and reaction requires 
that 

(9.10) 

Let F 1 be the resultant external force on m1 due to its interaction with other parti

cles and F 2 the external force on m2 . To obtain the equation of motion of each 
particle under the action of all the forces acting on it, we apply Eq. (7.12): 

Adding these two equations and using Eq. (9.10) so that F 12 + F 21 = 0, we 
find that 

(9.11) 

Therefore the total rate of change of momentum of the system composed of m1 

and m 2 is equal to the sum of the external forces applied on m1 and m2• In gen

eral, for a system composed of an arbitrary number of particles, 

(9.12) 

where Fi is the external force acting on particle mi. Comparison with Eq. (9.8) 
indicates that 

the external force on a system of particles is the sum of the external forces 

on each of its component particles. 

Let us consider some examples. Figure 9-3(a) shows the earth in its motion 

around the sun. The center of mass of the earth moves in a way which corresponds 

to a particle having a mass equal to that of the earth and subject to a force equal 

to the sum of the forces exerted by the sun (and the other heavenly bodies) on all 

the particles composing the earth. Figure 9-3(b) depicts a water molecule. Sup

posing, for example, that the molecule is subject to external electrical forces. Its 

center of mass moves as if it were a particle of mass equal to that of the molecule 

and subject to a force equal to the sum of the forces acting on all the charged parti

cles composing the molecule. Figure 9-3(c) illustrates the motion of a chain thrown 

into the air. The center of mass of the chain moves as if it were a particle of mass 

equal to that of the ctiain and subject to a force equal to the weight of the chain, and 
therefore the center of mass describes a parabolic path. Finally, in Fig. 9-3(d), we 

have the case of a grenade exploding in the air; the center of mass of the fragments 

will continue moving on the original parabola, since the center of mass behaves like 

a particle of mass identical to the grenade and subject to the total weight of all 

fragments. The weight of the fragments does not change with the explosion be

cause the force of gravity is practically independent of position at points near the 

surface of the earth. We must note, however, that if the field of force were not 

constant, but depended on position, the fragments resulting from the explosion 
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Path of CM 

of chain 

(a) 

w 
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Path of the 
CM of the earth 

(b) 

(d) 

Fig. 9-3. The CM of a system of particles follows a path due to the total external force 
on the system. 

would be subject to forces different from those along the original path. The path 

of the center of mass would not then continue to be the same as before the explo

sion because the sum of the external forces would be different. For example, if 

(due to some cosmic cataclysm) a planet in the solar system should break into 

fragments, the center of mass of the fragments would not follow the original 

elliptical path of the planet because the forces on the fragments would be different. 

EXAMPLE 9.1. A grenade that is falling vertically explodes into two equal fragments 

when it is at a height of 2000 m and has a downward velocity of 60 m s-1 . Immediately 

after the explosion one of the fragments is moving downward at 80 m s- 1. Find the posi

tion of the center of mass of the system 10 s after the explosion. 
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Solution: We may follow one of two methods (see Fig. 9-4). Since we know that as a 

result of the explosion the external forces have not changed, we may assume that the 

center of mass continues moving as if there had not been any explosion. Thus, after the 

explosion, the center of mass will be at a height given by z = zo + v0t + !gt2, where 

zo = 2000 m, vo = -60 m s-1 , and g = -9.8 m s-2 • Therefore at t = 10 s, z = 910 m. 

As an alternate method, we directly compute the position of the center of mass from 

the positions of the fragments 10 s after the explosion. Since momentum is conserved in 

the explosion, we have that mvo = m1v1 + m2v2. But m1 = m2 = !m; thus 2vo = 
v1 + vz. Now vo = -60 m s-1 and v1 = -80 m s-1• Therefore vz = -40 m s-1 

and the second fragment initially moves downward also. After 10 s the position of the 

first fragment is z1 = zo + v1t + !gt2 = 710 m and the second fragment has the posi

tion z2 = zo + vzt + !gt2 = 1110 m. Applying Eq. (9.2), we find that the position of 

the center of mass is 

_ (!m)z1 + (!m)z2 _ 1 ( + ) 
ZCM - - 2 z1 z2 

m 
910m, 

which is in agreement with the previous result. 

EXAMPLE 9.2. A nozzle which has a cross section a is throwing a stream of gas against 

a wall with a velocity v much larger than the thermal agitation of the molecules. The 

wall deflects the molecules without changing the magnitude of their velocity. Find the 

force exerted on the wall. 

N 

Fig. 9-5. Change of momentum of a stream of gas striking a wall. 

Solution: When the molecules are moving toward the wall (Fig. 9-5), their velocity is 

downward. After they strike the wall they begin to move upward. In both cases they 

make an angle() with the normal N. Each molecule, as a result of its impact on the wall, 

suffers a change Av in its velocity which is parallel to the normal N because that is the 

direction of the force exerted by the wall. The magnitude of the change is IAvl = 2v cos 8. 

The change in momentum of a molecule is IAPI = mlAvl = 2mv cos () in the direction of 

the normal N. Let n be the number of molecules per unit volume. The number of mole

cules arriving at the wall per unit time are those in a volume whose length is equal to the 

velocity v and whose cross section is a. Thus this number is n(av). Each molecule suffers 

a change of momentum equal to 2mv cos(), Therefore the change of momentum of the 
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stream of gas per unit time is 

F = (nav) (2mv cos 0) = 2anmv2 cos e. 

Let A be the area of the wall that suffers the impact of the gas. We see from the figure 

that a = A cos e, and our previous result becomes 

F = 2Anmv2 cos2 e. 

This, according to Eq. (9.8), is the force exerted by the wall on the stream of gas, and in 

view of Eq. (9.10), the stream of gas produces an equal and opposite force on the area A 

of the wall. [The wind's force on the sails of a sailboat is given by this equation. It also 

gives the force exerted by the wind blowing against a wall during a storm. In Example 9.16 

we shall see another application.] 

Since the total force is not applied to a single particle of the wall, but rather over an 

area, we may introduce a useful concept, already known to the student; that is, pressure, 
defined as the force of the gas per unit area of the wall. Thus 

F 
p = -· 

A 
(9.13) 

In the particular case of this example, the gas exerts a pressure on the wall equal to 
2nmv2 cos2 e. 

9.3 Beduced Mass 

Consider now the case of two particles which are subject only to their mutual inter

action; that is, there are no external forces acting on them (Fig. 9-6). The two 

particles could be, for example, an electron and a proton in an isolated hydrogen 
atom. The mutual internal forces F 12 and F 21 satisfy the relation (9.10). We have 

drawn these forces along the line r 12. Let us now 

discuss the relative motion of the two particles. 

The equation of motion for each particle relative 

to an inertial observer O is m 1 ( dv ii dt) = F 12 and 

m2(dv2/dt) = F21 or 

Subtracting these equations, we have 

x 

z 

y 

Figure 9-6 

We use Eq. (9.10), in which F 12 = -F21 , and rewrite the preceding result as 

(9.14) 
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Now v1 - v2 = v 12 is the velocity of m1 relative to m 2, and therefore 

is the acceleration of m1 relative to m 2. Let us introduce a quantity called the 

reduced mass of the two-particle system, designated by µ, and defined by 

! = _!____ + _!____ = m1 + m2 
µ m1 m2 m1m2 

or 

Equation (9.14) can then be written in the form 

F12 
a12 = -

µ 
or 

This important result expresses the fact that 

(9.15) 

(9.16) 

the relative motion of two particles subject only to their mutual inter

action is equivalent to the motion, relative to an inertial observer, of a 

particle of mass equal to the reduced mass under a force equal to their 

interaction. 

For example, we can reduce the motion of the moon relative to the earth to a 

single-particle problem by using the reduced mass of the system earth-moon and 

a force equal to the attraction of the earth on the moon. Similarly, when we talk 

about the motion of an electron around the nucleus, we may assume the system 

reduced to a particle with a mass equal to the reduced mass of the electron-nucleus 

system and moving under the force between the electron and the nucleus. There

fore, in describing the motion of two particles under their mutual interaction, we 

may separate the motion of the system into the motion of the center of mass, whose 

velocity is constant, and the relative motion of the two particles, given by Eq. 

(9.16), which is referred to a frame of reference attached to their center of mass. 

Note that if one of the particles, say m1 , has a much smaller mass than the other, 
the reduced mass may be written as 

m1 ,..._, ( m1) µ = - m 1 1 - - , 
1 + mi/m2 - m2 

(9.17) 

where we have divided both terms in Eq. (9.15) by m 2 and used the approximation 

(1 + x)- 1 ~ 1 - ~' according to Eq. (M.28). Hence this results in a reduced 

mass approximately equal to the mass of the lighter particle. For example, when 

we discuss the motion of an artificial satellite around the earth we may use, with 

very good approximation, the mass of the satellite and not the reduced mass, of 

the earth-satellite system. On the other hand, if the two particles have the same 

mass (m1 = m2), we have thenµ = fm 1. This is the situation when two protons 

interact. This also holds, with very good approximation, for a system formed by 

one neutron and one proton, as in the deuteron. 



9.3) Reduced mass 241 

EXAMPLE 9.3. Calculate the reduced mass of the following systems: (a) electron

proton in a hydrogen atom, (b) proton-neutron in a deuteron nucleus. In each case com

pare the result with the mass of the lighter particle. 

Solution: (a) For the electron-proton system, which comprises a hydrogen atom, we 

have that me = 9.1091 X 10-31 kg and mp = 1.6725 X 10-27 kg. Thus, since me is 

much smaller than mp, we may write, using Eq. (9.17), 

( me) -31 k 
µep = me 1 - mp = 9.1031 X 10 g. 

So µ differs from me by about 0.06%. In spite of the small difference, it produces de

tectable results in many atomic processes. 

(b) For the neutron-proton system in the deuteron, we have that mn = 1.6748 X 

10-27 kg, which is almost the same as mp, Then we must use the exact formula, Eq. 
(9.15), which yields 

µnp = mpmn = 0.8368 X 10-27 kg, 
mp+ mn 

which is approximately equal to one-half the mass of either particle. 

EXAMPLE 9.4. An observer measures the 

velocities of two particles of masses m 1 and m2 

and obtains, respectively, the values v1 and v2. 

Determine the velocity of the center of mass 

relative to the observer and the velocity of each 

particle relative to the center of mass. 

Solution: From Eq. (9.1) we have (Fig. 9-7) 

m1v1 + m2v2 
VCM = 

m1+ m2 

x 

--y1 

The velocity of each particle relative to the 

center of mass, using the Galilean transforma

tion of velocities given by Eq. (6.9), is 

Fig. 9-7. Motion relative to the 
CM. 

m1v1 + m2v2 v1 = VI - VCM = v1 - -----
m1 + m2 

m1(v2 - v1) m1v12 
v~ = v2 - VCM = = - ' 

m1 + m2 m1 + m2 

where v12 = v1 - v2 is the relative velocity of the two particles. Thus, in frame C, 

the two particles appear to be moving in opposite directions. The momentum of particle 

1 relative to the center of mass is 

Therefore the momentum of particle 1 in the CM-frame of reference is equal to the reduced 

mass of the system multiplied by the relative velocity. Similarly, for particle 2, 
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Path of CM 

(a) (b) 

Fig. 9-8. Collision between two bodies (m1 = 2 kg, m2 = 1.5 kg). The interaction ap
plies only when they are very close. (a) Multiflash photograph of the motion of the two 
bodies. (b) Graphical analysis of the photograph, showing that the CM has moved in a 
straight line with constant velocity relative to the laboratory. 

Thus we verify that in the CM-frame of reference the two particles move with equal and 

opposite momenta, and that the .total momentum is p~ + p~ = 0, as it should be accord

ing to Eq. (9.4). This is illustrated in the photograph in Fig. 9-S(a) and its analysis in 

Fig. 9-S(b). 

The relations we have derived in this example are very important in scattering experi

ments in nuclear physics. In these experiments the velocities of the particles are meas

ured relative to a frame of reference L attached to the laboratory. But the theoretical 

expressions for the scattering are simpler when they are related to the CM-frame of refer

ence. Thus the relationships between both sets of measurements must be known, and in 

order to determine these, we must use the formulas derived above. 

9.4 Angular Momentum of a System of Particles 

Next let us discuss the angular momentum of a system of particles. In Eq. (7.32) 

we defined the angular momentum of a particle relative to a given point as the vec

tor quantity 

L = r X p = m(r X v), (9.18) 

and obtained in Eq. (7.38) a relation between Land the torque -r = r X F of the 

applied force. That is, 

dL 
dt = 'T. (9.19) 

Now let us look at a similar situation, in which not one but several particles are 

present. For simplicity let us consider first the case of only two particles. Equa

tion (9.19) applied to particles 1 and 2 becomes 

and 
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Adding the two equations, we obtain 

(9.20) 

Let us assume that each particle, in addition to having a mutual interaction with 

the other particle, is acted on by an external force (Fig. 9-9). Then the force on 

particle 1 is F 1 + F 12 and on particle 2 is F 2 + F 2 i, and 

T1 = r1 X (F1 + F12) 

T2 = r2 X (F2 + F21) 

r1 X F1 + r1 X F12, 

r2 X F2 + r2 X F21· 

Then, since F 12 = -F21 , the total torque on the particles is 

Now the vector r 2 - r 1 = r 21 has the direction of the line joining the two 

particles. If we make the special assumption that the internal forces F 12 and F 21 

act along the line r 21 joining the two particles, then the vectors r 2 - r 1 = r 21 

and F 21 are parallel, and therefore (r2 - r 1) X F 21 = 0. The last term in the 

above equation thus disappears, leaving only the torques due to the external 

forces. That is, Eq. (9.20) becomes 

d 
dt (Li + L2) - r1 x F1 + r2 x F2 

T1,ext + T2,ext· 

Generalizing this result to any number of par

ticles, we obtain 

dL 

dt 
Text· (9.21) 

In this equation L = LiLi is the total angular x Figure 9-9 
momentum of the particles, and Text is the 

total torque exerted by the external forces only, so long as the internal forces act 

along the lines joining each pair of particles. To express Eq. (9.21) in words, we 

say that 

the time rate of change of the total angular momentum of a system of 

particles relative to an arbitrary point is equal to the total torque, relative 

to the same point, of the external forces acting on the system. 

This statement may be considered as the fundamental law of the dynamics of 
rotation. In Chapter 10 we shall apply it to the motion of a rigid body. 

If there are no external forces, or the sum of their torques is zero, Text = O; then 



244 Dynamics of a system of particles (9.4 

Integrating, we obtain 

Equation (9.22) constitutes the law of conservation of angular momentum. Ex

pressed in words, it indicates that 

the total angular momentum of an isolated system, or a system with 

zero external torque, is constant in magnitude and direction. 

This is the case, for example, of the electrons in an atom when one considers only 

the internal forces due to the electrostatic repulsion of the electrons and the elec

trostatic attraction of the nucleus, which are internal forces acting along the lines 

joining each pair of particles. Also, if we assume that the solar system is isolated 

and if we neglect the forces due to the rest of the galaxy, the total angular momen

tum of all the planets relative to the center of mass of the solar system remains 

constant. This conclusion holds with a great degree of accuracy. Similarly, the 
reason why the earth keeps rotating around its center of mass with an angular 

momentum that is essentially constant is that the external forces due to the sun 

and the other planets pass through the center of the earth and therefore have zero 

(or approximately zero) torque about the center of mass. 

In spite of the special assumption involved in our derivation of the law of con

servation of angular momentum (i.e., that the internal forces act along the lines 

joining each pair of particles), this law seems to be universally valid, applying to 

all processes so far observed, even when our special assumption does not seem to 

hold. The law of conservation of angular momentum implies that if, in an isolated 

system, the angular momentum of some part of it changes because of internal 

interactions, the rest of the system must experience an equal (but opposite) change 

of angular momentum, so that the total angular momentum is conserved. 

For example, in a disintegrating nucleus the emitted particles, in many cases an 

electron and a neutrino, possess some angular momentum. Since only internal 

forces act in the disintegrating process, the angular momentum of the nucleus 

must change to exactly compensate for the angular momentum carried away by 

the emitted particles. Similarly, if an atom, molecule, or nucleus emits electro

magnetic radiation, its angular momentum must change to exactly compensate 

for the angular momentum taken away by the radiation. Sometimes processes 

that would otherwise be possible in nature cannot occur because of some aspect, 

characteristic of the process, which makes it impossible for the process to satisfy 

the conservation of angular momentum. 

EXAMPLE 9.5. Compute the angular momentum of two particles relative to their 

center of mass or frame of reference C. 

Solution: Let r12 = ri - r2 be the position vector of particle 1 relative to particle 2. 

The position of the center of mass of the two particles (refer back to Fig. 9-6) relative 

to frame of reference L is 

rcM = 
m1ri + m2r2 

m1+ m2 
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Thus the position vector of each particle relative to the center of mass or frame of 

reference C is 

r1 - rcM 
m2(r1 - r2) 

m1+ m2 

m2(r2 - r1) 
r~ = r2 - rcM = ----

m1 + m2 

Using the results of Example 9.4, we obtain the angular momentum relative to the center 

of mass, 

LcM ri X Pi + r~ X p~ 

( m2r12 ) X (µvi 2) + (- m1r12 ) X (-µvi 2) 
m1 + m2 m1 + m2 

= µr12 X v12 = r12 X (µv12). 

Thus the angular momentum of the system relative to the center of mass is the same as 
that of a single particle of momentum µv12 and position vector r12. Note that in the final 

expression for LcM, the only quantities that appear are those that describe the relative 

position and motion of the two particles. 

This result, for example, is important when we are computing the angular momentum 

of a hydrogen atom. We must use the distance and the velocity of the electron relative 
to the pi;oton, but must replace the mass of the electron by the reduced mass of the elec

tron-proton system, that is, LcM = µ 0 prep X Vep, where the subscripts e and p refer to 
the electron and the proton, respectively. 

When we are dealing with a many-particle system, it is customary to refer the total 

angular momentum to the center of mass, which is then called the internal angular mo
mentum of the system. Internal angular momentum is thus a property of the system it

self, and is independent of the observer. In the case of a rigid body or an elementary 
particle, the internal angular momentum is also called spin. 

EXAMPLE 9.6. Establish a relationship between the angular momentum of a system 

of particles relative to the CM- or C-frame of reference (or internal angular momentum) 
and the angular momentum relative to the laboratory or L-frame. 

Solution: For simplicity we shall consider a system composed of two particles. The 
angular momentum relative to the laboratory or L-frame is 

L = r1 X PI + r2 X p2. 

If v1 and v2 are the velocities relative to frame L and v~ and v2 the velocities relative to 

frame C, we have that v1 = v~ + vcM and v2 = v2 + VCM· Then p 1 = m1v1 = 
m1(v{ + vcM) = p~ + m1vcM, and similarly P2 = P2 + m2VCM· Thus, remembering 

that r1 = r~ + rcM and r2 = r2 + rcM, we have 

L (r{ + rcM) X (p~ + m1VcM) + (r2 + rcM) X (p2 + m2vcM) 

r~ X p~ + r2 X P2 + rcM X (p~ + p2) + (m1r1 + m2r2) X VCM· 

Remembering from Example 9.4 or Eq. (9.4) that p~ + p 2 = 0 and the definitions of 
LcM (Example 9.5) and rcM (Eq. 9.2), we conclude that the angular momentum relative 
to the laboratory or L-frame is 

LcM + MrcM X VCM· (9.23) 
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The first term on the right gives the internal angular momentum relative to the CM- or 
C-frame, and the last term the external angular momentum relative to the £-frame, as 
if all the mass of the system were concentrated at the center of mass. For example, when 
a pitcher throws a spinning ball, the angular momentum due to the spinning is given by 

LcM, while the angular momentum due to the translation of the ball is given by mball 

rcM X VCM· A similar situation occurs for a spinning electron revolving around a proton 
in a hydrogen atom. This again indicates that we can separate the internal motion from 

the CM-motion insofar as the angular momentum is concerned. Although our proof is 

only for two particles, the result is valid for a system composed of any number of particles. 

EXAMPLE 9.7. Relate the external torque about the center of mass with the internal 
angular momentum of a system of particles. 

Solution: Considering again, for algebraic simplicity, a system composed of two parti
cles m1 and m2 subject to external forces F 1 and F2, we have that the total external 
torque relative to the origin of coordinates in the £-frame is 

'Text ri X Fi + r2 X F2 = (rf + rcM) X F1 + (r~ + rcM) X F2 

r~ X Fi+ r~ X F2 + rcM X (Fi+ F2). 

The first two terms in the preceding result give the external torque relative to the center 
of mass, and will be denoted by 'TCM, while the last term gives the torque of the resultant 

external force Fext = Fi + F2 as if it were applied at the center of mass. Thus 

'Text = 'TCM + rcM X Fext• (9.24) 

But, from the result of Example 9.6, we have L 

time derivative of this expression, we obtain 
LcM + MrcM X VCM· Taking the 

dL = dLcM + MrcM X dvcM + M drcM X 
dt dt dt dt VCM· 

We recall that drcM/dt = VcM, so that the last term is zero and, by using Eq. (9.9) 

(that is, Fext = M dvcM/dt), we obtain 

dL dLcM 
dt = -;ft + rcM X Fext· 

Substituting the expressions for dL/dt and Text, which we have just obtained, into Eq. 
(9.21), we recognize that 

(9.25) 

This relation is formally identical to Eq. (9.21), but there are some basic differences. 
Equation (9.21) is valid only when the angular momentum and torque are evaluated 
relative to a point fixed in an inertial frame of reference, usually the origin of coordinates. 
On the other hand, Eq. (9.25) is valid for the center of mass even if it is not at rest in an 

inertial frame of reference. Although this equation has been proved for two particles, it 
is valid for a system composed of any number of particles. It is especially useful in dis

cussing the motion of a rigid body. 
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9.5 Kinetic Energy of a System of Particles 

Let us consider a system composed of two particles of masses m1 and m2 , subject 

to the external forces F 1 and F 2 and to the internal forces F 12 and F 21 . At a par

ticular instant they are at the positions indicated in Fig. 9-10, moving with veloc

ities v1 and v 2 along their paths C 1 and C 2. The equation of motion of each par
ticle is 

m1a1 = F1 + F12, 
(9.26) 

In a very small time interval dt, the 

particles experience displacements dr 1 

and dr 2 tangent to their paths. When we 

take the scalar product of Eq. (9.26), the 

first with dr 1 and the second with dr2, 

we have 

m1a1 • dr1 = F1 • dr1 + F12 • dr1, 

and 
Figure 9-10 

m2a2 · dr2 = F2 · dr2 + F21 • dr2. 

Adding these two equations and remembering that F 12 = -F21 , we obtain 

m1a1 • dr1 + m2a2 · dr2 = F1 • dr1 + F2 · dr2 + F12 • (dr1 - dr2). 

(9.27) 

Now, since dri/dt = v1 and v1 • dv1 = v1 d~i, we have that a 1 • dr 1 = 
(dvif dt) · dr1 = dv 1 · (dri/dt) = V1 dv1. Similarly, a2 · dr2 = v2 dv 2. Also 
dr1 - dr2 = d(r 1 - r 2) = dr 12. Therefore Eq. (9.27) becomes 

m1v1 dv1 + m2v2 dv2 = F1 • dr1 + F2 · dr2 + F12 • dr12-

Integrating from an initial time t0 to any arbitrary time t, we obtain 
B 

m 1J,v1 
v 1 dv 1 + m2J,v

2 
v2 dv2 = JA (F1 • dr1 + F2 • dr2) 

V10 V20 

+ 1: F12 • dr12, (9.28) 

where A and B are symbols used to designate the positions of both particles at times 

t0 and t. Since J~0 v dv = !v2 - !v~, we have, for the left-hand side of Eq. (9.28), 

( 1 2 1 2 ) + (1 2 1 2 ) 
2m1v1 - 2m1V10 2m2v2 - 2m2V20 

= (!m1v~ + !m2v~) - (!m1v~o + !m2v~o) 

where 
= Ek - Ek,O, 

(9.29) 
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is the total kinetic energy of the system of two particles at time t, and Ek,o the 

total kinetic energy at time t 0 relative to the frame of reference of the observer. 

The first term on the right-hand side of Eq. (9.28) gives the total work Wext done 
by the external forces during the same interval of time. That is, 

Finally the last term in Eq. (9.28) gives the work Wint done by the internal forces. 

That is, 

Substituting these notations into Eq. (9.28) gives 

(9.30) 

which we may express in words by saying that 

the change in kinetic energy of a system of particles is equal to the work 

done on the system by the external and the internal forces. 

This is the natural extension of our previous result for one particle given m 

Eq. (8.13), and is valid for a system composed of any number of particles. 

9.6 Conservatwn of Energy of a System of Particles 

Let us now assume that the internal forces are conservative, and that therefore 

there exists a function Ep, 12 depending on the coordinates of m 1 and m 2 such that 

(9.31) 

where Ep, 12 is the value at time t and Ep, 12 ,0 the value at time t0 . We shall call 

Ep, 12 the internal potential energy of the system. If the internal forces act along the 

line r 12 joining the two particles, then the internal potential energy depends only 

on the distance r12 , for the same reason that the potential energy due to a central 

force depends only on the distance r (Section 8.10). In this case the internal poten

tial energy is independent of the frame of reference because it contains only the 

distance between the two particles, a situation which fairly well represents most 

of the interactions found in nature. Substituting Eq. (9.31) in Eq. (9.30), we ob

tain Ek - Ek,O = Wext + Ep,12.0 - Ep,12, or 

(9.32) 

The quantity 

(9.33) 
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will henceforth be called the proper energy of the system. It is equal to the sum of 
the kinetic energies of the particles relative to the inertial observer and their in

ternal potential energy which, as we showed before, is (under our assumptions) 

independent of the frame of reference. 
If instead of two particles we have several, the proper energy is 

where 

and 

U - E + E - ""' -2
1 m.v~ + ""' E - k p, int - L..J • • L..J p,ij, 

Ek= L !miv; 
All 
particles 

All All 
particles pairs 

Ep, int = L Ep,ij = Ep,12 + Ep,13 + · ' ' + Ep,23 + ' ' ·. 
All 
pairs 

(9.34) 

Note that the first sum, corresponding to the kinetic energy, has one term for each 

particle. Note also that the second sum, corresponding to the internal potential 

energy, has one term for each pair of particles because it refers to two-particle 

interactions only. If there are no internal forces, all the proper energy is kinetic. 

Substituting the definition (9.33) of proper energy into Eq. (9.32), we have 

U - Uo = Wext, (9.35) 

which states that 

the change in proper energy of a system of particles is equal to the work 

done on the system by the external forces. 

This important statement is called the law of conservation of energy. So far this law 

has appeared as a consequence of the principle of conservation of momentum and 

the assumption that the internal forces are conservative. However, this law seems 

to be true in all the processes we observe in our universe, and therefore is consid

ered of general validity, beyond the special assumptions under which we have 

stated it. Equation (9.8) expresses a system's interaction with the outside world 

by means of its change in momentum. Equation (9.35) expresses the same inter

action by means of the system's change in energy. 

Let us now consider an isolated system in which Wext = 0, since there are no 

external forces. Then U - U O = 0 or U = U 0 • That is, 

the proper energy of an isolated system of particles remains constant, 

under the assumption that the internal forces are conservative. Thus if the kinetic 

energy of an isolated system increases, its internal potential energy must decrease 

by the same amount so that their sum remains the same. For example, in an iso

lated hydrogen molecule, the sum of the kinetic energy relative to some inertial 
frame of reference and the internal potential energy of the two protons and the two 

electrons remains constant. 
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The principle of conservation of momentum, together with the laws of con

servation of energy and of angular momentum, are fundamental rules which seem 
to govern all the processes that may possibly occur in nature. 

It may happen that the external forces acting on a system are also conservative, 

so that Wext can be written as Wext = Ep,ext,o - Ep,ext, where Ep,ext, 0 and 
Ep, ext are the values of the potential energy associated with the external forces at 

the initial and final state. Then Eq. (9.35) becomes 

U - Uo = Ep,ext,0 - Ep,ext 

or 

U + Ep,ext = Uo + Ep, ext, O· 

The quantity 

E = U + Ep,ext = Ek+ Ep,int + Ep,ext (9.36) 

is called the total energy of the system. It remains constant during the motion of 

the system under both internal and external conservative forces. This result is 

similar to Eq. (8.29) for a single particle. 

For example, a hydrogen atom, composed of an electron and a proton, has a 

proper energy equal to the kinetic energies of the electron and the proton and the 

internal potential energy due to their electrical interaction. If the atom is isolated, 

the sum of these two energies is constant. But if the atom is placed in an external 

field, its total energy must include, in addition, the potential energy due to the 

external field, and this is the energy that remains constant. 

As another example, consider two masses m1 and m2 attach~d by a spring that 
has an elastic constant k. If the system is thrown into the air, the kinetic energy is 

fm 1vi + fm 2vt the internal potential energy is due to the extension or compre~

sion of the spring and is equal to fkx 2 , where xis the deformation of the spring, and 

the external potential energy (due to the earth's gravitational attraction) is m 1gy 1 + 
m2gy2 , where y 1 and y 2 are the heights of the particles above the earth's surface. 

The proper energy of the system is then U = fm 1vi + fm 2v~ + fkx 2 and, if no 
other forces act on the system, the total energy is 

and this energy must remain constant during the motion. 

Since the kinetic energy depends on the velocity, the value of the kinetic energy 

depends on the frame of reference used to discuss the motion of the system. We 

shall call internal kinetic energy Ek, CM the kinetic energy referred to the CM- or 

C-frame of reference.- The internal potential energy, which depends only on the 

distance between the particles, has the same value in all frames of reference (as 

explained before). Thus we shall define the internal energy of a system as the sum 

of its internal kinetic and potential energies. That is, 

Uint = Ek, CM + Ep, int· (9.37) 

In the future, when we are dealing with a system of particles, we shall in general 

refer only to the internal energy, even if we do not write the subscript CM. 
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The internal potential energy of some systems is, in special circumstances, 
negligible compared with the internal kinetic energy. This is true, for example, in 

the case of a gas at high temperature. In this circumstance the internal energy 

may be considered all kinetic, and the principle of conservation of energy reduces 

to the conservation of kinetic energy. 

EXAMPLE 9.8. Obtain the relation between the kinetic energy of a system of particles 

relative to the laboratory or L-frame of reference and the internaCkinetic energy relative 

to the CM- or G-frame of reference. 

Solution: Consider for simplicity two particles of masses mI and m2 with velocities VI 

and v2 in frame L, and velocities vf and v2 relative to frame C. The two sets of velocities 

are related by VI = v{ + vcM and v2 = v~ + vcM, where vcM is the velocity of the 
CM- or C-frame relative to frame L. Then the kinetic energy relative to L is 

Ek = !mIV~ + !m2v~ = !mIM. + vcM)2 + !m2(v~ + vcM)2, 

We may rewrite this statement as 

Ek = !mIV12 + !m2v~2 + !(mI + m2)v~M + (mIV1 + m2v~) • VcM, 

Now the quantity mivf + m2v2 is the total momentum of the system referred to the 
center of mass, and by Eq. (9.4) it must be zero. (See also Example 9.4.) The internal 

kinetic energy Ek,CM referred to frame C is Ek,CM = !miv? + !m2vz2. Therefore 
the kinetic energy Ek of the system, when referred to the laboratory frame L, may be 
written as 

(9.38) 

The first term, Ek,CM, is the internal kinetic energy. The second term on the right-hand 

side is the kinetic energy of a particle of mass M = mI + m2 moving with the center 

of mass. It is called the translational kinetic energy of the system. Although Eq. (9.38) 

has been proved for two particles, it holds for a system composed of an arbitrary number 

of particles. 

We note once more that we may separate the motion of the system into two parts, 

each with a well-defined kinetic energy. One is translational motion with the velocity of 

the center of mass and the other is internal motion relative to the center of mass. 

Let us again think of the case of a pitcher throwing a spinning ball. The ball's total 

kinetic energy relative to the ground is the sum of its internal kinetic energy relative to 

the center of mass, which corresponds to the kinetic energy of spinning, and to its kinetic 

energy of translation relative to the ground, which is !mbauviM· A similar situation is 

found in the case of a molecule. In general, it is the internal motion that we are interested 

in, and for that reason the C-frame is preferred for describing many processes. 

As we have said before, the internal potential energy Ep, I2 depends only on the dis

tance between mI and m2, and it is the same in frames C and L. Adding Ep,I2 to both 

sides of Eq. (9.38) and using Eq. (9.33), we can write 

U = Uint + !Mvh1, 

where Uint = Ek,CM + Ep,I2· This equation relates the internal energy Uint and the 
proper energy U as measured in the C- and L-frames. Note that for an isolated system 

vcM is constant and therefore, if U is constant, Uint is also. That is, when energy is con

served in an inertial frame L, it is also conserved in the center-of-mass frame C, and 
conversely. 
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EXAMPLE 9.9. Express the internal kinetic energy of two particles in terms of their 
reduced mass and their relative velocity. 

Solution: The internal kinetic energy is Ek,CM = !m1v? + !m2v~2. Using the results 
of Example 9.4, that is, 

we get 

m2v12 v1 = ---
m1 + m2' 

Thus we find, as we did before for the angular momentum in Example 9.5, that the inter

nal kinetic energy of a system of two particles is equivalent to that of one particle of mass 

equal to the reduced mass moving with the relative velocity v12. For example, the inter

nal energy of a hydrogen atom is Uint = !µepv;P + Ep(rep), where the subscripts refer to 

the electron and the proton. The results we have derived in this and previous examples 

are of great importance because of their numerous applications, especially in atomic and 
nuclear physics. 

Table 9-1 lists the more important relations that have been derived so far in 

this chapter, relations which are widely used in many applications. 

TABLE 9-1 

Relation Equation 

number 

Kinematic relations 

P = MvcM (PcM = 0) 

L = LcM + 111rcM X vcM 

'Text = 'TCM + rcM x Fext 

Ek = Ek,CM + !Mv~M 

Dynamic relations 

dP/dt = Fext 

or MacM = Fext 

dL/dt = 'Text 

or dLcM/dt = TcM 

Ek-::___ Ek,O = Wext + Wint 

U - Uo = Wext 

Energy definitions 

Proper energy, U = Ek+ Ep,int 

Internal energy, Uint = Ek,CM + Ep,int 

Total energy E = Ek+ Ep, int+ Ep,ext 

(9.3) 

(9.23) 

(9.24) 

(9.38) 

(9.8) 

(9.9) 

(9.21) 

(9.25) 

(9.30) 

(9.35) 

(9.33) 

(9.37) 

(9.36) 
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9.? Collisions 

When two particles approach each other, their mutual interaction changes their 

motion, thereby producing an exchange of momentum and of energy. We say that 

there has been a collision (we may say the same thing when we have two systems 

instead of two particles). This does not necessarily mean that the two particles 

(or systems) have been physically in contact, in a microscopic sense, as happens in 

the case of the macroscopic collision between two billiard balls or two cars. It 

means, in general, that an interaction entered into play when the two particles 

were close, as in the shaded region of Fig. 

9-11, producing a measurable change in 

their motions in a relatively small time. For 

example, if an electron or a proton ap

proaches an atom, electrical forces come 
into effect, producing a pronounced per

turbation in the motions of the particles. 
The bending of the path of a comet when it 

approaches the solar system is also a col

lision. Sometimes the term scattering is used Fig. 9-11. Conservation of energy 
to refer to collisions in which the final particles and momentum in a collision. 

(or systems) are the same as the initial ones. 

In some collisions, however, the final particles (or systems) are not necessarily 

identical to the initial ones. For example, in a collision between an atom A and a 

molecule BC, the end result may be the molecule AB and the atom C. In fact, 

this is the way in which many chemical reactions take place. 

In a laboratory experiment on collision, one usually knows precisely the motion 

of the particles before the collision, since such motion depends on how the experi

ment has been prepared. For example, one particle may have been a proton or an 

electron accelerated in an electrostatic accelerator and the other particle may be 

an atom practically at rest in the laboratory. Then one observes the final state; 

i.e., the motion of the two particles far away from the region where they collided. 

If we know the forces between the particles, we may compute the final state, so 
long as we know the initial state. The analyis of such experiments thus provides 

valuable information about the interaction between the colliding particles. This 

is one of the reasons why collision experiments are so interesting to the physicist. 

Since only internal forces enter into play in the collision, both the momentum 

and the total energy are conserved. Let p 1 and p 2 be the momenta of the par

ticles before the collision and p~ and p; be the momenta after the collision. The 

conservation of momentum requires that 

Pi + P2 = P'i + P~· (9.39) 

The internal potential energy before the collision is Ep, 1 2 . After the collision, 

because there may be internal rearrangements, it may be different, let us say 

E;,12, Similarly, the masses do not have to be the same. For example, a deuteron 

is a nucleus composed of a neutron and a proton; in passing near another nucleus, 



254 Dynamics of a system of particles (9.7 

the neutron may be captured by the second nucleus, so that the proton will con

tinue separately and the final particles will consist of the proton and a nucleus 
having an extra neutron. 

The conservation of energy, according to Eq. (9.35), is then 

E1c + Ep,12 = Ek+ E~.12, 

where, remembering Eq. (8.12), we have 

(9.40) 

Let us introduce a quantity Q, defined by 

Q = E£ - E1c = Ep,12 - E~.12, (9.41) 

and therefore equal to the difference between the final and the initial kinetic ener

gies or between the initial and the final internal potential energies. When Q = 0, 

there is no change in kinetic energy and the collision is called elastic. Otherwise it 

is inelastic. When Q < 0, there is a decrease in kinetic energy with a correspond

ing increase in internal potential energy, and we say that there is an inelastic colli

sion of the first kind (or endoergic). When Q > 0, there is an increase of kinetic 

energy at the expense of the internal potential energy, and we have an inelastic 

collision of the second kind (or exoergic). 

Using Eq. (9.40) in Eq. (9.41), we may write 

(9.42) 

Equations (9.39) and (9.42) are enough to solve the collision problem completely. 

If we refer the collision to the center of mass, the total momentum is zero ac

cording to Eq. (9.4), so that p 1 = -p2 and p~ = -p~. We may then simplify 

Eq. (9.42) to read 

1 ( 1 1 ) ,2 1 ( 1 1 ) 2 - -, + -, P1 = - - + - Pi + Q 
2 m 1 m 2 2 m1 m2 

or, using Eq. (9.15), which defines reduced mass, we obtain 

,2 - 2 

h = Pi + Q (in CM-frame of reference). 
2µ' 2µ 

(9.43) 

Note that we use the same Q because, in view of its definition (9.41), it is indepen

dent of the frame of reference. In a collision, there is always an exchange of mo

mentum between the two particles, but not necessarily always an exchange of 

kinetic energy between them. For example, if the collision is elastic (Q = 0) and 

the final particles are the same as the initial ones (µ = µ'), Eq. (9.43) gives p~ = p 1 



9.7) Collisions 255 

and of course also p~ = p 2 • Thus in the CM-frame, the momenta after the elastic 

collision have the same magnitude as before and the particles retain their kinetic 

energies, so that no kinetic energy has been exchanged between them relative to 

the CM-frame. However there has been an exchange of momentum because the 

direction of their motions has been changed. 

EXAMPLE 9.10. Obtain the Q value for a capture reaction. 

Solution: An interesting example of inelastic collision occurs when, after the collision, 

the two particles continue moving together. In nuclear physics this process is called a 

capture reaction. It occurs, for example, when a neutron colliding with the proton of a 

hydrogen atom is captured to form a deuterium nucleus. Another collision which may be 

of this type is the collision between two plastic bodies. In this case the two particles, 

after the collision, move with the velocity of the center of mass; that is, from Example 9.4, 

VCM = 

The Q of the reaction is thus 

Q 1( + ) 2 1 2 1 2 = 2 m1 m2 VcM - 2 m1v1 - 2 m2v2 

1 m~m2 (v1 - v2) 2 = fµvi2, 
2 m1 m2 

and hence Q depends entirely on the relative velocities of the particles before the colli

sion. Can the student attach any meaning to the value obtained for Q, in view of the 

result of Example 9.9? 

y y 

Pi 

« / I) 

0 x 
' ' 
m~f 

Before After 

(a) (b) 

Fig. 9-12. Relation between momenta relative to the L-frame before and after a collision. 

EXAMPLE 9.11. Obtain Qin terms of the kinetic energy of the particles before and 

after they collide, assuming that initially m1 has a momentum p1 and that m2 is at rest 

(p2 = 0) (see Fig. 9-12). Also assume that the masses of the particles after the collision 

are mf and m~. 

Solution: The conservation of momentum gives p~ + p~ = p1 or p~ = p1 - p~. 

Therefore 
,2 ( , )2 2 + ,2 2 , () 

P2 = Pl - Pl = P1 Pl - P1P1 cos . 
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(a) (b) 

Fig. 9-13. (a) Collision of two equal billiard balls. (b) Collision between two a-particles 
(helium nuclei). In both cases, one of the particles was initially at rest in the L-frame and 
their momenta make angles of 90° in the L-frame after the collision. [Part (a) courtesy of 
Educational Services, Inc.] 

Using definition (9.41) for Q, we have 

,2 2 1 
PI PI + ( 2 + ,2 2 , ()) --, - 2 --, PI PI - PIPI cos 

2mI mI 2m2 

or 

1 ( 1 1 ) ,2 1 ( 1 1 ) 2 PIP1 Q = -2 -, + -, Pl + -2 -, - - p1 - --, cos 0. 
mI m2 m2 m1 m2 

Remembering that Ek = p2 /2m, we can express the above result as 

This result, known as the Q-equation, is of great application in nuclear physics. 

When the collision is elastic (Q = 0) and all the particles are identical (m1 = mf - ' 
m2 = m~), the conservation of energy gives P? + P? = Pi, while from the conserva-

t . f 1 + ' h ' 2 + '2 + 2 1 1 2 C b' . 10n o momentum, p1 = PI P2, we ave P1 P2 Pl· P2 = P1· om mmg 
these results, we find that p{ · p~ = 0 or p{ is perpendicular top~. Thus, in the £-frame, 

the two particles move at right angles after the collision. This may be seen in the photo

graph of Fig. 9-13(a), which illustrates the collision of two billiard balls, one initially at 

rest. Figure 9-13(b) shows the collision of two He nuclei in a cloud chamber; the incom

ing He nucleus is an a-particle from a radioactive substance and the target He nucleus is 

from the gas in the chamber. In both cases, the two particles move at right angles after 

the collision. 

EXAMPLE 9.12. A grenade at rest in the £-frame explodes into two fragments. Find 

the energies of the fragments in terms of Q. 
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Solution: Since the grenade is initially at rest, the total momentum is zero. After the 
explosion the two fragments separate in opposite directions with momenta p1 and p2 

such that p1 + p2 = 0, or in magnitude p1 = p2. Then, from Eq. (9.41), with E~ = 

pr/2m + p~/2m and Ek = 0, we have 

1(1 1)2 - -+- PI= Q 
2 m1 m2 

The kinetic energies of the fragments are 

2 
E _ PI _ m2Q 

k,I - 2m1 - m1 + m2 

or PI P2 

2 
P2 

Ek2 = --
. 2m2 

(2µQ)l/2. 

and are inversely proportional to their masses. This analysis applies equally well to the 
recoil of a firearm (remember Example 7 .1), to the fission of a nucleus into two fragments 
illustrated in Fig. 9-14, or to the dissociation of a diatomic molecule. 

If there are three fragments instead of two, several solutions are possible, since there 
are three momenta involved, but only two physical conditions: conservation of energy 

and of momentum. For example, if only two particles are observed in a particle reaction 

Fig. 9-14. Cloud-chamber photograph of the tracks of the two fragments resulting from 
the fission of a uranium nucleus [B~ggild, Brostr~m, and Lauritsen, Phys. Rev. 59, 275 
(1941)]. Initially the uranium nucleus was at rest in the thin horizontal metal plate at the 
center of the photograph. The two fragments move in opposite directions. From the 
analysis of the paths, we can estimate the energies of the fragments, which in turn (using 
the relation derived in Example 9.12) allow us to obtain the ratio of their masses. The 
effect of the neutrons released is neglected. 
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and the energy and the momentum of these two are not conserved, the physicist suspects 

the presence of a third particle that is not observed (either because it has no electric 

charge, or for some other reason). There are also certain theoretical considerations which 

enable him to recognize a case in which three particles are involved in the process (see 

Problem 9.70). The physicist then assigns a given momentum and energy to this hypo

thetical particle, thus conforming to the conservation laws. This procedure has so far 

always given results that are consistent with both theory and experiment. 

EXAMPLE 9.13. Discuss the slowing down (or moderation) of neutrons undergoing 

elastic collisions while moving through a material whose atoms may be considered at 

rest. (The material is called the moderator.) In nuclear reactors, fast neutrons produced 

by uranium fission are slowed down by moving through a moderator. 

Neutron 

m1 

Before 

(a) 

Atom 

m2 
(L) 

v 2 =0 

m2 

V2 
(C) 

~Neutron 

-- (L) 
---........... vi 
m:. ..............: 2 

2 Atom 

~ Neutron 
-- 1 -m1---;__------(C) 

V I 2 ---
2~ 

Atom 

After 

(b) 

Fig. 9-15. Comparison of data relative to the L- and C-frames in a collision. 

Solution: In this case the particles are the same before and after the collision and 

m1 = mf, m2 = m~. Also p 2 = 0 and Q = 0. The calculation is easier if we work in 

the C-frame (Fig. 9-15). We shall call A = m2/m1 the ratio of the mass of the moderator 

atoms to that of the neutron, v1 the velocity of the neutron, and v2 ( = O) the velocity 

of the atom. Before the collision the velocity of the center of mass according to Eq. (9.1) 

is therefore 

The velocity of each particle in the CM-frame before the collision is 

0 - VCM (9.44) 

Since we are dealing -with an elastic collision in which the particles retain their identity, 

we have, according to the explanation following Eq. (9.42), that p1 = Pi in the CM

frame, and therefore also V1 = Vi; that is, the velocity of m1 has the same magnitude 

in the CM-frame before and after the collision. Similarly V2 = Vz. However, the di

rections of motion after the collision may be different in the center-of-mass frame (see 

Fig. 9-15). The velocity v1 of the neutron after the collision, relative to the £-system, is 

then 
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so that, according to Fig. 9-16, 

,2 
vi Vi.2 + V~M + 2Yi • VCM 

V12 + v~M + 2V1vcM cos cf>. 

Using Eqs. (9.44) and remembering that V{ = V 1, 

we obtain 
2 

2 A + 2A cos cp + 1 

---------71 

I 
I 
I 

I 
I 

I 
I 
I 
I 
I 
I 

I 
I 
I 
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VI (A+ 1)2 _ __........__v_c~-, .... , Figure 9-16 

The relation between the kinetic energy of m1 after and before the collision in the L

system is then 

,2 
VI 

v2 
1 

2 
A + 2A cos cp + 1 

(A+ 1)2 

For cf> = 0 (that is, collision without change in direction) EL1 = Ek,I and there is no 

loss of kinetic energy. For cp = 1r, or a head-on collision, there is maximum energy loss 

resulting in 

E~ = A 
2 

- 2A + 1 = (A - 1)2
· 

Ek (A + 1)2 A + 1 

The loss of energy per unit energy in this case is 

4A 

(A+ 1) 2 

The energy loss is larger the closer A is to unity. This result is important when it comes to 

choosing the moderating material for quickly slowing down neutrons, as must be done in 

nuclear reactors. Atoms with the smallest value of A -relative to the neutron are those of 

hydrogen (A l"..J 1), and for that reason one would expect pure hydrogen to be the best 

moderator. However, even at room temperature, pure hydrogen is a gas, so that the 

number of hydrogen atoms per unit volume is relatively small. Therefore water is used 

instead. Water not only has the advantage of being abundant and inexpensive, but in 

addition it contains about 103 times more hydrogen atoms than hydrogen gas does, per 

unit volume. Unfortunately, hydrogen atoms tend to capture neutrons to form deuterium. 

On the other hand, since deuterium atoms have a relatively small tendency to capture 

neutrons, some nuclear reactors use heavy water, whose molecules are formed of deu

terium (instead of hydrogen) and oxygen. (In this case A = 2.) Another common 

moderator is carbon (A = 12), which is used in the form of graphite. 

II. SYSTEMS WITH A LARGE NlJMBER OF PARTICLES 

9.B Man,,-Partreh! s,,stems: Temperature 

The result expressed in Eq. (9.35) or its equivalent, the law of conservation of 

energy, when applied to a system composed of a small number of particles, such 

as our planetary system or an atom with few electrons, can be handled by comput-
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ing the individual terms that make up the internal energy, according to Eq. (9.34). 

However, when the number of particles is very large, such as in a many-electron 

atom or a gas composed of billions of molecules, the problem becomes mathemati

cally unmanageable. We must then use certain statistical methods for computing 

average values for the dynamical quantities instead of accurate individual values 

for each member of the system. In addition, in these complex systems we are not 

interested in the behavior of each individual component (since that behavior in 

general is not observable) but in the behavior of the system as a whole. The 
mathematical technique for dealing with these systems constitutes what is called 

statistical mechanics. If we forget about the internal structure of the system and 

simply apply Eq. (9.35), using experimentally measured values for U and W, we 

employ another branch of physics, called thermodynamics. In the present chapter 

we shall limit ourselves to an adaptation of Eq. (9.35) to systems composed of 

many particles without entering into a discussion of the methods of either statistical 

mechanics or thermodynamics. We shall also, unless otherwise stated, express 

all dynamical quantities relative to the CM-frame of reference for the system 

considered. 

First let us define the temperature T of the system as a quantity related to the 

average kinetic energy of the particles in the CM-frame of reference. Thus tempera

ture is defined independently of the motion of the system relative to the observer. 
The average kinetic energy of a particle is 

Ek, ave = 1 (Li!miv7), (9.45) 

where N is the total number of particles and Vi is the velocity of the particle in the 
CM-frame of reference. If all the particles have the same mass, then 

E - 1 " 1 2 - 1 ( 1 " 2) - 1 ( 2) - 1 2 k,ave - N LJi2mVi - 2m N LJiVi - 2m V ave - 2mVrms, 

where Vrms is called the "root-mean-square velocity of the particles," defined as 

2 2 l 2 2 2 1 2 
Vrms = (v )ave= N (v1 + V2 + V3 + · · ·) = N (LiVi). 

We do not need to indicate here the precise relation between temperature and 

average kinetic energy. It is sufficient at this time to assume that, given the average 

kinetic energy of a particle in a system, we can compute the temperature of the 

system, and conversely. In this sense we may speak of the temperature of a solid, 

of a gas, and even .of a complex nucleus. 
The fact that we are referring the motions to the center of mass in order to 

define temperature is important. Suppose we have a "hot" metal ball at rest in 

our laboratory and a "cold" metal ball moving very fast relative to our laboratory. 

The "hot" ball has a high temperature, which in turn means a large kinetic energy 

relative to its center of mass, which in this case happens to be at rest in the labora

tory. Oh the other hand, the "cold" ball has a low temperature, which in turn 
means a small kinetic energy relative to its center of mass, which in our case is 
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in motion relative to the observer. The fast-moving "cold" ball may have a larger 

total kinetic energy relative to the laboratory than the slow "hot" ball, but most 

of it is translational kinetic energy and this does not account for the temperature. 

A system that has the same temperature throughout, so that the average kinetic 

energy of the molecules in any region of the system is the same, is said to be in 

thermal equilibrium. In an isolated system, whose total internal energy is constant, 

the temperature may change if the internal kinetic energy c~anges, because of a 

change of internal potential energy. For example, a mass of gas in interstellar 

space may be condensing because of strong attractive forces, resulting in a de

crease of internal potential energy and a corresponding increase in kinetic energy. 

As a result, its temperature should increase. If, on the other hand, the system is 

expanding, its internal potential energy increases (if the forces are attractive), 

producing a decrease in kinetic energy and therefore a drop in temperature. But 

if the internal potential energy of an isolated system remains constant, which is 
the case for a gas contained in a rigid box, then the system's average kinetic energy 

will also remain constant; i.e., its temperature will not change. But if the system 
is not isolated, it may exchange energy with the rest of the universe, which may 

result in a change of its internal kinetic energy and then of its temperature. 

Temperature should be expressed in joules/particle. However, it is customary 

to express it in degrees. The scale of temperature used in physics is the absolute 

scale. Its units are called degrees Kelvin, denoted by °K. In this scale, the melting 

temperature of ice at normal atmospheric pressure is 273.15°K and the boiling 

temperature of water at normal atmospheric pressure is 373.l5°K. Thus the dif

ference between these two temperatures is 100°K. The centigrade or Celsius 

temperature is defined according to 00 = T - 273.15°K. One degree Kelvin 

corresponds to about 1.38 X 10-23 J (or 8.61 X 10-4 eV) per particle. 

9.9 Many-Partic'le Systems: 1V ark 

The exchange of energy of a system with the 

outside world is represented by the external 

work Wext in Eq. (9.35). That is, 

U - Uo = Wext· 

. . . . . . . . . . . . ............ 

If work is done on the system (Wext posi
tive), its internal energy increases, but if 

work is done by the system (Wext negative), 
its internal energy decreases. This external 

work is the sum of the individual external 1-d:r~I 
works done on each of the particles of the Fig. 9-17. Work done in a gas ex

system, but sometimes it can be easily com- pansion. 

puted on a statistical basis. 

Consider, for example, a gas inside a cylinder of which one wall is a movable 

piston (Fig. 9-17). The gas can exchange energy and momentum with the sur

roundings through the collisions and interactions of its molecules with the molecules 
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of the walls. The exchange of momentum is represented by a force exerted by each 

molecule at the point of collision with the wall. These individual forces fluctuate 

at each point, but because there are a large number of collisions over a large area, 

the overall effect can be represented by an average force F acting on the whole 

area. If A is the area and p the pressure of the gas, defined as the average force 

per unit area (remember Example 9.2), then 

p = F/A or F = pA. (9.46) 

If one wall of the container is movable, such as the piston of Fig. 9-17, the 

force exerted by the gas may produce a displacement dx of the wall. The exchange 

of energy of the system with the outside world may then be expressed by the work 

done by this force du.ring the displacement. Since this is external work done 

by the system and not work done on the system, we must consider it negative. 

Therefore 

dWext = -F dx = -pA dx = -p dV, (9.47) 

where dV = A dx is the change in volume of the gas. Then if the volume changes 

from VO to V, the external work done on the system will be 

Wext = -J,V p dV. 
Vo 

(9.48) 

To compute this integral, we must know the relation between p and V. This rela

tion has been studied for gases and other substances in great detail. 

Very often, especially when we are dealing with thermal engines, it is preferable 

to compute the external work done by the system, denoted by Wsyst, instead of 

the external work done on the system, Wext· Since both works correspond to the 

same displacement but to forceR equal and opposite, the two works are equal in 

magnitude but have opposite signs; that is, Wsyst = -Wext· Then, for example, 

the expansion work done by a gas, using Eq. (9.48), is 

Wsyst = J,V P dV. 
Vo 

(9.49) 

Let us now state some of the more common units in which pressure is expressed. 

Note first that pressure must be expressed as a unit of force divided by a unit of 

area. Thus in the MKSC system pressure is measured in newtons per square meter, 

or N m-2• Other units frequently used are dynes per square centimeter, or dyn cm-2 , 

and pounds-force per square inch, or lbf in-2 . Another useful unit, used mainly 

for expressing the pressure of gases, is the atmosphere, abbreviated atm, and defined 

according to the equivalences 

1 atm = 1.013 X 105 N m-2 = 14.7 lbf in-2• 

One atmosphere is, approximately, the normal pressure exerted by the earth's 

atmosphere on bodies at sea level. 
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EXAMPLE 9.14. A gas occupies a volume of 0.30 m3 , exerting a pressure of 2 X 

105 N m-2 . At constant pressure, the volume expands to 0.45 m3 . Find the work done 

by the gas. 

Solution: We use Eq. (9.49) and, when the pressure p remains constant, 

Wsyst = [ p dV = p dV = p(V - Vo). v hv 
Jv0 Vo 

(9.50) 

This result is completely general and applies to any system whose volume changes under 

a constant pressure. Then, inserting the numerical values, we obtain Wsyst = 3 X 104 J. 

EXAMPLE 9.15. A gas expands in such a way that the relation pV = C (constant) 

holds. This relation [see Eq. (9.62) and Problem 9.67] requires that the temperature of 

the gas remain constant, and constitutes Boyle's law. Find the work done when the 

volume expands from V 1 to V 2. 

Solution: Using Eq. (9.49), we obtain 

(9.51) 

Therefore the work done depends on the ratio V 2/V 1 between the two volumes ( called 
the expansion ratio). In the design of internal combustion engines the compression ( or 

expansion) ratio is one of the factors that determine the power of the engine. 

9.10 Many-Particle Systems: Heat 

It is important to bear in mind that Eq. (9.48) expresses a macroscopic average 

that sums all the individual exchanges of energy between the molecules of the gas 

and the molecules in the piston. But how does one compute the exchange of 

energy that occurs due to the interaction of the gas molecules with the walls that 

remain fixed? In this case the method used to evaluate W for the piston does not 

apply because, although we may still define an average force on the wall, we may 

not define an average displacement of the wall. At each individual interaction be

tween the molecules of the gas and the wall, a small force is exerted and a small 

displacement of the molecules in the wall is produced. If we could compute each 

one of these infinitesimal amounts of work and add all of them, we would have the 
corresponding external work done by the system. However, this technique is ob

viously almost impossible because of the large number of factors involved. Ac

cordingly, we shall define a new macroscopic or statistical concept called heat. 

The average value of the external work or energy exchanged between a system 

and its surroundings due to the individual exchanges of energy which occur as a 

result of collisions between the molecules of the system and the molecules of the 

surroundings is called heat, Q, whenever it cannot be expressed macroscopically 

as force times distance. Therefore Q is composed of a sum of a very large number 

of very small individual external works, which are such that they cannot be ex
pressed collectively as an average force times an average distance. 
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The heat Q is considered positive when it corresponds to a net external work 

done on the system and negative when it is equivalent to a net external work done 

by the system. In the first case we say that heat is absorbed by the system and in 
the second case we say that heat is given off by the system. 

Since heat corresponds to work, it must be expressed in joules. However, heat 

is sometimes expressed in a unit called the calorie, whose definition was adopted 

in 1948 as 1 calorie = 4.1840 J. The calorie was first introduced as a unit of heat 

measurement when the nature of heat was unknown. But the calorie is simply 

another unit for measuring work and energy, and not heat alone. 

At this point we must warn the student not to consider heat as a new or different 

form of energy. It is just a name given to a special form of work or energy transfer 

in which a very large number of particles participate. Before the concepts of inter

actions and of the atomic structure of matter were clearly understood, physicists 

had classified energy into two groups: mechanical energy, corresponding to kinetic 

and gravitational potential energy, and nonmechanical energy, divided into heat, 

chemical energy, electrical energy, radiation, etc. This division is no longer justi

fied. Nowadays physicists recognize only kinetic and potential energy, with poten

tial energy being denoted by a different expression depending on the nature of the 

corresponding physical interaction, and with heat and radiation being expressions 

of two mechanisms of energy transfer. "Chemical energy" is just a macroscopic 

term used to describe energy associated with electrical interactions in atoms and 

molecules, energy which manifests itself in chemical processes; that is, as atomic 
rearrangements in molecules. 

When there is no exchange of energy (in the form of heat) between two systems, 

we say that they are in thermal equilibrium. This is a statistical concept, because 

individual molecules may exchange energy but, on the average, the same amount 

of energy is exchanged in one direction as in the other. For thermal equilibrium to 

exist between two systems, the average molecular kinetic energ'ies of the two interacting 

systems must be the same, so that no net exchange of kinetic energy by molecular colli

sion is possible. Therefore, in view of our preliminary definition of temperature as 

given in Section 9.8, we may say that 

two systems in thermal equilibrium must be at the same temperature. 

We may also conclude that energy is exchanged as heat only when the tempera

ture of the two systems is different. 

9.11 Belormulation ol the Principle ol Conservation ol 

Energu for Manu-Particle Sustems 

In the previous two sections we have seen that, when we are dealing with systems 

composed of a very large number of particles, we should express the total external 

work as the sum of two parts: Q + Wext· Here Wext expresses the external work 
when it can be computed as an average force times a distance, as discussed in 

Section 9.9, and Q represents the external work when it must be expressed as heat, 

as discussed in Section 9.10. Equation (9.35) for the principle of conservation of 
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U0 -> U 
lYcxt 

U0 -, U 

(a) (b) 

Fig. 9-18. Relation between heat, work, and internal energy. 

energy must then be written in the form 

U - Uo = Q + Wext, (9.52) 

which may be expressed in words by saying that 

the change of internal energy of a system is equal to the heat absorbed 

plus the external work done on the system. 

Equation (9.52) can be seen pictorially in Fig. 9-18(a): Heat Q is absorbed by the 

system and work Wext is done on the system. Their sum Q + Wext is stored as 
internal energy U - U O of the system. Sometimes, especially in engineering ap~ 

plications, instead of writing the external work Wext done on the system, one 

writes the external work Wsyst done by the system which, as explained before, is 

the negative of the work done on the system. Making Wext = -Wsyst, we have, 
instead of Eq. (9.52), 

U - U O = Q - Wsyst· (9.53) 

Equation (9.53) is illustrated in Fig. 9-18(b): heat Q is absorbed by the system, 

work Wsyst is done by the system, and the difference Q - Wsyst is stored as internal 
energy U - U O of the system. 

The statements related to Eqs. (9.52) and (9.53) constitute what is called the 

first law of thermodynamics, and is simply the law of conservation of energy applied 

to systems having a very large number of particles, with the external work conven

iently split into two statistical terms, one still called work and the other called heat. 

Since enough has been said here to enable the student to understand the meaning 

of the concepts of heat and temperature as they will be used occasionally in suc

ceeding chapters, we shall not pursue the subject of thermodynamics any further 

at this time. 

9.12 The Virial Theorem for Many Particles 

In this section we shall extend the virial theorem, introduced in Section 8.13 for 

the case of a single particle, to a many-particle system. In its new form it is ap

plicable to the discussion of statistical or average properties of systems composed 
of many particles, especially the gases.* 

* For an elementary application of the virial theorem to problems in chemistry, see 
B. H. Mahan, University Chemistry, Reading, Mass.: Addison-Wesley, 1965, page 412. 
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Let us first consider, for simplicity, a system composed of two particles, m1 and 
m2 • We define the scalar quantity 

(9.54) 

which is simply an extension of the quantity A defined for a single particle. Tak

ing the time derivative of A, we have 

or, since v1 = dri/dt, v2 = dr2/dt, a 1 = dvi/dt, and a2 = dv2/dt, then 

The last term on the right, according to Eq. (9.29), is twice the kinetic energy, 

Ek, of the system. Then we may write 

Using Eq. (9.26) and remembering that F 12 = -F21 and r 1 - r 2 = r 12, we 

see that 

m1a1 · r1 + m2a2 • r2 = (F1 + F12) · r1 + (F2 + F21) • r2 

= F1 · r1 + F2 · r2 + F12 • (r1 - r2) 

= F1 · r1 + F2 · r2 + F12 • r12-

Therefore our equation now reads 

where, to simplify the writing, we have called B the expression inside the paren

theses. Taking the time average of this equation, we have 

[ dd~ lve = 2Ek, ave + Bave· (9.55) 

Remembering the definition of time average given in Section 8.13 and the result 

given in Eq. (8.46), we again have 

A - Ao 

'T 

Again if the time T is very large and A does not increase indefinitely with time, 

the quantity (A - A 0)/r can be made so small that it can be considered as zero. 

This occurs if the system is bounded, such as in the case of a gas in a container, be
cause then r 1 and r 2 , and also v1 and v 2 , in Eq. (9.54) cannot increase indefinitely. 
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Therefore, making (dA/dt)ave = 0 in Eq. (9.55), we find 

If instead of two particles we have many, the equation may be generalized to read 

Ek,ave = - t (L Fi• ri + L Fij • rij) , 
All A 11 pairs - e 
particles of particles av 

(9.56) 

where the first summation on the right-hand side refers to the external forces act

ing on each particle and the second summation refers to the internal forces between 

pairs of particles. Equation (9.56) is called the virial theorem for a system of par

ticles, the quantity on the right-hand side being called the virial of the system. 

9.13 Equation of State of a Gas 

One of the most interesting applications of the virial theorem is the derivatic t of 

the equation of state of a gas. By equation of state we mean an equation which 

describes the relation between the macroscopic quantities such as pressure, volume, 

and temperature, describing the state of a system. Of course, these macroscopic 
or statistical quantities are the direct result of the intern'l\l structure of the system 

and, under proper assumptions, we should be able to establish the correlation be

tween internal structure and macroscopic behavior. 

Let us assume a gas to be composed of 

molecules and subject to their mutual in

teractions and to the interactions with 

the walls of the container. We shall also 

assume for simplicity that the container 

is a cube of side a (a more general proof 

does not require this limitation) as shown 
in Fig. 9-19. 

Let us evaluate Eq. (9.56) by starting 

with the first summation, corresponding 

to the external forces. A molecule experi

ences an external force only when it hits 

the walls and bounces back. We may as

sume that the force it experiences is per

pendicular to the wall, an assumption 
that is only statistically correct. At the Z 

G 

wall OEGH, having x = 0 at all points of Figure 9-19 

its surface, a molecule hitting at point P, 

y 

E 

x 

A 

for example, experiences a force Fi = uxFi. Then Fi· ri = Fixi = 0, and wall 
OEGH does not contribute to the virial because our choice of origin makes Xi = 0. 
The same result is obtained at walls OBCE and OH AB. 

At wall ABCD a particle hitting at Q, for example, suffers a force parallel but 

opposite to OX; that is, Fi = -uxFi, and all particles impinging on that wall 
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have Xi = a. Therefore Fi· ri = -Fia, The sum LiFi · ri for the wall we 
have considered is just - LiFia = -("E.iFi)a = -Fa = -pa3 , where, using 
Eq. (9.46), F = pa2 is the total force exerted by the gas on the wall of area A = a2 , 

and pis the pressure of the gas. A similar result is obtained for the walls CDGE 

and ADGH, resulting in a total contribution to the virial for the six walls of 

LiFi · ri = -3pa3 = -3p V, 

where V = a3 is the volume occupied by the gas. Equation (9.56) then becomes 

or 
(9.57) 

The average kinetic energy of a molecule is lmv~s, and the average energy of all 

the molecules in the gas is Ek.ave = N(lmv~s), where N is the total number of 
molecules. Making the substitution into Eq. (9.57), we have 

pV = !Nmvr!s +!(I: Fii · rii) , 
All 
pairs ave 

(9.58) 

which relates the pressure p and the volume V to molecular properties such as 

m, Vrms, and Fii. We define the absolute temperature T of the gas as directly pro
portional to the average kinetic energy of a molecule, expressing it by the relation 

or (9.59) 

where k is a universal constant called the Boltzmann constant, whose experimentally 

determined value (see note on the measurement of temperature on page 270) is 

k = 1.38044 x 10-23 J °K-1. (9.60) 

Then Eq. (9.58) becomes 

PV = NkT + !("' F·· · r .. ) 3 L..J iJ t) • 

Al_l ave 
pairs 

(9.61) 

We have now arrived at the equation of state of a gas. It is not yet in a final 

form because we have not evaluated the last term, which depends on the inter

molecular forces. To evaluate it we must make some assumptions about the nature 
of intermolecular forces. 

For the present, then, let us postulate an "ideal" gas; i.e., one which exists only 

as a model. An ideal gas is one in which the intermolecular forces are considered 

zero. Thus the last term in Eq. (9.61) disappears, and the equation of state for an 
ideal gas is 

pV = NkT. (9.62) 

This equation is obeyed with surprisingly good approximation by many gases, 
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and thus is an indication that intermolecular forces in gases are negligible except 

when the molecules are closely packed or the temperature is very low. 

The interesting feature of Eq. (9.61) is that it clearly expresses the effect of the 

molecular forces on the pressure of the gas. For example, we see that if the inter

molecular forces are attractive, the products Fii · rii are all negative, so that the 
right-hand side of Eq. (9.61) will be less than for an ideal gas, resulting in a lower 

pressure, a result in agreement with our physical intuition. 

EXAMPLE 9.16. Obtain the equation of state of an ideal gas by directly computing 

the pressure exerted by the gas on the walls of the container. 

Solution: The student may recall that the pressure that the stream of gas of Example 9.2 

exerts on the area A of the wall is 

F 
p=

A 

2 2 
2Anmv cos () _ 2 2 2 () 

A - nmv cos , 

where v cos () is the component of the molecular velocity along the normal to the wall. 

This gives the pressure due to the molecules moving in a direction making an angle () 

with the normal to the wall. Thus in this case n is not the total number of molecules per 

unit volume but only those moving in the said direction. Therefore we should start by 

finding what fraction of the molecules are moving at an angle () with the normal and add 

(actually integrate) their contributions for all directions. Instead we shall proceed in a 

simpler and more intuitive form that essentially gives the same result. 

We may safely assume that statistically, at a particular instant, one-half the molecules 

have a component of their velocity which points toward the wall and the other half away 

from the wall. Thus we must replace n by fn, since only fn are going to hit the wall. 

Also, if the wall is ABC D of Fig. 9-19, then v cos() is the component v,, of the velocity 

along the X-axis which is the normal to the wall we have chosen. Making these changes 

in the above expression for p, we obtain 

p = 2(-!n)mv;. 

The magnitude of the velocity is v2 = v; + vz + v;. Actually we must use the average 

value v;,rms and therefore V~ms = v;,rms + vZ,rms + v~.rms· But we may assume that if the 
gas is homogeneous the directions of the molecular velocities are distributed isotropically. 

Thus v;,rms = v~,rms = v~,rms and therefore v;,rms -!v~s· Making these substitutions in 

the expression for p, we have then 

_ 2( 1 ) (.1. 2 ) _ .1. 2 1 N 2 
p - 2n m 3Vrms - 3nmVrms = :3 V mVrms, 

smce n N /V, N being the total number of molecules and V the volume. Therefore 

This result coincides with Eq. (9.58), except that the term corresponding to the internal 

forces is not present and therefore the equation corresponds to an ideal gas. The advan

tage of the virial method is that it clearly shows how to take into account the inter

molecular forces. Can the student think of a way of incorporating the intermolecular 

forces into the logic we have used in this example? 
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Note on the measurement of temperature. In Section 9.8 we associated the tem

perature of a system of particles with the average kinetic energy of a particle in the cM

frame of reference. In Eq. (9.59), which is jkT = fmv~ms, we were more specific about 
the relation between the temperature of a gas and the average kinetic energy of the gas 

molecules. However, two important aspects must now be considered. First, in the de

fining equation (9.59) we introduced two new quantities, T (the absolute temperature) 

and k (Boltzmann's constant), and we must decide how they can be measured in

dependently. Second, the student has an intuitive concept of temperature based on 

sensorial experience, as reflected by his feelings of hot and cold. He is accustomed to 

measuring temperature in terms of a number given by a device called a thermometer. 

Therefore it is necessary to correlate our definition of temperature with this intuitive 

notion. 

Let us consider a mass M of a gas containing N molecules. If we neglect the effect of 

the intermolecular forces, the equation of state is given by Eq. (9.62); that is, p V = 
NkT. Suppose that we bring the gas into thermal equilibrium with some other physical 

system which we assume may be kept at a fixed temperature. This system may be a 

mixture of water and ice at its freezing point and at the standard pressure of one atm. 

We measure the pressure and the volume of the gas at this fixed temperature, obtaining 

the values Po and Vo, respectively. Next we decide to assign a convenient (but arbitrary) 

value To to the fixed temperature, which is also the temperature of the gas. Therefore 

we may write po Vo = NkTo. This automatically fixes the value of the Boltzmann con

stant, k = po Vo/NTo, where N can be obtained if we know the mass of each molecule. 

To determine the temperature of the gas when its pressure is p and its volume is V, so 

that p V NkT, we simply eliminate the factor Nk, using the standard values, and 

obtain 
T = To(pV !Po Vo), 

which gives T in terms of our standard reference temperature To and other measurable 

quantities. In this way our mass of gas has become a gas thermometer. Instead of a gas 

we may use other substances as thermometers, such as a liquid, or a metal rod whose 

dimensions (volume or length) change with the temperature. Since the equation of state 

of these substances is more complicated, in practice we calibrate these thermometers 

against a gas thermometer. In this case the thermometer agrees with the gas thermometer 

only at the calibration points. Since the property chosen may not vary linearly with the 

temperature, there may be slight discrepancies at intermediate temperatures. 

We may choose the value of To on the basis of several points of view. For example, we 

may choose another process that conceivably occurs at a fixed temperature, such as the 

process of water boiling at a certain temperature at the standard pressure of one atm. 

Then we may decide that the temperature of this second reference point is 100 units or 

degrees above To. If p1 and V 1 are the pressure and volume of the gas at this new tem

perature, we have that p1 V1 = Nk(To + 100). Solving for Nk from the equation 

po Vo = NkTo, and substituting this value in the above equation, we find that 

To = lOOpo Vo/(p1 V 1 - Po Vo), 

from which we can obtain a numerical value for To. The value obtained for To as a re

sult of this type of experiment (and many other experiments using different techniques) 

is To = 273.15. Each of the units is called a degree Kelvin, designated by 0 K. 

It is important to realize that our technique for measuring temperature is based on the 

ideal gas approximation. If we use different gases, the results obtained will be different 
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because the effect of the intermolecular forces, as it appears in Eq. (9.61), is different 

for each gas. Usually hydrogen or helium is used. It is most desirable to be able to ob

tain a temperature scale independent of the substance being used as a measuring medium, 

a subject that is discussed in thermodynamics and will not be pursued here. 

9.14 Fluid Motion 

The general principles we have discussed in this chapter for many-particle systems 

can easily be applied to a discussion of fluid motion. Let us consider, for simplicity, 

a fluid (i.e., a liquid or a gas) moving along a cylindrical pipe of variable cross 

section A (Fig. 9-20). The pipe can be oriented in any direction, and therefore 

the X-axis is made coincident with its axis. We shall concentrate on a volume 

element of thickness dx and volume A dx. Although this volume is small, it still 

contains a very large number of molecules. We can discuss its motion by using 

Eq. (9.9) with the mass M replaced by p(A dx), where pis the density of the fluid. 

The center of mass may be assumed to coincide with the center of the volume ele

ment, if the fluid is homogeneous, and VcM is called the velocity of the fluid at 

that point. In our case, it is parallel to the X-axis. 

-------------
0 

0 

Figure 9-20 

0 

We must now determine the resultant external force on the volume of fluid. 

Let p and p' be the values of the pressure at the left and the right of the volume 

element. The fluid at the left produces a force pA on the volume element directed 

toward the right and the fluid at the right produces a force p' A directed toward 

the left. Thus the X-component of the resultant external force on the volume ele

ment due to pressure is 

dFx = -p'A + pA = -(p' - p)A. 

But p' - p is the pressure difference between two points separated a distance dx; 

therefore p' - p = dp. Thus 

dFx = -(dp)A = - ~: (A dx). 

Since A dx is the volume, we conclude that the force per unit volume along the X-
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axis due to pressure is 

dp 
f - --· 

P - dx 

(9.14 

(9.63) 

This result, when we compare it with Eq. (8.23), suggests that we may consider 

pressure as potential energy per unit volume. We may see that this is dimension

ally correct, since p is expressed in N m-2 , which is the same as (N m)m-3 or 
J m-3. 

In addition to the pressure, there may be other external forces (such as gravity 

or an external electric or magnetic field) acting on the fluid inside the volume ele

ment. Let us say that f e is any such force per unit volume (such as weight per unit 

volume); the resultant external force on the fluid inside the volume element is 

(f P + fe)A dx = (-dp/dx + fe)A dx. (The forces between molecules within the 
volume element are internal forces, and must not be taken into account.) Thus 

the equation of motion according to Eq. (9.9), (and here we drop the subscript CM 

for the velocity), is 

(pA dx) :~ = ( - :: + fe) A dx 

or, canceling the common factor A dx, we have 

dv dp 
p dt = - dx + f e· (9.64) 

If the force fe is conservative, we have that fe = -dEp/dx, where Ep is the cor
responding potential energy per unit volume. Then 

dv dp dEp d 
p- = - - - - = - - (p + E ). 

dt dx dx dx P 
(9.65) 

Before we go any further, we must be more specific about the nature of the fluid 

motion. The motion of a fluid is said to be stationary when the motion pattern does 

not change with time. This means that, although the velocity of a fluid element 

may change when the fluid element changes position, the velocity of the fluid at 

each point of space remains the same. To be more precise, if we follow a particular 

fluid element along its path of motion 

(Fig. 9-21), we may find that when it is at 

A its velocity is v and when it is at A' its 

velocity is v'. But if the motion is sta

tionary, all fluid ele!llents have velocity v 

when they pass through A, and velocity v' 

when they pass through A'. Thus the ve

locity of the fluid may be considered as a 

function of position instead of a function 

of time. When the motion is not stationary, 

the velocities at each position may change Fig. 9-21. Stationary flow. The lines 

with time. For example, if at a certain time shown are called streamlines. 
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the velocity of the fluid at A is v, at a later time the velocity, in general, will be 

different. In what follows we shall consider only stationary fluid motion. 

In the case of stationary motion, when dt is the time required by the fluid ele

ment to move through the distance dx, we may write that 

dv = dv dx = v dv = ..!!:_ (.!v2). 
dt dx dt dx dx 2 

Substituting this in Eq. (9.65), we have 

We assume that the fluid is incompressible (that is, that its density is constant); 

hence the left-hand side of the equation becomes dCipv 2)/dx, and we may write 

the equation in the form 

or 

d 
- ( ipv2 + p + Ep) = 0 
dx 

ipv 2 + p + Ep = const. (9.66) 

This result, known as Bernoulli's theorem, expresses the conservation of energy in 

the fluid. The first term is its kinetic energy per unit volume, the second is inter

preted as its potential energy per unit volume associated with the pressure, and the 

third term is its potential energy per unit volume due to all other external forces. 

Therefore if all the forces acting on the fluid are conservative, and we follow the 

motion of a small volume of the fluid, we find that the total energy per unit volume 

remains constant. 
In the particular case that the external 

force acting on the fluid is gravity, Ep = 
pgz and Eq. (9.66) becomes 

!pv2 + p + pgz = const. (9.67) 

Let us c·onsider two important cases. 

When the fluid moves in the horizontal 

direction only, the term pgz remains con

stant and Eq. (9.67) reduces to 

Larger velority; 
lower pressure 

Smaller velocity; 
larger pressure 

}pv2 + p = const. (9.68) Fig. 9-22. Air lift on an airplane wing. 

Thus, in a horizontal pipe, the greater the velocity, the lower the pressure, and con

versely. This effect is used to produce the lift of an airplane (Fig. 9-22). The 

profile of the wing is so designed that the air has a greater velocity above the wing 

surface than below it, which produces a larger pressure below than above. This 
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results in a net resultant upward force. If A is the area of the wing, the upward 

force is F = A(p1 - p2 ) = !Ap(v~ - Vi) where the subscripts 1 and 2 refer to 

the conditions below and above the wing. As a good approximation, since 

we may say that !(v2 + v1) is equal to the plane's velocity, v, relative to the air. 

Then the resultant upward force, or lift, is 

F = Apv(v2 - v1). 

As our second example, consider a fluid at rest or moving with a constant velocity 

in a pipe. Under such circumstances, the term !pv2 may be dropped from Eq. (9.67), 

which then reduces to p + pgz = const. Designating the constant by p0 , we then 

have that the pressure in an incompressible fluid in equilibrium is given by 

P = Po - pgz. (9.69) 

Obviously, p0 is the value of the pressure at z = 0. 

Our discussion could be extended to cases in which the fluid is compressible or 

the forces are not conservative. (This latter situation arises, for example, when a 

fluid does shaft work in driving some mechanism such as a turbine in a hydroelectric 

installation, or when heat is exchanged with the surroundings, as in an industrial 

chemical plant.) We shall omit these considerations here, however, since they be

long to more specialized courses. 

One last principle that is very important in discussing fluid motion is the equa

tion of continuity, which expresses the conservation of mass of the fluid. Let us 

consider a fluid moving inside the pipe shown in Fig. 9-23 under steady conditions, 

so that mass is not being added or lost at any point. Let A 1 and A 2 be two sections 

of the pipe. The volume of fluid that passes through A 1 per unit time corresponds 

to a cylinder of base A 1 and length v1 , having a volume A 1v1, and thus the mass of 

fluid that has passed through A 1 in a unit time is p1A 1v1. Similarly we have that 

p 2 A 2v2 is the amount of fluid that passes through A 2 per unit time. The conserva

tion of mass, under the conditions stated, 

requires that the two masses be the same, 

or 

(9.70) 

which is the equation of continuity. If 
the fluid is incompressible, the density re

mains the same and Eq. (9.70) reduces to 

(9.71) 
Figure 9-23 

indicating that the velocity of the fluid is inversely proportional to the cross 

section of the tube, a result in agreement with our physical intuition. 
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Figure 9-24 

EXAMPLE 9.17. A method for determining the velocity of a fluid in a pipe is the 

Venturi meter, illustrated in Fig. 9-24. Two pressure gauges G1 and G2 measure the 

pressure in the pipe and at a contraction inserted in it. Obtain the velocity v1 in terms 

of the pressure difference Pl - p2. 

Solution: To obtain the expression for the velocity, we note that if v1 and v2 are the 

velocities at both sections, of areas A1 and A2, respectively, the equation of continuity 

(9.71) gives A1v1 = A2v2 or v2 = (Ail A2)v1. Also if the pipe is horizontal, Bernoulli's 

theorem, in the form of Eq. (9.68), gives us 

Inserting the value of v2 obtained previously and solving for v1, we finally obtain 

The amount of fluid passing through any section of the pipe per unit time is 

where K is a constant depending on the pipe and on the nature of the fluid. 
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Problems 

9.1 A system is composed of three parti

cles with masses 3 kg, 2 kg, and 5 kg. The 

first particle has a velocity of uy(6) m s- 1• 

The second is moving with a velocity of 8 m 
s-1 in a direction making an angle of -30° 

with the X-axis. Find the velocity of the 

third particle so that the CM appears at 

rest relative to the observer. 

9.2 At a particular instant, three particles 

are moving as shown in Fig. 9-25. They 

are subject only to their mutual interac

tions, so that no external forces act. After 

a certain time, they are observed again and 

it is found that m1 is moving as shown, 

while m2 is at rest. Find the velocity of 

m3. Assume that m1 = 2 kg, m2 = 0.5 kg, 

v' rn 1 (after) 
....L.-,-) 

Figure 9-25 

y 

m3 = 1 kg, v1 = 1 m s-1, v2 = 2 m s-1, 

V3 = 4 m s-1 and v{ = 3 m s-1. Find the 

velocity of the CM of the system at the two 

times mentioned in the problem. At a 

given time the positions of the masses are 

m1(-0.8 m, -1.1 m), m2(0.8 m, -1.1 m), 

m3(1.4 m, 0.8 m). Draw a line showing the 

path of the CM of the system. 

9.3 The masses m1 = 10 kg and m2 = 6 

kg are joined by a rigid bar of negligible 

mass (Fig. 9-26). Being initially at rest, 

they are subject to forces F 1 = u.,(8) N 

and F2 = uy(6) N, as shown. (a) Find the 

coordinates of their CM as a function of 

time. (b) Express the total momentum as 

a function of time. 

y 

Figure 9-26 



9.4 The two masses in Fig. 9-27 are ini

tially at rest. Assuming that m1 > m2, 

find the velocity and acceleration of their 

CM at time t. 

• 

Figure 9-27 

9.5 A stream of liquid, set at an angle fJ, 

is directed against a plane surface (Fig. 

9-28). The liquid, after hitting the sur

face, spreads over it. Find the pressure on 

the surface. The density of the liquid is p 

and its velocity is v. 

Figure 9-28 

9.6 Determine the position of the CM and 

the reduced mass of the following systems: 

(a) earth-moon, (b) sun-earth. Use the data 

given in Table 13-1. Also find the internal 

angular momentum of each system. Repeat 

the same problem for the CO and HCl 

molecules. The bond length of the CO 

molecule is 1.13 X 10-10 m and of the 
HCl molecule is 1.27 X 10-10 m. 

9.7 Two particles with masses 2 kg and 

3 kg are moving, relative to an observer, 

with velocities of 10 m s-1 along the X-axis 

and 8 m s-1 at an angle of 120° with the 

X-axis, respectively. (a) Express each ve

locity in vector form. (b) Find the velocity 

of their CM. (c) Express the velocity of each 
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particle relative to its CM. (d) Find the 

momentum of each particle in the CM

frame. (e) Find the relative velocity of 

the particles. (f) Calculate the reduced 

mass of the system. (g) Verify the rela

tions given in Example 9.4. 

9.8 Determine the total kinetic energy of 

the particles of Problem 9.7, relative to the 

laboratory and relative to their CM. Use 

two different methods for the second cal

culation. Verify the relations given in 

Example 9.8. 

9.9 Assume that the particles of Problem 

9.7 are at the points (0, 1, 1) and (-1, 0, 2), 

respectively. (a) Find the position of the 

CM. (b) Determine the angular momentum 

of the system relative to their CM. (c) Ob

tain the angular momentum relative to the 

origin. Use two different methods for (b) 

and (c). 

9.10 A 236U uranium nucleus at rest splits 

into two fragments, having masses of 140 

amu and 90 amu. The Q of the reaction is 

190 MeV. Find the energies and the veloc

ities of the two fragments. 

9.11 A 238U nucleus at rest disintegrates, 

emitting an alpha particle (m = 4 amu) 

and leaving a residual nucleus of 234Th 

(M ~ 234 amu). The total energy avail

able is 4.18 MeV. Find (a) the kinetic 

energy of the alpha particle and of the re

sidual nucleus, (b) their momenta, and (c) 

their velocities. 

9.12 A nucleus, originally at rest, decays 

radioactively by emitting an electron of 

momentum 9.22 X 10-21 m kg s-1, and, 

at right angles to the direction of the elec

tron, a neutrino with momentum 5.33 X 

10-21 m kg s-1 . (a) In what direction does 

the residual nucleus recoil? (b) What is its 

momentum? (c) Given that the mass of the 

residual nucleus is 3.90 X 10-25 kg, what 

are its velocity and kinetic energy? 

9.13 A shell of mass m explodes into sev

eral fragments. The explosion has a posi

tive Q-value. (a) Show that if the shell 

explodes into two fragments, they move in 



278 Dynamics of a system of particles 

opposite directions in the G-frame of ref

erence. (b) Show that if the shell explodes 

into three fragments, their momenta and 

velocities, all relative to the G-frame of 

reference, lie in one plane. (c) If the num

ber of fragments is greater than three, is 

there any special requirement on their 

momenta relative to the G-frame of ref

erence? ( d) Show that if the shell divides 

into two equal fragments, their momenta 

and velocities in the G-frame of reference 
are equal to (mQ/2) 112 and (2Q/m)112, 

respectively. (e) Show that if the shell 

divides into three equal fragments emitted 

symmetrically in the G-frame, their mo

menta and velocities in this frame are 

k(2mQ) 112 and (2Q/m) 112, respectively. 

(f) Repeat (e), assuming that two frag

ments are emitted with the same velocity 

relative to the G-frame but in directions 

making an angle of 90°. (g) How would 

the results of (d) and (e) appear to an 

observer in the L-frame if, at the time of 

the explosion, the shell were moving with 

a velocity i-(2Q/m) 112 relative to the L

frame, and in the same direction of motion 

as one of the resulting fragments? 

9.14 A projectile is fired at an angle of 60° 

with the horizontal and a muzzle velocity 

of 400 m s-1• At the highest point of its 

trajectory it ·explodes into two fragments 

of equal mass, one of which falls vertically. 

(a) How far from the point of firing does the 

other fragment strike the ground if the ter

rain is level? (b) What was the energy 

released in the explosion? 

9.15 A grenade of mass Mis falling with a 

velocity vo, at height h, when it explodes 

into two equal fragments that initially 

move horizontally in the G-frame. The ex

plosion has a Q value of M v~. Determine 

the positions where the fragments will fall 

on the ground relative to the point directly 

below the grenade at the time of the 

explosion. 

9.16 Repeat Problem 9.15 for a grenade 

moving horizontally at the time of the 

explosion. 

9.17 A ball, having a mass of 4 kg and 

a velocity of 1.2 m s - 1, collides head-on 

with another ball of mass 5 kg moving at 

0.6 m s-1 in the same direction. Find (a) 

the velocities of the balls after the collision 

(assuming that it is elastic), (b) the change 

in momentum of each ball. 

9.18 Repeat the previous problem, as

suming that the second ball is moving in 

the opposite direction. 

9.19 Repeat the two previous problems if 

the two balls continue moving together. 

9.20 A particle having a mass of 0.2 kg 

while moving at 0.40 m s-1 collides with 

another particle of mass 0.3 kg, which is 

at rest. After the collision the first particle 

moves at 0.20 m s-1 in a direction making 

an angle of 40° with its initial direction. 

Find the velocity of the second particle and 

the Q of the process. 

r-- ---, 

: = I r ;~......_ ___ _, _L_-_-_-;:.!_: ____ _J 

Figure 9-29 

9.21 The arrangement m Fig. 9-29 is 

called a ballistic pendulum. It is used to 

determine the velocity of a bullet by meas

uring the height h the block rises after the 

bullet is embedded in it. Prove that the 

velocity of the bullet is given by 

where m1 is the mass of the bullet and m2 

the mass of the block. 

9.22 A bullet of mass m and velocity v 

passes through a pendulum bob of mass M 

and emerges with velocity v/2 (Fig. 9-30). 

The pendulum bob is at the end of a string 



Figure 9-30 

of length l. What is the minimum value of 

v such that the pendulum bob will swing 

through a complete circle? 

9.23 A particle of mass 5 kg, moving at 

2 m s - 1, collides with a particle of mass 

8 kg initially at rest. If the collision is 

elastic, find the velocity of each particle 
after the collision (a) if the collision is head

on, (b) if the first particle is deflected 50° 

from its original direction of motion. Ex

press all directions relative to the direction 

of the incoming particle. 

9.24 A particle of mass m, moving with a 

velocity v, collides elastically and head-on 

with another particle of mass .M (larger 

than m) having (a) an equal but opposite 

momentum, (b) the same kinetic energy, 

but moving in the opposite direction. Com

pute in each case the velocity of the first 

particle after the collision. (c) Show that 

if M is at rest and much larger than m, 

the change in kinetic energy of m is 

9.25 It is found experimentally that in the 

head-on collision of two solid spheres, such 

as two billiard balls, the velocities after the 

collision are related to those before by the 

expression v~ - v~ = -e(v1 - v2) where 

e is between zero and one, and is called the 

coefficient of restitution. This result was 

discovered by Newton and has only ap

proximate validity. In addition, momen

tum is conserved in the collision. Prove 
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the following: (a) The velocities after the 

collision are given by 

and 

v1(m1 - m2e) + v2m2(l + e) 

m1 + m2 

v1m1(l + e) + v2(m2 - m1e) 

mi+ m2 

(b) The Q of the collision is 

(c) What should be the value of e for the 

collision to be elastic? 

9.26 In a plastic collision the two bodies 

move as one after the collision. (a) What 

is the value of the coefficient of restitution 

e? (b) Compute the Q of the reaction di

rectly, and also by using the results of 

Problem 9.25 with the appropriate value 

of e. 

Figure 9-31 

9.27 If the masses of balls m1 and m2 in 

Fig. 9-31 are 0.1 kg and 0.2 kg, respectively, 

and if m1 is released when d = 0.2 m, find 
the heights to which they will return after 

colliding if the collision is (a) elastic, (b) in

elastic with a coefficient of restitution equal 

to 0.9, (c) plastic (e = O). Solve the prob

lem also for a case in which mass m2 is 

raised and released against a stationary m1. 

9.28 Discuss the physical results of a col

lision in which the value of e is (a) negative, 

(b) larger than one. Do you conclude then 

that these values of e are permissible for a 

collision between two solid spheres? 
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9.29 Assuming that the second body in 

Problem 9.25 is at rest and that its mass is 

very large compared with that of the first, 

find the velocity of each body after the 

collision, and also find the value of Q. 
Apply this result to determine how high a 

body, dropped from a height h, rebounds 

after hitting the floor. Do the experiment 

yourself with a marble and estimate from 

it the corresponding value of e. 

9.30 Prove that the time required by the 

ball of Problem 9.29 to stop rebounding is 

t = v2h/g (1 + e)/(1 - e). 

9.31 Prove that if the ball of Problem 9.29 

strikes the ground at an angle a with the 

vertical, it rebounds at an angle {3, given 

by tan {3 = (1/e) tan a, with a velocity 

v' = vv' e2 cos2 a+ sin2 a. Use these re

sults to discuss the motion of a ball dropped 

from a table with an initial horizontal 

velocity vo. Make a sketch of its trajectory, 

assuming that it makes several collisions 

with the floor. 

9.32 Prove directly that if energy and 

momentum are conserved in an elastic 

collision, then 

u • (vf - v~) = -u • (v1 - v2), 

where u is a unit vector in the direction in 

which the momentum of either of the par

ticles has changed. This result means that 

in the collision the component of the rela

tive velocity along the direction of momen

tum exchange is reversed. Apply this to the 

case of a head-on collision. Compare this 

with the results of Problem 9.25 with 

e = 1. [Hint: Write the two conservation 

laws, with all terms for each particle on 

each side of each equation.] 

9.33 A neutron, having an energy of 1 

MeV, moves through (a) deuterium and 

(b) carbon. Estimate for each material 

how many head-on collisions are required 

to reduce the neutron's energy to a thermal 

value of about 0.025 e V. The relative prob

ability of neutron capture by these ma

terials is 1: 10. In which of these materials 

is there a larger probability of the neutron 

being captured before slowing down? 

9.34 Prove that in a collision of a particle 

of mass m1, moving with velocity v1 in the 

£-frame, with a particle of mass m2 at rest 

in the £-frame, the angles at which the 

first particle moves after the collision rela

tive to its initial velocity are given by 

tan() = sin <j,/ (cos <f> + 1/ A), where A = 

m2/m1 and angles () and <f> refer to the L

and C-frames, respectively. 

9.35 Verify, for the particles of the pre

vious problem, that if m1 = m2 then 

() = !<f>. What is then the maximum value 

of O? 

9.36 Referring to Problem 9.34, show that 

the maximum value of () for arbitrary A is 

given by tan() = A/Vl - A 2. Discuss 

the situation when A is larger than one 

and when it is smaller than one. 

9.37 In analyzing the deflection of alpha 

particles moving through hydrogen, physi

cists have found experimentally that the 

maximum deflection of an alpha particle 

in the £-frame is about 16°. Using the re

sults of Problem 9.36, estimate the mass 

of the alpha particle relative to hydrogen. 

Check your answer with the actual value 

obtained by other techniques. 

9.38 Prove that if the internal kinetic 

energy of a system of two particles is Ek, CM, 

the magnitudes of the velocities of the par

ticles relative to the CM are: 

and 

9.39 For the two particles in Fig. 9-32, we 

are given that m1 = 4 kg, m2 = 6 kg, 

v1 = ux(2) m s-1 and v2 = uy(3) m s-1. 

(a) Determine the total angular momentum 

of the system relative to O and relative to 

the CM and verify the relation between 

them. (b) Determine the total kinetic 

energy relative to O and relative to the 

CM and verify the relation between them. 
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Figure 9-32 

9.40 Assume that the two particles of the 

preceding problem are joined by an elastic 
spring, of constant 2 X 10-3 N m-1 , 

which is initially unstretched. (a) How 

will this affect the motion of the CM of the 

system? (b) What is the total internal 

energy of the system? Will it remain con

stant? (c) After a certain time, the spring 

is compressed by 4 cm. Find the internal 

kinetic and potential energies of the parti

cles. (d) Determine the magnitudes of the 

velocities relative to the CM (can you also 

determine their directions?). Also determine 

(e) the magnitude of their relative velocity, 

(£) the angular momentum of the system 

relative to O and to the CM. 

9.41 Two masses connected by a light rod, 

as shown in Fig. 9-33, are at rest on a 

horizontal frictionless surface. A third par

ticle of mass 0.5 kg approaches the system 

with velocity v0 and strikes the 2-kg mass. 

What is the resulting motion of the CM of 

the two particles if the 0.5-kg mass bounces 

off with velocity VJ as shown? 

y 

Figure 9-33 
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9.42 The potential energy due to the inter

action between a proton and a deuterium 

atom is Ep,int = 2.3 X 10-28/r J, where r 

is the separation between the two, expressed 

in meters. At a particular instant, a proton 

of energy 0.5 Me V is at a distance 2 X 
10-12 m from a deuterium atom at rest, all 

referred to the £-frame. (a) Find the ki

netic energy of the system in the L- and 

G-frames, as well as their internal potential 

energy [mproton = 1.0076 amu, mdeuteron = 

2.0147 amu]. (b) After a certain time the 

proton is at 10-13 m from the deuterium 

atom. Find the kinetic energy of the sys

tem in the L- and G-frames, as well as their 
potential energy. (c) Find the magnitude 

of the velocity of the CM in both cases. 

9.43 Designating the earth, the moon, and 

the sun by the subscripts E, M, and S, re

spectively, write in full Eq. (9.34) for sys

tems consisting of (a) the earth and the 

moon, (b) the earth, the moon, and the sun. 

9.44 A gas is maintained at a constant 

pressure of 20 atm while it expands from a 

volume of 5 X 10-3 m3 to a volume of 

9 X 10-3 m3 • What amount of energy in 

the form of heat must be supplied to it (a) 

to maintain its internal energy constant? 

(b) to increase its internal energy by the 

same amount as the external work done? 

Express your result in calories and in 

joules. 

9.45 A gas expands in such a way that at 

each instant the relation between its pres

sure and its volume is p V'Y = C, where 'Y 

is an appropriate constant. Prove that the 

work done in expanding from the volume 

V 1 to the volume V 2 is 

9.46 We recall (Problem 2.8) that one 

mole of a substance is an amount (expressed 

in grams) equal to its molecular (or atomic) 

mass expressed in amu. In one mole of any 

substance there is always the same number 

of molecules, called Avogadro's number, 

given by NA = 6.0225 X 1023 mol- 1 . 

Show that if N is the number of moles, 
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Eq. (9.62) can be written in the form 

pV = NRT, 

where R = kN A, and is called the gas con

stant. Show also that R = 8.3143 J °K-1 

mol-1. 

9.47 Prove that the result of Problem 

9.46 can also be written in the form p = 

p(RT / M), where p is the density of the 

gas and Mis its molecular mass (expressed 

in kg). 

9.48 Find the volume of one mole of any 

gas at STP; that is, at a temperature of 

0°C and a pressure of one atmosphere. 

Also show that the number of molecules of 

any gas per cubic centimeter at STP is 

2.687 X 1019. This is called the Loschmidt 

number. 

9.49 What is the average kinetic energy 

of a gas molecule at a temperature of 25°C? 

Express it in joules and in e V. What is 

the corresponding rms velocity if the gas 

is (a) hydrogen, (b) oxygen, (c) nitrogen? 

Note that the molecules of these gases are 

diatomic. Do the same for helium (mon

atomic) and carbon dioxide. 

9.50 Find the internal energy of one mole 

of an ideal gas at 0°C (273°K). Does it de

pend on the nature of the gas? Why? 

9.51 Find the change in internal energy 

of one mole of an ideal gas when its tem

perature changes from 0°C to 100°C. Do 

we also have to specify how the pressure 

and volume changed? 

9.52 The process referred to in the pre

ceding problem occurs at constant volume. 

(a) What was the work done by the gas? 

(b) What was the heat absorbed? 

9.53 Repeat the previous problem when 

the process mentionecl in Problem 9.51 oc

curs at constant pressure. 

9.54 Identify the constant C that appears 

in Eq. (9.51) for the expansion work of a 

gas at constant temperature. (a) Compute 

the work done by one mole of an ideal gas 

when doubling its volume at a constant 

temperature equal to 0°C. (b) Compute 

the change in its internal energy and the 

heat absorbed. 

9.55 Prove that if the potential energy 

for the interaction between two particles 

is Ep = -Crl't, then r12 • F12 = nEp. 
[Hint: Choose particle 1 as the origin of 

coordinates, and remember Section 8.13.] 

9.56 Use the result of the preceding prob

lem to rewrite the virial theorem, Eq. (9 .56), 

in the form 

where E P corresponds to the total internal 

potential energy of the system. Note that 

if the system is isolated (i.e., no external 

forces act) then Ek.ave = -!nEp,ave· 

Compare this last result with Eq. (8.49). 

9.57 Assume that gravitational forces are 

attractive and follow the inverse-square 

law (Chapter 13) so that the total poten

tial energy is negative and n = 1. Using 

the result of Problem 9.56, prove (a) that 

the total energy of an isolated mass sys

tem is negative, (b) that if energy is lost 

by the system (usually by radiation), the 

potential energy must decrease, (c) that 

this requires that the kinetic energy of the 

system increase, resulting in a correspond

ing increase in the temperature of the sys

tem. (These results are of great importance 

in astrophysics.) 

9.58 Discuss the applicability of the virial 

theorem to a system in which the internal 

forces are repulsive. Assume that the po

tential energy between the two particles is 

Ep = +Cr1t 
9.59 A body whose mass is 10 kg and 

which has a velocity of 3 m s-1 slides on a 

horizontal surface until friction causes it 

to stop. Determine the amount of energy 

transferred to internal molecular motion 

in both the body and the surface. Express 

it in joules and in calories. Would you say 

that this energy has been transferred as 

heat? 

9.60 The masses of blocks A and B in 

Fig. 9-34 are m1 and m2. Between A and 



B there is a frictional force of magnitude 

F, but B can slide frictionlessly on the hori

zontal surface. Initially A is moving with 

velocity vo while B is at rest. If no other 

forces act on the system, A will slow down 

and B will speed up until the two blocks 

move with the same velocity v. (a) What 

is the distance moved by A and B before 

this happens, measured relative to the 

horizontal surface? (b) What is the change 

in kinetic energy of the system in terms of 

the distance moved by A relative to B? 

(c) What has happened to the total 

momentum? 

B 

Figure 9-34 

9.61 A horizontal pipe has a cross section 

of 10 cm2 in one region and of 5 cm2 in 

another. The water velocity at the first is 
5 m s-1 and the pressure in the second is 

2 X 105 N m - 2• Find (a) the velocity of 

the water in the second region and the 

pressure of the water in the first region, 

(b) the amount of water crossing a section 

in one minute, (c) the total energy per 

kilogram of water. 

9.62 Repeat the previous problem for a 

case in which the pipe is tilted and the 

second section is 2 m higher than the first. 

9.63 Verify that the equation of motion 

of a fluid in vector form is p dv/dt = 

-grad p + J •. 

9.64 Show that if there is a hole in the wall 

of a vessel and if the surface of the liquid 

inside the vessel is at a height h above the 

hole, the velocity of the liquid flowing 

through the hole is v = V2gh. Consider 
a cylindrical vessel having a diameter of 

0.10 m and a height of 0.20 m. A hole 

1 cm2 in cross section is opened at its base. 
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Water is flowing into the vessel at the rate 
of 1.4 X 10-4 m3 s-1 • (a) Determine how 

high the water level will rise in the vessel. 

(b) After reaching that height the flow of 

water into the vessel is stopped. Find the 

time required for the vessel to empty. 

9.65 Using the equation of motion derived 

in Problem 9.63, prove that, for a com

pressible fluid, Bernoulli's theorem adopts 

the form ( !v~ + gzz) - ( !vj + gz1) + 
n dp/ p = w, where w is the work per 

unit mass done on the fluid by other forces 

in addition to gravitation. [Hint: Separate 

the external force per unit volume !ext into 

the weight -pgu. and any other force that 

may act on the fluid, then divide the re

sulting equation of motion by p and multi

ply scalarly by v dt = dr, noting that 

(grad p) • dr = dp.] 

9.66 A cylinder of height h and cross sec

tion A stands vertically in a fluid of den

sity p1. The fluid pressure is given by 

p = Po - p1gz, according to Eq. (9.69). 

Prove that the total upward force on the 

cylinder due to the fluid pressure is V p1g, 

where V is the cylinder's volume. Extend 

the result to a body of arbitrary shape by 

dividing it into thin vertical cylinders. 

(This result constitutes Archimedes' princi

ple, and the force is known as the buoyancy.) 

9.67 From Eq. (9.62), show that if the 

temperature of an ideal gas is constant, 

then p V = const or Pl V 1 = p2 V 2, a 
result known as Boyle's law. Show also 

that if the pressure is constant, then V /T = 
const or V i/T1 = V 2/T2, a result known 
as Charles' law. Finally, show that if the 

volume is constant, then p/T = const or 

pi/Ti = p2/T2, a result known as Gay

Lussac's law. These laws were known ex

perimentally long before they were syn

thesized in Eq. (9.62). 

9.68 Consider a system composed of N 
identical particles, each of mass m (such 

as occurs in a gas). Show that the average 

kinetic energy of a particle relative to an 

observer who sees the center of mass mov

ing with velocity VcM is equal to the aver-
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age kinetic energy of the particles relative 

to the C-frame of reference plus !mvtM· 
[Hint: Use the relation given by Eq. (9.38).] 

9.69 The pressure of a gas is related to its 

density by the equation p = p(RT/M), 

where M is the molecular mass on the 
atomic scale (see Problem 9.47). (a) Using 

the result of Section 9.13, prove that if a gas 
is in equilibrium its pressure must change 

with the height according to 

p = poe-(Mo/RT)z. 

This is sometimes called the barometric 

equation, and may be used to estimate the 
variation of atmospheric pressure with 
height. (b) Prove that for small heights 

it reduces to the value given at the end of 
Section 9.14 for an incompressible fluid. 

9.70 A bomb explodes into three frag
ments of equal mass m. The explosion 

releases an energy Q. In this case the laws 
of energy and momentum conservation do 
not uniquely determine the energy and 

momentum of each fragment. Referring 
the process to the C-frame of reference, 

show that (a) the kinetic energies of the 
fragments can be represented by the dis
tances from a point P to the sides of an 

Q 

A. B 

Figure 9-35 

equilateral triangle of altitude Q. (b) Also 

show that the conservation of momentum 

requires that the point P be inside the 
circle (with radius }Q) inscribed in the 
triangle. This representation is called a 

Dalitz diagram (Fig. 9-35) and is widely 
used to describe the decay of a fundamental 

particle into three equal fragments. [Hint: 

For the proof of (b), note that in the C

frame the total momentum is zero, and 

thus p1 + p2 ~ p3. Also the three en
ergies can be expressed as Ek,l = PN = 
W+rcos (<f,- 21r/3), Ek,2 =PM= !Q+ 
r cos (<f, + 21r/3), and Ek.3 = PL = }Q + 
r cos <f,.] 
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Fig. 10-1. (a) Motion of translation of a rigid body. (b) Motion of rotation of a rigid 
body. 

10.l lntrodnction 

A special and important case of systems composed of many particles is a rigid 

body; that is, a body in which the distances between all its component particles 
remain fixed under the application of a force or torque. A rigid body therefore 
conserves its shape during its motion. 

We may distinguish two types of motion of a rigid body. The motion is a trans

lation when all the particles describe parallel paths so that the lines joining any 
two points in the body always remain parallel to its initial position (Fig. 10-la). 
The motion is a rotation around an axis when all the particles describe circular 
paths around a line called the axis of rotation (Fig. 10-lb). The axis may be fixed 

or it may be changing its direction relative to the body during the motion. 
The most general motion of a rigid body can al-

ways be considered as a combination of a rotation 
and a translation. That is, it is always possible to 
find a translating, nonrotating frame of reference 
in which the body's motion appears to be rotation 
only. For example, the motion of the body in 

Fig. 10-2 which passes from position 1 to position 

2 can be considered as a translation represented 
by the displacement CC', joining the two positions 
of the center of mass, and a rotation around an 
axis through the center of mass C'. 

According to Eq. (9.9), M dvcM/dt = Fext, 
the motion of the center of mass is identical 
to the motion of a single particle whose mass 

c 

Fig. 10-2. General motion of 
a rigid body. 

is equal to the mass of the body and which is acted on by a force equal to 
the sum of all external forces applied to the body. This motion can be analyzed 
according to the methods explained in Chapter 7 for the dynamics of a particle, 

and therefore does not involve special techniques. In this chapter we shall ex-
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~-l:t£. . . . o; :~ ~ P~obolie psth $ . 
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Fig. 10-3. Motion of a rigid body under the action of gravity. The CM describes the 
parabolic path corresponding to a particle of mass M under a force Mg, while the body 
rotates around the CM. Since the weight is applied at the CM, its torque around that point 
is zero and the angular momentum of the body relative to the CM remains constant during 
the motion. 

amine the rotational motion of a rigid body around an axis which passes either 

through a point fixed in an inertial system or through the center of mass of the 

body. In the first case, Eq. (9.19), dL/dt = T (where L and T are both com

puted relative to the fixed point) is used for discussing the motion, while in the 

second case, Eq. (9.25), dLcM/dt = TCM must be used (Fig. 10-3). 

J0.2 Angular Momentum of a Bigid Bod.,, 

Let us consider a rigid body rotating around an axis Z with angular velocity w 

(Fig. 10-4). Each of its particles describes a circular orbit with its center on the 

Z-axis. For example, particle Ai describes a circle of radius Ri = AiBi with a 

velocity Vi = w x ri, where ri is the position vector relative to the origin O 

(this will be chosen as a point fixed in an inertial frame or at the center of mass of 

the body). The magnitude of the velocity is Vi = wri sin Oi = wRi, according to 

Eq. (5.48). Note that we write w and not wi, 

because the angular velocity is the same for all 
particles in a rigid body. The angular momen

tum of particle Ai relative to the origin O is 

Its direction is perpendicular to the plane deter

mined by the vectors ri and Vi and lies in the 

plane determined by ri and the Z-axis. It there

fore makes an angle 7r /2 - Oi with the axis of 

rotation Z. The magnitude of Li is miriVi, and 
its component parallel to the Z-axis is 

Liz = (mi1\Vi) cos (7r/2 - Oi) 

= mi(ri sin Oi)(wRi) = miR~w, 

z 

cb 

Fig. 10-4. Angular momentum 
of a rotating rigid body. 
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a result equivalent to Eq. (7.33) for a particle moving in a circle. The com

ponent of the total angular momentum of the rotating body along the rotation 
axis Z is 

Lz = Liz + L2z + Laz + · · · = LiLiz 

= (m1Ri + m2R~ + maR~ + · · ·)w = (LimiR7)w. (10.1) 

The quantity 

I = m1Ri + m2R~ + m3R~ + · · · = LimiR7 (10.2) 

is called the moment of inertia of the body relative to the axis of rotation Z. It is 
obtained by adding, for each particle, the product of its mass times the square of 

its distance to the axis. The moment of inertia is a very important quantity that 
appears in many expressions related to the rotation of a rigid body. We may thus 

write Eq. (10.1) in the form 

Lz = Iw. (10.3) 

The total angular momentum of the body is 

and in general is not parallel to the axis of rotation, since we have indicated that 

the individual angular momenta Li appearing in the sum are not parallel to the 
axis: 

The student at this moment may wonder whether, for each body, there is some 

axis of rotation for which the total angular momentum is parallel to the axis. 

The answer is yes. It can be proved that for each body, no matter what its shape, 

there are (at least) three mutually perpendicular directions for which the angular 

momentum is parallel to the axis of rotation. These are called the principal axes 

of inertia, and the corresponding moments of inertia are called the principal mo

ments of inertia, designated by I 1, I 2 , and I 3 . Let us designate the principal axes 

by X 0 Y 0Z 0 ; they constitute a frame of reference attached to the body, and there

fore in general rotate relative to the observer. When the body has some kind of 

symmetry, the principal axes coincide with some of the symmetry axes. For ex

ample, in a sphere, any axis passing through its center is a principal axis. For a 

Zo 

Yo Yo 

Fig. 1~5. Principal axis of symmetrical bodies. 
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cylinder, and in general for any body with cylindrical symmetry, the axis of sym

metry, as well as any axis perpendicular.to it, are principal axes. For a rectangular 

block the three principal axes are perpendicular to the surfaces and pass through 

the center of the block. These axes are illustrated in Fig. 10-5. 

When the body rotates around a principal axis of inertia, the total angular 

momentum L is parallel to the angular velocity w, which is always along the rota

tion axis, and instead of the scalar Eq. (10.3), which is valid for the Z-component 

along the rotation axis, we may write the vector relation 

L = Iw, (10.4) 

where I is the corresponding principal moment of inertia. We must insist that this 
vector relation is valid only for rotation about a principal axis of inertia. 

In the more general case of rotation of a rigid body around an arbitrary axis, 

the angular momentum L can be expressed relative to the moving principal axes 

of inertia X 0 Y0Z 0 (Fig. 10-6) in the form 

L = Uxol 1Wxo + Uyol 2Wyo + Uzol 3Wzo, 

(10.5) 

where Uxo, uy0, and Uzo are the unit vectors along 

X o, Y 0, and Z O and Wxo, Wyo; and Wzo are the compo
nents of w relative to the same axes. In this case, L 

and w have different directions, as we have stated 
before. The advantage of using this expression for L 

is that I 1 , I 2 , and I 3 are fixed quantities that can be 

evaluated for each body. However, since the unit 

vectors Uxo, Uyo, and Uzo rotate with the body, they 
are not necessarily constant in direction. The student 

can verify that Eq. (10.5) reduces to Eq. (10.4) for 

rotation around a principal axis (two of the compo

nents of w are zero). 

Fig. 10-6. Axes attached 
to the body and axes fixed 
in the laboratory. 

EXAMPLE 10.1. Compute the angular momentum of the system illustrated in 
Fig. 10-7, which consists of two equal spheres of mass m mounted on arms connected to 

a bearing and rotating around the Z-axis. Neglect the masses of the arms. 

Solution: In Fig. 10-7(a) we have a case in which the two arms are perpendicular to the 

axis of rotation Z. Each sphere describes a circle of radius R with velocity v = wR. The 

angular momentum of each sphere relative to O is then mR2w, and is directed along the 
Z-axis. (Remember Fig. 7-22.) Thus the total angular momentum of the system is L = 
2mR2w along the Z-axis, so that we can write in vector form L = 2mR2w, indicating 

that the system is rotating about a principal axis. In fact, the principal axes X o Y oZo 

are as shown in the figure, Zo coinciding with Z.* Note that I = 2mR2 is the principal 
moment of inertia around the Zo-axis, and thus the relation L = lw holds for this case. 

* Due to the symmetry of the system under consideration, any axis perpendicular to 
X o is a principal axis. 
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(10.3 

In Fig. 10-7(b) we have a case in which the two arms make an angle cf, with the axis 

of rotation Z, so that w is not parallel to a principal axis. The radius of the circle de

scribed by each sphere is R sin cf,, so that their velocities are, in magnitude, (R sin cf,)w. 

The angular momentum of each sphere relative to O is then mR(Rw sin cf,) and is directed 
perpendicular to the line joining the two spheres and in the plane determined by the Z

and X o-axes. The total angular momentum is the sum of the two results, that is, L = 
(2mR2 sin cf,)w, and makes an angle 1r/2 - cf, with the rotation axis. Thus in this case 
the system is not rotating about a principal axis, as we may also see from the geometry 

of the system. Note that the vector Lis rotating (or, as it is sometimes called, precessing) 

around the Z-axis at the same rate as the system. 

The component of L along the rotation axis is 

Lz = L cos (1r/2 - cf,) = (2mR2 sin2 cf,)w, 

in agreement with Eq. (10.3), since I = 2m(R sin ct,) 2 is the moment of inertia of the 

system relative to the Z-axis. 

10.3 Calculation of the Moment of Inertia 

We shall now discuss the computational tech

niques for obtaining the moment of inertia, since 

this quantity will be used very often in this chap

ter. First we note that a rigid body is composed 

of a very large number of particles, so that the 

sum in Eq. (10.2) must be replaced by an integral, 

I = LimiR'f = f R2 dm; or, if p is the density 
of the body, dm = p dV according to Eq. (2.2), 

and 

I= f pR2 dV. (10.6) 

If the body is homogeneous, its density is con

stant, and instead of Eq. (10.6) we may write 

x 

z 

() 

\ 

\R 
\ 

\ 

p~dm=pdV 
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Figure 1~8 
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I = pf R 2 dV. The integral thus reduces to a geometrical factor, the same for all 

bodies with the same shape and size. We note from Fig. 10-8 that R2 = x 2 + y 2, 

and therefore the moment of inertia around the Z-axis is 

lz = f p(x2 + y2) dV. (10.7) 

(We suggest that the student write the corresponding relations for Ix and ly.) 

If the body is a thin plate, as indicated in Fig. 

10-9, we note that the moments of inertia relative 

to the X- and Y-axes may be written as Ix = 

f py 2 dV and I y = f px 2 dV because the Z-co

ordinate is essentially zero. Comparison with 

Eq. (10.7) shows that in this case 

a result that is valid only for thin plates .. 
The moments of inertia relative to parallel axes 

z 

x 

are related by a very simple formula. Let Z be Figure 10-9 

an arbitrary axis and Zc a parallel axis passing 

y 

through the center of mass of the body (Fig. 10-10). If a is the separation be

tween the two axes, the following relation, called Steiner's theorem, holds, 

I= le+ Ma2, (10.8) 

where I and I c are the moments of inertia of the body relative to Z and Zc, re

spectively, and M is the mass of the body. To prove this relation, let us choose 

the axes X c Y cZc so that their origin is at the center of mass C and the Y c axis 
is in the plane determined by Z and Zc. The axes XYZ are chosen so that Y 

coincides with Y 0 . The point P is any arbitrary point in the body M. Then, 

noting from Fig. 10-10 that P' A is perpendicular to Y c and P' A = x, CA = y, 

and OC = a, we have 

R~ = x2 + Y2, 

R 2 = x2 + (y + a )2 

= x 2 + y 2 + 2ya + a2 

= R& + 2ya + a 2• 

Now the moment of inertia relative to the 
Z-axis is 

I = "'E,mR2 = "'E,m(R& + 2ya + a2 ) 

= "'E,mR& + 2a("'E,my) + a2 "'E,m. 

The first term is just the moment of 

z 

Figure 10-10 
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inertia I c relative to the Zc-axis, and in the last term :Em = M, the total mass 
of the body. Therefore 

I= le+ 2a'E,my + Ma2• (10.9) 

To evaluate the middle term, we recall from Eq. (4.21) that the position of the 

center of mass is given by YcM = 'E,my/'E,m. But in our case YcM = 0 because 
the center of mass coincides with the origin C of the frame XcY cZc. Then 

'E,my = 0, and Eq. (10.9) reduces to Eq. (10.8), which is thus proved. 

The moment of inertia must be expressed as the product of a unit of mass and 

the square of a unit of distance. Thus in the MKSC system the moment of in

ertia is expressed in m 2 kg. 

TABLE 10-1 Radii of Gyration of Some Simple Bodies 

K2 

R2 

2 

Axis 

Cylinder 

Parallelepiped 

c 

Rectangular plate 

·4< 
--0 

K2 

R2 

2 

R2 

T 

R2 

2R2 

-5-

Axis 

Thin rod 

Disk 

Ring 

Sphere 
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The radius of gyration of a body is a quantity K defined such that the following 

relation holds, 

I= MK 2 or K = vT/M, (10.10) 

where I is the moment of inertia and M the mass of the body. It represents the 

distance from the axis at which all the mass could be concentrated without changing 
the moment of inertia. It is a useful quantity because it can be determined, for 

homogeneous bodies, entirely by their geometry. It can thus be easily tabulated, 

and helps us to compute the moments of inertia.* Table 10-1 gives the squares 

of the radii of gyration of several geometric figures. 

EXAMPLE 10.2. Compute the moment of inertia of a homogeneous thin rod relative 
to an axis perpendicular to the rod and passing through (a) one end, and (b) the center. 

y y 

Ye 

I--- s, 
~~ -;--_ 

---------------L B X 

Figure 10-11 ~, 

Solution: (a) Let us call L the length of the rod AB (Fig. 10-11) and Sits cross section, 

which we assume is very small. Dividing the rod into small segments of length dx, we 

find that the volume of each segment is dV = S dx and the distance from each element to 
the axis Y is R = x. Thus, using Eq. (10.6) with the density p constant, we have 

{L ? {L 2 3 
IA = Jo px~(S dx) = pS Jo x dx = fpSL . 

But SL is the volume of the rod and pSL is the mass. Therefore 

IA= kML2 • 

Comparison with Eq. (10.10) gives the radius of gyration as K 2 = kL2 • 

(b) To compute the moment of inertia relative to the axis Y c passing through the 

center of mass C, we may proceed in three different ways. A very simple one is to assume 

the rod divided into two, each of mass tM and length iL, with their ends touching at C, 
and use the previous result for each rod. Then 

le = 2(k)(tM)(tL) 2 = 1~ML2 . 

Another method would be to proceed as before for the end A, but integrate from -tL to 

* For the technique of computing moments of inertia, see any calculus text; for example, 
Calculus and Analytic Geometry, third edition, by G. B. Thomas. Reading, Mass.: Addison
Wesley, 1962, Section 15.3. 
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+!L, since the origin is now at the center of the rod. We leave this solution to the student. 

A third method is to apply Steiner's theorem, Eq. (10.8), which in this case reads IA = 

le+ M(!L) 2 , since a = !L. Thus 

le = IA - ;i-ML2 = 1\ML2. 

EXAMPLE 10.3. Compute the moment of inertia of a homogeneous disk relative to 

(a) an axis perpendicular to the disk passing through its center, and (b) an axis coin

cident with one diameter. 

Solution: (a) From Fig. 10-12 we see that the symmetry of the problem suggests that 

we use, as the volume element, a ring of radius r and width dr. Thus if we call h the 

thickness of the disk, the volume of the ring is dV (21rr)(dr)h = 21rhr dr. All the 

points of the ring are at distance r from the axis Z. 

Therefore, using Eq. (10.6), we obtain 

{R 2 
I = Jo pr (21rhr dr) 

= 21rph foR r 3 dr = pphR4. 

But 1r R 2h is the volume of the disk and M 

p(1rR2h) is the total mass of the disk. Thus 

I= !MR2, 

so that the radius of gyration is K 2 = !R2• 

z 

y 

Figure 10-12 

(b) To obtain the moments of inertia with respect to the X- and Y-axes, we may pro

ceed by direct integration (it is suggested that strips parallel or perpendicular to the cor

responding axis be used as volume elements), but the symmetry of the problem allows a 

simpler procedure. Obviously Ix = lu in this case, and therefore, from the thin-plate 

formula, we have lz = Ix+ ly = 2lx and 

Ix = !Iz = !MR2• 

10.4 Equation al Motion for Rotation al a Bigid Body 

In Eq. (9.21) we established a relation between the total angular momentum of 

a system of particles and the total torque of the forces applied to the particles 

when both torque and angular momentum are referred to a point at rest in an 

inertial system. That is, 

dL 
dt = 'T', (10.11) 

where L = LiLi is the total angular momentum and -r = Li'T'i is the total torque 
due to the external forces. Obviously this equation also holds for a rigid body, 

which is a special case of a system of particles. Equation (10.11) thus constitutes 

the basic equation for discussing the rotational motion of a rigid body. We shall 

apply it first to the case of a rigid body rotating around a principal axis having a 
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point fixed in an inertial system. Then, according to Eq. (10.4), L = Iw. The 

external torque T must be the torque around the fixed point on the principal axis. 

Hence Eq. (10.11) becomes 

d(Iw) 
dt=T. (10.12) 

If the axis remains fixed relative to the rigid body, the moment of inertia remains 

constant. Then 

or f ot. = T, (10.13) 

where ot. = dw/dt is the angular acceleration of the rigid body. Comparison of 
Eqs. (10.12) and (10.13) with Eqs. (7.14) and (7.15) suggests a great similarity 

between the rotation of a rigid body about a principal axis and the motion of a 

particle. The mass m is replaced by the moment of inertia I, the velocity v by 

the angular velocity w, the acceleration a by the angular acceleration a, and the 

force F by the torque T. 

For example, if T = 0, then Eq. (10.12) indicates that Iw = const; and if the 

moment of inertia is constant then w is also constant. That is, a rigid body rotating 

around a principal axis moves with constant angular velocity when no external torques 

are applied. This could be considered as the law of inertia for rotational motion. 

[When the moment of inertia is variable, which may happen if the body is not 

rigid, the condition Iw = const requires that if I increases (decreases) then w 

decreases (increases), a fact that has several applications.] 

In the case of a body which is not rotating around a principal axis, we still have 

from Eq. (10.3) that dLz/dt = Tz or, if the orientation of the axis is fixed relative 

to the body so that I is constant, 

dw 
Jdt = Tz, (10.14) 

a result that differs from Eq. (10.13) in that Tz refers to the component of the total 

external torque around the rotation axis and not to the total torque. In addition 

to the T z-component of the torque, there may be other torques required to main

tain the body in a fixed position relative to the axis of rotation (see Example 10.7). 

When the axis of rotation does not have a point fixed in an inertial system, we 

cannot use Eq. (10.11), and we must compute the angular momentum and the 

torque relative to the center of mass of the body. Thus we must use Eq. (9.25), 

which is 

dLcM 

dt 
TOM· (10.15) 

If the rotation is around a principal axis, this equation becomes I (dw/dt) = TCM· 

If TcM = 0, which is the case when the only external force applied to the body is 
its weight, it then follows that w is constant (see Fig. 10-3). 
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EXAMPLE 10.4. A disk of radius 0.5 m and mass 20 kg can rotate freely around a 

fixed horizontal axis passing through its center. A force of 9.8 N is applied by pulling a 

string wound around the edge of the disk. Find the angular acceleration of the disk and 

its angular velocity after 2 s. 

Solution: From Fig. 10-13 we see that the only external forces on the disk are its weight 

Mg, the downward pull F, and the forces F' at the pivots. The axis ZZ' is a principal 

axis. Taking torques with respect to the center of mass C, we find that the torque of the 

weight is zero. The combined torque of the F' forces is also zero. Thus r = FR. Apply

ing Eq. (10.14) with I = tMR2, we have FR = (tMR2)a or F = tMRa, giving an 

angular acceleration of 

a = 2F = 2(9.8 N) = 1.96 rad s -2. 

MR (20 kg) (0.5 m) z 

According to Eq. (5.54), the angular velocity 

after 2 s if the disk started from rest is 

w = at = (l.96 rad s-2)(2 s) = 3.92 rad s-1. 

Since the center of mass C is fixed, its accelera

tion is zero and we must have 

2F' - Mg - F = 0 or F' = 205.8 N. 

Z' 

Figure 10-13 

EXAMPLE 10.5. Find the angular acceleration of the system illustrated in Fig. 10-14 

for a body whose mass is 1 kg. The data for the disk are the same as in Example 10.4. 

The axis ZZ' is fixed and is a principal axis. 

Solution: Since the mass of the body is 1 kg, its weight is mg = 9.8 N, which has the 

same value as the force F of Fig. 10--13. Therefore one would be tempted to consider 

this case as identical to the previous one and assume the results are the same. This is 

not, however, the case! The mass m, when falling, exerts a downward pull Fon the disk, 

and by the law of action and reaction the disk exerts an equal but upward pull F on the 

mass m. Since the mass m is falling with accelerated motion, the net force on it cannot 

be zero. Thus Fis not the same as mg, but smaller. Therefore the disk is subject also to 

a smaller torque. 

The equation of motion of the mass m is ---------. 

mg - F = ma = mRa, 

where the relation a = Ra has been used. The 

equation of motion o[ the disk is fo = FR or 

(since I = tM R2) F = !M Ra. Eliminating 

F between these two equations, we find that the 

angular acceleration is 

a = mg d -2 
( m + t M) R = 1.80 ra s , 

which is smaller than our previous result. The 

z 

Z' 

Figure 10-14 
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downward acceleration of m is 

mg -2 
a = Ra = m + f M = 0.90 m s , 

which is smaller than g = 9.80 m s-2 , the value for free fall. The force F' at the pivot 

can be found as in the previous exampl~. 

EXAMPLE 10.6. Determine the angular acceleration of the disk_of Fig. 10-15, as well 
as the downward acceleration of its center of mass. Assume the same data as for the disk 

of Example 10.4. 

Solution: The axis of rotation is the principal axis Z0Z~. This problem differs from the 

previous examples, however, in that the center of mass of the disk is not fixed, since the 
motion of the disk is similar to that of a yo-yo, and thus Eq. (10.15) must now be 
used. The rotation of the disk about axis ZoZ~ is given by the equation Ia = FR, since 

the torque of the weight Mg relative to C is zero. Thus, with I fMR 2, we may write 

(after canceling a common factor R), F = !M Ra. " 

The downward motion of the center of mass has """"'~~~~~~~/ 
the acceleration a = Ra, and if we take into 
account the fact that the resultant external force 

is Mg - F, we have, using Eq. (9.9), 

Mg - F = Ma = MRa. Z0 

Eliminating the force F between this equation and 
the preceding one, and noting that the mass M 

cancels, we obtain from the resulting equation 

a = 2g/3R = 13.16 rad s-2 . The downward ac

celeration of its center of mass is a = Ra = 
Jg = 6.53 m s-2 , which is much less than the Figure 10-15 

acceleration of free fall, and is independent of the 
size and mass of the disk. 

F 

EXAMPLE 10.7. Compute the torque required to rotate the system of Fig. 10-7(b) 

with constant angular velocity. 

Solution: In this case the angular velocity w around the fixed axis Z does not change, 

and therefore dw/dt = 0. Two conclusions are immediately derived. First, we know 

that the total angular momentum L = (2mR 2 sin <t,)w remains constant in magnitude, 

and that the component along the Z-axis, L. = (2mR2 sin2 <t,)w is also constant. Second, 
the torque along the Z-axis, given by Tz = I dw/dt, is zero. At first sight we would be 

tempted to say, then, that no torque is required to maintain the system in motion. This 
is not, however, the case. The angular momentum L rotates with the system about the 
Z-axis (this is called precession, as mentioned at the end of Example IO.I), and a torque 

is required to produce this change in the direction of L. The situation is entirely analo
gous to that found in uniform circular motion: The velocity remains constant in mag
nitude but a force is required to change its direction. 

The torque T must be in the XY-plane, since Tz = 0. It must also be perpendicular to 
the ZoZ-plane, determined by the direction of L (or the Zo:.axis) and the Z-axis (Figs. 

10-16 and 10-17), and it must have the direction of the Yo-axis. This can be seen as 
follows. Equation (10.11), dL = T dt, indicates that dL and T are parallel vectors (in 



298 Dynamics of a rigid body 

z 

Fig. 10-16. Rotation of a body around 
an arbitrary axis. 
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Fig. 10-17. Precession of the angular 
momentum of the body illustrated in Fig. 
10-16. 

the same sense that dv and Fare parallel in the case of one particle). But, since L is con

stant in magnitude, dL is perpendicular to it, and so is 7'. Since the vector L maintains 

a constant angle 1r /2 - <j, with the Z-axis, its end point moves over a circle of radius 

AB = L sin (1r /2 - <j,) = L cos¢, and dL is tangent to the circle. This in turn im

plies that dL is perpendicular to the ZoZ-plane ( or parallel to Yo), which means that 7' 

is also. To find the magnitude of dL we note from Fig. 10-17 that 

jdLj = AB d() = (L cos <j,)w dt, 

smce w d()/dt. Equating this to r dt and introducing the value of L, we find that 

T = (2mR2 sin <j, cos <j,) w2 • 

It is instructive to see the physical need for this torque. From Fig. 10-16 we note that 

the spheres, each of mass m, have uniform circular motion and each requires a centripetal 

force FN = mw2 R sin <j, to describe the circle of radius R sin cj,. These two forces form 

a couple, whose lever arm is 2R cos cj,. Thus the torque of the couple is r = 
(mRw 2 sincj,)(2R coscj,), which coincides with our previous result. Thus the torque is 

required to maintain the spheres at their fixed positions relative to the rotation axis. 

We leave it up to the student to verify that, in the case depicted in Fig. 10-7(a) where 

the rotation is about a principal axis and at a constant angular velocity, this torque is not 

required. For this reason, and to avoid transverse torques such as those in the above 

example, the rotating 2arts of any mechanism should be mounted on a principal axis. 

An alternative method of solution of the problem would be to find the components of 

L parallel to the fixed axes XYZ and obtain the components of 7' by straightforward 

application of Eq. (10.11). This is left as an exercise for the student (Problem 10.50). 

EXAMPLE 10.8. Analyze the general motion of a rigid body under no external torques. 

Solution: In this example we shall examine the general motion of a rigid body when no 

external torques are applied to it; that is, 7' = 0. Then Eq. (10.11) gives dL/dt = 0 or 
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L = const. Therefore the angular momentum remains constant in magnitude and 

direction relative to the inertial frame XYZ used by the observer. 

Since torques and angular momenta are always computed with respect to a point, we 

must discover relative to which point the torque is zero. There are two possibilities: 

One exists when the point is fixed in an inertial frame of reference; then the angular mo

mentum is computed about this point. The other case occurs when the torque about the 

center of mass is zero. This is, for example, the case for a ball which has been kicked by 

a football player. Once the ball is in the air, the only external force on it is its weight 

acting at the center of mass, and therefore there is no torque with respect to the center 

of mass. In this situation it is the angular momentum relative to the center of mass that 

remains constant. The motion of the center of mass is of no concern to us, since it is due 

to the resultant external force and the motion proceeds according to Eq. (9.9). It is the 

rotation about the center of mass that interests us. 

In this example we shall use L to designate the angular momentum either about the 

fixed point or about the center of mass, and the discussion applies therefore to both cases. 

Let us suppose first that the body is rotating about a principal axis. Then Eq. (10.4) 

applies and L = Iw. Thus if L = const, then w = const also. This means that the body 

rotates with a constant angular velocity about an axis fixed relative to both the body 
and the observer. 

Next let us suppose that the body is not rntating about a z0 

principal axis. Then Eq. (10.5) applies, and the fact that 

L = const does not imply that w is constant. Thus the 

angular velocity of the body is changing and the axis of 

rotation does not remain fixed relative to the observer who 

sees w precessing around L. The axis of rotation relative to 

the body is not fixed either. Equation (10.5), which refers 

L to the principal axes XoYoZo, yields 

L 2 12 2 + 12 2 + 12 2 = I WxO 2WyO 3W zO = Const 

when L = const. This expresses the condition which the 

components of w relative to the principal axes X o Y oZo must 

fulfill. Since the coefficients Ii, It and J~ are positive and 

constant, this is the equation of an ellipsoid, if w.,o, wyo, and 

Wzo are considered as the coordinates of a point. Thus the 

end of the vector w must lie on this ellipsoid (Fig. 10-18). 

During the motion, the vector w also changes in magnitude 

and direction relative to the body and thus the tip of the 

vector describes a path on the ellipsoid that is called the 

polhode (from the Greek: pole, pole; hodos, path). 

Fig. 10-18. Description 
of rigid body motion. The 
path described by the tip 
of the angular velocity 
vector, relative to axes at
tached to the body, is the 
polhode. 

The motion we have just described is found in many important situations. For exam

ple, the forces exerted by the sun, the moon, and the planets on the earth are, practically, 

applied at the center of mass, and thus the torque about the center of mass is essentially 

zero (actually there is a small torque; see Example 10.10). The earth is not exactly a 

sphere, but is slightly pear-shaped, and it is not at present rotating about a principal 

axis. Therefore its axis of rotation is not fixed relative to itself. 

The polhode of the earth's axis of rotation is illustrated in Fig. 10-19, which shows the 

path followed by the northern intersection of the axis of rotation during the period be

tween 1931 and 1935. Because there are other factors involved, the shape of the curve 
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Fig. 10-19. Polhode of the earth's axis of rotation in the period 1931-1935. 

is somewhat irregular, but the diameter of the curve never exceeds 15 m and the period of 

revolution of the axis is about 427 days. 

The wobbling of a football after it has been kicked is another example of the change 

in the axis of rotation of a torque-free rigid body, since, in most cases, the angular momen

tum of the ball is not along one of its principal axes. 

10.5 Kinetic Energy of Rotation 

In Section 9.5 we defined the kinetic energy of a system of particles as 

We have seen in Section 10.2 that, in the case of a rigid body rotating around an 

axis with angular velocity w, the velocity of each particle is Vi = wRi, where Ri 

is the distance of the particle to the axis of rotation. Then 

or, recalling definition (10.2) of moment of inertia, 

(10.16) 

Expression (10.16) is correct for any axis, even if it is not a principal axis, be

cause the magnitude of the velocity is always Vi = wRi, as may be inferred from 

the discussion in Section 10.2. When the rotation is about a principal axis, we 

can utilize Eq. (10.4) and write 

L2 
Ek= 21. (10.17) 
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We can obtain an alternative and more general expression for the kinetic energy 

by using the components of w along the principal axes X 0 Y0Z 0 . The result, which 

we shall not derive here, is 

Using the components of L along X 0 Y 0Z0 according to Eq. (10.5), we may write 

which reduces to Eq. (10.17) for rotation about a principal axis. Of special inter

est, particularly in the discussion of molecular rotations, is the case when the body 

has symmetry of revolution, say about Z 0 , so that I 1 = I 2 . Then 

1[1 2 2 1 2] Ek = 2 I 
1 

(Lxo + Lyo) + I 
3 

Lzo , 

which may be written in the alternative form 

L 2 1 ( 1 1) 2 
Ek = 211 + 2 I a - I 1 Lzo· 

Let us now consider the general case in which the rigid body rotates about an 

axis passing through its center of mass and at the same time has translational 

motion relative to the observer. As we proved in Example 9.8, the kinetic energy 

of a body in an inertial frame of reference is Ek = !MviM + Ek.CM, where 

M is the total mass, vcM is the velocity of the center of mass, and Ek,CM is the 
internal kinetic energy relative to the center of mass. In the case of a rigid body, 

!MviM is just the translational kinetic energy, and therefore Ek.CM must be the 
rotational kinetic energy relative to the center of mass, computed with the aid of 

Eq. (10.16). This is true because, in a rigid body, the center of mass is fixed rela

tive to the body, and the only motion the body can have relative to the center 

of mass is rotation. Therefore we may write 

E IM 2 + 1[ 2 
k = 2 VcM 2 CW, (10.18) 

where I c is the moment of inertia relative to the axis of rotation passing through 
the center of mass. 

Since the distance between the particles in a rigid body does not change during 

the motion, we may assume that its internal potential energy Ep,int remains con

stant, and therefore we do not have to consider it when we are discussing the 

body's exchange of energy with its surroundings. Accordingly, the conservation of 

energy as expressed by Eq. (9.35) for a system of particles reduces, in the case of 
a rigid body, simply to 

(10.19) 
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where Wext is the work of the external forces. If the external forces are conservative, 

(10.20) 

where Ep,ext is the potential energy associated with the external forces, and 
Eq. (10.19) becomes (dropping the subscript "ext" for the potential energy), 

(10.21) 

This result is similar to that for one particle as expressed in Eq. (8.29), and is a 

particularization of Eq. (9.36) for the case in which the internal potential energy 

does not change. (Recall that we said that this lack of change holds true when we 

are dealing with a rigid body.) Thus we call E = Ek + Ep the total energy of a 

rigid body. When we use Eq. (10.18) for Ek, Eq. (10.21) for the total energy of the 

body becomes 

E = -!Mv~M + -!Icw2 + Ep = const. 

For example, if the body is falling under the action of gravity, Ep = Mgy, where 

y refers to the height of the CM of the body relative to a horizontal reference plane, 

and the total energy is 

E = -!Mv~M + -!Icw2 + Mgy = const. (10.22) 

If some of the forces are not conservative (in the sense discussed in Section 8.12), 

we must write, instead of Eq. (10.20), 

Wext = Ep,0 - Ep + W', 

where W' is the work of the external nonconservative force. Equation (10.21) is 

now 

(10.23) 

This expression has to be used, for example, when frictional forces in addition to 

gravitational forces are operating. 

EXAMPLE 10.9. A sphere, a cylinder, and a ring, all with the same radius, roll down 

along an inclined plane starting at a height yo. Find in each case the velocity when they 

arrive at the base of the plane. 

Solution: Figure 10-20 shows the forces acting on the rolling body. They are the weight 
Mg, the reaction N of_the plane, and the frictional force Fat the point of contact with the 

plane. We could apply the same method used in Example 10.5 (and we recommend that 

the student try it). Instead we shall illustrate the solution by applying the principle of 
conservation of energy, as expressed by Eq. (10.22). 

At the starting point B, when the body is at rest at an altitude Yo, its total energy is 

E = Mgyo. At any intermediate position, the center of mass is moving with a trans
lational velocity v and the body is rotating about the center of mass with angular veloc
ity w, the two being related in this case by v = Rw. The total energy is thus 

E = tMv2 + !lcw2 + Mgy = tMv2 + i(Ic/R2)v2 + Mgy. 
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Writing the moment of inertia as le = MK2 , 

where K is the radius of gyration according to 
definition (10.10), we may express the total 

energy as 

( K
2

) E = !M 1 + R2 v2 + Mgy. 

Equating this expression for the energy to the 

initial energy E = Mgyo, we solve for the .! 

velocity 
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Fig. 10-20. Rolling of a body along 
an inclined plane. 

If, instead of a rolling rigid body, we had a body 
which slid down the plane, we would not have to include rotational energy, and the result 
would be v2 = 2g(yo - y), as for a falling single particle. Thus we see that rotational 

motion results in a slowing down of translational motion. We can comprehend this if we 
realize that in a rolling body the initial potential energy must be used to produce both 

rotational and translational kinetic energy. But when the body slides down the plane, 

all the initial potential energy goes into translational kinetic energy. 
Referring back to Table 10-1, we see that K2 / R2 is equal to -g- for the sphere, ! for the 

disk and 1 for the ring. Therefore we find that v2 is equal to \Dg(y - Yo) for the sphere, 
!u(y - yo) for the cylinder, and g(y - yo) for the ring. In other words, the sphere 
translates fastest, then the cylinder, and finally the ring. Could the student have guessed 

this result just from the geometry of the bodies? 
An interesting result derived from the expression for v2 is that the speed of a body 

going down a slope does not depend on the mass or the actual dimensions of the body, 
but only on the shape. 

J.0.6 Gyroscopic Motwn 

As indicated in Section 10.4, the equation dL/dt = T implies that in the absence 

of an external torque T, the angular momentum L of the body remains constant. 

If the body is rotating about a principal 

axis, L = I w and, as explained before, the 

body will keep on rotating about that 

axis with constant angular velocity. 

This fact is best illustrated by the gyro

scope (Fig. 10-21), which is a device for 

mounting a rotating wheel so that the 

axis can freely change its direction. The 

wheel G is mounted on the horizontal rod 

AB and counterbalanced by a weight ~ 

W so that the total torque around O on X 0 

the system is zero. The rod AB can move 

freely around both the X 0- and Z 0-axes, 

and the wheel is rotating (or spinning) 

rapidly around the Y 0-axis; these are the Fig. 10-21. Gyroscope under no torque. 
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principal axes of the gyroscope. Therefore the angular momentum of the system 

is parallel to the Y 0-axis when this axis is fixed in space. If we move the gyroscope 

around the room we note that AB always points in the same direction. Placing 

the gyro axis so that AB is horizontal and points in the east-west direction (position 

1 of Fig. 10-22, where N represents the north pole of the earth and the arrow 

indicates the wheel's angular velocity), we shall observe that AB gradually tilts 

so that after six hours it is in a vertical position (position 4 of Fig. 10-22). This 

apparent rotation of AB is in fact due to the rotation of the earth, and while our 

laboratory moves from 1 to 4, the orientation of AB remains fixed in space. 

Fig. 10-22. The axis of rotation of a gyroscope under no torque remains fixed in space, 
and therefore rotates relative to the earth. 

If the torque on the gyroscope is not zero, the angular momentum experiences 

a change in the time dt given by 

dL = 7' dt. (10.24) 

In other words, the change in angular momentum is always in the direction of the 

torque (in the same way that the change of momentum of a particle is in the direc

tion of the force), a situation we have already encountered in Example 10.7. In 
fact, the discussion that follows bears a great resemblance to that of Example 10.7, 

but there is a fundamental difference: Here the angular momentum arises mainly 

from the spin of the_gyroscope, while in the system of Fig. 10-16 the angular mo

mentum arose from rotation around the Z-axis, with no spin at all. 

If the torque T is perpendicular to the angular momentum L, the change dL is 

also perpendicular to Land the angular momentum changes in direction but not 

in magnitude. That is, the axis of rotation changes in direction but the magnitude 

of the angular momentum remains constant. As we said in Example 10.7, this sit

uation is similar to the case of circular motion under a centripetal force, in which 

the force is perpendicular to the velocity and the velocity changes in direction but 
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Fig. 10-23. Gyroscope subject to an ex- Fig. 10-24. Precession of gyroscope axis. 
ternal torque. 

not in magnitude. The motion of the axis of rotation around a fixed axis due to 

an external torque is called precession, as indicated previously in Example 10.7. 

This situation is found, for example, in the common top, a toy which is a species 

of gyroscope (Fig. 10-23). Note that for the top the principal axis X O has been 

chosen in the XY-plane, and thus Y0 lies in the plane determined by Z and Z 0 . 

Because of the cylindrical symmetry of the top, the principal axes X 0 Y 0Z0 are 

not spinning with angular velocity w. The origin of both sets of axes has been 

chosen at point 0, which is fixed in an inertial frame of reference. Thus both Land 

T must be computed relative to 0. When the top rotates around its symmetry 

axis OZ0 with angular velocity w, its angular momentum Lis also parallel to OZ0 • 

The external torque T is due to the weight Mg acting at the center of mass C and 

is equal to the vector product (OC) x (Mg). The torque Tis therefore perpendicu
lar to the plane Z 00Z, and thus also perpendicular to L. In magnitude, 

r = Mgb sin ef,, (10.25) 

where q, is the angle between the symmetry axis Z 0 and the vertical axis Z, and 

b = OC gi~es the position of the center of mass. 

As indicated in Fig. 10-24, in a small time dt the vector L changes from position 

OA to position OB, its change being AB = dL, parallel to T. The end of vector L 

describes a circle around Z of radius AD = OA sin q, = L sin ef,, and in time dt 

the radius AD moves through an angled() to the position BD. The angular velocity 

of precession Q is defined as the rate at which the axis OZ0 of the body rotates 

around the axis OZ fixed in the laboratory; that is, 

d() 
Q = dt' 

and is represented by a vector parallel to OZ. The magnitude of dL is 

ldLI = AD d() = (L sin q,)(Q dt). 

(10.26) 
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But from Eq. (10.24), we have that ldLI = 
T dt. Then, equating both results, we may Zo 

write 
QL sin ct, = T (10.27) 

or, using Eq. (10.25) for the torque, we obtain 

Q= T 
L sin ct, 

Mgb. 

Iw 
(10.28) 

Noting the relative orientation of the vectors 

il, L, and T in Fig. 10-24, we see that Eq. (10.27) 

can be written in vector form as 

O X L = T, (10.29) 

(10.6 

y 

x 

Fig. 10-25. Precession and nuta
which is a very useful expression. [It should be tion of gyroscope axis. 

compared with the similar expression w x p = F 

for uniform circular motion, given by Eq. (7.30), since both represent the same 

mathematical relation among the vectors involved.] 

Results (10.27) or (10.28) are approximate. They are valid only if w is very 

large compared with ri, a situation compatible with Eq. (10.28). The reason is that 

if the body is precessing around OZ it also has an angular momentum around that 

axis, and therefore its total angular momentum is not Iw,_ as we have assumed, 

since the resultant angular velocity is w + il. However, if the precession is very 

slow (that is, if Q is very small compared with w), the angular momentum around 

OZ can be neglected, as we implicitly did in our calculation. Our derivation is then 
applicable. 

A more detailed discussion indicates that in general the angle ct, does not remain 

constant, but oscillates between two fixed values, so that the end of L, at the same 

time that it precesses around Z, oscillates between the two circles C and C' (Fig. 

10-25), describing the path indicated. This oscillatory motion of the axis Z' is 

called nutation. Nutation, like precession, contributes to the total angular momen

tum, but in general its contribution is even smaller than that of precession. 

Gyroscopic phenomena are of wide application. The tendency of a gyroscope to 

maintain the axis of rotation fixed in space is a principle which is used in the stab

ilizers aboard ships and in automatic pilots of airplanes. Another interesting 

example of gyroscopic motion is the precession _of the equinoxes, as discussed in 

Section 2.3. The plane of the equator makes an angle of 23° 27' with the plane of 

the earth's orbit or ecliptic. The intersection of the two planes is the line of equi

noxes. The earth is -a giant gyroscope whose axis of rotation is essentially the line 

passing through the north and south poles. This axis is precessing around the 

normal to the plane of the ecliptic in the east-west direction, as indicated in Fig. 

10-26, with a period of 27,725 years or with a precessional angular velocity of about 

50.27" of arc per year, or 7.19 X 10-11 rad s-1 • This precession of the earth's 

axis results in an equal change in direction of the line of equinoxes, an effect dis

covered about 135 B.c. by Hipparchus. 
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Fig. 10-26. Precession of earth's axis of rotation. 
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The precession of-the equinoxes is due to the torque exerted on the earth by the 
sun and the moon. The earth is not a sphere but approximates an ellipsoid, with 

the larger diameter in the equatorial plane (actually the earth is pear-shaped). 

Detailed calculations have shown that this geometrical shape, combined with the 

inclination of the earth's axis relative to the ecliptic, has the result that the forces 

exerted by the sun and the moon on the earth have a resultant torque relative to 

the center of mass of the earth. The direction of the torque is perpendicular to the 

earth's axis. The axis of rotation of the earth must then precess under the action 

of this torque. In Chapter 15 we shall see that a similar effect is present (although 

the physical reasons for it are different) 

when a charged particle, such as an elec

tron or a proton, moves in a magnetic 

field. The earth's axis also experiences a 

nutation with an amplitude of 9.2" and 

an oscillation period of 19 years. 

Another application of gyroscopic mo

tion, also associated with the rotation of 
the earth, is the gyroscopic compass. Sup

pose that we have a gyroscope in position 

G of Fig. 10-27, where arrow 1 indicates 
the sense of rotation of the earth. The 

gyroscope is arranged so that its axis must 

be kept in a horizontal plane. This can 

be done, for example, by floating the gyro

scope in a liquid. Let us assume that 
initially the gyroscope axis points in the 

E-W direction. When the earth rotates, Fig. 10-27. Gyroscopic compass. 
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the horizontal plane and the E-W direction rotate in the same way. Therefore, 

if the axis of the gyroscope were maintained in the E-W direction, the axis would 
have to rotate as indicated by arrow 2. But that is equivalent to applying a torque 

in the south-north direction. Therefore the axis of the gyroscope, under the action 

of this torque, will turn around the vertical until it points north, as indicated by 

arrow 3. The gyroscopic compass has the special advantage of pointing toward 

the true north, since it is not subject to any local magnetic anomalies. 

EXAMPLE 10.10. Estimate the magnitude of the torque which must be exerted on the 

earth in order to produce the observed rate of precession of the equinoxes. 

Solution: Using Eq. (10.27), we have that r = QL sin</>, where 

</> = 23° 27' and Q = 7.19 X 10-11 rad s-1 

is the precessional angular velocity of the earth. We must thus first compute the angular 

momentum of the earth. Since the earth's axis of rotation deviates only slightly from a 

principal axis, we may use the relation L = I w. The value of w was given in Example 
5.11 as 7.29 X 10-5 rad s-1. The moment of inertia of the earth, from Table 10-1, as

suming that the earth is spherical, is 

I = !J.MR2 
5 f(5.98 X 1024 kg)(6.38 X 106 m) 2 

9.72 X 1037 m 2 kg. 

Therefore r = 2.76 X 1027 Nm. 

TABLE 10-2 Comparison Between the Dynamics of Translation and Rotation 

Translation Rotation 

Linear momentum p = mv Angular momentum L = Iw* 

Force F = dp/dt Torque 7' = dL/dt 

Body of constant Body of constant 

mass F = ma moment of inertia 7' = Ia* 

Force perpendicular Torque perpendicular 

to momentum F=wXp to angular momentum T=O.XL 

Kinetic energy Ek = !mv2 Kinetic energy Ek = !Jw2 

Power p = F ·v Power p = 7'. w 

* Formulas marked with an asterisk are valid only for rotation around a principal axis. 
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Problems 

10.1 A thin rod 1 m long has a negligible 

mass. There are 5 bodies placed along it, 

each having a mass of 1.00 kg, and situated 

at O cm, 25 cm, 50 cm, 75 cm, and 100 cm 
from one end. Calculate the moment of 
inertia of the entire system with respect to 
an axis perpendicular to the rod that passes 

through (a) one end, (b) the second mass, 
and (c) the center of mass. Calculate the 
radius of gyration in each case. Verify 

Steiner's theorem. 

10.2 Solve the previous problem again, 

this time for a rod whose mass is 0.20 kg. 

10.3 Three masses, each of 2 kg, are sit
uated at the vertices of an equilateral tri
angle whose sides measure 10 cm each. 
Calculate the moment of inertia of the 
system and its radius of gyration with re
spect to an axis perpendicular to the plane 

determined by the triangle and passing 
through (a) a vertex, (b) the middle point 

of one side, and (c) the center of mass. 

10.4 Prove that the moment of inertia of 

a system composed of two masses m1 and 

m2, separated a distance r relative to an 
axis passing through their centers of mass 
and perpendicular to the line joining the 

two masses, is µr 2 , whereµ is the reduced 
mass of the system. Apply it to the CO 
molecule (r = 1.13 X 10-10 m) and the 
HCl molecule (r = 1.27 X 10-10 m). 

10.5 Find the moment of inertia of the 
C02 molecule relative to an axis passing 
through the center of mass and perpen

dicular to the axis. The molecule is linear, 
with the C atom in the center. The C-0 
distance is 1.13 X 10-10 m. 

10.6 In the H20 molecule, the distance 
H-0 is 0.91 X 10-10 m and the angle be
tween the two H-0 bonds is 105°. Deter

mine the moments of inertia of the molecule 
relative to the three principal axes shown 
in Fig. 10-28, and passing throu~h the cen

ter of mass. Express the angular momen-
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Figure 1~28 

tum and kinetic energy of the molecule 
relative to the principal axes when the 
molecule is rotating about an arbitrary 

axis. 

10. 7 The NH3 molecule (Fig. 10-29) is a 
pyramid with the N atom at the vertex and 
the three H atoms at the base. The length 
of the N-H bonds is 1.01 X 10-10 m and 

the angle between two such bonds is 108°. 

Find the three principal moments of iner
tia relative to axes passing through the 

center of mass. (The three axes are oriented 
as follows: Zo is perpendicular to the base, 
Xo is in the plane determined by one N-H 

bond and the Zo-axis, and Yo is thus paral
lel to the line joining the other two H 
atoms.) 

Zo 

Figure 1~29 

10.8 Two boys, each-with a mass of 25 kg, 
are sitting on the opposite ends of a hori-., 
zontal plank which is 2.6 m long and has a 

mass of 10 kg. The beam is rotating at 
5 rpm about a vertical axis passing through 
its center. What will be the angular veloc
ity if each boy moves 60 cm toward the 

center of the beam. without touching the 

floor? What is the change in the kinetic 
energy of rotation of the entire system? 

10.9 Referring to the previous problem, 
assume that, when the boys are in the in

itial position, a horizontal force of 120 N 
perpendicular to the plank is applied at 
one meter from the axis. Find the angular 
acceleration of the system. 

10.10 The moment of inertia of a wheel 
is 1000 lb ft2• At a given instant its an
gular velocity is 10 rad s-1• After it ro

tates through an angle of 100 radians, its 
angular velocity is 100 rad s-1. Calculate 
the torque applied to the wheel and the in
crease in kinetic energy. 

10.11 A rotating wheel is subject to a 

torque of 10 N m due to the friction on the 
axis. The radius of the wheel is 0.6 m, its 

mass is 100 kg, and it is rotating at 175 rad 
s-1• How long will the wheel take to stop? 

How many revolutions will it make before 
stopping? 

10.12 A cylinder of 20 kg mass and 0.25 m 
radius is rotating at 1200 rpm about an 
axis that passes through its center. What 

is the constant tangential force necessary 
to stop it after 1800 revolutions? 

10.13 A disk with a mass of 50 kg and a 

radius of 1.80 m can spin about its axis. A 

constant force of 19.6 N is exerted on the 
edge of the disk. Calculate (a) its angular 
acceleration, (b) th~ angle it describes, ( c) its 
angular momentum, and (d) -its kinetic 

energy after 5 s. 

10.14 The velocity of an automobile in
creases from 5 km hr-1 to 50 km hr-1 in 

8 s. The radius of its wheels is 45 cm. What 
is their angular acceleration? The mass 

of each wheel is 30 kg and its radius of 
gyration is 0.3 m. What is the initial and 
final angular momentum of each wheel? 

10.15 The flywheel of a steam engine has 
a mass of 200 kg and a radius of gyration 

of 2 m. When it is rotating at 120 rpm the 
steam inlet is closed. Supposing that the 

flywheel stops in 5 min, what is th~ torque 
due to friction on the axis of the flywheel? 



What is the work done by the torque dur

ing this time? 

10.16 A cart with a mass of 2000 g has 

four wheels, each of 6 cm radius and 150 

g mass. Calculate the linear acceleration 

of the cart when a force of 0.6 N is exerted 

upon it. 

10.17 The rotating parts of an engine have 

a mass of 15 kg and a radius of gyration of 

15 cm. Calculate the angular momentum 

and kinetic energy when they are rotating 

at 1800 rpm. What torque and power are 

necessary in order to reach this angular 

velocity in 5 s? 

10.18 The radius of a five-cent piece is 

1 cm and its mass is 5 g. It is rolling on 

an inclined plane at 6 rps. Find (a) its 

kinetic energy of rotation, (b) its kinetic 

energy of translation, and (c) its total 

kinetic energy. What is the vertical dis

tance it would have to fall in order to reach 

this amount of kinetic energy? 

10.19 Repeat Example 8.9, assuming that 

the ball has a radius r and that it rolls 

along the track instead of sliding. 

10.20 The automobile of Problem 10.14 

has a mass of 1600 kg, and its velocity in

creases in 8 s as described. Calculate (a) 

the initial and final rotational kinetic 

energy of each wheel, (b) the initial and 

final total kinetic energy of each wheel, 

and (c) the total final kinetic energy of 

the automobile. 

10.21 A truck with a mass of 10 tons is 
moving with a velocity of 6.6 m s-1. The 

radius of each wheel_ is 0.45 m, its mass is 

100 kg, and its radius of gyration is 30 cm. 

Calculate the total kinetic energy of the 

truck. 

10.22 An iron ring whose radii are 0.60 m 

and 0.50 m has a mass of 18 kg. It rolls 

down an inclined plane, reaching the bot

tom with a velocity of 3.6 m s-1. Calcu

late the total kinetic energy and the verti

cal height through which it falls. 

10.23 The rod in Fig. 10-30, whose length 

is L and whose mass is m, can rotate freely 
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Figure 10-30 

in a vertical plane around its end A. It 
is initially held in a horizontal position and 

then released. At the time it makes an 

angle a with the vertical, compute (a) its 

angular acceleration, (b) its angular veloc

ity, and (c) the forces at the pivot. 

10.24 A uniform rod, hanging straight 

down, of length 1.0 m and mass 2.5 kg, 

is pivoted at its upper end. It is struck 

at the base by a horizontal force of 100 N 

that lasts only lo s. (a) Find the angular 
momentum acquired by the rod. (b) Will 

the rod reach a vertically upright position? 

10.25 A ladder AB with a length of 3 m 

and a mass of 20 kg is resting against a 

frictionless wall (Fig. 10-31). The floor 

is also frictionless and, to prevent it from 

sliding, a rope OA has been attached. A 

man with a mass of 60 kg stands two-thirds 

of the way up the ladder. The rope sud

denly breaks. Calculate (a) the initial 

acceleration of the center of mass of the 

system of ladder plus man, and (b) the 

initial angular acceleration around the 

center of mass. [Hint: Note that the in

itial angular velocity of the ladder is zero.] 

10.26 The horizontal rod AB in Fig. 10-32, 

which is held by frictionless bearings at its 

ends, can rotate freely ·arQund its horizontal 
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m 

a 

Figure 10-32 

axis. Two equal masses held in position, as 

shown, by rigid rods of negligible mass are 

symmetrically located relative to the cen

ter of the rod. Find (a) the angular mo

mentum of the system relative to the center 

of mass when the system is rotating with 

angular velocity w, and (b) the forces 

exerted at the bearings. 

a L 

m 
-=i:;;;;::> __ _.____ 

Figure 10-33 
~ 

B 

10.27 A rod of length L and mass M 

(Fig. 10-33) can rotate freely around a 

pivot at A. A bullet of mass m and velocity 

v hits the rod at a distance a from A and 

becomes imbedded in it. (a) Find the angu

lar momentum of the system around A 

immediately before and after the bullet 

hits the rod. (b) Determine the momen

tum of the system immediately before and 

after the collision. -Explain your answer 

carefully. (c) Under what conditions will 

the momentum be conserved? (d) What 

is the Q of the collision? 

10.28 A rod of length L and mass m lies 

on a frictionless horizontal plane (Fig. 

10-34). During a very short interval D.t 

it is struck by a force F that produces an 

c~Q:----- CM• P•] 

Figure 10-34 

impulse I. The force acts at a point P 

which is a distance a from the center of 

mass. Find (a) the velocity of the center 

of mass, and (b) the angular velocity around 

the center of mass. (c) Determine the 

point Q that initially remains at rest in the 

£-frame, showing that b = K 2/a, where K 

is the radius of gyration about the center of 

mass. The point Q is called the center of 

percussion. (For example, a baseball 

player must hold the bat at the center of 

percussion in order to avoid feeling a 

stinging sensation when he hits the ball.) 

Prove also that if the force strikes at Q, 
the center of percussion will be at P. 

Figure 10-35 

10.29 The wheel of Fig. 10-35, which has 

a radius of 0.5 m and a mass of 25 kg, can 

rotate about its horizontal axis. A rope 

wrapped around the wheel has a mass of 

10 kg hanging from its free end. Calculate 

(a) the angular acceleration of the wheel, 

(b) the linear acceleration of the body, 

and (c) the tension in the rope. 

M 

Figure 10-36 



10.30 Calculate the acceleration of the 
system in Fig. 10-36 if the radius of the 

pulley is R, its mass is m, and it is rota
ting due to the friction on the rope. In 

this case m1 = 50 kg, m2 = 200 kg, 

M = 15 kg, and R = 10 cm. 

10.31 A string is wrapped around the 
small cylinder in Fig. 10-37. Assuming 
that we pull with a force F, calculate the 

acceleration of the cylinder. Determine the 

sense of the motion. Here r = 3 cm, R 

5 cm, F = 0.1 kgf, and m = 1 kg. 

F 

Figure 10-37 

10.32 In the system represented in Fig. 

10-38, M = 1.0 kg, m = 0.2 kg, r = 
0.2 m. Calculate the linear acceleration 

of m, the angular acceleration of the cylin
der M, and the tension in the rope. Neg
lect the effect of the small pulley. 

M 

Figure 10-38 

lg.33 Determine, for the system in Fig. 
10-39, the angular velocity of the disk and 
the linear velocity of m and m'. Calculate 

the tension in each rope. Assume that m 

r<=8 
Figure 10-39 L:'.J_J 
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Figure 10-40 

600 g, m' = 500 g, M = 800 g, R = 8 cm, 
and r = 6 cm. 

10.34 For the system in Fig. 10-40, cal
culate the acceleration of m and the ten
sion in the rope, assuming that the moment 

of inertia of the small disk of radius r is 
negligible. In this case r = 4 cm, R = 
12 cm, M = 4 kg, and m = 2 kg. 

10.35 In Fig. 10-41, M = 6 kg, m = 4 
kg, m' = 3 kg, and R = 0.40 m. Compute 
(a) the total kinetic energy gained by the 

system after 5 s, and (b) the tension in the 
string. 

m 

Figure 10-41 
m' 

10.36 The two disks in Fig. 10-42 have 

equal masses m and radii R. The upper 
disk can rotate freely around a horizontal 

axis through its center. A rope is wrapped 

Figure 10-42 
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around both disks and the lower one is per

mitted to fall. Find (a) the acceleration of 

the center of mass of the lower disk, (b) the 

tension in the rope, and (c) the angular ac

celeration of each disk around its center of 

mass. 

10.37 The mass of the gyroscope in Fig. 

10-43 is 0.10 kg. The disk, which is located 

10 cm from the ZZ' -axis, has a 5-cm radius. 

This disk is rotating about the YY'-axis 

with an angular velocity of 100 rad s- 1. 

What is the angular velocity of precession? 

y1 -----

z1 
I 
I 
I 

I 

Figure 10-43 Z 
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10.38 A classroom demonstration gyro

scope consists of a metal ring whose radius 

is 0.35 m, whose mass is 5 kg, and which is 

attached by spokes to an axis projecting 

20 cm on each side. The demonstrator 

holds the axis in a horizontal position 

while the ring rotates at 300 rpm. Find 

the' magnitude and direction of the force 

exerted by each of the demonstrator's 

hands on the axis in the following cases: 

(a) the axis is moved parallel to itself; (b) 

the axis is rotated about its center in a hori

zontal plane at 2 rpm; (c) the axis is ro

tated about its center in a vertical plane 

at 2 rpm. Also calculate what the angular 

velocity of the ring would have to be in 

order for its axis to remain horizontal if 

the gyroscope were to be supported by only 

one hand. 

10.39 Prove that, for a rigid body, 

dEk/dt = w · T. This equation shows that 

w · T is the rotational power. [Hint: Note 

that v = w X r for a rotating body. First 

obtain the equation for a single particle, 

using Eq. (8.10), and then add the result 

to obtain the equation for all particles in 

the rigid body.] 

10.40 Note that when a body moves un

der no torque, not only is the angular mo

mentum constant, but also the kinetic 

energy of rotation is constant. Obtain the 

equation of the polhode (Example 10.8) by 

finding the intersection of the ellipsoids 

corresponding to L 2 and to Ek. Analyze 

the result obtained. 

10.41 Prove that the moment of inertia 

of a rigid body about an axis making angles 

a, {3, 'Y with the three principal axes is 

I = I 1 cos2 a + I 2 cos2 f3 + I 3 cos2 'Y. 

10.42 A solid block whose sides are 0.20 m, 

0.30 m, and 0.40 m and which has a mass of 

4 kg is rotating about an axis passing 

through the longest diagonal at 120 rpm. 

(a) Find the angular momentum with 

reference to the principal axes. (b) Deter

mine the angle between the angular mo

mentum and the axis of rotation. (c) Find 

the kinetic energy of rotation. [Hint: Us.e 

the result of Problem 10.41 to obtain the 

moment of inertia.] 

10.43 For the block in the previous prob

lem, assume that the angular velocity is 

constant. Determine (a) the torque ap

plied to the block with reference to the 
principal axes, and (b) the angle between 

the torque and the axis of rotation. 

10.44 A particle of mass m moves around 

an axis with an angular velocity w so that 

its velocity is v = w X r, according to 

Eq. (5.48). Prove that the components 

of its angular momentum are 

Lx m[wx(Y2 + z2) - Wyyz - w.zx], 

Ly m[-wxXY + wy(z2 + x2) - w.zy], 

L. m[-w,,xz - Wyyz + Wz(x2 + y2)]. 



10.45 Extend the result of the preceding 
problem to the case of a rigid body, to 

obtain 

where 

I ,i;Wz - I zyWy - I zzWz, 

-lzyWz + lyWy - lyzWz, 

-lzzwz - lyzWy + lzwz, 

lz = '2:,m(y2 + z2), 

ly = '2:,m(z2 + x2), 

I z = '2:,m(x2 + y2) 

are the moments of inertia relative to the 
three coordinate axes, according to Eq. 
(10.7), and 

lzy = '2:,mxy, 

lyz = '2:,myz, 

lzz = '2:,mzx 

are called the products of inertia. By com

paring these results with Eq. (10.5), the 
student may recognize that the principal 
axes are those for which the three products 

of inertia are zero. Note also that the 
rotational behavior of a rigid body is de

termined in general by flix quantities: the 
three moments of inertia and the three 

products of inertia. 

10.46 Determine the three moments of in
ertia and the three products of inertia of 
the body of Fig. 10-16 relative to (a) the 

Xo-, Yo-, and Zo-axes, (b) the X-, Yo-, and 
Z-axes, and (c) the X'-, Yo-, and Z-axes. 

Are these quantities always constant? 
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10.47 Compute the products of inertia of 
the H20 and NH3 molecules relative to 
the axes illustrated in Problems 10.6 and 
10.7, and verify that the axes are principal. 

10.48 Verify the vector relation 

(A X B) • ( C x D) 

= (A· C)(B • D) - (A· D)(B • C). 

Apply it to prove that, for the body of 
Problem 10.44, v2 = (w X r) 2 = w2r2 -

(w • r) .2 Then write its kinetic energy in 
the form 

E1,, = -!m[w;(y2 + z2) + w;(z2 + x2) 

+ w~(x2 + y2) - 2wzwyxy 

- 2WyWzYZ - 2w2w,i;Xz]. 

10.49 Extend the result of the previous 
problem to write the kinetic energy of a 
rotating rigid body in the form 

E1,, = ![Izw; + lyw; + I 2 w~ 

- 2/ zyW,i;Wy - 2[ yzWyWz 

- 2lnWzWz]. 

Note that it reduces to the values given in 
Section 10.5 for the case of principal axes 

when the products of inertia are zero. 

10.50 Solve Example 10.7 by first finding 

the components of L parallel to the fixed 
axes XYZ and then calculating the com
ponents of T by direct application of Eq. 
(10.11). Also consider the case of accel

erated rotation (dw/dt ~ 0). 
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11.l Introduction 

In the preceding chapters we have developed a dynamical theory-called classical 

or newtonian mechanics-to describe the motion of the bodies we observe around 

us. The theory is based on several assumptions. For example, we have seen that 
momentum can be expressed asp = mv, where the mass mis a coefficient charac

teristic of the particle or system; we have consistently considered this mass m to 
be an invariant coefficient of each particle or system. So long as the range of 

velocities we observe is not very large, this assumption about the mass seems to 

be a valid one, compatible with our experience. But there is a possibility that if 

we experiment with very large velocities this assumption may not remain correct. 

In fact, discrepancies are found whenever we study the motion of very energetic 

particles, such as the inner electrons in atoms, or the particles found in cosmic 
rays or produced in high-energy accelerators. The purpose of this chapter is to 

develop a general theory of motion valid for low-energy as well as for high-energy 

particles. We shall base our development of this theory on the Lorentz transfor

mation, already discussed in Section 6.6, and on the principle of relativity. For 

this reason the new theory is also called relativistic mechanics. 

11.2 Classical Principle of Belativitg 

In Chapter 6 we discussed the relative nature of motion and derived expressions for 

the velocities and accelerations as measured by two observers in different kinds 

of relative motion. In particular, in Section 6.3, we derived the Galilean trans

formation for two observers in uniform relative translational motion. 

In Chapter 7 we emphasized the fact that the laws of motion have to be con

sidered as referred, or relative, to an inertial observer. We presently assume that 

two different inertial observers moving with a constant relative velocity will cor

relate their respective observations of the same phenomenon by Galileo's trans

formation. We must now look more critically into this matter, verifying that if 

the laws of dynamics hold for one inertial observer they hold for all inertial ob

servers. It is necessary to verify this statement only for the principle of conservation 

of momentum and for the definition of force, since all the other dynamical laws are 

derived from these two. The hypothesis that all laws of dynamics must be the same 

for all inertial observers moving with constant velocity relative to each other is what 

constitutes the classical principle of relativity. 

Let us consider two particles, of masses m1 and m2, and call v1 and v2 their veloc

ities as measured by some inertial observer 0. If no external forces act on the par

ticles, the principle of conservation of momentum requires that 

(11.1) 

For another inertial observer 0', moving relative to O with the constant velocity 

v, the velocities of m1 and m2 are v~ = v1 - v and v~ = v 2 - v, according to 

Rq. (6.9), which is derived from the Galilean transformation. Substituting these 
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into Eq. (11.1), we have 

or 

(11.2) 

Note that the new result is constant only if v is also constant; that is, if O' is an

other inertial observer. Equation (11.2) is entirely similar to Eq. (11.1), and there

fore both inertial observers verify the same principle of conservation of momentum. 

Let us next discuss the relation between the force measured by two inertial ob
servers O and 0' moving with a constant relative velocity v. Suppose that O and 

0' both measure the same mass for a particle they observe in motion, an assump

tion substantiated by experience, at least so long as the relative velocity v is small 

compared with the velocity of light. If V and V' are the respective values of the 

particle's velocity relative to the two observers, they are related by Eq. (6.9), 

V = V' + v. Since vis constant, dv/dt = 0, and we have that 

dV 

dt 

dV' 

dt 
or a= a'. (11.3) 

That is, both observers measure the same acceleration (recall Eq. 6.13). According 

to the definition of force given in Eq. (7.12), we have that the force measured by 
each observer is 

dp dV 
F=-=m-=ma 

dt dt 
and 

dp' dV' 
F' = dt = m dt = ma'. 

In view of the fact that a = a', we conclude that 

F= F'. (11.4) 

Therefore both inertial observers measure the same force on the particle when the ob

servers compare their measurements using the Galilean transformation. 

We leave it to the student to verify that if the energy is conserved relative to 

the inertial observer 0, that is, if 

E = !m1vi + !m2v~ + Ep,12 = const, 

then it is also conserved relative to the inertial observer 0', and 

E , _ 1 ,2 + 1 ,2 + E' - t - 2 m1V1 2 m2v2 p,12 - cons , 

where E;, 12 = Ep, 12 if the potential energy depends only on the distance be

tween the particles. (For the relation between E' and E, see Problem 11.1.) 

Therefore, insofar as the fundamental laws of dynamics are concerned, the descrip

tion of the motion is the same for both inertial observers. 

EXAMPLE 11.1. Discuss the form of the equation of motion when it is used with 
reference to a noninertial observer. 
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Solution: If an observer O' is noninertial, this means that his velocity v relative to an 

inertial observer O is not constant in time. Thus dv/dt ~ 0. Then, since V = V' + v, 

we have that 

dV _ dV' + dv 

dt-dt dt 
or a = a'+ dv. 

dt 

The force measured by the inertial observer O is F = ma. Then, if the noninertial ob

server O' uses the same definition of force, he writes F' = ma'. Therefore, in view of the 

relation between a and a', 

F' = F - m dv · (11.5) 
dt 

Thus the noninertial observer measures a force different from that of the inertial observer. In 
other words, the noninertial observer considers that, in addition to the force F measured 

by the inertial observer (which includes all the interactions to which the particle is sub

ject), there is another force F" acting on the particle, where 

F" = -m dv/dt, (11.6) 

so that the resultant force on the particle is F + F". This fictitious force is called an 
inertial force. 

When we want to describe the motion of a particle relative to the earth (which is not 

an inertial frame of reference) we sometimes use this kind of logic. In this case dv/dt 

is the centripetal acceleration w X (w X r) (recall Eq. 6.25). Therefore the inertial force 

is F" = -mw X (w X r), which corresponds to a centrifugal force acting on the parti

cle in addition to its weight. 

11.3 Special Principle of Relativity 

In 1905, the German physicist Albert Einstein (1879-1955) went a step further 

and proposed a special principle of relativity, by stating that 

all laws of nature (not only of dynamics) must be the same for all in

ertial observers moving with constant velocity relative to each other. 

This new, or special, principle of relativity has a great implication because, if we 

accept it, we must express all physical laws in a form that does not change when 

we transform from one inertial observer to another, a fact we have just verified 

for the laws of dynamics, using the Galilean transformation. The result of this 

,requirement is that it restricts the mathematical expressions of these laws. Among 

the laws that must remain invariant for all inertial observers are those describing 

electromagnetic phenomena; these will be discussed in detail in later chapters. 

But we may now state in advance that these laws, when expressed relative to an 

inertial observer, involve a velocity c; that is, the velocity of light. Therefore the 

special principle of relativity, as formulated by Einstein, requires that the velocity 

of light be the same for all inertial observers. 

Einstein's assumption was motivated in part by the memorable series of ex

periments started around 1880 by Michelson and Morley, who measured the veloc-
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ity of light in different directions, trying to see how the motion of the earth affects 

the velocity of light. We discussed their experiment in Chapter 6 (particularly in 

Example 6.7). The results, as indicated in Chapter 6, have always been negative, 

indicating that the velocity of light is independent of the motion of the observer. 

Now, according to Eq. (6.9), the velocity of an object is never the same for two 

observers in relative motion if their observations are related by a Galilean trans

formation. On the other hand, the velocity of light is the same to all inertial ob

servers if their measurements are related by the Lorentz transformation, as dis

cussed in Section 6.6. Therefore it seems apparent that to satisfy the new principle 

of relativity we must use the Lorentz transformation instead of the Galilean trans

formation. Accordingly, we shall restate the principle of relativity in the following 

way: 

Inertial observers must correlate their observations by means of the 

Lorentz transformation, and all physical quantities must transform from 

one inertial system to another in such a way that the expression of the 

physical laws is the same for all inertial observers. 

The rest of this chapter will be devoted to a discussion of how this new formula
tion of the principle of relativity affects the dynamical quantities defined pre

viously. From the practical point of view, the theory we shall develop is important 

only for velocities comparable to that of light, and therefore must be used when the 
particles have a very high energy. For particles which have low velocities, the 

Galilean transformation is still a very good approximation for relating physical 

quantities in two inertial frames, and newtoniau mechanics provides a satisfactory 

formalism for describing these phenomena. The theory to be developed is called 
the special theory of relativity because it applies only to inertial observers. When 

the observers are not inertial, we employ the general theory of relativity, which 

we shall discuss briefly at the end of Chapter 13. 

Even if, from the practical point of view, we may ignore the special theory of 

relativity in many instances, from the conceptual point of view it has produced a 

profound modification in our theoretical approach to the analysis of physical 

phenomena. 

ll.4 Momentum 

In Chapter 7 we defined the momentum of a particle asp = mv, and assumed that 

the mass m was independent of the velocity. However, as a result of many ex

periments with high:energy particles, such as fast electrons and protons produced 

by modern accelerators, or found in cosmic rays, it has been found that this as
sumption is no longer valid. Let us recall that the force applied to a particle has 

been defined as F = dp/dt, and by exerting known forces on fast particles we may 

determine experimentally the corresponding expression for p. [We may, for ex

ample, observe the motion of electrons (or other charged particles) of different 

energies in known electric and magnetic fields.] The result of these experiments 

has been that the mass of a pacticle moving with a velocity v relative to the ob-
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Fig. 11-1. Experimental confirmation of the variation of mass with velocity. The solid 
curve is a plot based on Eq. (11.7). The experimental data of W. Kaufmann (1901) is 
plotted as open circles, that of A. Bucherer (1909) as solid circles, and that of C. Guye 
and C. Lavanchy (1915) as crosses. 

server appears to be given by 

mo 
m = = km0 . 

Vl - v2/c2 
(11.7) 

Here k is as defined in Eq. (6.32) and m0 is a constant, characteristic of each par

ticle, called the rest mass, since it is the value of m when v = 0; that is, when the 

particle is at rest relative to the observer. The presence of the factor v'l - v2/c2, 

which we encountered before in Chapter 6 when we were dealing with the Lorentz 

transformation, is not surprising, since our new principle of relativity based on this 

transformation may require its use. 

The variation of mass with velocity according to Eq. (11.7) is illustrated in 

Fig. 11-1. This figure is essentially identical to Fig. 6-15, since both give k in 

terms of v/c. It can be seen that only at very large velocities is there any noticeable 

increase in the mass of the particle. For example, even at v = 0.5c, m/m0 = 1.15, 

or only a 15 percent increase in mass. 

The momentum of a particle moving with velocity v relative to an observer 

must therefore be expressed as: 

m 0v 
p = mv = = km0v. 

Vl - v2/c2 
(11.8) 

For small velocities (v « c), k can be equated to one, and this new expression be

comes identical to that used in previous chapters. 
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We still have to verify that this expression for momentum meets the require
ments of the principle of relativity. That is, we must verify that, if the motion of 

the particle is referred to a different inertial observer, relative to which the particle 

is moving with velocity v', the momentum p' is expressed by replacing v with v' in 

Eq. (11.8), and that the two expressions for the momentum are compatible with 

the Lorentz transformation which relates the two observers. We also have to 

verify that this new definition of momentum is compatible with the invariance of 

the principle of conservation of momentum for all inertial observers. This matter 

will be deferred until Sections 11.7 and 11.9. 

EX AMP LE 11.2. Compare the relative increase in velocity with the relative increase 

in momentum. 

Solution: The relative increase in momentum is defined as dp/p and the relative in

crease in velocity as dv/v. Momentum and velocity are related by Eq. (11.8), which in 

scalar form is 
mov 

P = (1 - v2/c2)1/2 · 

The definition of relative increase in velocity suggests that we first take the logarithm of 

this expression. That is, 

( - vc22). ln p = ln mo + ln v - !In 1 

Differentiating, we obtain 

2 
dp = dv + (v/c ) dv 

p v 1 - v2/c2 
1 dv = k2 dv. 

1 - v2/c2 v v 

We see then that at low velocities, when v2/c 2 is negligible, we have dp/p = dv/v, and 

the relative increases in momentum and velocity are equal, in agreement with our com

mon experience. However, at large velocities, comparable with c, the factor multiplying 

dv/v is very large, and thus it is possible to produce a relatively large increase in momen

tum with a relatively small increase in velocity. For example, for v = 0.7c, we have that 

dp/p = 2(dv/v), and for v = 0.99c, we obtain dp/p = 50(dv/v). 

11.5 Force 

In Chapter 7 we defined the force on a particle by means of Eq. (7.12), which was 

derived from the principle of conservation of momentum. This definition will 

also be maintained in relativistic mechanics. Thus we restate force as 

F = -dp = !!,__ (mv) = !!,__ ( mov ) . 
dt dt dt Vl - v2/c2 

(11.9) 

When we are dealing with rectilinear motion we consider only the magnitudes, and 

thus we may write 

F _ !!,__ [ mov J _ mo ( dv / dt) _ m dv . 
- dt (1 - v2/c2)1/2 - (1 - v2/c2)3!2 - 1 - v2/c2 dt 

(11.10) 
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In Eq. (11.10), m has the value given by Eq. (11.7). Since dv/dt is the accelera

tion, we conclude that for a high-energy particle the equation F = ma does not 

hold for rectilinear motion. On the other hand, in the case of uniform circular 

motion, the velocity remains constant m magnitude but not in direction, and 

Eq. (11.9) becomes 

mo dv 
F = (1 - v2/c2)1/2 dt 

dv 
m-· 

dt 

But dv/dt is then the normal or centripetal acceleration whose magnitude is v2/R, 
where R is the radius of the circle, according to Eq. (5.44). Therefore the magni

tude of the normal or centripetal force becomes 

(11.11) 

We observe that the relation F = ma holds in the case of uniform circular mo

tion if we use for the mass its relativistic expression (11.7). In the general case of 

curvilinear motion, noting that dv / dt is the tangential acceleration and v2 / R the 

normal acceleration (according to Eq. 5.44), we conclude from Eqs. (11.10) and 

(11.11) that the components of the force along the tangent and normal to the path 

are, using Eq. (11.7), 

FT= 
mo m 

k 2maT, 
(1 

aT = 
1 

aT = _ v2/c2)3/2 - v2/c2 

mo 
(11.12) 

FN= 
(1 

aN = maN. _ v2/c2)1/2 

An immediate conclusion is that the force is not parallel to the acceleration 

(Fig. 11-2) because the coefficients multiplying aT and aN are different. Thus a 

vector relation of the type F = ma does not hold 

for particles which have high energy, unless the 

body moves with uniform circular motion. How

ever, the more fundamental relation F = dp/dt 

still remains valid, because it is our definition of 

force. Another interesting feature is that, propor

tionately, the tangential component FT is larger 

than the normal component FN. This is because 

the normal force changes only the direction of the 

velocity without changing its magnitude, and thus 

also without changing the mass. But the tan

gential force not only has to change the magnitude Fig. 11_2, At high velocity, 
of the velocity but also, as a consequence, m- the force is not parallel to the 
creases the mass of the particle. acceleration. 

EXAMPLE 11.3. Rectilinear motion under a constant force in relativistic dynamics. 

Solution: This motion, in nonrelativistic mechanics, corresponds to motion with con
stant acceleration. Thus if we measure time and displacement from the point where the 
particle started moving, we may use Eqs. (5.10) and (5.11) to find that v = at and 
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Fig. 11-3. Relativistic rectilinear motion under a constant force. 

(11.5 

x = fat 2, where a = F /mo is the constant acceleration. In relativistic mechanics we 
start with Eq. (11.9) written in scalar form, since the motion is in a straight line and 

no changes in direction are involved. Thus 

F _ !!:_ f mov J . 
- dt ( 1 - v2 / c2) 112 

Integrating this expression, while taking into account the fact that F is constant (and 

that fort = 0, v = 0), we have 

--;:=m=o=v== = Ft. 
v'l - v2/c2 

Solving for the velocity, we find that 

(F /moc)t 
v=c-------

v'l + (F /m0c)2t2 

For very small t (that is, when the measurement takes place at the beginning of the 

motion), the second term in the denominator can be neglected and v = (F /mo)t, which 

is the nonrelativistic expression because in that case a = F /mo. For very large t (that 

is, when the measurement is made after the particle has been accelerating for a long 

time), the 1 in the denominator can be neglected in comparison with the second term, and 

v = c. Thus, instead of increasing indefinitely, the velocity approaches the limiting value 

c, which is the speed of light. This variation of velocity with time is indicated by the solid 

line in Fig. 11-3(a). The momentum, however, is given asp = Ft, and increases indefi

nitely. To obtain th~ displacement of the particle we recall that v = dx/dt. Therefore 

dx 

dt 

(F /moc)t 
c ------;:====== 
v'l + (F /moc)2t2 

Integrating (letting x = 0 at t = O), we have 
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Using the binomial expansion (M.28) with n = -!, the above equation reduces to x = 
-!(F /mo)t 2 for small values of t; this is the nonrelativistic value. For large t, we have 
x :::::: ct - (moc2 /F), which corresponds to uniform motion with velocity c. Thus the 

distance is less than if the nonrelativistic expression were valid at all velocities. This is 
indicated by the solid line in Fig. 11-3(b). This problem is of interest in a number of 

contexts; for example, in the motion of a charged particle in a linear accelerator. 

11.6 Energ,, 

To compute the kinetic energy of a particle using the new definition of momentum, 

we use the same procedure as in Section 8.5 when we were talking about newtonian 

mechanics. That is, recalling that v = ds/dt, we obtain 

Ek= iv Fr ds = iv :t (mv) ds = iv v d(mv). 

Integrating by parts (see Eq. M.41) and using the relativistic expression (11.7) 

for mass, we have 

Ek = mv2 - (ov mv dv = mov2 (v mov dv 

J~ yl - v2/c2 lo yl _ v2/c2 

Combining the first two terms of the right-hand side into one, we finally obtain 

the kinetic energy of a particle moving with velocity v relative to the observer as 

2 

Ek = moc - moc2 = (m - mo)c2, 
Vl - v2/c2 

(11.13) 

where Eq. (11.7) has been used in writing the last part. Result (11.13) is very 

suggestive. It indicates that the gain in kinetic energy can be considered as a gain 

in mass as a result of the dependence of the mass on the velocity, according to 

Eq. (11.7). This interpretation can be extended to associate a change in mass 

Lim to any change in energy fiE of the system. Both changes are related by the 

expression 

(11.14) 

which is an extension of Eq. (11.13). For example, the conservation of energy of 

an isolated system requires that (Ek + Eph = (Ek + Ep)i = const, or Ek 2 -

Ek1 = Ep1 - Ep;, But, according to Eq. (11.13), Ek 2 - Ek1 = (m2 - m1)c2 • 

Therefore 

(11.15) 

Equation (11.15) means that any change in the internal potential energy of the 

system, due to an internal rearrangement, may be expressed as a change in the 

mass of the system as a result of the change in internal kinetic energy. This pro-
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cedure is valid so long as the total energy is conserved. Because of the factor c2, 

changes in mass are appreciable only if the changes in energy are very large. For 

that reason the change of mass resulting from energy transformations is appreci

able only in nuclear interactions or in high-energy physics, and is practically 

negligible in chemical reactions. 

The quantity m 0c2 which appears in Eq. (11.13) is called the rest energy of the 

particle, and the quantity 
2 

E E + 2 moc = mc2 
= k moc = --:=::::::::::== 

Vl - v2/c2 
(11.16) 

is the total energy of the particle. The total energy of the particle, as here defined, 

includes kinetic energy and rest energy, but not potential energy. 

Combining Eq. (11.8) with Eq. (11.16), we see that v = c2p/E. This expression 

gives the velocity in terms of momentum and energy. Since v and p have the 

same direction, this expression is also valid for the vectors themselves, and we 
may write 

(11.17) 

Equation (11.16) is equivalent to 

(11.18) 

as we may see by replacing p by its expression (11.8) and verifying that Eq. (11.18) 

becomes Eq. (11.16). 

At first sight, Eq. (11.13) for the relativistic kinetic energy may seem quite dis

tinct from Eq. (8.12) for the newtonian kinetic energy (that is, Ek = -!mv 2 ). How

ever, it is not. When vis small compared with c, we may expand the denominator 

in Eq. (11.7), using the binomial theorem (M.22): 

Substituting in Eq. (11.13), we find that 

(11.19) 

The first term is our familiar kinetic energy of Eq. (8.12). The second, and suc

ceeding terms, are negligible if v « c. In this way we verify again that newtonian 

mechanics is only an approximation of relativistic mechanics, valid for small ve

locities or energies and using for the mass its rest value. On the other hand, at 

very large velocities we may replace v by c in the numerator of Eq. (11.8) for the 

momentum, writing p = me. Then the kinetic energy given in Eq. (11.13) becomes 

Ek = pc - m 0c2 = c(p - m 0c). (11.20) 
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In Fig. 11-4, the variation of the kinetic energy Ek as given by Eq. (11.13) has 

been indicated by curve a, and the newtonian kinetic energy Ek = fm 0v2 by 

curve b. This figure clearly shows that, at equal velocities, the relativistic energy 

is larger than the newtonian value. In Fig. 11-5 kinetic energy has been represented 

in terms of momentum. It may be seen that, for equal momenta, the relativistic 
energy (curve a) is smaller than the newtonian energy (curve b). The relativistic 

curve tends asymptotically to the value given by Eq. (11.20). 
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We must note that the ratios m/m0 and Ek/m0c2 are the same for all particles 
having the same velocity. Thus, since the mass of the proton is about 1850 times 

the mass of the electron, the relativistic effects in the motion of the protons are 

noticeable only at energies 1850 times larger. For that reason the motion of protons 

and neutrons in atomic nuclei can be treated in many instances without relativistic 

considerations, while the motion of electrons requires, in most instances, a rela

tivistic approach. 

An interesting special case occurs when there is a particle of zero rest mass 

(mo = O). Then Eq. (11.18) becomes 

E = cp or p = E/c. (11.21) 

And hence, from Eq. (11.17), we find that the velocity of the particle is v = c. 

Therefore, a particle w'ith zero rest mass can move only with the velocity of light 

and can never be at rest in an inertial system. This is the case of the photon, and 

it seems to be true also for the neutrino, as we shall see in later chapters. Relation 
(11.21) also holds when a given particle, even if its mass m0 is not zero, moves at a 

velocity comparable with that of light, so that its momentum pis very large com

pared with m 0c. We may see that this is the case because, when in Eq. (11.18) 

we neglect the term m 0c in comparison with p, the equation reduces to Eq. (11.21). 

EXAMPLE 11.4. Compare the relative increase in velocity and in momentum with the 
relative increase in energy. 

Solution: Solving Eq. (11.18) for v, we get 

moc 
( 

2 4)1/2 

v=c 1-E2 · 

When the velocity of a particle increases by the amount dv and its energy by the amount 
dE, the relative increase in velocity is given by dv/v and the relative increase in energy 
by dE/E. This suggests, as in Example 11.2, that we must take the logarithm of the 

above expression before differentiating. That is, 

ln v = ln c + -i ln ( 1 - ~t) · 
Differentiating, we obtain 

dv 
2 4 

moc dE 

v E 2 2 4 E 
- moc 

If the energy of the particle is very high compared with its rest mass, so that E >> moc2 , 

we may neglect m5c4 in the denominator, resulting in 

dv m5c4 dE 
--;=Jif2E. 

The coefficient multiplying the relative increase in energy is always smaller than unity 
because, at high energy, Eis much larger than moc2 • Therefore at high energies dv/v is 
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very small compared with dE/E. In other words, at high energies it is possible to in
crease the energy of the particle without appreciably increasing its velocity. This charac

teristic is of great importance in the design of high-energy accelerators, both linear and 

circular. We suggest that the student repeat the same calculation, using newtonian 

mechanics, and compare results. 
On the other hand, insofar as momentum p is concerned, we have from Eq. (11.18) 

that 
ln E = Inc+ ! ln (m5c2 + p2) 

and, differentiating, we obtain 

dE 

E 

2 dp __ P __ 

m5c2 + p2 P 

At high energies, when pis much larger than moc, we get dE/E ::::::: dp/p, and the mo
mentum increases in the same proportion as the energy. 

EXAMPLE 11.5. Curvilinear motion under a constant force in relativistic dynamics. 

Solution: In nonrelativistic mechanics this motion corresponds to a parabolic path, as 

happens with a projectile (recall Section 5.7). To solve this problem in relativistic me

chanics, it is easier to use the momentum and energy relations. Let us assume that at 
t = 0 the particle is at O (Fig. 11-6), moving along the X-axis with momentum po, 

while the force Fis perpendicular to it (or along the Y-axis). The equation of motion 
F = dp/dt, expressed in terms of its components along the X- and Y-axes, becomes 

dpx = O 
dt ' 

dpy = F 
dt . 

Integrating each of these expressions gives 

Px = Po (const), PY = Ft. Thus the total 
momentum after time t, when the particle has 
reached point A, is F 

_/2 2 _/2 22 
P = V Px + PY = V Po + F t , 

and the total energy, using Eq. (11.18), is 

y 

p 11 =Ft 

Path of 
particle 

Fig. 11-6. Relativistic curvilinear 
E= c-V m5c2 + p5 + F 2t2 = V E5 + c2F 2t2 , motion under a constant force. 

where Eo = cv' m5c2 + p5 is the total energy at t = 0. Therefore the components of 

the velocity, using the vector relation v c2p/E, are 

2 2 
c Px c po 

Vx = E = , Vy 

V E5 + c2 F 2t2 

2 
c PY 

E 

c2Ft 

from which the magnitude of the velocity can easily be obtained. By integrating these 
expressions, the coordinates x and y of the particle may be expressed as functions of time. 

From these the equation of the path results. We leave the student to do these last steps, 
and to compare the path with the nonrelativistic parabola (see Problem 11.11). 
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JJ.7 Transformation of .Energy and Momentum 

According to the principle of relativity, Eq. (11.18) relating energy and momentum 

must be the same for all inertial observers. It is therefore important to compare 

these quantities as measured by two observers in relative motion. For observer 0, 
Eq. (11.18) can be written in the form 

2 E 2 
2 2 

p - - = -m0c 
c2 (11.22) 

We remember that pis a vector quantity with components Px, py, and Pz· Then 

p 2 = p; + p; + p;, and Eq. (11.22) becomes 

2 2 2 E 2 
2 2 

Px +PY+ Pz - 2 = -moc · 
c 

(11.23) 

In order to be consistent with the assumption of the principle of relativity, this 

expression must remain invariant for all inertial observers. That is, in another 

frame of reference (observer 0') moving with velocity v relative to the original 

frame to which Eq. (11.23) is referred, we must have 

E ,2 
,2 + ,2 + ,2 2 2 

Px' Py' Pz' - c2 = -moc, 

where m 0 remains the same because it corresponds to the rest mass. 

words, we must have 

2 + 2 + 2 E 2 
_ ,2 + ,2 + ,2 

Px Py Pz - c2 - Px 1 Py' Pz' c2 

(11.24) 

In other 

(11.25) 

The structures of Eqs. (11.23), (11.24), and (11.25) are similar to those of Eqs. 

(6.30) and (6.31) if we make the correspondence 

Px - x, Py - Y, Pz - z, and ct - E/c. 

Therefore the invariance of Eq. (11.23) requires a transformation among its ele

ments such as the Lorentz transformation holding for x, y, z, and t. This leads to 

Px - vE/c2 

v'l - v2 /c 2 

p~, = PY, (11.26) 

p'z, - Pz, 

E' = E - VPx 

v'l - v2/c 2 

This result, together with the corresponding expression for energy, shows how our 

definition of momentum given in Eq. (11.8) satisfies the first requirement of the 

special principle of relativity; namely, the momentum has a proper transforma

tion under a Lorentz transformation. 
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Note that we have found two sets of associated quantities-that is, x, y, z, ct 

and Px, py, Pz, E/c-that appear to transform among themselves following the 
rules of the Lorentz transformation. Undoubtedly we may also expect other 

physical quantities to transform in a similar fashion. A common characteristic of 

all these sets of quantities is that they have four "components"; i.e., they are ex

pressed by four numbers. For that reason they are called four-vectors, and can 

supposedly be depicted in a four-dimensional representative space. One method of 

adapting the physical laws to the invariance requirements of the principle of rela

tivity is by writing them as relations between scalars, four-vectors, and other 

related quantities (tensors). We shall not elaborate on this subject, since it belongs 

with a more extensive discussion of the theory of relativity, beyond the scope and 

purpose of this text. 

EXAMPLE 11.6. Express the inverse relations between energy and momentum cor

responding to Eqs. (11.26). That is, give the values measured by O expressed in terms of 
those measured by O'. 

Solution: We refer the student to Example 6.4, corresponding to the equivalent problem 

for the coordinates x, y, z, and the time t. We can thus arrive at the result we want simply 
by reversing the sign of v and exchanging primed and unprimed quantities in Eqs. (11.26), 
obtaining 

p~, + vE' /c2 

Px = , 
-Vl - v2/c2 

PY = p~,, 

p. = p~,, 

E' + vp~, 
E = -;::::=::::::::::= 

-Vl - v2/c2 

(11.27) 

EXAMPLE 11.7. Apply the results of the previous example to the case when the par

ticle is at rest relative to O'. 

Solution: In this case p~, 

formation equations give 

I 

Py' 

m 0v 
Px = , 

Vl - v2/c2 

I 

Pz' O and E' 

PY= 0, p. = 0, 

moc2 • Therefore the trans-

2 
moc 

E = -;:::=== 
-Vl - v2/c2 

The first three equations give the momentum and the last equation the energy as meas

ured by 0. Comparison with Eq. (11.8) for the momentum and Eq. (11.16) for the energy 
shows that they correspond exactly to the momentum and the energy of a particle moving 
along the X-axis with velocity v. This is just the case, since the particle, being at rest 

relative to O', must appear as moving with velocity v relative to 0. The merit of this 

example is that the relations (11.26), and their inverse (11.27), which were derived in a 
somewhat intuitive way using the principle of relativistic invariance, are compatible with 
the previous expressions for energy and momentum derived using a different starting 
point. Thus this example shows the consistency of our logic. 
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EXAMPLE 11.8. Discuss the transformation of energy and momentum for a particle 
with zero rest mass. For simplicity suppose the motion of the particle to be along the 
direction of relative motion of the two observers. 

Solution: Since mo = 0, we may assume that the relation E = cp, according to 

Eq. (11.21), holds for observer 0. Then, using Eqs. (11.26), with p;, = p' and Px = p 

because the motion is along the X-axis, and using E = cp, we have for observer O', 

2 
, p - v(cp)/c 1 - v/c 

p = = p . 
,Vl - v2/c2 ,Vl - v2/c2 

Using this result for p', we obtain for the energy 

E' = cp - vp = cp 1 - v/c = cp'. 

Vl - v2/c2 VI - v2/c2 

Therefore the relation E' = cp' also holds for observer O'. This example, as the pre
ceding example does, increases the student's confidence in the consistency of the theory. 
It is suggested that the student repeat the problem, assuming that the particle moves in 

an arbitrary direction. 

1.1..B Transformation of Force 

The force acting on a particle as measured by observers O and 0' is, respectively, 

F= dp 
dt 

and 
I - dp' 

F - dt'' (11.28) 

as required by the principle of relativity, since both observers must use the same 

equations of motion. The relation between F and F' is in general rather compli

cated, since we cannot use as simple a reasoning as we used for the energy and the 
momentum relationships. Therefore we shall compute this relation only for the 

special case in which the particle is momentarily at rest in the system 0'. Then 

F' is called the proper force. 

Using Eqs. (11.26), we obtain 

F'x, = dp'x, = _!!}__ i (Px - vE / c2
) 

dt' dt' dt Vl - v2/c2 

_ dt 1 (dpx v dE) 
dt' Vl - v2/c2 dt c2 dt 

(11.29) 

Now from the inverse Lorentz transformation (see the last equation in Example 

6.4), we have that 

t' + vx' /c2 

t = --;::=== 
Vl - v2/c2 



11.8) Transformation of force 333 

and since dx' / dt = 0 because the particle is at rest relative to 0', 

dt 

dt' 

1 

Vl - v2/c2 
(11.30) 

Also, according to the definition of force, dpx/ dt = F x· From the definitions of 

energy E and kinetic energy Ek = E - m0c2, as well as th~ fact that the work 

Fx dx must be equal to dEk, we have that 

(11.31) 

because in this case dx/dt = v. Making all these substitutions in Eq. (11.29), 

we finally obtain 

F{i;, = Fx. (11.32) 

For the component parallel to the Y-axis, since Fy = dpy/dt, we obtain 

F' I = dp~, = dt dpy = F y = kF Y· 

Y dt' dt' dt VI _ v2/c2 
(11.33) 

Similarly for the Z-component, with Fz = dpz/dt, we have 

F', = dp'z, 
z dt' 

(11.34) 

where k is as defined in Eq. (6.32). Equations (11.32), (11.33), and (11.34) relate 

the force F measured by an observer in an arbitrary inertial frame of reference 

with the force F' measured by an observer in the inertial frame of reference in 

which the particle is momentarily at rest. The fact that the transformation law 

for force is different from that for the four-vector quantities momentum and energy 

places it in a different category from these two quantities, since force is not part of 

a four-vector. It also makes force a less useful concept, in the theory of relativity, 

than momentum and energy are. Conse-

quently a somewhat different definition of 

force has been proposed. We shall not dis-

cuss this definition here, except to say that 

it has the advantage of transforming as a 

four-vector. However, even if force trans- Fy 

forms in a way different from momentum 

and energy, its transformation guarantees 

that the equation of motion, F = dp/dt, will 

be invariant for all inertial observers, which 

was our fundamental requirement. The re

F~=kFy 
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indicated in Fig. 11-7. force components. 
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11.9 S-,,stems of Partit!les 

Let us consider a system of particles, each of momentum Pi and energy Ei. Neg

lecting their interactions, we may write the total momentum of the system as 

P = Li Pi and the total energy as 

E = LiEi = Limic2 = Mc2. 

Thus, using Eq. (11.17), we may associate with the system a velocity defined by 

c2P P 
Ve=-=-• 

E M 
(11.35) 

Recalling Section 9.2, we could say that this is the velocity of the center of mass 

of the system, and consider that the system appears as a body of mass M moving 

with velocity ve. We remind the student, however, that (for the reasons given in 

Section 9.2) when mass depends on velocity, we cannot define the center of mass. 

Therefore we shall call the velocity given by Eq. (11.35) the system velocity. 

Suppose that we have two different inertial observers each examining the sys

tem of particles. Relative to observer O the total momentum and energy are 

P = Li Pi and E = Li Ei. Relative to O' these quantities are P' = Lip: and 
E' = Li E;. If the velocity of 0' relative to O is v, along the X-axis, each Ei and 
Pi transform into EI and p;, according to Eqs. (11.26). Thus their sums also trans

form in the same way, and we may write 

P ' _ Px - vE/c2 

x' - ' 
Vl - v2/c2 

p~, = Py, 

P'z, = P 2 , 

E' = E + vPx 

Vl - v2 /c 2 

(11.36) 

Now if, relative to 0, momentum and energy are conserved, P = const and 
E = const, then the above transformation equations imply that P' = const and 

E' = const, and the two conservation laws also hold for 0'. We have therefore 

verified the second of the requirements imposed on our theory, as indicated at the 

end of Section 11.4. We also note that, because of the structure of the transforma

tion equations, the two conservation laws must hold simultaneously; in other 

words they cannot be independent of each other. This situation is different from 

the nonrelativistic case. 

Next consider the special case in which the relative velocity of the two ob

servers is parallel to the total momentum P. Then Px = P, Py = Pz = 0, and 

the first of Eqs. (11.36) reduces to 

P' = P - vE/c2 
• 

vl - v2 /c 2 
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By analogy with the L- and C-frames of reference introduced in Chapter 9, 

we define the C-frame in relativistic mechanics as the frame of reference 

in which the total momentum of the system is zero. 

Therefore, if observer 0' is attached to the C-frame of reference, the momentum P' 

is zero. If we set P' = 0 in the preceding expression, the velocity of 0' relative to 

0 (who uses the £-frame ofreference), is v = c2P /E. Comparison with Eq. (11.35) 

shows that the C-frame moves with the system velocity vc relative to the L

frame. This is the same result as obtained in the nonrelativistic situation of 

Chapter 9. 

We indicated at the beginning of this section that we were neglecting interac

tions between particles of the system. Consideration of interactions that depend 

on the relative position of the particles poses serious difficulties in the theory of 

relativity. For example, we saw in Chapter 6 that the concept of simultaneity 

in the position of two particles, which is required in order to define an interaction, 

is not an invariant concept. Furthermore, the velocity of transmission of the 

interaction must be taken into account. For that reason, special techniques 

are required to discuss interactions in a manner. consistent with the theory of 

relativity. 

EXAMPLE 11.9. Discuss the C-frame of reference for two identical particles moving 

in the same direction. 

Solution: The properties of the C-frame can easily be discussed for the case of two par

ticles. Consider a system of two identical particles that appear, relative to observer 0, 
as moving along the X-axis of the L-frame (used by 0) with velocities VI and v2. Their 

respective masses are mI and m2, computed according to Eq. (11.7), with the same value 

of mo for both. The total momentum in the L-frame is 

(11.37) 

Relative to the C-frame the total momentum of the system is zero. Thus 

P' = pf + p~ = 0. 

This requires that the momentum of the two particles in the C-frame be the same in 

magnitude, but that the particles move in opposite directions. Then Eq. (11.8) requires 

that the magnitudes of the velocities of the particles in the C-frame be the same. Thus 

the particles appear to be moving with velocities v' and -v'. Designating the velocity of 

the C-frame relative to the L-frame by ve and using Eq. (6.38) for the transformation of 

velocities, with v replaced by ve, we have 

v' + ve 
VI = ' 

1 + v'vc/c2 

-v' + ve, 
v2 = 

1 - v've/c2 

These may be written in the alternative forms: 

v'(l - v~/c2) + v'(l - v~/c2) 
VI = Ve ' 

1 + v've/c2 
v2 = ve - , · 

1 - vvc/c2 
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Thus we can obtain the total momentum in the L-frame by substituting these values 
into Eq. (11.37). This gives 

, 2 2 ( m1 m2 ) 
P = (m1 + m2)ve + v (1 - vc/c ) 1 + , / 2 - 1 , I 2 · 

v ve c - v ve c 

(11.38) 

Replacing m1 and m2 in the last term by their values according to Eq. (11.7), we obtain 

/ 22( 1 1 ) mov (1 - vc/ c ) - · 
2 2 2 2 2 2 Vl - vifc (1 + v'vc/c) Vl - v2/c (1 - v'vc/c) 

Using the identities of Problem 6.38, we may simplify each term inside the parentheses. 

It can be seen that both terms are equal to 1/V(l - vVc2)(1 - v'2/c2 , and thus their 

difference is zero. Therefore the last term in Eq. (11.38) disappears, and P reduces to 

or ve = P/M. 

This is just Eq. (11.35) adapted to our particular case of two particles moving in the same 

direction. Therefore we verify that, in relativity theory as well as in classical theory, the 

C-frame (relative to which the total momentum of the system is zero) is moving, relative 

to the L-frame, with the velocity ve given by Eq. (11.35). 

11.10 High-Energy Collisions 

The principles of conservation of energy and momentum must be satisfied for any 

collision, irrespective of the energies of the particles. In Section 9. 7 this subject 

was discussed for the low-energy (or nonrelativistic) region. However, at high 

energies, the concepts and techniques developed in this chapter must be used. 

Consider, for example, two particles, whose rest masses are m1 and m 2, moving 

before the collision with momenta p 1 and p 2 relative to some inertial frame of 

reference. The interaction between the particles is appreciable only during the 

small time interval in which the particles are very close (this corresponds to the 

shaded region in Fig. 9-11). Recall from Section 9.7 that a collision was defined 

as having occurred if the interaction produced measurable changes in a relatively 

short time and over a refatively short distance. Suppose that after the collision, 

when the interaction is again negligible, the resulting particles now have rest 

masses m3 and m4 and move with momenta p 3 and p 4 relative to the original 

inertial frame of reference. The conservation of momentum and the conservation 

of energy are expressed by 

P1 + P2 = Pa + P4 

or, using Eq. (11.18), we have 

and (11.39) 

cV mie2 + pi + cV m~c2 + p~ = cV m~c2 + p~ + cV m~c2 + pt (11.40) 

The collision described by Eqs. (11.39) and (11.40) can be indicated schematically 

by 1 + 2 - 3 + 4. The application of Eqs. (11.39) and (11.40) in general is com-
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plicated algebraically because of the presence of the radicals in Eq. (11.40) and 

for that reason we shall illustrate their use in some simple but very important 

cases. 

EX AMP LE 11.10. Discuss a relativistic collision when particle 1 ( called the incident 

particle) has zero rest mass and is identical to particle 3, and particle 2 is at rest in our 

laboratory system and is identical to particle 4. 

Solution: The process is shown schematically in Fig. 11-8. Using Eqs. (11.18) and 

(11.21), we obtain the value of the momentum and the energy relative to observer Oas 

being 

PI = E/c, p2 = 0, p3 = Et/c, P4, 

EI = E, E2 = moc2, E3 = Et, E4 = cv m 2c2 + P!· 

PI = P3 + P4, (11.41) 
Pi =E/c 

p37 
.,,.,,~.,. 3 

pz=O ,,,,,_...· fJ 

-f:::____ <p -----

~ 

The conservation of momentum is now 

and the conservation of energy is 1 

2 t y 2 2 2 
E + moc = E + cmoc + p4. (11.42) Fig. 11-8. High-energy collision. 

Suppose we are interested in the energy Et of the incident particle after the collision. 

We must then eliminate p4 from the above equations. Solving Eq. (11.41) for p4, we 

obtain p4 = PI - p3. Squaring the result, we get 

2 2 2 
P4 = PI + P3 - 2pI • p3. 

Using the corresponding values for the momenta, we have 

Solving Eq. (11.42) for Pl then gives us 

2 1 2 t2 22 
P4 = c2 (E + moc - E ) - m0c 

= E2 + Et2 + 2(E - Et)moc2 _ 2EEt. 
c2 c2 c2 c2 

Equating both results for Pt we have 

or 

t 2 
2(E - E )moc 

c2 c2 

2EEt 
- --cose 

c2 

t EEt 
E - E = -- (1 - cos 8). 

moc2 
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Dividing both sides by EEt yields 

1 1 1 
- - - = -- (1 - cos 8). 
Et E m0c2 

(11.10 

(11.43) 

This expression gives Et in terms of E and the scattering angle 8 of particle 3. Note that 

E > Et always, and the incident particle loses energy, as it should, since the other par

ticle, initially at rest, is in motion after the collision. 

Result (11.43) is very important in the discussion of the scattering of light (or photons) 

by free electrons-the so-called Compton effect-which will be discussed in great detail 

in Chapter 19. Note that Eq. (11.43) cannot be satisfied by Et = 0 for any scattering 

angle. Therefore, it is impossible that the incident particle be completely absorbed by 

an otherwise free particle. 

EXAMPLE 11.11. In most high-energy experiments a very fast incident particle col

lides with another particle at rest in the laboratory system. We want to know the thresh

old energy; that is, the minimum kinetic energy of the particle in the laboratory or L

frame which is necessary to obtain a particular reaction. Obtain the equation for the 

threshold energy needed for the creation of a proton-antiproton pair in a proton-proton 
collision. 

Solution: At this point it is enough to say that an antiproton is a particle whose mass is 

equal to that of a proton and whose electrical charge is equal, in absolute value, to that 

of a proton, but of negative sign. We designate the proton by p + and the antiproton by 

p-. Part of the kinetic energy of a fast proton which collides with another proton at 

rest in the laboratory is used to produce a proton-antiproton, or p+, p- pair. We can 

represent the process schematically as 

The two protons on the left and the first two on the right side of the equation represent 

the incident and the target protons. The last two correspond to the result of the collision: 

the proton-antiproton pair. (Note that, although the number of particles has changed, 

the total charge remains the same. As we shall see later, this is an example of another 

conservation principle: the principle of conservation of charge.) Initially one of the pro

tons is at rest (zero momentum) in the L-frame and the other is moving toward it with 
momentump. 

Before the collision the total momentum relative to observer O in the L-frame is p 

and the total energy is E = cv' m5c2 + p2 + moc2. After the collision the total momen
tum must still be p and the total energy E. The minimum energy required for the inci

dent particle is that which is needed when the final products are at rest relative to the 

C-frame moving with the system velocity relative to L (see Section 11.9). The products 

can never be at rest relative to the L-frame because of conservation of momentum. But 

in this case the total energy relative to the C-frame is E' = 4moc2, and the total momen

tum is p' = 0. That means that the four resulting particles appear in the L-frame to be 

moving together with the same velocity, and in order to guarantee the conservation of 

momentum each must have a momentum of i-P· Thus their total energy relative to O is 

4cv'm5c2 + (p/4)2 or cv'I6m5c2 + p2. Equating the energies before and after the col
lision, we have 

- I 22 2 2 y 22 2 
cV moc + p + moc = cl6moc + p . 
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This is an algebraic equation in p whose solution is p 4y3 moc, which thus gives the 

minimum momentum which the incident proton must have relative to O so that the reac

tion can take place. (What is the velocity of this proton?) Accordingly, the total energy 

of the incident proton relative to O is cvmi;c2 + p2 = 7moc2 and its kinetic energy will 

be 6moc2. 

Thus, in order for the reaction we are considering to occur in the laboratory, the in

cident proton must be accelerated until its kinetic energy in the L-frame is 6moc2. The 

rest mass of the proton has the value mo = 1.67 X 10-27 kg. Then the energy 6m0c2 

is equivalent to 9.0 X 10-10 J or about 5.6 X 109 eV. 

One of the chief uses of high-energy accelerators is to produce fast particles above the 

threshold kinetic energy in the L-frame so that scientists can produce in the laboratory, 

under controlled conditions, some processes which they have observed in cosmic rays. 

EXAMPLE 11.12. Obtain the threshold energy for the reaction 1 + 2 - 3 + 4, in 
which the four particles are different. 

Solution: Since the particles have different masses, we cannot use the symmetry prin

ciples that we used implicitly in our previous example. Let us assume that particle 2 is 

at rest in the laboratory, so that p2 = 0. The energy of each particle in the L-frame be

fore the collision is then 

and (11.44) 

The total energy and momentum of the system in the laboratory are 

P = Pl· (11.45) 

Quantities E and P must transform from one inertial frame of reference to another ac

cording to Eqs. (11.26), which implies that the expression P2 - E 2/c2 must remain 
invariant. Then " 

p2 _ E2jc2 = p'2 _ E'2;c2. 

If we transform to the C-frame, we must have P' 

in this frame of reference. Then p2 - E 2 /c 2 
= 0, since the total momentum is zero 

- E'2 / c2 , or the total energy E' in the 

C-frame, according to Eq. (11.45), is 

E' = V E2 - c2P 2 = V(E1 + m2c2)2 - c2pi. 

Using the value of E1 from Eq. (11.44), we have 

(11.46) 

Remembering from Eq. (11.16) that E1 = Ekl + m1c2, where Ekl is the kinetic energy 

of particle 1 in the laboratory, we have 

E' = cV (mi+ m~)c2 + 2(Ekl + m1c2)m2 

= cy(m1 + m2)2c2 + 2Ek1m2. (11.47) 

The minimum energy required to produce particles m3 and m4 after the reaction is that 

energy at which the resulting particles are at rest in the C-system. In the L-system it is 
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impossible for both particles to be at rest at the same time because of the conservation of 
momentum. In this case E3 = m3c2 and E4 = m4c2, and the energy after the collision 
is E' = (m3 + m4)c2. Equating this with Eq. (11.47), which gives the total energy in the 
C-frame before the collision, we have 

or, solving for Ekl, 
2 

Ekl = -2c [(m3 + m4) 2 - (m1 + m2)2] 
m2 

2 
c 

= -2 [(m3 + m4) - (m1 + m2)][(m3 + m4) + (m1 + m2)]. 
m2 

The Q-value for this reaction [remember Eq. (9.41) for newtonian collisions] is defined by 

which is equal to the difference between initial and final rest energies. Then the expression 

for Ekl becomes 

Ekl = - 2Q (m1 + m2 + m3 + m4), (11.49) 
m2 

which gives the threshold kinetic energy for particle 1 (the incident particle) in the £

frame. If Q is positive, then Ekl is negative and the reaction can occur no matter what the 

kinetic energy of the incident particle is. This is due to the fact that the initial particles 
have a rest energy greater than that needed to produce final particles which are also at 

rest. But if Q is negative, Ekl is positive and the incident particle must then have acer
tain minimum kinetic energy, because the rest energy of the initial particles is not enough 

to produce the final particles. 
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Problems 

11.1 Assume that E and E' are the values 

of the total energy of a system of two inter

acting particles as measured by two inertial 

observers O and O' moving with relative 

velocity v. Prove that 

Compare with results given in Chapter 9. 

Assume that the energies are low enough 

to use newtonian dynamics. 

11.2 Compare the nonrelativistic equa

tions of motion of a particle as determined 

by an inertial observer O and another ob

server O' rotating relative to the first with 

a constant angular velocity. Discuss the 

inertial forces that are observed by O'. 
[Hint: Review Section 6.4.] 

11.3 At what velocity is the momentum 

of a particle equal to moc? What is the 

total energy and the kinetic energy in this 

case? 

11.4 An electron moves in a circular path 

of radius 2 X 10-2 m in such a way that 

its velocity is (0.5 + O.Olt)c. Find the 

angle between the force and the accelera

tion when t = 10 s. 

11.5 A particle of rest mass mo with a 

velocity of O.Sc is subject to a force which 

is (a) parallel to the velocity, (b) perpen

dicular to the velocity. Determine the 

ratio of the force to the acceleration in 

each case. Also, in the second case, find 

the radius of curvature and compare with 

the nonrelativistic values. 

11.6 The rest mass of an electron is 

9.109 X 10-31 kg and that of a proton is 

1.675 X 10-27 kg. Compute their rest 

energies in joules and in e V. 

11.7 Find the exit momentum and velocity 

of a proton in the Brookhaven accelerator, 

given that the proton kinetic energy is 

3 X 1010 eV. 

11.8 The radius of the proton path in the 

Brookhaven accelerator is 114 m. Find the 

centripetal force required to hold it in orbit 

when it has reached its final kinetic energy. 
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11.9 An electron has a velocity of O.Sc. 

Find the velocity of a proton having (a) 

the same momentum, (b) the same kinetic 

energy. 

11.10 Estimate the value of the corrective 

term Jmov4 / c2 relative to the first term in 

Eq. (11.19) for (a) an electron in a hydrogen 

atom whose velocity is 2.2 X 106 m s-1, 

(b) a proton coming from a cyclotron with 

a kinetic energy of 30 MeV, (c) protons 

coming from the Brookhaven accelerator 

with a kinetic energy of 3 X 1010 eV. 

11.11 Complete Example 11.5 by obtain

ing the coordinates of the particle as a 

function of time and compare with the non

relativistic values. Show also that the 

equation of the path is 

Eo Fx 
y = ~cosh-

F poc 

11.12 An accelerator produces protons 

with a velocity of 0.9c at the rate of 

3 X 1018 particles per second in bursts 

that last 10-5 s each. Find the total 

energy needed to accelerate all the parti

cles in one burst. If there are 100 bursts 

per second, find the power required to 

accelerate the particles. 

11.13 Calculate, in e V, the energy re

quired to accelerate an electron and a 

proton from (a) rest up to 0.500c, (b) 0.500c 

to 0.900c, (c) 0.900c to 0.950c, (d) 0.950c 

to 0.990c. What general conclusion do you 

reach? 

11.14 The kinetic energy of a certain par

ticle can be written as pc with an error in 

the total energy not greater than 1 %, 
What is its minimum velocity? What is 

the kinetic energy, in e V, of an electron 

and a proton moving at that velocity? 

11.15 What maximum velocity must a 

particle have if its kinetic energy is to be 

written as !mov2 with an error no greater 

than 1 % ? What is the kinetic energy, in 

eV, of an electron and a proton moving 

with that velocity? 
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11.16 Showthatv/c = [1- (m0c2 /E) 2]112. 

From this relation find the velocity of a 

particle when E is (a) equal to its rest 

energy, (b) twice its rest energy, (c) 10 

times its rest energy and (d) one thousand 

times the rest energy. Compute the cor

responding energies in e V for an electron 

and a proton. Make a plot of v / c against 

E/moc2 • 

11.17 Prove that the momentum of a 

particle can be written as 

Plot p/moc as a function of Ek/moc2• 

11.18 Electrons are accelerated up to a 

kinetic energy of 109 e V. Find (a) the 

ratio of their mass to the rest mass, (b) the 

ratio of their velocity to the velocity of 

light, (c) the ratio of their total energy to 

their rest-mass energy. Repeat the same 

problem for protons of the same energy. 

11.19 Since energy/velocity has the same 

dimensions as momentum, the unit MeV /c 
has been introduced as a convenient unit 

for measuring the momentum of elemen

tary particles. Express the value of this 
unit in m kg s- 1• Find, in terms of this 

unit, the momentum of an electron having 

a total energy of 5.0 MeV. Repeat for 

a proton having a total energy of 2 X 

103 MeV. 

11.20 Determine the total energy and the 

velocity of an electron having a momentum 

of 0.60 Me V / c. Repeat for a proton. 

11.21 An electron is moving at a velocity 

0.6c relative to an observer 0. A force of 

9.109 X 10-19 N as measured in the frame 

of reference attached to the electron is ap

plied parallel to the relative velocity. 

Find the acceleration _of the electron rela

tive to both frames of reference. 

11.22 Solve Problem 11.21 for a case in 

which the force is applied perpendicular to 

the relative velocity. 

11.23 Solve Problems 11.21 and 11.22 for 

a case in which the value of the force is 

relative to the observer 0. 

11.24 Calculate the momentum, total en

ergies, and kinetic energy of a proton mov

ing with a velocity v = 0.99c relative to 

the laboratory in the following cases: (a) in 

the L-frame, (b) in the frame defined by the 

proton, (c) in the C-frame defined by the 

proton and a helium atom at rest in the 

laboratory. 

11.25 A proton with a kinetic energy of 

1010 e V collides with a proton at rest. 

Find (a) the system velocity, (b) the total 

momentum and the total energy in the L

frame, (c) the kinetic energy of the two 

particles in the C-frame. 

11.26 An electron having a total energy 

E 0 makes a head-on collision with a pro

ton at rest. If the electron energy is very 

large compared with its rest energy, the 

electron must be treated relativistically, but 

if, in addition, it is small compared with 

the rest energy of the proton, the proton 

can be treated nonrelativistically. Prove 

then that (a) the proton recoils with a ve

locity approximately equal to (2E0 /moc 2)c, 

(b) the energy transferred from the electron 

to the proton is 2E~/moc2• Apply to a case 

in which the electrons have a kinetic energy 

of 100 Me V. [Hint: For the electron, E = 
cp, while for the proton Ek = p 2 /2m. Also 

note that if the proton moves forward, the 

electron bounces back, so that the direction 

of its momentum is reversed.] 

11.27 One method of obtaining the energy 

needed for a nuclear reaction is to send two 

particles against each other. When the 

particles are identical and their energies 

are the same, the C-frame coincides with 

the laboratory. This method is used at 

CERN where protons, accelerated to an 
energy of 28 Gev, are kept circulating in 

opposite directions in two "storage rings"; 

at a convenient time the two beams are 

made to collide. (a) What is the total 

energy available for a reaction? (b) What 

is the kinetic energy of one of the protons 

in the frame of reference in which the other 

proton is at rest? This is the energy to 

which a proton would have to be acceler-



ated to produce the same reaction when 
colliding with a target at rest in the labora

tory. Do you see any advantage in the 

idea of "storage rings"? 

11.28 Obtain the relativistic law (11.26) 

for the transformation of momentum and 

energy by writing p' = mo V' I Vl - V' 2 I c2 

and E' = m0c2IV1 - V' 2lc2 , and express
ing the velocity V' in terms of the velocity 

V measured by O and their relative velocity 
v, using Eq. (6.36). [Hint: Use the rela
tions obtained in Problem 6.38.] 

11.29 Prove that the general law for the 
transformation of force when the particle 
is not at rest relative to O' is 

( vVvlc
2 ) F 

F~ = F x - 1 - V V xi c2 Y 

vV.lc F 
( 

2 ) 

- 1 - vVxlc2 2
' 

Vl - v2lc2 
F~ = 1 v I 2 Fy, - v x c 

Vl - v2lc2 
F' - F 

z - 1 - vVxlc2 z, 

where V refers to the velocity of the par
ticle relative to 0. Verify that they reduce 

to Eqs. (11.32), (11.33), and (11.34) if the 
particle is at rest relative to O'. 

11.30 Prove that the transformation for 

energy and momentum can be written in 
the vector form 

, (p · v)v 
P = P - v2 

+ k [(p · v)v _ !!.!!!.] , 
v2 c2 

E' = k(E - v • p). 

11.31 A particle of rest mass m1, moving 
with velocity v1 in the L-frame, collides 

with a particle of rest mass m2, at rest in 

the L-frame. (a) Prove that the velocity 
of the C-frame of the system composed of 
the two particles is 
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where A = m2lm1. (b) Prove that in the 
C-frame the velocity of m1 is 

2 2 • I 21 2 
1 - vel c + A V 1 - Ve c 

and that the velocity of m2 is -Ve. (c) 
Compute the values of the preceding quan

tities when v1 is small compared with c, 
and compare your result with those of 

Example 9.13. 

11.32 Using the Lorentz transformation 
laws for energy and momentum, prove that 

if ve = c2P IE is the system velocity rela
tive to an observer O while the system 
velocity to another observer O', in motion 
relative to O with velocity V along the X

axis, is vc = c2P' IE', then ve, vc, and V 

are related by Eqs. (6.36) for the trans
formation of velocities. Also prove that if 

Ve = O (or P' = O), then Ve = v. This 
was one of our basic assumptions in Sec
tion 11.9 when we defined the system 

velocity. Hence we see that the theory 
developed is consistent with the Lorentz 
transformation. 

11.33 A particle of rest mass m 1 and 

momentum p1 collides inelastically with a 
particle of mass m2 at rest in the labora

tory. The two particles stick together 
without change in total rest mass. Find 
(a) the velocity of the resulting particle 
relative to the L-frame, (b) the Q of the 

collision. 

11.34 Discuss Problem 11.33 for a case in 

which the resulting particle has a rest mass 
of m3 that is different from the combined 

rest mass m1 + m2 of the two colliding 
particles. 

11.35 A particle of rest mass m1 and 

momentum p1 collides inelastically with 

a particle of rest mass m2 at rest in the 

laboratory. The resulting products are a 
particle of rest mass m3 and a particle of 
zero rest mass. Find the energy of the last 
particle (a) in the C-frame, (b) in the L

frame. 
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11.36 Assume that the recoil angle of the particle of mass mo in Example 11.10 is q,. 
Prove that the kinetic energy of the particle after the collision is 

2 2 
Ek = 2E(E/moc ) cos </> 

1 + 2(E/moc2) + (E/m0c2)2 sin2 </> 

11.37 A particle of rest mass m1 and momentum Pl collides elastically with a particle 
of mass m2 at the rest in the L-frame and is deviated an angle 8. Prove that the mo
mentum and energy of m1 after the collision are 

P3 

E3 

11.38 Ref erring to Problem 11.37, prove 
that if particle m2 recoils at an angle </> 

relative to the direction of motion of the 

incident particle, then its momentum and 
energy are 

2 
2m2(E1 + m2c ) cos</> 

p4 = PI 2 2 2 ' 
(Ei!c+ m2c) - Pl cos </> 

E4 = m2c 
2 

X [1 + 2pi c~s2 </> 2 2 J. 
(Ei/c + m2c) - Pl cos </> 

11.39 Refer again to Problems 11.37 and 

11.38. Assume that the two particles have 
the same rest mass. After the collision the 

incoming particle moves in the C-frame at 

an angle </> relative to the initial direction 
and the other particle moves in the oppo
site direction. Prove that the angles () and 
()' which they move relative to the L-frame 

are 

tan() vl - v2/c2 tan !<I> 
and 

tan 8' vl - v2/c2 cot!</>. 

Conclude from this tliat () + ()' ~ ~ and 
that the closer v is to c, the smaller the 
angle () + ()' between the two particles in 
the L-frame is. Compare with the results 

given in Example 9.11 for a nonrelativistic 
collision. [Hint: Note that before the col

lision the two particles move in the C

frame with velocities v and -v and after 

the collision they continue moving in op
posite directions with the same velocities.] 

11.40 Referring to Problem 11.37, verify 
that if particle 1 has a zero rest mass, then 

the values of p3 and E3 reduce to those of 
Example 11.10. 

11.41 Prove that the equation of motion 
of a rocket moving at relativistic veloci

ties and subject to no external forces is 

m dv/dm + v~(l - v2/c2) = 0, where mis 
the instantaneous rest mass of the rocket, v 

is its velocity relative to the observer and 

v; is the exhaust velocity relative to the 

rocket. Also prove, by integration, that 

the final velocity is given by 

c[l - (m/mo)2v~/c] v = ~~~~~~~-
1 + (m/mo)2v~/c 

[Hint: Write the equations of conservation 

of momentum and energy relative to the 
observer, noting that the rest mass of the 

exhaust gases is not the same as the change 
in rest mass of the rocket.] 

11.42 A particle of rest mass mo splits (or 

decays) into two particles of rest masses 
m1 and m2. Prove that in the C-frame the 
energies of the resulting particles are 

2 2 2 2 
(mo+ m1 - m2)c /2mo 

and 
2 2 2 2 

(mo+ m2 - m1)c /2mo. 

Also find their momenta. 



11.43 Solve Problem 11.42 for the case of 

particles in the L-frame, given that the 

momentum of particle mo in this frame is 

p. Also prove that if PI and p2 are the 
momenta of the resulting particles and (} 

the angle between them, 

m5c4 (mI + m2)2c4 + 2EIE2 

- 2mim2c4 - 2pip2c2 cos 0. 

11.44 In a collision between particles mI 

and m2, mI is moving with momentum PI 

and m2 is at rest in the L-frame. After 

the collision, in addition to particles mI 

and m2 there appear particles ma, m4, .... 

Prove that the threshold kinetic energy 

in the L-frame for this process is 

where Llm = ma + m4 + · · · . Apply this 
equation to the creation of a proton-anti

proton pair, as discussed in Example 11.11. 

11.45 A particle of rest mass mI, moving 

with an extremely large total energy EI so 

that its velocity is approximately equal to 

c, collides with a particle of rest mass m2 

which is at rest. Show that the system 

velocity is c(l - m2c2/EI) and that the 

energy available in the C-frame is 

11.46 Consider a reaction in which a par

ticle of zero rest mass and energy EI col

lides with a particle of rest mass m2 which 

is at rest in the laboratory. The final 

products of the reaction are two particles: 

one of rest mass m2 and another of rest 

mass m3. Show that the threshold energy 

EI for the reaction is 

11.47 Determine the Q-value and the 

threshold kinetic energy in the L-frame of 
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reference of the incident (the 11'-) particle 

for both the following reactions: (a) 71'- + 
p+ -- n + 11'0 ; (b) 71'- + p+ -- ~- + K+. 

The rest masses of these particles are: 

Particle Rest mass, kg 

0.2489 X 10-27 

-0.2407 x 10-27 

1.6752 x 10-27 

1.6748 x 10-27 

1.9702 X 10-27 

0.8805 X 10-27 

[Hint: Use the results of Example 11.12.] 

11.48 An elementary particle of rest mass 

mo disintegrates, dividing into other ele

mentary particles. The process has a non

zero Q-value. (a) Prove that if the particle 

divides into two equal fragments they must 

move in the C-frame in opposite directions 

with a momentum equal to 

!(2moQ - Q2 I c2) 112. 

(b) Prove that if the particle disintegrates 

into three equal fragments, emitted sym

metrically in the C-frame, the momentum 

of each particle is equal to 

(c) Verify that results (a) and (b) reduce, 

respectively, to the nonrelativistic expres
sions given in parts (d) and (e) of Prob

lem 9.13 when Q is much smaller than 

moc2 . (d) Apply the result of part (b) 

above to the elementary particle called a 

tau-meson (mo = 8.8 X 10-28 kg), which 

disintegrates into three fragments called 

pi-mesons (mo = 2.5 X 10-28 kg). Evalu

ate the Q of the process and find the magni

tude of the velocities of the fragments in 

the C-frame. What percentage error is 

obtained if we use the nonrelativistic ex

pressions of Problem 9.13? 
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12.l lntrfHllretion 

One of the most important motions encountered in nature is the oscillatory (or 

vibrational) motion. A particle is oscillating when it moves periodically about an 

equilibrium position. The motion of a pendulum is oscillatory. A weight attached 

to a stretched spring, once it is released, starts oscillating. The atoms in a solid are 

vibrating. Similarly, the atoms in molecules are vibrating relative to each other. 

The electrons in a radiating or receiving antenna are in rapid oscillation. An 

understanding of vibrational motion is also essential for the discussion of wave 

phenomena, which we shall deal with in Part 3 of this text. 

Of all the oscillatory motions, the most important is simple harmonic motion 

(SHM), because, besides being the simplest motion to describe mathematically, 
it constitutes a rather accurate description of many oscillations found in nature. 

Most of our discussion in this chapter will concentrate on this kind of motion. 

12.2 .Kinematics al Simple Harmonic Motion 

By definition, we say that a particle moving along the X-axis has simple harmonic 

motion when its displacement x relative to the origin of the coordinate system is 

given as a function of time by the relation 

x = A sin (wt + a). (12.1) 

The quantity wt + a is called the phase, and thus a is the initial phase; i.e., its 

value for t = 0. Although we have defined simple harmonic motion in terms of a 

sine function, it may just as well be expressed in terms of a cosine function, the 

only difference being an initial phase difference of 1r/2. Since the sine (or cosine) 

function varies between a value of -1 and + 1, the displacement of the particle 

varies between x = - A and x = +A. The maximum displacement from the 

origin, A, is defined as the amplitude of the simple harmonic motion. The sine 

function repeats itself every time the angle increases by 21r. Thus the displacement 

of the particle repeats itself after a time interval of 21r / w. Therefore simple har

monic motion is periodic, and its period is P = 21r/w. The frequency v of a simple 

harmonic motion is equal to the number of complete oscillations per unit time; thus 

v = 1/P. The quantity w, called the angular frequency of the oscillating particle, 

is related to the frequency by a relation similar to Eq. (5.51) for circular motion, 

namely 

21r 
w = p = 21rv. (12.2) 

',""", 
The velocity of the particle, determined by'using Eq. (5.2), is 

dx • 
v = dt = wA cos (wt+ a). (12.3) 

Similarly, the acceleration is given by 

a = !~ = -w2 A sin (wt + a) (12.4) 
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Fig. 12-1. Graphs of displacement, velocity, and acceleration versus time in SHM. 

which indicates that in simple harmonic motion the acceleration is always pro

portional and opposite to the displacement. In Fig. 12-1, we have illustrated x, v, 

and a as functions of time. 

The displacement of the particle moving with SHM can also be considered as 

the X-component of a vector OP', with OP' = A, rotating counterclockwise 

around O with angular velocity w, and making (at each instant) an angle wt+ a 

with the negative Y-axis, also measured counterclockwise. In Fig. 12-2 we have 

represented the vector OP' in several positions. The student may verify that at 

any time the X-component of OP' is given by x = OP = OP' sin (wt+ a), 

in accordance with Eq. (12.1). 

The velocity and acceleration of the particle can also be represented by rotating 

vectors OV' and M', whose lengths are wA and w2 A, respectively, and whose 
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Fig. 12-2. Rotating vector for displacement in SHM. 
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Fig. 12-3. Rotating vectors for dis
placement, velocity, and acceleration 
in SHM. 
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components along the X-axis give the velocity v and the acceleration a of the 

particle which is moving with SHM. The relative orientation of these rotating 

vectors is illustrated in Fig. 12-3. One can see that OV' is advanced 1r /2 and 

GA' is advanced 1r relative to the rotating vector OP'. 

EXAMPLE 12.1. Determine whether P in the mechanism illustrated in Fig. 12-4 is 

moving with SHM. In this mechanism, QQ' is a rod on which the cylinder P can slide; 
it is connected by a rod L to the rim of a wheel of radius R rotating with constant angular 
velocity w. (This is a mechanism found in many steam engines; it transforms the oscil
latory motion of the piston into the rotational motion of the wheel.) 

~L+R 

Fig. 12-4. The motion of P is oscilla
tory but not simple harmonic. 

Solution: From the figure we can easily see that P oscillates between a position at a 
distance L + R from O and a position at a distance L - R from 0. To determine whether 
the motion is simple harmonic, we must find out whether the displacement of P follows 
Eq. (12.1). From the geometry of the figure we have that x = R cos()+ L cos<j, and 

L sin <J, = R sin 8, so that sin <j, = (R/L) sin() and 
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Thus 

x = R cos O + (L 2 - R2 sin2 8)112, 

which, since O = wt, leads to 

x = R cos wt+ (L 2 - R 2 sin2 wt)ll2 • 

This gives the displacement of P in terms of time. When we compare this equation with 

Eq. (12.1), we see that the first term, R cos wt, corresponds to simple harmonic motion 

with a = 1r /2, but the second term does not. Thus, although the motion of P is oscilla

tory, it is not simple harmonic. 

A mechanical engineer designing a mechanism such as that in Fig. 12-4 has to figure 

out how to apply the proper force at P so that the displacement x is given by the above 

equation, and so that the wheel moves with uniform circular motion. When P is attached 

to the piston of a steam engine this is done by regulating the admission of steam. 

EXAMPLE 12.2. Discuss the motion of a particle of mass m on which an oscillating 

force F = Fo sin wt is acting. 

Solution: The equation of motion of the particle is ma = Fo sin wt, or since a 

dv Fo . 
dt = -;;;:;; sm wt. 

Integrating this equation yields 

Fo 
v = - - cos wt + vo, 

mw 

dv/dt, 

where vo is a constant of integration and not the initial velocity which is obtained by 

allowing t = 0. As may be seen, the initial velocity is vo - Fo/mw. When we recall 

that v = dr/dt and integrate a second time, we obtain 

Fo . + + r = - --2 sm wt vot ro, 
mw 

which gives the position of the particle as a function of time. Here ro is the initial posi

tion of the particle. If we assume that r0 = 0, the path of the particle is as illustrated 

in Fig. 12-5. As may be seen, the particle advances to the right, but oscillates around 

the axis in the direction given by Fo. This figure must not be confused with Fig. 12-1 (a), 

which gives the displacement as a function of time for a particle moving with SHM. The 

I 
I 

I 

F0/mw2 

,---~~~~~~~~~~2~vo~~~~~~~~~~--1 
w 

Fig. 12-5. Plane motion under a harmonic force. 
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physical situation we have illustrated occurs, for example, when an electron (or any 
charged particle) moves through an oscillating electric field. 

We suggest that the student consider the particular case when Fo and vo are parallel, 
and then plot the displacement as a function of time. 

12.3 Force and Energu in Simple Harmonic Motion 

From Eq. (12.4) we can compute the force which must act on a particle of mass m 

in order for it to oscillate with simple harmonic motion. Applying the equation of 

motion F = ma, and substituting the result of Eq. (12.4), which gives the ac

celeration, we have 

F = -mw2x = -kx, (12.5) 

where we have set 

k = mw2 or w = vk/m. (12.6) 

This indicates that in simple harmonic motion the force is proportional to the dis

placement, and opposed to it. Thus the force is always pointing toward the origin 

0. This is the point of equilibrium, since at the origin F = 0 because x = 0. 

We may also say that the force F is attractive, the center of attraction being the 

point 0. The force given by Eq. (12.5) is the type of force that appears when one 

deforms an elastic body such as a spring; we gave several examples of this force 

in Chapter 8. The constant k = mw 2 , sometimes called the elastic constant, repre

sents the force required to displace the particle one unit of distance. Combining 

Eqs. (12.2) and (12.6), we can write the equations 

p = 27f'~, V=_!_ fk, 
27f' '\Jm (12.7) 

which express the period and the frequency of a simple harmonic motion in terms 

of the mass of the particle and the elastic constant of the applied force. The kinetic 

energy of the particle is 

fmw 2 A 2 cos 2 (wt+ a). (12.8) 

Or, since cos2 8 = 1 - sin2 8, using Eq. (12.1) for the displacement, we can also 

express the kinetic energy as 

(12.9) 

We note that the kinetic energy is maximum at the center (x = 0) and zero at the 

extremes of oscillation ( x = ±A). 

To obtain the potential energy we remember Eq. (8.24), F = -dEp/dx. Using 

Eq. (12.5) for the force, we can write 
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Integrating (choosing the zero of the potential energy at the origin or equilibrium 

position), we obtain 

or E _ lk 2 _ 1 2 2 
P - 2 x - 2 mw x. (12.10) 

Thus the potential energy is a minimum (zero) at the center (x = 0) and increases 

as the particle approaches either extreme of the oscillation (x = ±A). Adding 

Eqs. (12.9) and (12.10), we obtain, for the total energy of the simple harmonic 

oscillator, 
E - E + E - i zA2 - ikA2 - k p- 2 mw - 2 , (12.11) 

which is a constant quantity. This was to be expected from Eq. (8.29), since the 

force is conservative. Therefore we may say that, during an oscillation, there is a 

continuous exchange of kinetic and potential energies. In moving away from the 

equilibrium position, potential energy increases at the expense of kinetic energy; 

the reverse happens when the particle moves toward the equilibrium position. 

Figure 12-6 shows the potential energy 

represented by a parabola. For a given 

total energy E, represented by the hori

zontal line, the limits of oscillation are 

determined by its intersections with the 

potential energy curve, as we explained in 

Section 8.11. Since the parabola Ep is 

symmetric, the limits of oscillation are at 

equal distances ±A from 0. At any 

point x the kinetic energy Ek is given by 

the distance between the curve Ep(x) and 
the line E. 

Fig. 12-6. Energy relations in SHM. 

J2.4 n-,,11amies of Simple Harmonie Motion 

In Section 12.2 we defined simple harmonic motion by means of its kinematic 

properties, as expressed by Eq. (12.1). Only at a later stage did we discuss the kind 

of force required to produce such a motion (given by Eq. 12.5). However, it is im

portant to discuss-the inverse problem: We shall prove that, given an attractive 

force proportional to the displacement ( that is, F = -kx), the resulting motion 

is simple harmonic. 

One procedure is to start from the equation of motion, F = ma, with F = -kx, 

and, remembering that in rectilinear motion a = d 2x/dt2 , write the equation 

or 
d2x 

m dt 2 + kx = 0. 
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Setting w2 = k/m, we may write 

d2x 2 
dt2 + w x = 0. (12.12) 

This is a differential equation whose solutions are known to be sine or cosine 

functions of wt. Substituting for x the value A sin (wt + a), we can verify directly 

that this expression for x, which corresponds to simple harmonic motion, satisfies 

Eq. (12.12). Thus we say that x = A sin (wt+ a) is the general solution of 

Eq. (12.12) because it has two arbitrary constants, the amplitude A and the 

initial phase a.* Therefore we verify the fact that an attractive force proportional 

to the displacement produces simple harmonic motion. 

At this point we forewarn the student that this differential equation (12.12) ap

pears in many different situations in physics. Whenever it is found, it indicates that 

the corresponding phenomenon is oscillatory according to the law A sin (wt+ a), 

whether it is describing a linear or an angular displacement of a particle, a current 

in an electric circuit or the ion concentration in a plasma, the temperature of a 

body, or any of a multitude of other physical situations. 

EXAMPLE 12.3. Discuss the solution of Eq. (12.12) for simple harmonic motion in 
terms of the initial displacement xo and the initial velocity vo. 

Solution: We have indicated that the general solution of Eq. (12.12) is 

x = A sin (wt+ a). 

Thus the velocity is v = dx/dt = wA cos (wt+ a). Therefore, setting t 0, we have 

xo = A sin a, vo = wA cos a. 

From this we obtain 

tan a = wxo/vo and 

For example, if the particle is initially at the equilibrium position xo = 0 and re

ceives a blow giving a velocity vo, we have a = 0 and A = vo/w. The displacement is 
then given by x = vo/w sin wt. The total energy of the particle, according to Eq. (12.11), 
will be E = !k(vo/w) 2 = !mv~, which is equal to the initial kinetic energy. 

On the other hand, if the particle is separated the distance xo from the equilibrium 

position and then released, vo = 0, and thus tan a = oo or a = 1r /2 and A = xo. The 
displacement is then given by x = xo cos wt. Using Eq. (12.11), we obtain the total 

energy of the particle as E = !kx~, which is equal to the initial potential energy. 

EXAMPLE 12.4. Derive a general expression for the period of an oscillatory motion, 
using the principle of conservation of energy. 

* The general solution of Eq. (12.12) may also be written in the alternative form x 
a sin wt + b cos wt, where a and b are arbitrary constants. This solution is equivalent to 
x = A sin (wt + a) if we make a = A cos a and b = A sin a. 
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Solution: Referring to the discussion of Section 8.9 for rectilinear motion under con

servative forces, we find that Eq. (8.34) applies; that is, 

i: [(2/m)(E ~ Ep(x))]112 = t, 

where Ep(x) is the potential energy of the motion and Ethe total energy. According to 

the discussion of Section 8.11, the particle oscillates between the positions given by the 

values Xi and x2 obtained by solving the equation Ep(x) = E (recall Fig. 8-18). If, in 

the above equation, we make xo = Xi and x = x2, the time t corresponds to one-half an 

oscillation and therefore is equal to one-half the period: t = !P. Therefore the preceding 

equation yields 

1X2 

P=2 dx . 

x1 V(2/m)(E - Ep) 
(12.13) 

This is a general formula that gives the period of any oscillatory motion, whether it is 

SHM or not. Note that it allows us to compute the period if we know the potential energy 

Ep(x), even if we have not solved the equation of motion to obtain x as a function oft. 

We suggest that the student insert the value EP = !kx2 (which corresponds to simple 

harmonic motion) and obtain P = 1rAV2m/E, by making Xi = -A and x2 = +A, 
thus verifying that this result is identical to Eq. (12.11). 

1.2.5 The Simple Pendulum 

An example of simple harmonic motion is the motion of a pendulum. A simple 

pendulum is defined as a particle of mass m suspended from a point O by a string 

of length l and of negligible mass (Fig. 12-7). If the particle is pulled aside to 

position B so that the string makes an angle 00 with the vertical OC, and then re

leased, the pendulum will oscillate between Band the symmetric position B'. 

To determine the nature of the oscillations, we must write the equation of mo

tion of the particle. The particle moves in an arc of a circle of radius l = OA. 

The forces acting on the particle are its weight mg and the tension T along the 

string. The tangential component of the resultant force is, from the figure, 

FT = -mg sin 0, 

where the minus sign appears because it is opposed to the displacement s = CA. 

The equation for the tangential motion is Fr = mar and, since the particle moves 

along a circle of radius l, we may use Eq. (5.56) (with R replaced by l) to express 

the tangential acceleration. That is, ar = l d20/dt2 . The equation for the tan

gential motion is thus 

d2() 
ml dt 2 = - mg sin () or 

d2() g . 
dt2 + l sm () = 0. (12.14) 

This equation is not of the same type as Eq. (12.12) because of the presence of 

sin 0. However, if the angle() is small, which is true if the amplitude of the oscilla-
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Fig. 12-7. Oscillatory motion of a 
pendulum. 
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Po 
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Fig. 12-8. Variation of the period of a 
pendulum with the amplitude. 

tions is small, we may use Eq. (M.30) and write sin() ,..,, 0 in Eq. (12.14,) for the 
motion of the pendulum, which becomes 

This is a differential equation identical to Eq. (12.12), with x replaced by O, this 
time referring to angular rather than linear motion. Thus we may conclude that, 

within our approximation, the angular motion of the pendulum is simple harmonic, 
with w2 = g/l. The angle O can thus be expressed in the form O = 00 sin (wt+ a). 

Then, using Eq. (12.2), P = 21r/w, we can express the period of oscillation as 

(12.15) 

Note that the period is independent of the mass of the pendulum. For larger 
amplitudes, the approximation sin O ,..,, 0 is not valid. In that case, the formula 

for the period depends on the amplitude 00 . If we wish to obtain the general 
formula for the period, we first express the potential energy of the pendulum as a 
function of the angle (Example 8. 7) and substitute this into the expression for P 

given by Eq. (12.13). We shall omit the mathematical details, but indicate that 
the result can be expressed as a series, 

P = 21rv'l/g (1 + ! sin2 }00 + 6
9
4 sin4 }00 + · · ·). 

The variation of P with the amplitude 00 , expressed in terms of the period P O = 
21rvflg corresponding to very small amplitudes, is illustrated in Fig. 12-8. Note 
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that only for very large amplitudes does the period differ appreciably from P 0 . 

For small amplitudes it is enough to take only the first corrective term, and even 

then substitute !Oo for sin !00 , resulting in 

p = 21rvY/g (1 + /605), (12.16) 

where 00 must be expressed in radians. This is a sufficient approximation for most 

practical situations. In fact, the corrective term 05/16 amounts to less than 1 % 
for amplitudes less than 23°. 

There is, however, a special arrangement in which the period of a pendulum is 

independent of the amplitude. This is called the cycloidal pendulum. A cycloid is 

a curve generated by a point on the rim of a disk rolling on a plane, as shown in 

Fig. 12-9. If we build a path in a vertical plane with the shape of a cycloid, and 

let a mass m slide back and forth along it under the action of gravity, the amplitude 

of the motion will depend on the point from which the particle is released, but the 

period will always be P = 41ry a/ g, where a is the radius of the circle generating 

the cycloid. 

t 
Cycloid 

Fig. 12-9. Definition of cycloid. 

B 

/ 

/ 
-- - - ---r-- -

Cycloid 

Fig. 12-10. Cycloidal pendulum. 

A practical way of constructing a cycloidal pendulum is illustrated in Fig. 12-10, 

where C 1 and C 2 are two cycloid cheeks. Then, by geometrical reasoning, it can 

be proved that when the pendulum is suspended between them, its bob also de

scribes a cycloid, and therefore the period of oscillation is independent of the 

amplitude.* 

EXAMPLE 12.5. Compute the tension in the string of a pendulum as a function of the 

angle the string makes with the vertical. 

Solution: To compute the tension T, we first obtain the centripetal force on the particle, 

F c = '.[' - FN = T - mg cos 0, 

since, from Fig. 12-7, FN is given by mg cos 0. We then equate it to the mass times the 

centripetal acceleration mv2 /l (note that l is the radius) according to Eq. (7 .28), resulting 

in 

T - mg cos O = mv2 /l · 

* For more detail on the cycloid, see G. B. Thomas, Calculus and Analytic Geometry, 
third edition. Reading, Mass.: Addison-Wesley, 1962, Section 12.2. 
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We obtain the velocity by using the result of Example 8.7. That is, 

v2 = 2gl( cos() - cos Oo), 

and therefore 

T = mg(3 cos () - 2 cos Oo). 

This expression is valid for any amplitude, since no approximatLon has been made re

garding the angle (). 

12.6 Compound Pendulum 

A compound (or physical) pendulum is any rigid body that can oscillate freely 

around a horizontal axis under the action of gravity. Let ZZ' (Fig. 12-11) be the 

horizontal axis and C the center of mass of the body. When the line OC makes an 

angle () with the vertical, the Z-component of the torque acting on the body is 

Tz = -mgb sin 0, where bis the distance OC between the Z-axis and the center of 

mass C. If I is the moment of inertia of the body around the Z-axis, and a = 
d20/dt2 is the angular acceleration, Eq. (10.14), Ia = Tz, gives I d20/dt2 = 
-mgb sin 0. Assuming that the oscillations are of small amplitude, we may 

approximate again, with sin() ,.., 0, so that the equation of motion is 

d 20 _ mgb O 
dt 2 - - T 

or 
d2() gb 
dt2 + K2 o = 0. 

Here we have used I = mK2 , where K is the 

radius of gyration, defined in Eq. (10.10). 

We may compare this equation of motion 

with Eq. (12.12), showing that the oscilla

tory angular motion is simple harmonic, with 

w 2 = gb/K2• Thus the period of the oscilla

tions is 

(12.17) Fig. 12-11. Compound pendulum. 

The, quantity l = K 2 /b is called the length of the equivalent simple pendulum, 

since a simple pendulum of that length has the same period as the compound pen

dulum. We note that the period of the compound pendulum is independent of its 

mass, as well as of its geometrical shape, so long as the radius of gyration K and 

the position of the center of mass, given by b, remain the same. 

EXAMPLE 12.6. A ring of radius 0.10 m is suspended from a peg, as illustrated in 

Fig. 12-12. Determine its period of oscillation. 

Solution: We denote the radius of the ring by R. Its moment of inertia with respect 

to an axis passing through its center of mass C is le = mR2 (see Table 10-1). Then, if 
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we apply Steiner's theorem, Eq. (10.8), with a = R, the mo
ment of inertia relative to an axis passing through the point of 
suspension O is 

I = I c + mR2 = mR2 + mR2 = 2mR2 , 

which yields a radius of gyration K 2 = 2R2 • Also in our case 
b = R. Therefore, using Eq. (12.17), we obtain 

J2R2 . (2R 
P = 271' '\) gR = 271' '\) g , 

(12.6 

Figure 12-12 

which indicates that the length of the equivalent simple pendulum is 00' = 2R, which 
is the same as the diameter of the ring. When we introduce the values R = 0.10 m and 

g = 9.8 m s-2, we obtain P = 0.88 s. 

EXAMPLE 12.7. A sphere of radius R is suspended by a string from a fixed point, so 

that the distance from the center of the sphere to the point of suspension is l. Find the 
period of the pendulum. 

Solution: Unless the radius R is very small compared with the length l, we cannot con
sider the pendulum as simple, and must use the expressions which we have discussed in 

this section. From Table 10-1 we have that the moment of inertia of a sphere relative 
to an axis passing through its center is {mR2• Thus, when we apply Steiner's theorem, 
the moment of inertia relative to the point of suspension is, with.a = l, 

I = {mR2 + ml2 = m(l2 + {R2). 

This yields a radius of gyration K 2 = l2 + {R 2 = l2 (1 + 0.4R2/l2). Thus, applying 
Eq. (12.17) and noting that b = l in this case, we have 

Since in general R is small compared with l, we may replace (1 + 0.4R2/l2) 1' 2 by 1 + 
0.2R2 /l2, using the binomial approximation (M.28). Therefore 

The first term gives the period, if we neglect the size of the sphere. For example, if 
= 1 m and R = 0.61 m, we have R2 /l2 = 10-4 , and the correction term is 1.00002. 

Thus the finite size of the pendulum bob increases the period by 0.002%, an amount that 
is negligible in most cases. 

EXAMPLE 12.8. Discuss the torsion pendulum. 

Solution: Another example of simple harmonic motion is the torsion pendulum, con
sisting of a body suspended from a wire or fiber (Fig. 12-13) in such a way that line OC 

passes through the center of mass of the body. When the body is rotated an angle () from 
its equilibrium position, the wire is twisted, exerting on the body a torque r around OC 
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opposing the displacement () and of magnitude propor

tional to it, r = -KO, where K is the torsion coefficient of 

the wire. If I is the moment of inertia of the body around 

the axis OC, the equation of motion, using Eq. (10.14) 

with a = d2() / dt2 , is 

d2() 

I dt2 or 

2 

~+ ~() = 0 
dt2 I . 

Again we find the differential equation (12.12), so that 

the angular motion is simple harmonic, with w2 = K/ I; 

the period of oscillation is 

0 00 

I 

c -
-/ Q --:.,-

~ -----
/ 

/ 

359 

Fig. 12-13. Torsion pendu
(12.18) lum. The center of massisatC. 

This result is interesting because we may use it to experimentally determine the mo

ment of inertia of a body by suspending the body from a wire whose torsion coefficient 

K is known, and then measuring the period P of the oscillation. 

12. 7 Superposition of Two SHM: Same Birectio~ Same 
Frequ,encr, 

We shall now consider the superposition, or interference, of two simple harmonic 
motions which produce a displacement of the particle along the same line. Let 

us first discuss the case when both have the 
same frequency (Fig. 12-14). The displace

ment of the particle produced by each simple 
harmonic motion is given by 

and 

The resulting displacement of the particle 1s 

given by 

X =OP= X1 + X2 

= A 1 sin (wt+ a 1) + A 2 sin (wt+ a 2). 

Y1 
\ 

\ 

\ 
\ 

\ 

\ 
\ 

\ 

y 

wt 
Y' 

Fig. 12-14. Composition of two 
SHM of same frequency. 

We shall now prove that x also corresponds to a simple harmonic motion of the 

same frequency. Finding the vector sum (JP' of the rotating vectors OP~ and OP~, 

we note that its X-component is just the sum of the X-components of OP~ and 

OP~ (that is, x 1 + x2 ), and therefore is equal to x. Also, since the angle between 

OP~ and OP~ has the fixed value o = a 2 - a 1 , the vector (JP' has a constant 

magnitude A, and also rotates around O with angular velocity w. Therefore the 
~ 

rotating vector OP' generates a simple harmonic motion of angular frequency w, 
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Fig. 12-15. Composition of two SHM 
in phase. 

and we can write for x = OP, 

x = A sin ( wt + a). 

(12.7 

(12.19) 

We compute the amplitude A by applying Eq. (3.3) for the resultant of two vectors: 

A = VA i + A~ + 2A 1A 2 cos o. (12.20) 

The initial phase a can be found by projecting the three vectors on axes OX 1 

and OY 1 which rotate with angular velocity wand which constitute a frame of refer-

ence in which vectors OP~, OP~, and (JP' are at rest. Then, from the law of vector 

addition, we have 

and 

Dividing, we obtain 

A1 sin a1 + A2 sin a2 
tan a= 

A1 cos a1 + A2 cos a2 
(12.21) 

Let us consider some important special cases. If a 2 = a 1 , then o = 0, and we 

say that the two motions are in phase. Their rotating vectors are parallel, and 

Eqs. (12.20) and (12.21) give 

(12.22) 

Hence the two simple harmonic motions interfere by reinforcement because their 

amplitudes add (Fig. 12-15). If a 2 = a 1 + 7f', then o = 7f', and we say that the 

two simple harmonic motions are in opposition. Their rotating vectors are anti

parallel and Eqs. (12.20) and (12.21) give, if A 1 > A 2 , 

(12.23) 
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Fig. 12-16. Composition of two SHM 
in opposition. 
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and the two simple harmonic motions interfere by attenuation because their am

plitudes subtract (Fig. 12-16). In particular, if A 1 = A 2 , the two simple har

monic motions completely cancel each other. (What would happen if A 1 < A 2 ?) 

If a 2 = a 1 + 1r/2, then o = 1r/2, and it is said that two simple harmonic motions 

are in quadrature. Then, by application of Eq. (12.20), we obtain 

A= VAi + A~. (12.24) 

The student may verify from Eq. (12.21) that the expression for a is given by 

A2 
a = a 1 + arc tan A 

1 
· (12.25) 

The two rotating vectors are, in this case, perpendicular. In Fig. 12-17, the case 

when A 1 = ,v3 A 2 has been represented so that a = a 1 + 1r/6 and A = 2A 2 . 

The student should investigate the case in which a 2 a 1 + 31r/2. 

Fig. 12-17. Composition of two SHM 
in quadrature. 

EXAMPLE 12.9. A particle is subjected, simultaneously, to two simple harmonic 

motions of the same frequency and direction. Their equations are x1 = 10 sin (2t + 71' / 4) 

and x2 = 6 sin (2t + 271' /3). Find the resultant motion. 

Solution: The phase difference is o = a2 - a1 = 271'/3 - 71'/4 = 571'/12. Therefore, 

since the amplitudes are A 1 = 10 and A2 = 6, the resultant amplitude is 

A = ,v102 + 52 + 2(10)(6) cos (571'/12) = 12.92. 
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The initial phase is given by 

10 sin (1r/4) + 6 sin (21r/3) 
tan a = = 6.527, 

10 cos (1r/4) + 6 cos (2,r/3) 

so that a = 81.3° = 1.42 rad. Therefore the resultant motion 1s described by the 

equation x = 12.92 sin (2t + 1.42). 

12.B Superposition of Two SHM: Same Direction~ Different 

Frequencu 

The case in which two interfering simple harmonic motions in the same direction 

have different frequencies is also of importance. Consider, for simplicity, the case 

in which a 1 = 0 and a 2 = O; then the motions are described by the equations 

x1 = A 1 sin w1t and x 2 = A 2 sin w2 t. 

The angle between the rotating vectors OP~ and OP~ (Fig. 12-18) is now w1t -

w2t = (w 1 - w2)t, and is not constant. Therefore, the resultant vector OP' does 

not have constant length and does not rotate with constant angular velocity. In 

consequence, the resultant motion, x = x1 + x 2 is not simple harmonic. How

ever, as we see from Fig. 12-18, the "amplitude" of the motion is 

(12.26) 

and it "oscillates" between the values A = A 1 + A 2 [when (w 1 - w2 )t = 2n1r] 

and A = IA 1 - A 2 1 [when (w 1 - w2)t = 2mr + 1r]. It is then said that the 

amplitude is modulated. The frequency of the amplitude oscillation is expressed by 

(12.27) 

and thus is equal to the difference of the frequencies of the two interfering motions. 

Figure 12-19 shows the variation of A with t. The situation described arises 

when, for example, two tuning forks of close but different frequencies are vibrating 

simultaneously at nearby places. One observes a fluctuation in the intensity of the 

p~ 

Fig. 12-18. Composition of two SHM of 
different frequencies. 

Fig. 12-19. 

beats. 
Amplitude fluctuation or 
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sound, called beats, which is due to the change in amplitude, as illustrated in 

Fig. 12-19. 

An interesting situation occurs when Ai = A 2 ; that is, when the two ampli

tudes are equal. Then, using Eq. (M.7), we obtain 

x = xi + x 2 = Ai(sin wit+ sin w2t) 

= 2Ai cos !(wi - w2)t sin !(wi + w2)t, (12.28) 

indicating that the motion is oscillatory with angular frequency !(wi + w2) and 

amplitude 

A = 2Ai cos !(wi - w2)t. (12.29) 

This result can be obtained directly from Eq. (12.26) by setting A 2 = Ai. 

The plot of x against tis illustrated in Fig. 12-20, in which the dashed line shows 

the modulation of the amplitude. 

x 

Fig. 12-20. Beats when the two amplitudes are the same. 

12.9 Superposition of Two SHM: Perpendicular .Directions 

Let us now consider the case in which a particle moves in a plane in such a way 

that its two coordinates x and y oscillate with simple harmonic motion. We ex

amine first a case in which the two motions have the same frequency. Choosing 

our origin of time so that the initial phase for the motion along the X-axis is zero, 

we have for the x-coordinate 

x = A sin wt. (12.30) 

The motion along the Y-axis is described by the equation 

y = B sin (wt+ o), (12.31) 

where o is now the phase difference between the x- and y-oscillations. We have 

also assumed that the amplitudes A and B are different. The path of the particle 

is obviously limited by the lines x = ± A and y = ±B. 

We shall now consider some special cases. If the two motions are in phase, 

o = 0 and y = B sin wt, which may be combined with Eq. (12.30) to yield 

y = (B/ A)x. 
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This is the equation of the straight line 

PQ in Fig. 12-21, and the motion which re

sults is simple harmonic, with amplitude 

v A 2 + B 2 , because the displacement along 

the line PQ is 

r = V x 2 + y 2 = v A 2 + B 2 sin wt. 

(12.32) 

If the two motions are in opposition, o = 7r 

and y = -B sin wt. Combined with Eq. 

(12.30), this gives 

B 
y = - Ax, 

(12.9 

y 

S B Q 

Fig. 12-21. Composition of two SHM 
of the same frequency but in perpen
dicular directions. The path depends 
on the phase difference. 

which is the equation of the straight line RS. The motion is again simple harmonic, 

with amplitude v A 2 + B 2 . Therefore we say that when o = 0 or 1r, the inter

ference of two perpendicular simple harmonic motions of the same frequency re

sults in rectilinear polarization. 

When o = 1r /2, it is said that the motions along the X- and Y-axes are in 

quadrature, and 

y = B sin (wt + 1r/2) = B cos wt. 

Combined with Eq. (12.30), this gives 

which is the equation of the ellipse illustrated in Fig. 12-21. The ellipse is trav

ersed in a clockwise sense. This may be verified by finding the velocity of the par

ticle at the point x = +A, at which the velocity is parallel to the Y-axis. At 

this point, from Eq. (12.30), we must have sin wt = 1. The Y-component of the 

ll=90° - ll= 120° ll = 1-50° o= 1so0 8=210° 

8=240° ll=270° ll= 300° ll=330° 8 =360° 

Fig. 12-22. Paths for selected phase differences. 
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velocity is Vy = dy/dt = -wB sin wt = -wB. Since it is negative, the point 
passes through A moving downward, which corresponds to a clockwise sense of 

rotation. The same ellipse is obtained if o = 31r /2 or - 7r /2, but then the motion 

is counterclockwise ( can the student verify this statement?). Thus we may say 
that when the phase difference o is ± 1r /2, the interference of two simple harmonic 

motions of the same frequency results in elliptical polarization, with the axes of 

the ellipse parallel to the directions of the two motions. 

When A = B, the ellipse transforms into a circle and we have circular polariza

tion. For an arbitrary value of the phase difference o, the path is still an ellipse, 

but its axes are rotated relative to the coordinate axes. The paths for selected 

phase differences are shown in Fig. 12-22. y 
According to Section 12.3, the motions de

scribed by Eqs. (12.30) and (12.31) require forces 

along the X- and Y-axes equal to Fx = -kx and 

Fy = -ky. The resultant force acting on the 

particle is therefore 

Fx 

0 P(x,y) 

F y 
/ ------

F = UxFx + UyFy 

= -k(uxx + uyy) -kr, 

/ 

r / 
/ 

/ 

Fig. 12-23. Attractive force 
(12.33) proportional to displacement. 

where r = OP (Fig. 12-23) is the position vector of the particle. Therefore the 

motion we have described kinematically in this section is produced by an attractive 

central force proportional to the displacement. 

The force given by Eq. (12.33) always produces a plane motion even if the par

ticle can move in space, because the force is central and therefore the most general 

path under such a force is an ellipse. The potential energy corresponding to the 

\ I 
I 

4 1~\ -- _ _ _6,_12/ _ ----+-' \ 1 
6,16,22 

"" //~,10,12,18 
--... / 

5,lii ______ -111 II 5,171, 23 

I 1 9 I 
2 lQ /'.A-:. 8°16 
' I • W[ "• ' 

Fig. 12-24. Lissajous figure for w2/w1 = f 
and a phase difference of 1r /6. 

I / A \I 
I ; 1 \ 7,15 

3,11\ I 
\ /, 

4 12·"- _.,,•6,14 
' 5,13 
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force of Eq. (12.33) is (remember Example 8.8): 

Ep = ik(x2 + y 2) = !kr2 . (12.34) 

Another interesting situation is the interference of two perpendicular oscillatory 

motions of different frequencies. That is, 

x = A 1 sin w1t, y = A 2 sin (w2t + o). (12.35) 

Fig. 12-25. Lissajous figures. They depend on the ratio w2/w1 and on the phase difference. 
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Figure 12-24 illustrates the case in which w1 fw 2 and o = 1r/6. The resulting 

path is the solid line. Such a path depends on the ratio w2 /w 1 and on the phase dif

ference o. These paths are called Lissajous figures, and are illustrated in Fig. 12-25 

for several values of the ratio w2 /w 1 and several phase differences in each case . 

.12 • .10 Coupled Oscillators 

A situation very frequently encountered is that of two coupled oscillators. Three 

possible situations are illustrated in Fig. 12-26. In (a), we have two masses m 1 

and m 2 attached to springs k 1 and k2 and coupled by spring k, so that the motions 

of m 1 and m 2 are not independent. In (b), we have two pendulums coupled by 

string AB. In (c), the bodies I 1 and I 2 attached to rods k 1 and k 2 are coupled by 

rod k, forming two coupled torsional pendulums. We shall encounter a similar 

situation in Section 17.11 (Volume II) when we discuss coupled oscillating electric 

circuits. The net effect of the coupling of two oscillators can be described as an 

exchange of energy between them. 

(a) (b) ( c) 

Fig. 12-26. Various coupled oscillators. 

To discuss the problem dynamically, we must set up the equation of motion for 

each oscillator. Consider the special case of two masses m 1 and m 2 attached to 

springs (Fig. 12-27). Call x 1 and x 2 the displacements of m 1 and m 2 from their 

positions of equilibrium, measured as positive when they are to the right. Then 

spring k 1 exerts a force -k1x 1 on m 1 , and similarly spring k 2 exerts a force -k2x 2 

Fig. 12-27. Coupled oscillators. 
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on m 2 . Spring k has suffered an elongation x 2 - xi, and therefore the forces 

exerted on each particle when it tries to recover its original length are k(x2 - xi) 

on mi and -k(x2 - xi) on m 2. Therefore the equation of motion of each particle 

[using Eq. (7.15), which we recall ism d2x/dt2 = F] is 

d2xi 
mi dt2 = -kixi + k(x2 - xi) 

and 

Combining similar terms, we may write 

d2Xi + ~l_ + k Xi = __}£__ X2 
dt 2 mi mi 

and 

d2x2 k2 + k k -- + ----x2 = -xi. 
dt 2 m2 m2 

(12.36) 

The left-hand sides of these equations are very similar to Eq. (12.12), except that 

the elastic constant for each particle has been replaced by ki + k and k 2 + k. 

This, in view of Eq. (12.7), is equivalent to a change in the frequency of oscillation 

relative to their frequencies when uncoupled. Another difference in Eq. (12.36) 

relative to Eq. (12.12) is that, instead of zero on the right-hand side, we have a 

term referring to the other oscillator. This we may call the coupling term. Instead 

of attempting to obtain the general solution of Eq. (12.36), we shall indicate the 

main results, limiting ourselves to the special case of two identical oscillators, so 

that mi = m 2 and ki = k 2. This case, although simpler, has essentially all the 
features of the general case. Then Eqs. (12.36) become 

(12.37) 

It can be proved that the general motion of the two coupled oscillators, described 

by Eqs. (12.37), may be considered as the superposition of two normal modes of 

oscillation. In one of the normal modes, the two oscillators move in phase with 

equal amplitudes. That is, 

(12.38) 

where 

(12.39) 

That is, the frequency of the coupled oscillators is the same as the frequency of 

oscillation which each mass would have if there were no coupling. This is easily 

understood because, since the two oscillators have the same amplitude and are in 

phase, the center spring does not suffer any stretching and therefore does not exert 

any force on the masses, which move as if they were not coupled. 
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In the second normal mode, the two oscillators move in opposition with equal 

amplitude. That is, 

(12.40) 

where 

(12.41) 

and therefore the frequency is higher than the frequency without coupling. This 

is also easily understood because now the center spring is stretched and com

pressed, and this amounts to increasing the elastic constant of each oscillator. 

These two normal modes of oscillation are represented schematically in Fig. 12-28. 

The normal modes (12.38) and (12.40) correspond to a situation in which the two 

masses move with a constant phase difference, which is zero in mode (12.38) and 

1r in mode (12.40). The two masses simultaneously pass through their equilibrium 

positions and reach their maximum displacements simultaneously. 

Fig. 12-28. Normal vibrations of two identical coupled oscillators. 

The general solution of Eqs. (12.37) involves a linear combination of the normal 

modes of oscillation. That is, 

(12.42) 
and 

(12.43) 

We can see that these two equations express the general solution of Eq. (12.37) 

from the fact that they contain four arbitrary constants, A 1 , a 1 , A 2 , and a 2 , a 

situation which corresponds to a set of two second-order coupled differential equa

tions. These two equations indicate that x 1 and x 2 are the resultants of the inter

ference of two simple harmonic motions in the same direction but of different fre

quencies and phases, a situation already discussed in Section 12.8. Therefore what 

was explained there applies in this case. 

To get a better understanding of the physics of the problem, let us consider the 

special case of equal amplitudes, A 1 = A 2 , and assume that the initial phases are 

zero (a 1 = a 2 = 0). Then, using Eq. (M.7), we have 

and 

x1 A 1 sin w1t + A 1 sin w2t = A 1 (sin w1t + sin w2t) 

[2A 1 cos -!(w1 - w2)t] sin -!(w1 + w2)t 

X2 = A 1 sin w1t - A 1 sin w2t = A 1 (sin w1t - sin w2t) 

[2A 1 sin -!(w1 - w2)t] cos -!(w1 + w2)t. 
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Fig. 12-29. Identical coupled oscillators with same amplitude. 

Comparing these expressions with Eq. (12.29), we see that the modulating 

amplitude for Xi is 2A cos -!(w1 - w2)t, hut the modulating amplitude for x2 is 

2A sin -!(wi - w2)t = 2A cos [-!(w1 - w2)t - ,r/2]. We see then that the two 

modulating amplitudes have a phase difference of ,r/2, or a quarter of the modu

lating period. The variations of xi and x 2 with t are illustrated in Fig. 12-29. 

Because of the phase difference between the two modulating amplitudes, there is 

an exchange of energy between the two oscillators. During one-quarter of the 

modulating period, the modulating amplitude of one oscillator decreases and that 
of the other increases, resulting in a transfer of energy from the first to the second. 

During the next quarter period, the situation reverses and energy flows in the op

posite direction. The process repeats itself continuously. This can easily be ob

served experimentally by using two pendulums, arranged as in Fig. 12-26(b). 

It is also interesting to consider the total energy of the system. The total kinetic 

energy is Ek = -!miVi + -!m2v~. To obtain the potential energy, we apply Eq. 

(12.10) to each spring, which yields Ep = -!k1xi + -!k2x~ + -!k(x1 - x 2)2, since 
xi, x2, and x 1 - x2 are the elongations of each spring, or 

The total energy is then 

E = Flk + Ep = [-!mivi + -!(k1 + k)xi] 

+ [!m2v~ + !(k2 + k)x~] - kxix2, (12.44) 

The term in the first bracket depends on x1 alone, and may be called the energy 

of m1 ; the term in the second bracket corresponds to the energy of m 2 • But the 

last term contains both x1 and x 2 , and is called the coupling or interaction energy. 

This term is the one which describes the exchange of energy between the two os

cillators. In the absence of this term, the energy of each oscillator is constant. 

When there is a coupling, it is the total energy that is constant. This is a general 
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result and, as we saw in Chapter 9, whenever two systems interact, resulting in an 

exchange of energy, the total energy of the system is of the form 

(12.45) 

where the last term represents the interaction. 

Coupled oscillators are found in many physical situations, as indicated above. 

An important case is the vibration of atoms in a molecule. - A molecule is not a 

rigid structure; the atoms oscillate about their equilibrium positions. However, 

the oscillation of each atom affects its interaction with the others, and therefore 

they form a system of coupled oscillators. 

Let us consider, for example, the case of 

a linear triatomic molecule such as C0 2 • 

Geometrically this molecule has the array 

O=C=O, as indicated in Fig. 12-30, and (a) 

is similar to the oscillators in Fig. 12-27. 

The relative motion of the three atoms 

can be described in terms of normal oscil

lations. In Fig. 12-30(a), the oxygen 

atoms oscillate in phase, with the carbon 

atom moving in the opposite direction to 

conserve the position of the center of 

mass. This mode corresponds to oscilla

tion w1 of Fig. 12-28. In Fig. 12-30(b), 

the two oxygen atoms move in opposite 

directions, relative to the carbon atom, 

which remains fixed at the center of mass. 

(b) 

( c) 

Fig. 12-30. Normal vibrations of the 
C02 molecule. 

This mode corresponds to oscillation w2 of Fig. 12-28. The situation of Fig. 12-30(c) 

has not been considered previously. It corresponds to a motion perpendicular to 

the line joining the atoms with an angular frequency w3 , resulting in a bending of 

the molecule. For the C02 molecule, the values of the three angular frequencies 

are 

W2 = 7.047 X 1013 S-1, W3 = 2.001 X 1013 S-1. 

If the molecule is not linear or if it has more than three atoms, the analysis of 

the normal oscillations becomes more complicated, but essentially remains the 

(a) (b) ( c) 

Fig. 12-31. Normal vibrations of the H20 molecule. 



372 Oscillatory motion (12.11 

same. For example, for the water molecule H 20, in which the O atom is at the 

vertex of an angle of 105° and the H atoms are on each side, the normal vibrations 

are as illustrated in Fig. 12-31. Their frequencies are 10.96 X 1013 s- 1, 11.27 X 

10 13 s- 1 and 4.78 X 1013 s-1. 

12.11 Anharmonic Oscillations 

Simple harmonic motion is generated by a force F = -kx corresponding to a 

potential energy Ep = -!kx 2 , when xis measured from the equilibrium position 0. 

When the equilibrium position is at x 0 instead of the origin, as in Fig. 12-32, then 

we must write 

The graph of Ep is a parabola with its vertex at x 0 . If the total energy is E, 

intersecting Ep at A and at B, the particle oscillates between positions x 1 and x 2 , 

which are symmetrically located with respect to x 0 • Noting that 

dEp/dx = k(x - x0) and 

we may write for the angular frequency, 

(12.46) 

Consider now a case in which the potential energy is not a parabola but has a 

well-defined minimum, as indicated in Fig. 12-33. This is the situation more often 

found in physical systems and results in anharmonic oscillatory motion. If the total 

energy is E, the particle will oscillate between positions x 1 and x2 , which in general 

are asymmetric with respect to the equilibrium position x 0 • The frequency of the 

oscillations now depends on the energy. To obtain an estimate of the frequency, 

we proceed as follows. 

~a+-~+1~~~--=--..ec....~~~---+-1-x 

X1 X2 

Fig. 12-32. Harmonic oscillator with equi
librium position at xo, 

Fig. 12-33. Anharmonic oscillator with 
equilibrium position at xo. 
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Given a function f(x), Taylor's theorem* (see Eq. M.31) allows us to express it 

as a power series, 

f(x) = f(xo) + (df/dx)o(x - xo) + i(d2f /dx 2)o(x - x 0) 2 

+ t(d 3f /dx 3) 0(x - x 0) 3 + · · ·, 
l 

where the subscript zero means that the derivatives are evaluated at x = x 0 . 

Applying this theorem to Ep(x), and noting that at x 0 we have (dEp/dx) 0 = 0 
(because there is a minimum of Ep at x 0 ), we get 

Ep(x) = Ep(x 0 ) + i(d2Ep/dx2 ) 0 (x - x 0) 2 

+ t(d3Ep/dx3 ) 0 (x - x 0) 3 + · · · 
= Ep(xo) + fk(x - xo) 2 + !k'(x - x0) 3 + · · ·, (12.4 7) 

where we have set k = (d2Ep/dx2 ) 0 , k' = (d 3Ep/dx 3 ) 0 , etc. 

The first term is constant and corresponds to a change in the zero of the poten

tial energy. The second is just the quadratic term corresponding to a harmonic 

oscillator with k = (d 2Ep/dx2) 0 • The remaining terms are responsible for the 

anharmonicity, and are thus called anharmonic terms. 

If the energy is not very high, the amplitude of the oscillations is small and, as a 

reasonable approximation, we may keep the first two terms only; that is, Ep(x) = 
Ep(x0 ) + fk(x - x 0 ) 2• The motion is thus practically simple harmonic, with a 

frequency of oscillation having the approximate value 

(12.48) 

This approximation is acceptable in many instances. But for large energies, this 

value of w is, in general, in great error as to the actual frequency, and the simple 

harmonic approximation is not adequate. Then the effect of the anharmonic 

terms must be taken into account. 

The force acting on the particle corresponding to the potential energy given by 

Eq. (12.47) is 

F = - dEp = -k(x - x 0 ) - fk'(x - Xo) 2 - • • • 
dx 

(12.49) 

The first is the simple harmonic force and the others are the anharmonic terms. 

EXAMPLE 12.10. Obtain the frequency of oscillation corresponding to the inter
molecular potential given in Example 8.11. 

Solution: The intermolecular potential is 

* See G. B. Thomas, Calculus and Analytic Geometry, third edition. Reading, Mass.: 
Addison-Wesley, 1962, page 787. 
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where ro is the equilibrium separation. Thus 

d Ep = -E o 84 ro - 156.!:2_ • 
2 ( 6 12) 
dr2 P, rs r14 

Setting r = ro, we obtain 

( d2Ep) = 72 Ep,o. 
dr2 ro r5 

Therefore, using Eq. (12.48), we find that the frequency of the oscillations is approxi

mately w = ,v72Ep,o/mr5. 
In this formula m is the reduced mass, since we are discussing the relative motion of 

the two molecules. If we calculate ro in some independent way and observe w experi
mentally, we can determine the strength Ep,O of the molecular interaction. In solving 

this problem we have assumed that the oscillator is linear, so that the centrifugal poten
tial (Section 8.10) does not enter into the picture. 

12.12 Bamped Oscillatl,ons 

The discussion of simple harmonic motion in the previous sections indicates that 

the oscillations have constant amplitude. However, we know from experience that 

a vibrating body such as a spring or a pendulum oscillates with an amplitude that 

gradually decreases and eventually stops. That is, the oscillatory motion is damped. 

To explain the damping dynamically, we may assume that, in addition to the 

elastic force F = -kx, another force, opposed to the velocity, acts. In Section 

7.10 we considered a force of this kind, due to the viscosity of the medium in which 

the motion takes place. Following the logic of Section 7.10, we shall write this 

force as F' = -Xv, where X is a constant and v is the velocity. The negative 

sign is due to the fact that F' is opposed to v. Note that other types of damping 

forces-proportional to higher powers of the velocity, or having other, different, 

physical relationships-may also be present in actual physical situations. The 

resultant force on the body is F + F', and its equation of motion is 

ma= -kx - Xv, (12.50) 

or, remembering that v = dx/dt and a = d2x/dt2, we have 

d2x dx 
m dt2 -+ X dt + kx = 0. (12.51) 

This equation is customarily written as 

d2x dx 2 
dt2 + 2'Y dt + WoX = 0, (12.52) 

where 2'Y = X/m and wi = k/m is the natural angular frequency without damp

ing. This is a differential equation that differs from Eq. (12.12) for simple harmonic 
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motion in that it contains the additional term 2'Y dx/dt. Its solution can be ob

tained by the application of techniques to be learned in a calculus course.* Instead 

of attempting to obtain its solution in a formal way, let us just write it for the case 

of small damping, when 'Y < w0 . The solution then is 

x = Ae-'Yt sin (wt + a), (12.53) 

where A and a are arbitrary constants determined by the initial conditions (as 

explained in Example 12.3 for the case of simple harmonic motion), and 

w = V w~ - 'Y2 = Vk/m - X2/4m2 • (12.54) 

The student may verify by direct substitution that Eq. (12.53) is a solution of 

Eq. (12.52). Since it contains two arbitrary constants, it is the general solution of 

the differential equation. Equation (12.54) indicates that the effect of damping 

is to decrease the frequency of the oscillations. 
The amplitude of the oscillations is no longer constant, and is given by Ae-'Yt. 

Because of the negative exponent, the amplitude decreases as t increases, resulting 

in a damped motion. Figure 12-34 shows how x changes with t. 

-1 

A 

j 
0 

/ 

/ 
/ 

/ 

Fig. 12-34. Damped oscillations. 

If the damping is very large, 'Y may become larger than w0 and w, given by 

Eq. (12.54), becomes imaginary. In this case there are no oscillations and the 

particle, if displaced and released, gradually approaches the equilibrium position 

without crossing it, or, at most, crossing it once. The energy lost by the particle 

in damped oscillations is absorbed by the surrounding medium. 

EXAMPLE 12.11. A pendulum consists of an aluminum sphere of radius 0.005 m sus
pended from a string 1 m long. Determine how the air viscosity affects its amplitude and 
its period. 

* See, for example, Calculus and Analytic Geometry, third edition, by G. B. Thomas. 
Reading, Mass.: Addison-Wesley, 1962, Section 18.9. 
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Solution: From Section 7.10 we know that the viscous force acting on a sphere of radius 

R moving through a fluid with velocity vis F = -for11Rv. Thus we can find the equation 
for the tangential motion of the pendulum by adding-to the force Fr = -mg sin () ~ 

-mg() obtained in Section 12.5 for small amplitude-the above viscous force, with 

v = ds/dt = l dO/dt, where l is the length of the pendulum. Therefore 

d2() d() 
ml dtZ = -mgO - 61r11 Rl dt or 

2 

<!__!__ + 61r11 R dO + (f_ () = 0 
dt2 m dt l ' 

which is a differential equation mathematically identical to Eq. (12.52). Setting m 

(41rR3/3)p, where pis the density of the aluminum sphere, equal to 2.65 X 103 kg m-3, 

we conclude that 

61r11R 911 
'Y = 2(41rR3/3)p = 4R2p. 

The viscosity of air, assuming a temperature of 20°C, is 1.78 X 10-5 m-1 kg s- 1• Thus 
'Y = 6.43 X 10-4 s-1. The amplitude thus decreases according to the law Ae-0.000643 t. 

The time required for the amplitude to be reduced by 10% is obtained by equating the 

exponential to 0.9 or -6.43 X 10-4t = ln 0.9. Thus t = 1.64 X 103 s, or about 27 
minutes. ' 

To see how the frequency (or the period) of the oscillations is affected by the viscosity 

of the air, we use Eq. (12.54), noting that w5 = g/l. Thus w = v g/l - "12 . But 

g/l = 9.8 s-2, while "12 in our case is of the order of 4 X 10-7 s-2 and therefore negli

gible compared with g/l. Accordingly, we conclude that the viscosity of the air prac

tically does not affect the frequency or the period of the pendulum considered in this 

example, although it does affect its amplitude. 

12.13 Forced Oscillations 

Another problem of great practical importance is that of the forced vibrations of 

an oscillator; that is, the vibrations which result when we apply an external oscil

latory force to a particle subject to an elastic force. This is the situation, for 

example, when we place a tuning fork on a resonating box, and force the walls of 

the box (and the air inside) to oscillate, or when electromagnetic waves, absorbed 

by an antenna, act on the electric circuit of our radio or television set, producing 

forced electric oscillations. 
Let F = F O cos w1t be the oscillating applied force, its angular frequency being 

given by w1. Assuming that the particle is subject also to an elastic force -kx 

and a damping force -)1.v, its equation of motion is ma = -kx - )l.v + F 0 cos w,t. 

Or, making the subatitutions v = dx/dt, a = d 2x/dt 2 , we have 

d 2x dx 
m dt 2 + )I. dt + kx = F O cos wtf, (12.55) 

which, if we again make 2'Y = )l.jm and w~ = k/m, may be written in the form 

d 2x dx 2 Fo 
dt2 + 2'Y dt + w0x = m cos wit. (12.56) · 
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This is a differential equation similar to Eq. (12.52), differing only to the extent 

that the right-hand side is not zero. We could solve it by standard techniques; 

instead, let us use our physical intuition for guidance. It seems logical that in this 

case the particle will oscillate with neither its free undamped angular frequency w0 

nor the damped angular frequency v w5 - 'Y 2 • Instead, the particle will be forced 

to oscillate with the angular frequency w1 of the applied force. Thus we shall try, 

as a possible solution of Eq. (12.56), an expression of the forrg_ 

x = A sin (wit - a), (12.57) 

where, for convenience, a negative sign has been given to the initial phase a. 

Direct substitution into the equation shows that it can be satisfied if the ampli

tude A is given by* 

Fo/m 
A = ~-;=============== 

V (wJ - wii) 2 + 4'Y2wJ 
(12.58) 

and the initial phase of the displacement by 

2 2 

tan a = Wf - Wo · 

2'Yw1 
(12.59) 

Note that both the amplitude A and the initial phase a are no longer arbitrary 

quantities, but fixed quantities that depend on the frequency w1 of the applied 

force. Mathematically, this means that we have obtained a "particular" solution 

of the differential equation. t Equation (12.57) indicates that the forced oscilla

tions are not damped, but are of constant amplitude and have a frequency equal 

to that of the applied force. That means that the 

applied force overcomes the damping forces, and 11 

thus provides the energy necessary to maintain 

the oscillation. 

In Fig. 12-35 the amplitude A is plotted Po 

against the frequency w1 for a given value of X. T 

The amplitude has a pronounced maximum when 

the denominator in Eq. (12.58) has its minimum 

value. This occurs for the frequency WA, given by 

(12.60) 

Fig. 12-35. Variation of ampli
tude with the frequency of the 
applied force. 

* To verify this, first expand sin (w1t - a) and substitute the result in Eq. (12.56). Then 
equate the coefficients of sin w1t and cos w1t, respectively, on both sides of the equation. 
From the two equations so obtained, Eqs. (12.58) and (12.59) follow immediately. 

t It is proved in the theory of differential equations that the general solution of Eq. (12.56) 
is obtained by adding Eq. (12.53), the solution of Eq. (12.52), to Eq. (12.57). However, 
since Eq. (12.53) corresponds to a damped oscillation, it quickly becomes negligible and 
thus may be ignored. For that reason it is usually called the transient term. 
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When the frequency w1 of the applied 

force is equal to WA, it is said that there is 
amplitude resonance. The smaller the damp

ing, the more pronounced the resonance, and 

when A is zero, the resonance amplitude is 

infinite and occurs at w A = w0 = vflm. 
Figure 12-36 shows the variation of the 

amplitude A in terms of the frequency w, 
for different values of the damping A. 

The velocity of the forced oscillator is 

dx 
v = dt = w,A cos (wit - a). 

(12.61) 

(12.13 

A 

Q';---------'---'--W-'--0----- Wf 

Comparing this with the expression F = 

F O cos w1t for the applied force, we see that 

a represents the phase shift of the velocity 

relative to the force. The velocity amplitude 

Vo IS 

Fig. 12-36. Variation of the ampli
tude of the forced oscillations with the 
damping (in the figure, A2 is larger 
than X1). 

which can also be written in the form 

Fo 
Vo=--;================= 

v'(mw, - k/w,)2 + X2 

(12.62) 

The quantity v0 varies with w1 , as indicated in Fig. 12-37, and attains its maxi

mum value when the quantity within the parentheses in the denominator is zero, 

mw1 - k/w1 = 0, or 

Wf = Vk/m = Wo. (12.63) 

At this frequency of the applied force, the ve

locity and also the kinetic energy of the oscilla

tor are maximum, and it is said that there is 

energy resonance. Note that Eq. (12.63), when 

substituted into Eg. (12.59), gives a = 0. 

Therefore energy resonance occurs when the 

frequency of the applied force is equal to the 

natural frequency of the oscillator without 

damping, and in this case the velocity is in 

Fig. 12-37. Variation of velocity 
amplitude of forced oscillation with 
the frequency of the applied force. 

phase with the applied force. These are the most favorable conditions for transfer 

of energy to the oscillator, since the rate of work done on the oscillator by the ap-
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plied force is Fv, and this quantity is always positive when F and v are in phase. 

Therefore 

at energy resonance the energy transfer from the applied force to the 

forced oscillator is at a maximum. 

When the damping is very small there is no great difference between the frequen

cies corresponding to amplitude resonance and to energy resonance. 

Resonance can be illustrated with a very simple A 
B 

experiment. If, from the same string, we suspend -~-.------.-------,----.-----.---

several pendulums, as indicated in Fig. 12-38, and 

,5 

4 

we set pendulum P in motion, the others will also 

start oscillating because of their coupling. How

ever, of the five pendulums forced into oscillation, 

the one oscillating with greatest amplitude is num

ber 3, which has the same length as P and there

fore the same natural frequency, since the damping 

is negligible and there is no distinction be-

- __ } ________ __,--
p 

2 

tween amplitude and energy resonance in this 

case. Fig. 12-38. Amplitude reso-
Resonance occurs in almost every branch of nance in pendulum motion. 

physics. It is found whenever a system is sub-

ject to an external action which varies periodically with time. For example, if 

a gas is placed in a region in which an oscillatory electric field exists (such as in 

an electromagnetic wave), forced oscillations will be induced in the atoms com

posing the molecules of the gas. Since, as we explained at the end of Section 

12.10, the molecules have well-defined natural vibration frequencies, the energy 

absorption will be at a maximum when the frequency of the applied electric 

field coincides with one of the natural frequencies of the molecules. By means 

of this principle, we can obtain the vibrational spectrum of molecules. Similarly, 

we can consider the electrons in an atom as being oscillators which have certain 

natural frequencies. The energy which an atom absorbs from an oscillating elec

tric field is maximum when the frequency of the field coincides with one of the 

natural frequencies of the atom. Some crystals, such as sodium chloride, are com

posed of positively and negatively charged particles (called ions). If the crystal is 

subject to an external oscillating electric field, the positive ions oscillate relative 

to the negative ions. The energy absorption by the crystal is at a maximum when 

the frequency of the electric field coincides with the natural frequency of relative 

oscillation of the ions, which in the case of sodium chloride crystals is approxi

mately 5 X 10 12 Hz. 

Perhaps the most familiar example of resonance is what happens when we tune 

a radio to a broadcasting station. All broadcasting stations are producing forced 

oscillations on the circuit of the receiver at all times. But, to each setting of the 
tuner, there corresponds a natural frequency of oscillation of the electric circuit of 

the receiver. When this frequency coincides with that of a broadcasting station, 
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the energy absorption is at a maximum, and hence this is the only station that we 

hear. If two stations have broadcast frequencies very close together, we some

times hear both at the same time, which results in an interference effect. 

We can extend the concept of resonance to many processes in which there are 

favorable conditions for transfer of energy from one system to another, even if we 

cannot describe the process in terms of forced oscillations. In this sense it is possi

ble to talk about resonances in nuclear reactions and in processes which take place 

between fundamental particles. In this extended sense the concept of energy 

resonance plays an important role in the description of many phenomena. 

12.14 Impedance of an Oscillator 

A damped oscillator is characterized by three quantities: its mass m, the elastic 

constant k, and the damping constant A. In the formulas in Section 12.13, these 

quantities always appear in special combinations with the frequency w1 of the ap

plied force. 

The quantity appearing in the denominator of Eq. (12.62) is called the im

pedance of the oscillator, and is designated by Z. Then 

(12.64) 

Similarly, the reactance X and the resistance R are defined by 

R = A. (12.65) 

Therefore 

(12.66) 

Substitution into Eq. (12.59) also yieldE 

tan a= X/R. (12.67) 

The relationship between Z, X, and R is indicated in Fig. 12-39, which makes it 

easy to remember the above formulas. 

R=A 

k 
X=mwf - -

Wf 

Fig. 12-39. Relation between impedance, 
resistance, and reactance in forced oscilla
tions. 

y 

Fig. 12-40. Relation between the force 
and velocity rotating vectors in forced 
oscillators. 
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From Eq. (12.62) we see that v0 = F 0/Z, and the velocity at any instant is 

Fo 
v = z cos (wit - a). (12.68) 

This means that the force and the velocity may be represented by rotating vec

tors, as indicated in Fig. 12-40. Note that if a is positive, the rotating vector v;'j 

lags the rotating vector Fa, and if a is negative, rotating vector Vo leads Fo. When 

there is energy resonance, a = 0, and v;'i and Fa have the same direction. The 

power transferred to the oscillator is 

p2 
P = Fv = Zo cos wit cos (wit - a). 

Expanding the second cosine and multiplying by the first, we have 

P F~ ( 2 . • ) = z cos wit cos a - cos wit sm wit sm a . (12.69) 

We are more interested in the average power, Pave, since this is what counts when 

we are computing the energy absorbed by the oscillator in a certain time. Now, 

according to Eqs. (M.13) and (M.14), 

and cos wit sin wit = ! sin 2w1t. 

Also (cos 2w1t)ave = (sin 2w1t)ave = 0, since the sine and cosine curves are posi

tive half the time and negative the other half, by the same amount. Therefore 

(cos 2 w1t)ave = ! and (cos wit sin w1t)ave = 0, resulting finally in 

P F~ ip _ F~R _ 1 R 2 
ave = 2Z cos a = 2 oVo cos a - 2z2 - 2 Vo. (12.70) 

This verifies that the maximum transfer of energy occurs when v0 is a maximum, 

since R is fixed. At energy resonance, a = 0 and Z = R, resulting in 

F~ 
(Pave)res = '2R · (12.71) 

The ratio between Pave and (Pave) res is illus
trated in Fig. 12-41. 

The theory concerning damped and forced 

oscillators which we have formulated in the last 

three sections, although referred specifically to 

an oscillating particle, applies to any physical 

situation described by an equation such as 

Eq. (12.52) or Eq. (12.56). In particular, as we 

shall find in Chapter 17, this is precisely the 

case for electric circuits. 

P ave/(P ave)res 

Wf 

Fig. 12-41. Relation between 
Pave and (Pave)res· 
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12.lG Fourier Anal:1111i11 ol Periodic Motion 

At the beginning of this chapter we explained that simple harmonic motion is just 

one specific case of periodic or oscillatory motion. But a general periodic motion 
of period P is described by 

x = f(t), (12.72) 

where the function f(t) is periodic and has the property that f(t) = f(t + P), as 

shown in Fig. 12-42. The graph of f(t) therefore repeats itself at intervals equal to 

P. This general oscillatory motion can be expressed as a combination of simple 

harmonic motions. 

x 

,----P----, 

Fig. 12-42. A periodic function of time. 

Let us first consider, as an example, the motion whose displacement is described 

by 

x = A sin wt + B sin 2wt. (12.73) 

This represents the superposition of two simple harmonic motions of angular fre

quencies wand 2w or periods P and f P. Obviously xis also periodic, and its period 

will be P. This is seen in the graph of Fig. 12-43, in which curve (a) corresponds 

to sin wt and curve (b) to sin 2wt. Although xis periodic, it is not simple harmonic. 

x 
x 

(b) 

' \ 
\ 

Fig. 12-43. Superposition of two SHM of frequencies w and 2w. 
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If we add to Eq. (12.73) terms of the form sin 3wt, sin 4wt, ... , sin nwt, ... of 

angular frequencies 3w, 4w, ... , nw, ... and periods P /3, P / 4, ... , P / n, ... , or 

if we add cosine functions of the same frequencies, we still get a displacement x 

that is periodic with period P. Its exact form depends on the number of sine and 

cosine functions we add, and on their relative amplitudes. 
Thus we see that by adding simple harmonic motions whose frequencies are 

multiples of a fundamental frequency and whose amplitudes are properly selected, 

we may obtain almost any arbitrary periodic function. The reverse is also true, 

and constitutes Fourier's theorem, proved in mathematical texts. Fourier's theorem 

asserts that a periodic function f(t) of period P = 21r/w can be expressed as the 

sum 

x = j(t) = a0 + a 1 cos wt+ a2 cos2wt + · · · + ancosnwt 

+ · · · + b1 sin wt+ b2 sin2wt + · · · + bnsinnwt + · · · 
(12.74) 

This is known as a Fourier series. The frequency w is called the fundamental and 

the frequencies 2w, 3w, ... , nw, ... are the harmonics or overtones. 
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Fig. 12-44. Fourier analysis of a periodic function. 
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Note on Fourier coefficients: The coefficients an and bn are obtained through the ex
pressions 

j .p 

ao = i 
O 

f(t) dt, 

p 

an = ; i J(t) cos nwt dt, 

p 

bn = ; i f(t) sin nwt dt, (12.75) 

which are derived in mathematical texts but which the student can easily obtain by 
himself. For example, to obtain an, we multiply both sides of Eq. (12.74) by cos nwt and 
integrate. All terms except an give zero when integrated. For bn, we use sin nwt. (Consult 
G. B. Thomas, Calculus and Analytic Geometry, third edition. Reading, Mass.: Addison
Wesley, 1962, page 821.) 

Fourier's theorem gives us yet another reason why simple harmonic motion is so 

important. By an application of Fourier's theorem, any kind of periodic motion 

can be considered as the superposition of simple harmonic motions. In Fig. 12-44 

the periodic motion corresponding to the curve shown at the top is analyzed into 

its Fourier components. The first twelve harmonics are shown. Fourier's theorem 

also helps to explain the different quality of sound produced by different musical 

instruments. The same note or musical tone produced by a piano, a guitar, and 

an oboe sounds different to our ears, in spite of the fact that the tones have the 

same fundamental frequency. The difference is due to the presence of the har

monics or overtones with different relative amplitudes. In other words, the Fourier 

analysis of the sound is different for each instrument. 

The Fourier method is useful not only for analyzing periodic curves, but also 

for a,nalyzing nonperiodic ones. In a nonperiodic case, the curve extends from 

- oo to +oo, and we may assume that this interval covers one period. The essen

tial difference between this case and the one explained before is that instead of 

analyzing the curve in terms of a discrete frequency spectrum w, 2w, 3w, ... , nw, 

... , we must analyze it in terms of a continuous spectrum of frequencies. The 

amplitude corresponding to each frequency is given by a function of w called the 

Fourier transform of the curve analyzed. We shall illustrate one example, without 

entering into the mathematical details. x 

Suppose that a curve is described by the 

equation x = A sin w0t in the time interval 

from t1 to t2 , being zero everywhere else, as 

indicated in Fig. 12-45. Physically this cor

responds to the situation in which a body is 

0 

suddenly made to oscillate at t = t1 and is as p· 12 45 1g. - • 
suddenly stopped ~t t = t2 . This is sometimes pulse. 

called a pulse. 

Limited oscillatory 

If the curve had extended from - oo to +oo, we would not have had to make 

any Fourier analysis because then the curve would have been a harmonic function 

of frequency w0• But to annihilate the curve for t < t1 or t > t2 , we have to add 

other frequencies, so that the resultant Fourier series in those regions is zero. 

Thus a finite pulse is the composite of many frequencies, even if the vibrating source 

has a well-defined frequency. It may be proved that the amplitude profile as a 
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Fig. 12-46. Fourier analysis (or transform) of pulse of Fig. 12-45. 

function of w (or the Fourier transform) corresponding to the pulse is given by the 

function 

F(w) = l ~tA [si~ }(w - wo) ~t], 
2(w - wo) ~t 

where ~t = t 2 - t 1. This amplitude profile is illustrated in Fig. 12-46. For 

w = w0 , we have F(w 0 ) = ! ~tA. Because the numerator of the fraction inside 

the parentheses is never larger than one, when the difference w - w0 increases in 

absolute value, the value of F(w) decreases in an oscillatory form. The range of 

values of w for which F(w) is larger than 50% of its value for w = w0 corresponds 

roughly to the condition 

lf(w - wo) ~ti < i or 
7r 7r 

- - < W - Wo < -· 
~t ~t 

Thus if we call ~w = 21r / ~t, we conclude that the only frequencies whose ampli

tudes are appreciable are those in the range ~w around w0 , given by 

(12. 76) 

It indicates that the shorter the time interval, the larger the range of frequencies 

required to accurately represent the pulse. 
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Problems 

12.1 A wheel of 30 cm radius is provided 

with a handle at its edge. The wheel is 

rotating at 0.5 rev s-1 with its axis in a 

horizontal position. Assuming that the 

sun's rays fall vertically on the earth, the 

shadow of the handle will describe simple 

harmonic motion. Find (a) the period of 

the motion of the shadow, (b) its frequency, 

and (c) its amplitude. (d) Write the equa
tion expressing its displacement as a func

tion of time. Assume zero initial phase. 

12.2 A particle is moving with a simple 

harmonic motion of 0.10 m amplitude and 

a period of 2 s. Make a table indicating 

the values of the elongation, the velocity, 

and the acceleration at the following times: 

t = O, P/8, 3P/8, P/2, 5P/8, 3P/4, 7P/8, 

and P. Plot the curves for elongation, ve

locity, and acceleration, each as a function 

of time. 

12.3 A simple harmonic oscillator is de

scribed by the equation 

-
x = 4 sin (O.lt + 0.5), 

where al( quantities are expressed in MKS 

units. Find (a) the amplitude, period, fre

quency, and initial phase of the motion, 

(b) the velocity and acceleration, (c) the 

initial conditions, (d) the position, veloc

ity, and acceleration for t = 5 s. Make a 

graph of position, velocity, and accelera

tion as functions of time. 

12.4 A particle situated at the end of one 

arm of a tuning fork passes through its 

equilibrium position with a velocity of 2 m 

s-1. The amplitude is 10-3 m. What is 

the frequency and period of the tuning 

fork? Write the equation expressing its 

displacement as a function of time. 

12.5 A particle of mass 1 g is vibrating 

with a simple harmonic motion of 2 mm 

amplitude. Its acceleration at the end of 

the trajectory is 8.0 X 103 m s-2 . Calcu

late the frequency of the motion and the 

velocity of the particle when it passes 

through the equilibrium point and when 

the elongation is 1.2 mm. Write the equa
tion expressing the force acting on the 

particle as a function of position and as a 

function of time. 

12.6 A particle is vibrating with a fre

quency of 100 Hz and an amplitude of 

3 mm. Calculate its velocity and accelera

tion at the middle and at the extremes of 

the trajectory. Write the equation ex

pressing the elongation as a function of 

time. Assume zero initial phase. 

12.7 A particle moving with a simple 

harmonic motion of 1.5 m amplitude is 

vibrating 100 times per second. What is 



its angular frequency? Calculate (a) its 
velocity, (b) its acceleration, and (c) its 

phase, when its displacement is 0.75 m. 

12.8 The motion of the needle in a sewing 
machine is practically simple harmonic. 
If the amplitude is 0.3 cm and the fre
quency is 600 vib min- 1 , what will be the 

elongation, velocity, and acceleration 

one-thirtieth of a second after the needle 
passes through the center of the trajectory 
(a) in the upward or positive sense, (b) in 

the downward or negative sense? 

12.9 A particular simple harmonic motion 

has an amplitude of 8 cm and a period of 
4 s. Calculate the velocity and accelera
tion 0.5 sec after the particle passes through 
the extreme of the trajectory. 

12.10 In Problem 12.2, calculate the ki
netic, potential, and total energy at each 

time, assuming the particle has a mass of 
0.5 kg. Observe that the total energy 
remains constant. Plot the curves for 
kinetic and potential energy (a) as func

tions of time, (b) as functions of position. 

What is your conclusion? 

12.11 A particle whose mass is 0.50 kg is 
moving with simple harmonic motion. Its 

period is 0.1 s and the amplitude of its 
motion is 10 cm. Calculate the accelera
tion, the force, the potential energy, and 
the kinetic energy when the particle is 

5 cm away from the equilibrium position. 

12.12 A particle of mass m is moving 
along the X-axis under the action of the 

force F = -kx. When t = 2 s the par
ticle passes through the origin, and when 

t = 4 s its velocity is 4 m s- 1• Find the 
equation of the elongation and demon
strate that the amplitude of the motion 
will be 32v'2/7r m if the period of oscilla
tion is 16 s. 

12.13 A horizontal board is moving hori
zontally with simple harmonic motion with 
an amplitude of 1.5 m. If the board is os
cillating at a rate of 15 osc min- 1 , calculate 

the minimum value of the coefficient of 

friction in order that a body placed on the 
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board will not slide when the board is 
moving. 

12.14 When a man of mass 60 kg gets into 
a car, the center of gravity of the car low
ers 0.3 cm. What is the elastic constant of 

the springs of the car? Given that the mass 

of the car is 500 kg, what is its period of 
vibration when it is -empty and when the 

man is inside? 

12.15 A wooden block whose density rela

tive to water is p has dimensions a, b, and 

c. While it is floating in water with side a 

vertical, it is pushed down and released. 
Find the period of the resulting oscillation. 

12.16 A particle moves so that its coordi

nates as functions of time are given by 

x = vot, y = yo sin wt. (a) Plot x and y 

as functions of t. (b) Plot the path of the 
particle. (c) What force is required to pro
duce this motion? (d) Find the magnitudes 
of its velocity and acceleration as functions 

of time. 

12.17 Find, for simple harmonic motion, 

the values of (x)ave and (x2)ave, where the 
averages refer to time. 

12.18 Find the average values of the ki

netic and potential energies in simple har
monic motion relative to (a) time, (b) 
position. 

12.19 The period of a pendulum is 3 s. 
What will be its period if its length is 
(a) increased, (b) decreased by 60%? 

12.20 The pendulum of a clock has a 
period of 2 s when g = 9.80 m s-2 • If 

the length is increased by 1 mm, how slow 

will the clock be after 24 hours? 

12.21 How slow will the clock in the 

previous problem be after 24 hr if it is 
moved to a place where g = 9.75 m s-2 

without changing the length of its pendu
lum? What should the correct length of 
the pendulum be in order to maintain the 

correct time at the new position? 

12.22 What should be the percentage 
change of length of a pendulum in order 

that a clock have the same period when 
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moved from a place where g = 9.80 m s-2 

to another where g = 9.81 m s-2 ? 

12.23 Find the value of the amplitude of 

a simple pendulum so that Eq. (12.15) for 
the period is correct within 2%. 

12.24 A simple pendulum whose length is 

2 m is in a place where g = 9.80 m s-2 

The pendulum oscillates with an amplitude 

of 2°. Express, as a function of time, (a) its 
angular displacement, (b) its angular veloc

ity, (c) its angular acceleration, (d) its 

linear velocity, (e) its centripetal accelera

tion, and (f) the tension on the string if the 
mass of the bob is 1 kg. 

12.25 A pendulum 1.00 m long and having 
a bob of 0.60 kg mass is raised along an arc 

so that it is 4 cm above its equilibrium 
height. Express, as a function of the pen
dulum's height, the force tangent to its 

path, its tangential acceleration, its veloc

ity, and its angular displacement when 
allowed to swing. Find the numerical 
values of these at the point of maximum 

amplitude and at the lowest point of the 
pendulum's path. Find its angular 

amplitude. 

12.26 The pendulum in the previous prob

lem is pulled aside until it makes a 30° 
angle with the vertical and is then re

leased. Can its motion be considered 
simple harmonic? Calculate (a) the ac

celeration, (b) the velocity, and (c) the 
tension in the string when its angular 

displacement is 15° and when it is passing 

through the equilibrium point. 

12.27 Estimate the relative order of mag
nitude of the first two corrective terms in 

the series for the period of a simple pen

dulum if the amplitude is (a) 10°, (b) 30°. 

12.28 Referring to-the pendulum of Ex

ample 12.7, find the maximum value of 

R/l so that the corrective term in the 
expression for the pendulum does not 

represent more than 1 %. 

12.29 A rod 1 m long is suspended from 

one of its ends in such a way that it con

stitutes a compound pendulum. Find the 
period and the length of the equivalent 

simple pendulum. Find the period of os
cillation if the rod is hung from an axis at 
a distance from one of its ends equal to 

the length of the equivalent pendulum 
found previously. 

12.30 A solid disk of radius R can be 

hung from a horizontal axis a distance h 

from its center. (a) Find the length of the 

equivalent simple pendulum. (b) Find the 
position of the axis for which the period is 
a minimum. (c) Plot the period as a func

tion of h. 

12.31 A rod of length L oscillates, about 

a horizontal axis passing through an end. 

A body having the same mass as the rod 

can be clamped to the rod a distance h 

from the axis. (a) Obtain the period of 

the system as a function of h and L. (b) 
Is there a value of h for which the period 

is the same as if there were no mass? 

12.32 A cubical solid, of side a, can oscil

late around a horizontal axis coincident 
with an edge. Find its period. 

12.33 A torsion pendulum consists of a 
rectangular wood block 8 cm X 12 cm X 

3 cm and with a mass of 0.3 kg suspended 
by means of a wire passing through its 

center in such a way that the shortest side 
is vertical. The period of the torsional 

oscillations is 2.4 s. What is the torsion 

constant K of the wire? 

12.34 Referring to Fig. 12-11, prove that 

if Kc is the radius of gyration relative to 
a parallel axis through the center of mass 

of a compound pendulum, the length of 

the equivalent simple pendulum is l = 
(Kilb)+ b. [Hint: Use Steiner's theorem 
to refer the radius of gyration to the 

center of mass.] 

12.35 Using the result of the preceding 

problem, prove that the length of the sim
ple pendulum equivalent to a compound 
pendulum (Section 12.6) is the same as 

the distance between the center of per

cussion (Problem 10.28) and the point of 

suspension if the blow is applied at C. 

12.36 Prove that if the compound pen

dulum oscillates around O' (Fig. 12-11) 



instead of 0, its period is still the same and 
the length of the equivalent pendulum 

remains unchanged. 

12.37 Find the equation of motion result
ing from superposing two parallel simple 
harmonic motions whose equations are 

x1 = 6 sin 2t and x2 = 8 sin (2t+ a), if 
a = 0, 1r/2, and 1r. Make a plot of each 
motion and of the resultant in each case. 

12.38 Find the equation of motion result
ing from superposing two parallel simple 

harmonic motions whose equations are 

x1 2 sin (wt + 1r /3) 
and 

x2 3 sin (wt+ 1r/2). 

Make a plot of each motion and of the 

resultant. Plot their respective rotating 

vectors. 

12.39 Find the equation of the path of 
the resulting motion of two perpendicular 

simple harmonic motions whose equations 

are: x = 4 sin wt and y = 3 sin (wt+ a), 

when a = 0, 1r/2, and 1r. Make in each 

case a plot of the path of the particle and 
show the sense in which the particle trav

erses it. 

12.40 By eliminating the time dependence 

between Eqs. (12.30) and (12.31), prove 

that the general expression for the equation 
of the path is 

x2 / A 2 + y2 / B 2 - 2xy cos o/ AB = sin2 o. 

Prove that this is the equation of an el

lipse, with axes at an angle relative to the 
XY-axes. [Hint: Any equation of the type 

ax2 + bxy + cy2 = k is an ellipse if b2 -
4ac < 0. See Thomas, Calculus and An

alytic Geometry, Section 9-10.] 

12.41 Prove that the ellipse of Problem 
12.40 is traversed clockwise or counter

clockwise depending on whether O < o < 1r 

or 1r < o < 21r. 

12.42 Find the equation of the path of a 
particle resulting from the application of 

two perpendicular simple harmonic mo

tions, given that wi/ w2 = ! and a = 0, 
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1r /3, and 1r /2. In each case plot the path 
and show the sense in which it is traversed. 

12.43 Prove by direct substitution in the 

equation of motion (12.37) that the ex
pressions (12.38) are the normal oscilla

tions, provided that w = Vki/m1. Prove 
the same for the normal oscillations (12.40) 

if w = v(2k1 + k)/m1. 

12.44 The potential energy for the inter

action between two atoms in a diatomic 
molecule can be expressed with good ac

curacy by the Morse potential E(r) = 

D[l - e-a(r-ro)]2, where D, a, and ro are 

constants characteristic of the molecule. 
(a) Make a schematic plot of the potential 

and find the position of equilibrium. (b) 
Make a series expansion in powers of 

r - ro and determine the ratio of the 
first anharmonic term to the harmonic 

term. (c) Find, in terms of D and a, the 
frequency of the relative vibration of two 
atoms at low energy. [Hint: Use Eq. (M.23) 

for expanding the exponential.] 

12.45 Determine the values of A and a in 

terms of xo and vo for a damped oscillator. 
Apply to the case where vo = 0. 

12.46 Verify, by direct substitution, that 

when 'Y > wo, the solution of Eq. (12.52) 
for a damped oscillator is x = Ae-<'Y+.B)t + 
Be-<'Y-.B)t, where (3 = V'Y2 - w~. Find 

the values of A and B if, fort = 0, x = xo 

and v = 0. Plot x as a function of t. 

12.47 What happens to the solution of 

Eq. (12.54) when 'Y = wo? Verify, by 

direct substitution, that in this case the 
general solution of Eq. (12.52) is x = 

(A + Bt)e-'Yt. It is then said that the 

oscillator is critically damped. Find A and 

B if, for t = 0, x = xo and v = 0. Plot 

x as a function of t. What differences do 
you see between this and the preceding 

problem? 

12.48 Prove that in damped oscillatory 

motion the velocity is given by 

v = A'e-'Yt sin (wt+ a+ o), 

where A' = Awo and tan o = -w/'Y. 
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12.49 A simple pendulum has a period of 

2 s and an amplitude of 2°. After 10 com
plete oscillations its amplitude has been 
reduced to 1.5°. Find the damping con

stant 'Y. 

12.50 Find the limiting values of the am
plitude and the phase of a forced damped 
oscillator when (a) w1 is much smaller than 

wo, and (b) w1 is much larger than wo, 

Determine the dominant factors in each 

case. 

12.51 Prove that for the forced oscilla

tions of a damped oscil!ator, the average 
power of the applied force is equal to the 
average power dissipated by the damping 

force. 

12.52 Referring to the pendulum of Prob
lem 12.49, calculate the power required to 
maintain the oscillations with constant 
amplitude. The mass of the pendulum is 

1 kg. 

12.53 In the case of a damped oscillator, 

the quantity T = l/2'Y is called the relaxa

tion time. (a) Verify that it is expressed in 

units of time. (b) How much has the am
plitude of the oscillator changed after a 
time T? (c) Express, as a function of T, 

the time required for the amplitude to re
duce to one-half its initial value. (d) What 

are the values of the amplitude after 
times equal to twice, three times, etc., the 
value obtained in (c)? 

12.54 Assume that for a damped oscillator 

'Y is very small compared with wo, so that 

the amplitude remains essentially con

stant during one oscillation. (a) Verify 
that the energy of the damped oscil

lator can be written in the form E = 
!mw5A2e-Z'Yt. (b) The average power 

dissipation is defined by P = -dE / dt. 

Prove that P = 2'YE = E/T. (c) Prove 
that this power dissipation is equal to the 
average work done by the damping force 

per unit time. 

12.55 Prove that for a forced oscillator 

Pave = !(Pave)res when the reactanceequals 
the resistance X = ± R or w; - w5 

±2'Yw1, The difference (Awh12 between 
the two values of w1 for this situation is 
called the bandwidth of the oscillator and 

the ratio Q = w/(Awh12 is called the Q
value of the oscillator. Prove that for small 
damping (Awh12 = 2'Y and thus Q = 
wo/2'Y. [Hint: Use Eqs. (12.70) and (12.71), 

with adequate values for R and Z.] 

12.56 (a) Find the average values of the 

kinetic and potential energies of the forced 
oscillations of a damped oscillator. (b) Ob

tain the ratio of the sum of these two ener
gies to the work done by the applied force 

in one period. This is a useful factor for 
indicating the performance of the oscilla
tor. Prove that for small damping it is 

equal to Q/2T. (Remember Problem 12.55.) 

12.57 Write the equation of motion of a 

simple harmonic undamped oscillator to 
which a force F = Fo cos wit is applied. 
Verify that its solution is 

x = [Fo/m(w5 - wj)] cos wit. 

Discuss the resonance in this case. 

M 

(a) (b) 

Figure 12-4 7 

12.58 The elastic moduli of the springs in 
Fig. 12-47 are, respectively, k1 and k2. 

Calculate the constant k of the system 
when the two springs are connected as in 
(a) and (b). 

12.59 A particle slides back and forth .be
tween two inclined frictionless planes 
(Fig. 12-48). (a) Find the period of the 

motion if h is the initial height. (b) Is the 

motion oscillatory? Is it simple harmonic? 
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12.60 A particle of mass m placed on a 
horizontal frictionless table (Fig. 12-49) 

is held by two equal stretched wires of 

length lo whose other ends are fixed at 

points P1 and P2. The tension of the 
wires is T. If the particle is displaced 

sidewise an amount xo which is small com

pared with the length of the wires, and 
then released, determine its subsequent 
motion. Find its frequency of oscillation 

and write the equation of motion. Assume 
that the length of the wires and the tension 

remain unchanged. 

12.61 The particle of Fig. 12-50 is under 
conditions similar to that of the preceding 

problem, but is held by two springs, each 
of elastic constant k and normal length lo. 

Obtain the same information requested in 
the previous problem. Note that we must 

now take into account the lengthening of 
the springs. 

12.62 Repeat the previous problem, as
suming that the displacement of the par

ticle is along the line P1P2, as in Fig. 12-51. 

12.63 A particle of mass m is subject to 
the force shown in Fig. 12-52, called a 

square wave; i.e., the force is constant in 

magnitude but reverses direction at regu-

Figure 12-51 
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lar time intervals of 1r / w. This force can 
be represented by the Fourier series: 

F = Fo(4/1r)(sin wt+! sin 3wt 

+ ! sin 5wt + · · ·). 

(a) Write the equation of motion of the 

particle. (b) Verify, by direct substitu

tion, that its solution can be written as 

x = a + bt + A sin wt + B sin 3wt 

+ C sin 5wt + · · · , 

where a and b are arbitrary constants, and 

determine the values of the coefficients A, 

B, C, ... , so that the equation of motion 

is satisfied. 

12.64 A simple harmonic oscillator of 
natural frequency wo is subject to the same 
driving force as in the preceding problem. 

(a) Write its equation of motion. (b) Ver

ify, by direct substitution, that its solution 

can be written as x = a sin (wot+ a) + 
A sin wt + B sin 3wt + C sin 5wt + · · · , 
where a and a are arbitrary constants, and 
determine the values of the coefficients 

A, B, C, ... , so that the equation of motion 
is satisfied. 
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12.65 Prove that the potential energy of 

a pendulum can be written as EP = 
2mgl sin2 lO. Then, by application of Eq. 

(12.13), show that 

- {80 
P = 2Vl/g Jo d0/Vsin2 lOo - sin2 lO. 

This integral cannot be evaluated in terms 

of elementary functions. In the integral 

make the substitution sin lO = sin lOo sin YI, 
where YI is a new variable going from O to 

71"/2 when O goes from O to Oo. Next make 

a series expansion of the resulting radical, 

using Eq. (M.22), and integrate to obtain 

the series expression for P given in Sec

tion 12.5. 

12.66 For simple harmonic motion, EP = 
lkx2 . (a) Use Eq. (12.13) to obtain the 

period of motion for SHM and verify that 

the result agrees with Eq. (12.7). (b) Show 

that Eq. (8.34), with xo = 0, gives 

arcsin (x/ A) = wt + a, 

where A 2 = 2E/k. Verify that this agrees 
with Eq. (12.1). 

12.67 Consider a particle oscillating under 

the influence of the anharmonic potential 

Ep(x) = ikx2 - kax3 , where a is posi

tive and much smaller than k. (a) Make a 

schematic plot of Ep(x). Is the curve sym

metric around the value x = O? In view 

of your previous answer, in what direction 

is the center of oscillation displaced as the 

energy is increased? Do you expect Xave to 

be zero? (b) Obtain the force as a function 

of x and make a schematic plot. What is 

the effect of the anharmonic term on the 

force? 

12.68 Referring to the preceding problem, 

(a) write the equation of motion. (b) Try 

as a solution 

x = A cos wt+ B cos 2wt + xi, 

where the last two terms are the results of 

the anharmonic term. (c) Can this be an 

exact solution? (d) Neglecting all terms 

involving products of A and B or powers 

of B higher than the first, prove that w = 
wo, xi = aA2/2w6 and B = -aA2/6w6, 
where w6 = k/m and a = a/m. [Hint: 

Use the trigonometric relation cos2 wt = 
l(l + cos 2wt) .] 

12.69 Repeat Problem 12.67, assuming 
that the potential energy is 

As before, a is much smaller than k. 

12.70 Referring to the preceding problem, 

(a) write the equation of motion. (b) Try 

as a solution x = A sin wt+ B sin 3wt, 

where the last term is the result of the an

harmonic term. (c) Can this be an exact 

solution? ( d) Neglecting all terms in

volving products of A and B or powers of 

B higher than the first, prove that w2 = 
wfi - 3aA2 /4 and B = aA3 /4(9w2 - w6), 

where wo and a have the same definitions 

as in Problem 12.68. [Hint: Use the trigo

nometric relation sin3 wt = £ sin wt - ! 
sin 3wt.] 

12.71 Referring to Problems 12.68 and 

12.70, find the values Xave and (x2)ave, 

where the averages refer to time, and com

pare with the results for simple harmonic 

motion. (Recall Problem 12.17 .) 

12.72 Apply the results of Problem 12.70 

to the motion of a simple pendulum by 

replacing sin O in the expression for Fr 

given at the beginning of Section 12.5 by 

its first two terms in its series expansion 

(M.25), obtaining w ~ wo(l - 05/16) and 

0 = Oo sin wt+ (0~/192) sin 3wt. From 
the value of w, obtain directly the result 

for the period P given at the end of Sec

tion 12.5. 
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Once we have grasped the general rules governing motion, the next step is to in

vestigate the interactions responsible for such motions. There are several kinds 

of interactions. One is gravitational interaction, which manifests itself in planetary 

motion and in the motion of matter in bulk. Gravitation, in spite of the fact that 

it is the weakest of all known interactions, is the first interaction to be carefully 

studied, because of man's early interest in astronomy and because gravitation is 

responsible for many phenomena that affect our lives directly. Another is electro

magnetic interaction, the best understood and perhaps the most important inter

action from the point of view of daily life. Most of the phenomena we observe 

around us, including chemical and biological processes, are the result of electro

magnetic interactions between atoms and molecules. A third kind is the strong or 

nuclear interaction, which is responsible for holding protons and neutrons (known 

as nucleons) within the atomic nucleus, and other related phenomena. In spite 

of intensive research our knowledge of this interaction is still incomplete. A 

fourth kind is the weak interaction, responsible for certain processes among the 

fundamental particles, such as beta decay. Our understanding of this interaction 

also is still very meager. The relative strength of the above interactions is: strong, 

taken as 1; electromagnetic "'10-2 ; weak "'10-5 ; gravitational "'10-38• One of 

the as-yet-unsolved problems of physics is why there appear to be only four inter

actions, and why there is such a wide difference in their strength. 

It is interesting to see what Isaac Newton, 200 years ago, said concerning inter

actions: 

Have not the small Particles of Bodies certain Powers, or Forces, by which they act ... 

upon one another for producing a great Part of the Phaenomena of Nature? For it's 
well known, that Bodies act one upon another by the Attractions of Gravity, Magnetism, 
and Electricity; ... and make it not improbable but that there may be more attractive 

Powers than these. . . . How these attractions may be perform'd, I do not here con
sider. . . . The Attractions of Gravity, Magnetism, and Electricity, reach to very sensible 
distances, ... and there may be others which reach to so small distances as hitherto 
escape observation;. . . . (Opticks, Book III, Query 31) 

To describe these interactions, we introduce the concept of field. By field we 

mean a physical property extended over a region of space and described by a 

function of position and time. For each interaction we assume that a particle 

produces around it a corresponding field. This field in turn acts on a second 

particle to produce the required interaction. The second particle produces its own 

field, which acts on the first particle, resulting in a mutual interaction. 

Even though interactions can be described by means of fields, all fields do not 

necessarily correspon_d to interactions, a fact which is implicit in the definition of 

field. For example, a meteorologist may express the atmospheric pressure and tem

perature as a function of the latitude and longitude on the earth's surface and the 

height above it. We then have two scalar fields: the pressure field and the tempera

ture field. In a fluid in motion, the velocity of the fluid at each point constitutes a 

vector field. The concept of field is thus of great and general usefulness in physics. 

In Chapter 13 we shall discuss the gravitational interaction and field. In 

Chapters 14 through 17 ( which appear in Volume II), we shall consider electro

magnetic interactions. We shall talk about the other interactions in Volume III. 
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13.l Introduction 

One of the fundamental problems of dynamics that has intrigued man since the dawn 

of civilization' has been the motion of the heavenly bodies or, as we say today, 

planetary motion. Perhaps one of the most interesting processes in the history of 

science has been the evolution of our understanding of planetary motion. 

The Greeks, who liked to consider man the center of the universe, assumed that 

the earth was at the geometric center of the universe and that the heavenly bodies 

moved around the earth. Those bodies known at that time were placed in the fol

lowing order according to their average distance to the earth: moon, Mercury, 

Venus, sun, Mars, Jupiter and Saturn. 
The first hypothesis about planetary motion was that the above planets de

scribed concentric circles, with the earth at the common center. This assumption, 

however, did not fit the observed motion of these bodies relative to the earth, and 

the geometry of planetary motion became more and more complex. In the second 

century A.D. the astronomer Ptolemy of Alexandria developed his theory of epi

cycles to explain this motion. In the simplest case the planet was assumed to de

scribe, with uniform motion, a circle called an epicycle, whose center, in turn, 

moved on a larger circle, concentric with the earth and called the deferent. The 

resulting path of the planet is thus an epicycloid (Fig. 13-1). In some instances a 

more complicated arrangement was required in order to describe planetary motions. 

In our present language, what the Greeks did was to describe planetary motion 

relative to a frame of reference attached to the earth. 

This description was accepted as correct until, in the sixteenth century, the 

Polish monk Nicolaus Copernicus (1473-1543), who was looking for a simpler 

solution, proposed to describe the motion of all planets, including the earth, rela

tive to the sun, which would be at the center. The idea was not new; it had first 

been proposed by the Greek astronomer Aristarchus about the third century B.c. 
According to Copernicus, the orbits of the planets were placed in the following 

order with respect to the sun: Mercury, Venus, earth, Mars, Jupiter and Saturn, 

with the moon revolving around the earth. Essentially what Copernicus proposed 

was another frame of reference attached to the sun, in which the motion of the 

planets had a simpler description. 

Planet 

Epicycle 

:::::..:.-------E-'p!:...icycloid 

-------
...... 

Deferen~ 

---- -

' 

Earth 

Fig. 13-1. Epicycle model for planetary motion referred to the earth. 
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TABLE 13-1 Basic Data about the Solar System* 

Mean Period of 
Eccen-

Mean Mass, Period of 
radius of orbital 

tricity 

Body radius, m kg rotation, s 
orbit, m motion, s 

of 

orbit 

Sun 6.96 X 108 1.98 X 1030 2.3 x 106 - - - -

Mercury 2.34 X 106 3.28 X 1023 5.03 X 106 5.79 x 1010 7.60 X 106 0.206 

Venus 6.26 X 106 4.83 x 1024 (?) 1.08 x 1011 1.94 X 107 0.007 

Earth 6.37 X 106 5.98 x 1024 8.62 X 104 1.49 x 1011 3.16 X 107 0.017 

Mars 3.32 X 106 6.40 x 1023 8.86 X 104 2.28 X 1011 5.94 X 107 0.093 

Jupiter 6.98 X 107 1.90 x 1027 3.54 X 104 7.78 x 1011 3.74 X 108 0.049 

Saturn 5.82 X 107 5.68 x 1026 3.61 X 104 1.43 x 1012 9.30 X 108 0.051 

Uranus 2.37 X 107 8.67 x 1025 3.85 X 104 2.87 x 1012 2.66 X 109 0.046 
Neptune 2.24 X 107 1.05 x 1026 5.69 X 104 4.50 x 1012 5.20 X 109 0.004 
Pluto (3.00 X 106) (5.37 x 1024) ( ?) 5.91 x 1012 7.82 X 109 0.250 
Moon 1.74 X 106 7.34 x 1022 2.36 X 106 3.84 X 108 2.36 X 106 0.055 

* Quantities in parentheses are uncertain. Orbital data of moon are relative to earth. 

The sun, the largest body in our planetary system, is practically coincident with 

the center of mass of the system, and moves much more slowly than the other 

planets. This justifies its choice as center of reference, since it is, practically, an 

inertial frame. Copernicus' proposal assisted the astronomer Johannes Kepler 

(1571-1630) to discover the laws of planetary motion, as a result of his careful 

analysis of the astronomical measurements of Tycho Brahe (1546-1601). These 

laws, called Kepler's laws, are a kinematical description of planetary motion and 

are stated as: 

I. The planets describe elliptical orbits, with the sun at one focus. 

II. The position vector of any planet relative to the sun sweeps out equal areas of 

its ellipse in equal times. (This statement is called the law of areas.) 

III. The squares of the periods of revolution are proportional to the cubes of the 

average distances of the planets from the sun. (This law may be stated by the equation 

P 2 = kr:ve, where k is a proportionality constant.) 

The next step in the history of astronomy was a discussion of the dynamics of 

planetary motion and an attempt to determine the interaction responsible for such 

motion. Here is where Sir Isaac Newton (1642-1727) made his outstanding con

tribution, the law of universal gravitation. This law (to be discussed later in this 

chapter) was formulated by Newton in 1666, but it was not published until 1687, 

when it appeared as a chapter in his monumental work Philosophiae N aturalis 

Principia Mathematica. 

The more important data about the solar system have been collected in Table 

13-1. 
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13.2 The Lam al Graf)itation 

Next to his statement of the laws of motion (Chapter 7), Newton's second, and 

perhaps greatest, contribution to the development of mechanics was the discovery 

of the law of gravitational interaction; that is, the interaction between two bodies, 

either planets or small particles, which produces a motion that can be described by 
Kepler's laws. 

Fig. 13-2. Gravitational interaction be
tween two masses. 

~------~ ... ·.·.·.•· .•. ·.· .•. ··•·.•· .•.... • .. ··.·.• .. ·.•·.·.···•·•···•··•···· 
~r ~ 

m m' 

In the first place, according to Section 7.14, the law of areas (or Kepler's second 

law) indicates that the force associated with the gravitational interaction is central. 

That is, the force acts along the line joining the two interacting bodies (Fig. 13-2), 

in this case a planet and the sun. Second, if we assume that gravitational inter

action is a universal property of all matter, the force F associated with the inter

action must be proportional to the "amount" of matter in each body; i.e., to their 

respective masses m and m'. Thus we may write F = mm'f(r). 

To determine the dependence of the force Fon the distance r, expressed by f(r), 

is a more difficult problem. We could determine this dependence experimentally 

by measuring the force between masses m and m' at several separations and 

deducting from our observations the relation between F and r. This has been 

done, but requires a very sensitive experimental setup because the gravitational 

interaction is extremely weak and the gravitational force is very small unless the 

two masses are very large (such as two planets), or unless the distance r is very 

small. But, in this second case, as we shall see later, other interactions stronger 

~0%%% 

cL 
!Torsion fiber 

m' 

Fig. 13-3. Cavendish torsion balance. When masses m' are placed close to masses m, 
their gravitational attraction produces a torque on the horizontal rod that results in a 
torsion of the fiber OC. Equilibrium is established when the gravitational and torsional 
torques are equal. The torsional torque is proportional to the angle 0, which is measured 
by the deflection of a ray reflected from a mirror attached to the fiber. By repeating the 
experiment at several distances r, and using different masses m and m', we can verify 
law (13.1). 
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than the gravitational one enter into play, masking the gravitational effects. The 

results of these experiments allow us to conclude that the gravitational interaction 

is attractive and varies inversely with the square of the distance between the two bodies; 

that is, f(r) oc 1/r2. 

Therefore we write for the force of gravitation the expression 

mm' 
F='Y--, 

r2 
(13.1) 

where the proportionality constant 'Y depends on the units used for the other quan

tities. Hence 'Y must be determined experimentally, by measuring the force F 
between two known masses m and m' at a known distance r (Fig. 13-3). The value 

of 'Y in MKSC units is 

'Y = 6.67 x 10-11 N m 2 kg-2 

We may then state Newton's law of universal gravitation by saying that 

the gravitational interaction between two bodies can be expressed by an 

attractive central force proportional to the masses of the bodies and in

versely proportional to the square of the distance between them. 

In discussing Eq. (13.1) we have suggested that the gravitational interaction 

between two masses can be derived from experiments, but that does not neces

sarily imply that gravitational interaction is the force responsible for planetary 

motion according to Kepler's laws. In fact, Newton did not proceed in the way 

we have done, but in the reverse. Using Kepler's laws, he derived Eq. (13.1) for 

the required force between two planets and then generalized the result to apply to 

any two masses. We shall now give a simplified discussion of Newton's method, 

deferring a more general analysis until Section 13.5. 

Kepler's first law states that the orbit of a planet is an ellipse. A particular 

case of an ellipse is the circle, where the two foci coincide with the center. In this 

case, according to the second law, the force F points toward the center of the circle. 

Thus, using Eq. (7.28) for the centripetal force in circular motion and referring 

the motion of m to a frame of reference attached to 

m' (Fig. 13-4), we may express the force as v 

2 

F=!!!~. 
r 

Strictly speaking, we should use, instead of m, the 

reduced mass of the system composed of m and m', 

according to Eq. (9.15), but our simplification does not 

affect our conclusions. Remembering that v = 21rr/P, 

we have 
Fig. 13-4. Motion of par
ticle m under its gravita
tional interaction with m'. 
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But the third law of Kepler, in the special case of a circular orbit when the average 

distance between m and m' is the radius of the circle, becomes P 2 = kr3 . Therefore 

2 

F = i1r m' 
kr 2 

proving that to satisfy Kepler's laws the gravitational interaction must be central 

and inversely proportional to the square of the distance. 

Newton himself checked the correctness of his assumption by comparing the 

centripetal acceleration of the moon with the acceleration of gravity g = 9.80 m 

s-2 . The centripetal acceleration of the moon is ac = v2/r = 41r2r/P 2 , with 

r = 3.84 X 108 m and P = 2.36 X 10 6 s. Thus ac = 2.72 X 10-3 m s-2. 

Therefore 

g/ac = 3602 ~ (60) 2. 

But, since the radius of the earth is R = 6.37 X 10 6 m, we have that 

( -2:..)2 = (384)2 ~ (60)2 
R 6.37 . 

Therefore g/ac = (r/ R) 2 and, within the accuracy of our rough calculation, the two 

accelerations are in inverse proportion to the square of the distances of the points 

from the center of the earth. 

EXAMPLE 13.1. Relate the acceleration of gravity to the mass of the earth. Using 
your answer, estimate the mass of the earth. 

Solution: Consider a particle of mass m on the earth's surface. Its distance from the 
center of the earth is equal to the earth's radius R. Thus, if we denote the mass of the 
earth by M, expression (13.1) gives for the force on the body, 

F = 'YmM/R2• 

This force is what was defined in Eq. (7.16) as the weight of the body, and therefore must 
be equal to mg, where g is the acceleration of gravity. Therefore 

mg = 'YmM/R2 

or, canceling the common factor m, we have 

g = 'YM/R2• 

This result gives the acceleration of gravity in terms of the mass and the radius of the 
earth. Note that the mass of the body does not appear in this expression, and thus (if 

we neglect air resistance) all bodies should fall with the same acceleration, in agreement 
with observation. 

Solving for the mass of the earth M, we obtain 

M = gR2/'Y. 
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Introducing the proper numerical values g 9.8 m s-2, R = 6.37 X 106 m, and 'Y = 
6.67 X 10-11 m3 kg-1 s-2 , we get M = 5.98 X 1024 kg. 

The student must note that in working this example we have used the distance of the 

mass m from the center of the earth. In other words, we are implicitly assuming that the 

force on m is the same as if all the mass of the earth were concentrated at its center, an 
assumption that will be justified in Section 13.7. 

EXAMPLE 13.2. Compute the mass of a planet which has a satellite. 

Solution: Suppose that a satellite of mass m describes, with a period P, a circular orbit 

of radius r around a planet of mass M. The force of attraction between the planet and the 
satellite is 

F = 'YmM/r2 • 

This force must be equal to m times the centripetal acceleration v2 /r 

41r2mr 'YmM 
P2=~· 

Canceling the common factor m and solving for M, we get 

We suggest that the student use this expres::iion to reevaluate the mass of the earth, 

using the data for the moon (r = 3.84 X 108 m and P = 2.36 X 106 s). Agreement 
with the result of Example 13.1 is a proof of the consistency of the theory. This formula 

can also be used for obtaining the mass of the sun, using the data for the different planets. 

J:J.3 Inertial and Gravitational Mass 

In Chapter 7 we introduced the concept of mass in relation to the laws of motion. 

For that reason we called it inertial mass. We have also assumed that the laws of 

motion are of universal validity and are therefore the same for all kinds of matter, 

whether they are electrons, protons, neutrons, or groups of these particles. On 

the other hand, in this chapter we have been discussing a particular interaction 

called gravitation. To characterize its strength, we should have attached to each 

portion of matter a gravitational charge or gravitational mass mg, We should then 

have written Eq. (13.1) in the form 

However, if we assume that gravitation is a universal property of all kinds of mat

ter, we may consider that gravitational mass is proportional to inertial mass, and 

therefore the ratio 

K = gravitational mass, mg 

inertial mass, m 
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must be the same for all bodies. By a proper choice of units for mg, we can make 

this ratio equal to one, and therefore use the same number for the gravitational 

mass as for the inertial mass. This has implicitly been done in our selection of the 

value of the constant 1'. The constancy of K, which is equivalent to the constancy 

of 1', has been verified experimentally for all kinds of bodies with great care, and 

can be considered as a sound hypothesis. The well-proven fact that all bodies 

near the earth fall with the same acceleration is an indication of the fact that in

ertial and gravitational mass are the same, since, under that assumption, the 

acceleration of gravity is g = 1' M / R2 , as discussed in Example 13.1, and g is 

independent of the mass of the falling body. Therefore in what follows we shall 

use the term "mass" to refer to either the inertial or the gravitational mass, since 

the two are indistinguishable. 

From Eq. (13.1) we may now define the unit of mass as that mass which, when 

placed at the unit of distance from an equal mass, attracts it with a force equal to 

1' units. By properly choosing the value of 1' we may define any unit of mass. 

However, an arbitrary choice of 1' may alter the structure of the equations in 

mechanics. Another drawback to this procedure for defining the unit of mass is 

that it requires a previous definition of the unit of force. Therefore this procedure 

is not used. Instead, as indicated previously, we follow the reverse method, and, 

after we have already chosen the units of mass and force, we determine the value 

of 1' experimentally. 

A way of measuring or comparing the masses 

of two bodies is by using a third body as reference. 

Consider two masses m and m' placed at the 

same distance r from a third reference mass M 

(Fig. 13-5). Then, according to Eq. (13.1), the 

forces on m and m' are 

F = 'YMm, 
r2 

F' = 'YMm'. 
r2 

The ratio of these two forces is F /F' = m/m'. 

Therefore, if we have a method of comparing 

Fig. 13-5. Method for com
paring two masses m and m' by 
means of their gravitational 
interaction with a third mass M. 

forces without necessarily measuring each one, the preceding relation provides a 

method for comparing and measuring masses. The principle of the balance allows 

us to use this method when the reference body M is the earth. The balance achieves 

equilibrium when the two forces are equal, and therefore the masses are equal. 

We have now justified the method indicated in Section 2.3 for measuring mass by 

means of a balance;-

13.4 Gravitational Potential Energu 

Because the gravitational interaction given by Eq. (13.1) is central and depends 

only on the distance, it corresponds to a conservative force. We may therefore 

associate with it a gravitational potential energy. Taking the origin of coordinates 

at m' and considering only the force acting on m (Fig. 13-6), we note that F, being 
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an attractive force, is in the direction opposed to the vector r = OA = rur, 

where Ur is the unit vector in the direction OA, and therefore, instead of Eq. 

(13.1), we must write more properly the vector equation 

'Ymm' 
F = - --2 -ur. 

r 
(13.2) 

This force is equal to the negative of the gradient of the potential energy. In our 

case, since the force is central and acts along the radius, the potential energy de

pends only on r and it is sufficient to apply Eq. (8.25); that is, Fr = -oEp/ ar. 

Then Fr= -'Ymm'/r2 and 

oEp 'Ymm' 
ar:-=r2· 

Integrating, and assigning the value zero to the 

potential energy at a very large distance 

(r = oo ), we obtain 

f EP 1r 
dEp = 'Ymm' d;, 

o ~ r 

g1vmg for the gravitational potential energy 

of the system composed of masses m and m' 

'Ymm' 
Ep = - --· 

r 
(13.3) 

m' 0--- r ___ ._..F ___ f 
m 

0 

Fig. 13-6. The gravitational at
traction of m' on m is opposed to 
the unit vector Ur directed away 
from m'. 

The total energy of the system of two particles subject to their gravitational inter

action is then 

'Ymm' 
E = !mv2 + !m'v' 2 - -- • 

r 
(13.4) 

For a system of more than two particles, subject to their gravitational interaction, 

the total energy is 

E __ ~ 1 2 ~ 'Ymimi 
L.J 2miVi - L.J · 
All All Tij 

particles pairs 

In the case of two particles, referring their motion to a frame of reference attached 

to the center of mass of the system, we may use the result of Example 9.9 to ex

press the kinetic energy of the two particles as Ek = !µv~ 2 , whereµ is their reduced 

mass and v12 their relative velocity, so that the total energy in this frame is 

i 2 mm' 
E = 2µV12 - 'Y--· 

r12 

In the special case where particle m' is very massive compared with m (m' » m), 

we have [recalling the definition of reduced mass, Eq. (9.15)] that µ = m. In 
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this case m' practically coincides with the center of mass of the system, and we 

may replace the relative velocity v12 by the velocity v of m relative to the center of 

mass, resulting in 

E= 
"Imm' 

(13.5) 
r 

If the particle moves in a circular orbit, the force acting on the mass is given by 

Eq. (7.28), FN = mv 2/r and, replacing FN by the gravitational force of Eq. (13.1), 

we have 

Therefore 

mv2 

r 

"Imm' 
r2-· 

1 'Ymm' 
---
2 r 

and Eq. (13.5) reduces to 

"Imm' 
E= ---, 

2r 
(13.6) 

indicating that the total energy is negative. This result is more general than our 

proof may suggest; all elliptical ( or bound) orbits have a negative total energy 

(E < 0) when we define the potential energy as zero for infinite separation. The 

bound nature of the orbit means that the kinetic energy is not enough at any point 

in the orbit to take the particle to infinity, which would change its kinetic energy 

E<O 
E 
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Fig. 13-7. Relation between total energy and path for motion under an inverse-square 
force. 
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into potential energy and overcome the gravitational attraction. This can be seen 

because, at infinite distance, the second term in Eq. (13.5) is zero, and we must 

have E = }mv2 , an equation impossible to satisfy if Eis negative. 

But if the energy is positive (E > O), the particle can reach infinity and still 

have some kinetic energy left. From Eq. (13.5), if we set r = oo, and designate 

the velocity at infinity by v00 , the kinetic energy at infinity is 

or Voo = V2mE. (13.7) 

This result may be interpreted in the following way. Suppose that the particle 

mis initially at a very large distance from m' and is thrown toward it with velocity 

Voo, called the velocity of approach, so that the total energy is thus determined by 

Eq. (13.7). While the particle m is approaching m', its potential energy is de

creasing (becoming more negative), and the kinetic energy increases until it reaches 

its maximum value at the point of closest approach, which depends on the angular 

momentum of the particle (remember Section 8.11 and Fig. 8-18). Then the par

ticle begins to recede; it loses kinetic energy and eventually, at large distances, 

recovers the velocity v00 • The path is an open curve, and it can be proved to be 

an hyperbola (Section 13.5). 

The particular case of zero total energy (E = O) is interesting because then the 

particle, according to Eq. (13. 7), is at rest at infinity (v 00 = O). The orbit is still 

open but instead of being an hyperbola, it is now a parabola. Physically it corre

sponds to the situation in which particle m is released at a distance from m' with 

an initial velocity that makes its kinetic energy equal to its potential energy. 

Figure 13-7 shows the three possible cases, indicating in each case the total 

energy, the potential energy, the kinetic energy, and the type of orbit. 

These results are very important when scientists want to place an artificial 

satellite in orbit. Suppose that a satellite is launched from the earth. After reach

ing its maximum height h due to the 

launch, it receives a final thrust at point 

A, producing a horizontal velocity v0 

(Fig. 13-8). The total energy of the 

satellite at A is thus 

'YmM 

R+h 

The orbit will be an ellipse, a parabola, 

or an hyperbola depending on whether E 

is negative, zero, or positive. In all cases 

the center of the earth is at one focus of 

the path. If the energy is too low, the 

elliptical orbit will intersect the earth 

and the satellite will fall back. Otherwise 

it will keep moving in a closed orbit, or 

escape from the earth, depending on the 

value of v0 . 

A 

Fig. 13-8. Paths of a particle thrown 
horizontally from a height h above the 
earth's surface with a velocity vo. 
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The same logic applies to a natural satellite such as the moon. Obviously for 

interplanetary satellites an orbit with positive energy may be necessary. In any 

case, some guidance mechanism is generally required to adjust its path after 

launching. 

EXAMPLE 13.3. The escape velocity is the minimum velocity with which a body must 

be fired from the earth if it is to reach infinity. Compute the escape velocity of a body 
from the earth. 

Solution: In order for the particle to reach infinity, the total energy must be zero or 
positive, and obviously the minimum velocity will correspond to zero total energy. 

Therefore, from Eq. (13.5) with E = 0, and calling M the mass of the earth, R its radius, 

and Ve the escape velocity of the projectile, we have !mv~ - 'YmM / R = 0, which gives 
the proper relation between Ve and R at the launching station. Thus the escape velocity 
from the earth is 

Ve = y2'YM/ R = 1.13 X 104 m s-1• (13.8) 

This is equal to 40,700 km/hr or about 25,280 mi/hr. Note that the escape velocity is 
independent of the mass of the body. However, the thrust required to accelerate a body 
until it reaches the escape velocity does depend on the mass of the body, and that is why 
heavier missiles and satellites require more powerful boosters. 

A particle projected from the earth with a velocity Ve given by Eq. (13.8) will have 

zero velocity when it reaches infinity. If the velocity is greater than Ve, the particle will 

reach infinity with some velocity still left. If the launching velocity is less than Ve, the 

particle will fall back onto the earth, unless it is placed into a bound orbit by successive 
stages of the propelling rocket and the direction of the velocity is changed, as explained 
in connection with Fig. 13-8. 

The concept of escape velocity is also useful in determining the escape of gases from the 

earth's atmosphere. If we assume that the gases composing the atmosphere are in thermal 
equilibrium, the rms velocity of their molecules is given by Eq. (9.59) as 

Vrms = y3kT/m. (13.9) 

Root-mean-square velocities for gases found in the earth's atmosphere at its average 
temperature are: hydrogen, 1908 m s-1 ; helium, 1350 m s-1 ; nitrogen, 510 m s-1 ; oxygen, 

477 m s-1 ; and carbon dioxide, 407 m s-1 • In all cases Vrms is much smaller than Ve, and 

thus we could conclude that no gas molecule can overcome the gravitational attraction 
and escape from the earth. But this would be a wrong conclusion. 

The root-mean-square velocity Vrms is an average velocity, and that means that many 

molecules move with velocities either larger or smaller than Vrms· Even if Vrms is smaller 
than v., a certain nu!11ber of molecules move with velocities which are equal to or larger 

than v., and these may escape from the earth, especially if they are in the upper layers of 
the atmosphere. From the above figures, we see that this effect is more important for the 
lighter gases than for the heavier, and this is one of the reasons why hydrogen and helium 
are relatively scarce in our atmosphere. It has been estimated that, due to this gravita
tional effect, hydrogen is escaping from the earth at the rate of about 1.3 X 1022 atoms 
per second, which is equivalent to about 600 kg per year. This does not represent the 

total loss of hydrogen from the earth's atmosphere, however, and the net loss may be 

different because of other processes. 
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For the planet Mercury, the escape velocity is much smaller than for the earth; most 

likely it has already lost its atmosphere completely. The same is true of the moon. Venus 
has an escape velocity almost the same as the earth's. Mars has an escape velocity about 

one-sixth that of the earth, and thus retains some atmosphere, but it has lost a propor
tionately larger fraction of its atmosphere. In fact, the atmospheric pressure on Mars is 
much less than that on the earth. For the other planets, the escape velocity is greater 
than that of the earth, and hence they still retain most of their original atmospheres. 

However, for other reasons, the composition of the atmospheres of these planets is dif
ferent from that of the earth. 

EXAMPLE 13.4. Determine the velocity which a body released at a distance r from 

the center of the earth has when it strikes the surface of the earth. 

Solution: The body's initial velocity is zero and its total energy, according to Eq. (13.5), 
is therefore 

E 
'YmM 

---, 
r 

where mis the mass of the body and M the mass of the earth. When it reaches the earth's 

surface, its velocity is v and its distance from the center of the earth is the earth's radius R. 
Thus 

E !mv2 _ 'Y_m_M_ . 
R 

Equating both values of E, since the energy has remained constant (we neglect air fric
tion), we have 

!mv2 _ _ 'Y_m_M_ 
R 

Solving for v2 , we have 

'YmM 

r 

Or, remembering from Example 13.1 that g 

2 2 ( 1 1) v = 2R g R - -;. · 

'YM/R2 , we obtain 

(13.10) 

This expression may also be used for finding the distance r reached by a body thrown ver
tically with velocity v from the earth's surface. 

If the body is released at a great distance, so that 1/r is negligible compared with 
l/R, we get 

Voo = y2Rg = y2'YM/R = 1.13 X 104 m s-1, 

in agreement with the result given in Eq. (13.8) for the escape velocity. This is not sur
prising, since this problem is just the reverse of the problem of Example 13.3. The above 
result gives, for example, an estimate of the velocity with which a meteorite strikes the 
surface of the earth. 
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13.5 General Motion llnder Gravitational lnterlU!tion 

So far we have stated Kepler's laws only for elliptical orbits. In Section 13.2 we 

proved that, according to these laws, motion is produced, at least in the case of 

circular orbits, when the force is attractive and inversely proportional to the square 

of the distance. However, in Section 13.4, when we were discussing energy, we 

indicated that these laws also hold for hyperbolic and parabolic orbits, in addition 

to elliptical orbits. Let us now verify that assertion. 

In Chapter 8 we developed a relation [Eq. (8.42)] between the polar coordinates 

of a particle in terms of the dynamical quantities of the motion. If we use Eq. (8.37) 

for the effective potential energy, we may write down that relation as 

(dr) 2 = m2r 4 {2[E - Ep(r)] __ Jl_} , 
d() L 2 m m2r 2 (13.11) 

where L is the angular momentum of the particle. Now the equation of a conic 

section in polar coordinates with the origin at a focus (see the note at the end of 

this section) is 

ed 
- 1 + E COS(), 

r 
(13.12) 

where e is the eccentricity and d the distance from the focus to the directrix. Tak

ing the derivative with respect to O, we have 

ed dr . 
- - - = -esm () 

r 2 do ' 
and thus 

(!;)2 = _r4_~~2 (). 

Substituting into Eq. (13.11) and canceling r 4 on both sides, we may write 

sin2 0 = d2m2 {2[E - Ep(r)] _ -1!_:____} . 
£2 m m2r2 

Now, from Eq. (13.12), cos()= d/r - 1/e. Therefore 

. 2 2 (d 1)2 
sm o = 1 - cos o = 1 - -;: - e 

Substitution into the previous equation yields 

1 _ d2 + 2d _ _!_ = 2 d2 mE 
r2 er e2 £2 

Canceling the d2 /r2 term on both sides and equating those terms that are constant 

and those that are dependent on r, we obtain 

?_d2 mE = l 
£2 

1 
e2 

or E = _!!_ (1 - _!_) 
2 d 2m e2 

(13.13) 



13.5) General motion under gravitational interaction 409 

and 2d 
or ---· 

mder 
(13.14) 

Equation (13.14) indicates that, to describe a conic section with the center of 

force at one focus, the potential energy Ep(r) must vary with the distance as 1/r, 

and therefore the force, which is Fr = -aEp/ar, must vary as 1/r2 . This gen

eralizes Kepler's first law to include the hyperbola and the par_51,bola in addition to 

the ellipse as possible orbits. 

The orbit will be an ellipse, parabola, or hyperbola depending on whether the 

eccentricity Eis less than, equal to, or greater than, one. From Eq. (13.13) we see 

that this relationship corresponds to a total energy E being negative, zero, or posi

tive, thus verifying our discussion of Section 13.4. 

We must note that an hyperbola has two branches, and under an inverse-square 

attractive force only the branch around the center of attraction is described (right 

branch in Fig. 13-9). If the force is repulsive, that is, if F = +c / r 2 , the orbit 

corresponds to the branch on the left in Fig. 13-9. In this case, i.e., for a repulsive 

force, the potential energy is Ep = +C/r, and is positive. Therefore the total 

energy E = !mv 2 + C/r is always positive, and there are no bound orbits. We 

have already considered motion under a repulsive inverse-square force when we 

discussed scattering in Example 7.16. 

' ' " 

/ 
/ 

" " 

/ 
/ 

" " 

/ 
/ 

" " 

/ 
/ 

" 

/ 

" 
" " " 

/ 
/ 

/ 
/ 

" 

/ 

" " " 
/ 

/ 
/ 

/ 

" 

/ 
/ 

/ 

" " " 

/ 

" 

/ 
/ 

" " 

/ 
/ 

/ 

/ 
/ 

/ 

' 

/ 

/ 
/ 

/ 
/ 

/ 

Path of m 
under attractive 

force 

" " " " " " 
" " " " "-.: 

Fig. 13-9. Hyperbolic paths under attractive and repulsive inverse-square forces. 

The preceding considerations would be enough to provide a complete analysis 

of planetary motion if we were to assume that the motion of a planet around the 

sun were not affected by the other planets and heavenly bodies. In other words, 

the orbit of the earth (and of all other planets) would be a perfect ellipse if there 

were no forces other than the sun's acting on the earth. However, the presence of 

other planets introduces perturbations in a planet's orbit. These perturbations 

can be calculated with great accuracy by means of special techniques that con-
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(b) 

Fig. 13-10. Perturbation effects on planetary motion. (a) 
Rotation of the axis of the ellipse. (b) Oscillation in the eccen
tricity of the ellipse. The two effects have been greatly exaggerated. 

(13.5 

stitute the science called celestial mechanics. They can be analyzed, essentially, 

as two effects. One effect is that the elliptical path of a planet is not closed, but the 

major axis of the ellipse rotates very slowly around the focus where the sun is 

located, an effect called the advance of the perihelion (Fig. 13-lOa). The other 

effect is a periodic variation of the eccentricity of the ellipse about its average 

value, as indicated in Fig. 13-lO(b). These changes occur very slowly. In the case 

of the earth they have a period of the order of 105 years (about 21' of arc per cen

tury for the motion of the perihelion). Even so, they have produced noticeable 

effects, especially in the slowly changing climatic conditions of the earth. These 

changes have been identified by geophysicists who have studied the different 

layers of the earth's crust. 

In discussing motion in a gravitational field we have assumed that the new

tonian mechanics of Chapters 7 and 8 can be used. However, a more precise analy

sis requires the use of Einstein's general theory of relativity (see Section 13.8). 

One of the main relativistic effects is an additional rotation of the major axis of the 

orbit of a planet. This relativistic effect is greatest for the orbit of Mercury, the 

planet which is closest to the sun and which has one of the most eccentric orbits. 

The observed rate of advance of the perihelion of Mercury exceeds, by about 

42" of arc per century, the effect calculated by means of Newtonian mechanics 

which takes into account the perturbation of the other planets. Einstein's general 

theory of relativity predicts precisely this additional rate of advance of the peri

helion. This relativistic effect is much less for other planets, and has not yet been 

observed. 

Note on conic sections: An important family of plane curves are the conic sections. A 

conic section is defined as a curve generated by a point moving in a way such that the 

ratio of its distance to a point, called the focus, and to a line, called the directrix, is con

stant. There are three kinds of conic sections, called ellipse, parabola, and hyperbola, 

depending on whether this constant (called the eccentricity) is smaller than, equal to, or 

larger than one. Designating the eccentricity by E, the focus by F, and the directrix by 

HQD (Fig. 13-11), we have 

E = PF/PQ. 
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Now PF= r, and if we say that FD= d, then PQ = FD - FB = d - rcosO. 

Therefore E = r/(d - r cos 0). Or, solving for r, we find that 

Ed 
- = 1 + ECOS 0. 
r 

This is the form in which the equation of a conic section has been used in the text 

(Eq. 13.12). (In some texts, the equation for the conic section is d~rived using the angle 

11" - 0, and thus the equation appears in the form ed/r = 1 - E cos 0.) In the case of 

an ellipse, which is a closed curve, point A corresponds to O O and point A' to O = 11". 

Thus, according to the polar equation, we have 

and 

Then, since r1 + r2 

axis is given by 

ed 
r2 = --· 

1 - E 

2a, the semimajor 

a,Yl - E2 and 

A' F' 

~r Directrix H 

Q b 

l 
c D 

The semiminor axis T is b 

the area of the ellipse is 

S = 11"ab = 11"a\!1 - e2. 

Fig. 13-11. Geometrical elements of the 
ellipse. 

A circle is a special case of an ellipse, when e = 0. (For more details about conic sec

tions, and in particular the ellipse, see G. B. Thomas, Calculus and Analytic Geometry, 

third edition. Reading, Mass.: Addison-Wesley, 1962, page 473.) 

EXAMPLE 13.5. Relate the total energy and the angular momentum in the case of 

elliptical motion to the semimajor axis a and the eccentricity E of the ellipse. 

Solution: From the preceding note on conic sections, we have that the semimajor axis 

of an ellipse is expressed in terms of the eccentricity e and the distance d according to 

Ed 
a= . 

1 - e2 

Therefore, from Eq. (13.13), we have 

L 2 e2 1 
E = 2 d2m · e2 

L2 

2edma 

But from Eq. (13.14) with EP = -'Ymm' /r, we have 

'Ymm' 

r medr 
or 

L2 
-d = 'Ymm'. 
me 

Thus, making the corresponding substitution in the expression for E, we obtain 

E= 
'Ymm' 

2a 
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Comparing this result with Eq. (13.6), which we derived for circular orbits, we see 

that they are essentially identical, since a = r for a circular orbit. This result also con

firms the fact that the total energy is negative and 

depends only on the semimajor axis a. So all the 

elliptical orbits having the same semimajor axis as 

that illustrated in Fig. 13-12 have the same total 

energy, although they have different eccentricities. 

By using the expression ed = a(l - e2), we may 

write another useful relation: 

Eliminating the semimajor axis a by using the 

previous expression for the energy E, we obtain 

the eccentricity of the orbit, 

2 2E ( L )
2 

E = 1+- -- · 
m 'Ymm' 

Fig. 13-12. Elliptical orbits for dif
ferent values of angular momentum 
but the same energy. All orbits 
have the same focus and major 
axis, but differ in eccentricity. 

Thus we see that the eccentricity depends on the energy and the angular momentum. 

The orbits illustrated in Fig. 13-12 all have the same energy, but differ in angular momen

tum and have different eccentricities. In other words, in an inverse-square field, to a given 

total energy there may correspond many different angular momentum states. This is of great 

importance in the discussion of atomic structure, because in an atom there may be sev

eral electrons which have the same energy but which differ in angular momentum. 

We may summarize the preceding results by saying that the "size" of the orbit (as given 

by the semimajor axis) is determined by the energy, and that for a given energy, the "shape" 

of the orbit (as given by the eccentricity) is determined by the angular momentum. 

EXAMPLE 13.6. Verify that Kepler's third law holds true for elliptical orbits. 

Solution: Let us recall that in Section 13.2 we used Kepler's third law to verify the in

verse-square law of force in the case of circular orbits. Now we shall verify that this law 

also holds for any elliptical orbit. The proof is a straightforward algebraic manipulation 

based on the properties of the ellipse. 
From Eq. (7.35), which expresses the constancy of angular momentum, we have that 

2 d() L 
r - = 

dt m 
or 

2 L 
r d() = -dt. 

m 

In a period P the radius vector sweeps the whole area of the ellipse and () goes from O to 

211'. Thus we would obtain the area of the ellipse by writing 

12,r 1p 
Area = ! r2 d() = / dt 

o .. m o 

LP 
2m 

But the area of the ellipse is 11"a2 (1 - e2) 1' 2 (see note at the end of Section 13.5). There

fore 
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But from Example 13.5 we have that L 2 = 'Ym2m' a(l - E:2). Thus 

or 
2 

p2 = 41r aa 
'Ym' , 

which is Kepler's third law, since the average value of r is obviously proportional to the 
semimajor axis a. 

13.6 Gravitational Field 

We shall now introduce a very important 

concept in physics, that of the gravita

tional field. Suppose that we have a mass 

m and that we place, at different positions 

around m, another mass m' (Fig. 13-13). 

At each position the mass m' experiences 

a force due to its gravitational interaction 

with m given by Eq. (13.2), 

'Ymm' 
F= - - 2-Ur. 

r 

Of course, at each position m', the mass m 

~' ~ ////// 

' I / 
'- I / ' / 

F ~' I / - -- -- -

/c 
/ 

A ____..,..-

/ I ---- E 
-----:~~==-----

/ I --. ,/ t G 

experiences an equal but opposite force. Fig. 13-13. Gravitational field pro
However, at the moment we are interested duced by a point mass at several points. 

only in what happens tom'. 
We may then conveniently say that the mass m produces, in the space around it, 

a physical situation that we call a gravitational field, and that is recognized by 

the force that m exerts on another mass, such as m', brought into that region. 

Whether something exists in the free space around m, even if we do not use a test 

mass m' to probe the field, is something that we can only speculate on, and is to a 

certain extent an irrelevant question, since we notice the gravitational field only 

when we bring in a second mass. 

The gravitational field strength <; produced by the mass m at a point P is defined 

as the force exerted on the unit of mass placed at P. Then 

F 'Ym o@ra)---y ____ g __ P_" ...... '._ ____ _ 
g = m' = - r2 Ur. m 

(13.15) Fig. 13-14. The gravitational field at P, 
produced by the point mass m, is opposed 

Thus the gravitational field g has the to the unit vector ur. 

direction opposite to that of the unit vec-

tor ur, which goes from the mass producing the field to the point where the field is 

computed. In other words, the gravitational field always points toward the mass 

producing it. 

Expression (13.15) gives the gravitational field at a distance r from a particle of 

mass m placed at 0. We may then associate with each point in the space around m 

(Fig. 13-14) a vector g given by Eq. (13.15), and such that the gravitational force 
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exerted on any mass placed in that region is obtained by multiplying the mass by 

the corresponding<;:;. That is, F = (mass of particle) X <;:;. 

From its definition we see that the gravitational field strength is measured in 

N kg-1 or m s-2 , and it is dimensionally equivalent to an acceleration. Com

paring Eq. (13.15) with Eq. (7.16), we note that the acceleration of gravity may 

be considered as the gravitational field strength at the surface of the earth. 

Fig. 13-15. Resultant gravitational 
field of several masses. 

Fig. 13-16. Lines of force and equi
potential surfaces of the gravitational 
field of a point mass. 

Suppose now that we have several masses, m1 , m 2 , ma, ... (Fig. 13-15), each 

one producing its own gravitational field. The total force on a particle of mass m 
at P is obviously 

F = mG1 + m<;:;2 + mGa + · · · 
= m(G1 + G2 + Ga + · · ·) = me;:;, (13.16) 

where G1, G2 , Ga, ... are the gravitational fields produced by each mass at point 

P, and are computed according to Eq. (13.15). The resultant gravitational field 

at point P is then the vector sum 

m· 
G = G1 + G2 + Ga + · · · = -'YL,i--i Uri· (13.17) 

ri 

A gravitational-field can be represented pictorially by lines of force. A _line of 

force is drawn such that at each point the direction of the field is tangent to the 

line that passes through the point. The lines of force are drawn so that their density 

is proportional to the strength of the field. Figure 13-16 depicts the field about a 

single mass; all the lines of force are radial and the field strength is greater nearer 

the mass. Figure 13-17 shows the fields about two unequal masses, namely, the 

earth and the moon. Here the lines are not radial and in the vicinity of point A 

the field strength is very weak (at A it is zero). 
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Fig. 13-17. Lines of force and equipotential surfaces of the resultant gravitational field, 
produced by the earth and the moon. At A the resultant gravitational field is zero. 
[After W. T. Scott, Am. J. Phys. 33, 712 (1965)] 

Another important concept is that of gravitational potential, defined as the po

tential energy per unit mass placed in the gravitational field. Thus if, at a certain 

point in a gravitational field, a mass m' has a potential energy Ep, the gravita

tional potential at that point is V = Ep/m'. The gravitational potential is thus 

expressed in the units J kg- 1 or m 2 s-2 • 

From Eq. (13.3), dividing by m', we see that the gravitational potential at a 

distance r from a mass m is 

V = -'Ym/r. (13.18) 

If, instead of one particle, we have several masses, as in Fig. 13-15, the gravita

tional potential at P is the scalar sum V = V 1 + V 2 + V 3 + · · · , or 

V = -'Y (m1 + m2 + m3 + .. ·) = -'YLi mi. 
r 1 r 2 r 3 ri 

(13.19) 

Comparing Eq. (13.18) with Eq. (13.15), we note that the magnitude of the 
gravitational field is 

g = -av;ar, (13.20) 
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and in general, from F = -grad Ep, we obtain 

G = -grad V, 

(13.6 

(13.21) 

where "grad" stands for gradient, as indicated in Section 8.7. Therefore the gravi

tational field is the negative of the gradient of the gravitational potential. In rectangular 

coordinates we may write 

av 
Sx = - -, ax by= 

av --, 
ay bz = 

av 
az 

The concept of gravitational potential is very useful because, since it is a scalar 

quantity, it can be computed very easily, as indicated by Eq. (13.19), and after

ward the gravitational field strength G can be obtained by applying Eq. (13.21). 

By joining the points at which the gravitational potential has the same value, 

we may obtain a series of surfaces called equipotential surfaces. For example, in 

the case of a single particle, when the potential is given by Eq. (13.18), the equi

potential surfaces correspond to the spheres r = const, indicated by the dashed 

lines in Fig. 13-16. In Fig. 13-17 the equipotential surfaces have also been indi

cated by dashed lines. Note that in each case the equipotential surfaces are per

pendicular to the lines of force. This can be verified, in general, in the following 

way. Let us take two points, very close to each other, on the same equipotential 

surface. When we move a particle from one of these points to the other, the work 

done by the gravitational field acting on the particle is zero. This results from the 

fact that the work done is equal to the change in potential energy. In this case 

there is no change in the potential energy because the two points have the same 

gravitational potential. The fact that this work is zero implies that the force is 

perpendicular to the displacement. Therefore the direction of the gravitational field 

is perpendicular to the equipotential surf aces. This means that if we know the lines 

of force we can easily plot the equipotential surfaces, and conversely.* 

EXAMPLE 13.7. Discuss the gravitational field produced by two equal masses sepa
rated the distance 2a. 

Solution: Placing our coordinate axes as indicated in Fig. 13-18 and applying Eq. (13.19) 

for two equal masses, we have that the gravitational potential at a point P(x, y) is 

V = -'Ym (_!_ + _!_) · 
r1 r2 

Now, from Fig. 13-18, we can see that 

r1 = [(x - a)2 + y2]112, 

r2 = [(x + a)2 + y2p12. 
Figure 13-18 

* The student is reminded of the note after Section 8.7 regarding the gradient, where 
it was shown that the vector grad Ep is perpendicular to the surfaces Ep = const. This 
is equivalent to the above statement, since G = -grad V. 
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,..__---2a----1 
m 1 1m ----------+------0....-----------------x 

Fig. 13-19. Variation of the gravitational potential produced by two equal masses along 
the line joining them. 

Thus 
{ 1 1 } V = -'Ym + · 
[(x - a)2 + y2]1/2 [(x + a)2 + y2]1/2 

The change in the gravitational potential produced by the two masses as we move from 

-oo to +oo along the X-axis is illustrated in Fig. 13-19. We suggest that the student 
make a similar plot for the potential produced by four equal masses, all spaced the same 
amount along a straight line. 

To obtain the gravitational field, we apply Eq. (13.21), using rectangular coordinates, 
to obtain 

g., = 
av 
ax { x-a + x+a } 

-'Ym ' [(x - a)2 + y2]3/2 [(x + a)2 + y2]312 

The field has symmetry of revolution around the X-axis. We suggest that the student 
investigate the field along the Y- and Z-axes and that he plot the lines of force; these 

must be symmetric relative to 0. We also suggest that he repeat the problem, using the 
polar coordinates r, (J of P, and finding Sr and 9B· 

EXAMPLE 13.8. Obtain the gravitational field produced by a thin layer of matter 

spread over an infinite plane. 

Solution: Let us proceed by dividing the plane into a series of rings, all concentric, with 
the projection O of Pon the plane (Fig. 13-20). Each ring has a radius Rand a width dR. 

Therefore the area is (21r R) dR. If u is the mass per unit area on the plane, the mass of 
the ring is dm = u(21rR dR) = 21ruR dR. All points of the ring are at the same distance 

r from P, and therefore the potential it produces at P is 

dV = _ 'Y dm = _ 21r'YuR dR 
r (z2 + R2)112' 

since r (z 2 + R 2)112. To obtain the total potential we have to add the contributions 
of all the rings. That is, we have to integrate the above expression from R = 0 to R = oo . 
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The result is 

v 
f'~ RdR 

-2'11'"1'CTJo (z2+ R2)1/2 

-2'11'"1'CT( 00 - z). 

We thus obtain an infinite but constant con
tribution from the upper limit. Since we are 
interested only in the potential dijf erence 

between the plane and the point, which is 
what we actually measure experimentally, 
we must subtract from the above expression 
the value for z = 0; that is, -211"1'e1( oo). 

Thus we finally obtain 

V = 211'"'YCTZ, 

(13.6 

Fig. 13-20. Gravitational field of a plane. 

What we have actually done is to perform a process called renormalization, in which 
we assign the value of zero to the potential of the plane, and we are therefore required 

to subtract an infinite quantity. This situation is illustrative of similar cases in other 
physical applications in which the result obtained is infinite or divergent but, because 
we are interested only in the difference between two infinite results, this difference may 
be expressed by a finite or convergent expression. 

We obtain the field at P (since z is the coordinate of the point) by applying Eq. (13.20), 
which gives us 

av 
g = - dZ = -211"1'CT. 

The minus sign indicates that g is pointing toward the plane. Note that our process of 
renormalization does not affect the field, since the derivative of a constant, no matter 

how large the constant, is always zero. The gravitational field is thus constant or inde
pendent of the position of the point. We say then that the field is uniform. Actually, the 
expressions we have derived for V and g are valid only for z > 0. But the symmetry 
of the problem indicates that the field for z < 0 must be the mirror image of the results 

for z > 0. Thus, for z < 0, we must write V = -211"'Ye1z and g = +211'"'YCT. These re
sults are perfectly compatible with our calculation, because the expression we used to 
compute V depends on z2 and, in writing the solution, we should have expressed it in 

the form V = 211"'Ye1jzl, which is now valid for z :;; 0. 

z<O 

Matter 
plane 

z>O 

(a) (b) 

Fig. 13-21. Variation of g and V for matter on a plane. 

g 

(c) 
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The potential and the field on both sides of the matter plane have been illustrated in 
Fig. 13-21. We may note that, in moving from left to right across the plane, the potential 
does not change in value (but changes in slope discontinuously) and the field suffers a 

sudden change of -41r'Ycr. It can be proved that this is a general result valid for any 

surface distribution of matter, irrespective of its shape. 

13.7 Gravitational Field Bue to a Spherical Bod-,, 

All the formulas stated so far in this chapter are strictly valid only for point 

masses. When we applied them to the motion of the planets around the sun, it 

was under the assumption that their sizes are small compared with their separation. 

Even if this is true, their finite sizes may possibly introduce some geometrical 

factor in Eq. (13.1). Similarly, when we were relating the acceleration of gravity 

g to the mass and the radius of the earth in Example 13.1, we used Eq. (13.1), in 

spite of the fact that the above reasoning of relatively small size is not applicable 

in this case. Newton himself was worried by this geometrical problem, and de

layed the publication of his law of gravitation for about 20 years until he found a 

correct explanation. In this section we are going to compute the gravitational field 

produced by a spherical body. We shall start by computing the gravitational field 

of a spherical shell; that is, of a mass uniformly distributed over the surface of a 

sphere which is empty inside. 

Let us call a the radius of the sphere and r the distance of an arbitrary point P 

from the center C of the sphere. We are interested in obtaining the strength of the 

gravitational field at P. Consider first the case when P is outside the sphere 

(Fig. 13-22). We may divide the surface of the sphere into narrow circular strips, 

all with centers on the line AB. The radius of each strip is a sin (} and the width is 

a dO. Therefore the area of the strip is 

Area = length X width = (27ra sin 0) (a dO) = 27ra2 sin (} dO. 

If mis the total mass uniformly distributed over the surface of the sphere, the mass 

per unit area is m/41T'a2 and the mass of the circular strip is 

4 m 2 (27ra2 sin (} dO) = !m sin (} dO. 
7ra 

All points of the strip are at the same 
distance R from P. Therefore, applying 

Eq. (13.19), we find that the potential 

produced by the strip at Pis 

dv = _ 'Y(!m sin (} dO) = _ 'Ym . 0 dO 
R 2R sm · 

From Fig. 13-22, using the law of cosines, 

Eq. (M.16), we note that 

R 2 = a2 + r2 - 2ar cos 0. 

Fig. 13-22. Calculation of the gravita
tional field at a point outside a mass dis

·tributed uniformly over a spherical shell. 
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Differentiating, since a and r are constant, we obtain 

2R dR = 2ar sin () dO or 

Substituting in the expression for dV, we get 

dV = - 'Ym dR. 
2ar 

. d RdR 
sm () () = --· 

ar 

(13.7 

(13.22) 

To obtain the total gravitational potential we must integrate over all the surface 

of the sphere. The limits for R, when the point Pis outside the sphere, are r + a 

and r - a. Therefore 

j r+a 
'Ym 'Ym 'Ym 

V = - -- dR = - - (2a) = - - , 
2ar r-a 2ar r 

r > a, (13.23) 

is the potential at a point outside a homogeneous spherical shell. If the point P 

is inside the sphere (Fig. 13-23), the limits for Rare a+ rand a - r, resulting in 

'Ym 'Ym 'Ym 1a+r 

V = - - dR = - - (2r) = - -- , r < a, (13.24) 
2ar a-r 2ar a 

which yields a gravitational potential that is a constant, independent of the posi

tion of P. 

Applying Eq. (13.21), we find that the 

gravitational field at points outside the homo

geneous spherical shell is 

'Ym 
g = - -r2ur, r > a, (13.25) 

and at points inside the spherical shell it is 

g = 0, r < a. (13.26) 

By comparing Eqs. (13.23) and (13.25) with 

Eqs. (13.18) and (13.15), we reach the following 

conclusion: The gravitational field and potential 

at points outside a mass uniformly distributed over 

Fig. 13-23. Calculation of the 
gravitational field at a point 
inside a mass distributed uni
formly over a spherical shell. 

a spherical shell is identical to the gravitational field and potential of a particle of the 

same mass located at the center of the sphere. At all points inside the spherical shell, 

the field is zero and--the potential is constant. 

Figure 13-24 shows the variation of g and V with distance from the center of 

the sphere. It may be seen that in moving from the center toward infinity, the 

potential at the spherical shell does not change in value (but the slope does change 

discontinuously). The field, however, suffers a sudden change of -'Ym/a2• Re

calling that if u is the surface mass density of the shell, m = 41ra2u, we see that 

the sudden change in the field is -41r'Yu. We thus obtain the same results as in 

Example 13.8 for a plane. 
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Inside sphere Outside sphere 

g I 
I 
I 

S=O 1a ~~o+-~-=-......... ~-1-~~~~~~~~r 

'Ym/a 2 

_l 

(a) 

Inside sphere 

V I 
I 
I 
1a 

Outside sphere 

~(~)+--~f~~~-+-~~~~~~~~r 

I m 
V= -'Y-

1 a 

(b) 

Fig. 13-24. Variation of g and V, as a function of the distance from the center, for a 
mass distributed uniformly over a spherical shell. 

Point outside the sphere 

Fig. 13-25. Calculation of the gravitational 
field at a point outside a solid sphere. 

Point inside ,the sphere 

Fig. 13-26. Calculation of the gravitational 
field at a point inside a solid sphere. 

Now suppose that the mass is uniformly distributed throughout all the volume 

of the sphere; i.e., the sphere is solid. We may then consider the sphere to be built 

in an onionlike fashion, as the superposition of a series of thin spherical layers or 

shells. Each layer produces a field given by Eqs. (13.25) or (13.26). For a point 

outside the sphere (Fig. 13-25), since the distance r from the center to P is the 

same for all layers, the masses add, again giving the result (13.25). Therefore a 

solid homogeneous S]Jhere produces, on outside points, a gravitational field and potential 

identical to those of a particle of the same mass located at the center of the S]Jhere. * 

* This result still holds true when the sphere, instead of being homogeneous, has its 
mass distributed with spherical symmetry; i.e., when its density is a function of the dis
tance from the center only. But it does not hold if the mass is distributed in a manner 
that depends on the direction. 
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/1 
/1 
I I 
I I 

I 

Fig. 13-27. Variation of g for a solid homogeneous sphere as 
a function of the distance from the center. 

(13.7 

To obtain the field inside the homogeneous sphere, let us consider a point P a 

distance r from the center, with r < a. We draw a sphere of radius r (Fig. 13-26), 

and observe that those shells with radius larger than r do not contribute to the field 

at P, according to Eq. (13.26), since P is inside them, and the resultant field of all 

shells with a radius smaller than r produces a field similar to Eq. (13.25). Let 

us call m' the mass inside the dashed sphere. By Eq. (13.25), the field at P will be 

(13.27) 

The volume of the whole sphere is i1ra3 and, since the sphere is homogeneous, the 

mass per unit volume is m/i1ra3 . The mass m' contained in the sphere of radius r 

is then 

rn mr3 

m' = -- (.1.1rr3) = - · 
1.. 3 3 a3 
31ra 

Substituting this result in Eq. (13.27), we finally obtain for the field at a point 

inside the homogeneous sphere 

'Ymr 
G = - a3Ur, (13.28) 

Therefore the gravitational field at a given point inside the homogeneous sphere 

is proportional to the distance r from the center. The reason why the field in

creases inside the sphere when the point moves away from the center is that the 

decrease due to the inverse-square law is overcompensated for by the increase in 

mass, which is proportional to the cube of the distance. Figure 13-27 depicts the 

variation of g in terms of r for a solid homogeneous sphere. This figure gives, for 

example, the variation which the weight of a body would have when it moved 

from the center of the earth to a point a great distance from it, if the earth were 

homogeneous. 
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We shall leave it to the student to verify that the gravitational potential at a 

point outside the homogeneous sphere is still given by Eq. (13.23), but at a point 

inside the sphere, the gravitational potential is 

'Ym 2 2 
V = 2a 3 (r - 3a ), r < a. 

Note that in the spherical problem we have considered --in this section, the 

gravitational field at a point depends only on the distance from the point to the 

center, but not on the direction of the line joining the center to the point. This 

result was to be expected on the basis of the symmetry of the problem. If we were 

to consider, instead of a homogeneous sphere, a body with a different geometry or 

symmetry, or a nonhomogeneous sphere (with the mass distributed without 

spherical symmetry), we should expect the angles to appear in the formula. But 

for problems of spherical symmetry the properties depend on the distance from the 

point to the center only. The application of symmetry considerations greatly 

simplifies the solution of many problems in physics. 

Fig. 13-28. The gravitational interaction 
between two homogeneous spherical 
bodies depends only on the distance 
between their centers. 

m 

We are now in a position to verify that Eq. (13.1) for the gravitational attrac

tion between two point masses also holds for two homogeneous spherical bodies. 

Assume that we place a point mass m' at a distance r from the center of a spherical 

mass m (Fig. 13-28). The field it experiences is g = 'Ym/r 2 , and the force on m' 

is m'g = 'Ymm' /r 2• By the law of action and reaction, m' must exert an equal and 

opposite force on m. This force is interpreted as being due to the field created by 

m' in the region occupied by m. Now, if we replace m' by a homogeneous spherical 

body of the same mass, the field around m does not change, because of the theorem 

we have just proved, and therefore the force on m remains the same. Again we 

invoke the principle of action and reaction, and conclude that the force on the 

spherical mass m' is still the same. Consequently, two homogeneous spherical 

masses attract each other according to the law (13.1), where r is the distance be

tween their centers. If the masses are neither spherical nor homogeneous, some 

geometrical factors, including angles defining their relative orientation, will appear 

in the expression for their interaction. 

EXAMPLE 13.9. Discuss the variation of the acceleration of gravity which occurs 
when one moves a small distance upward or downward from the earth's surface. 

Solution: Let us call h the height of the body above the earth's surface. Its distance to 
the center is r = R + h. The intensity of the gravitational field, according to Eq. (13.25), 
is 

'YM 
g = (R + h)2' 
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where the mass m has been replaced by the earth's mass M. Considering that h is small 

compared with R and using the binomial approximation (M.28) and the result of Ex
ample 13.1, we have 

'YM ( h)-2 
( 2h) 

9 = R2(1 + h/ R)2 = g l + R ~ g l - R . 

Introducing the values for g and R, we get 

9 = 9.81 - 3.06 X 10-6h m s-2 . 

This expression gives, approximately, the variation in the acceleration of gravity and in 
the weight of a body when one moves up from the earth a small distance h. 

If instead, we move into the interior of the earth a distance h, we have r = R - h. 

Using Eq. (13.28), with m replaced by Mand a by R, we obtain 

= 'YM(R - h) = 'YM (l _ !) = (l _ !) 
9 R3 R2 R g R ' 

or, introducing the proper values, 

9 = 9.81 - 1.53 X 10-6h m s-2 • 

So in both cases gravity decreases, but it decreases at a faster rate for points above the 
surface than below. (Recall Fig. 13-27.) 

1.3.B Principle ol Eqmvtdenee 

The fact that the inertial and the gravitational masses are the same for all bodies 

gives rise to an important result: 

All bodies at the same place in a gravitational field experience the same 

acceleration. 

An example of this fact is Galileo's discovery that all bodies fall to earth with the 

same acceleration. This discovery, as we have already mentioned, is in turn an 

indirect proof of the identity of inertial and gravitational mass. 

To prove the above statement, we note that in a place where the gravitational 

field is g, the force on a body of mass m is F = mg, and its acceleration is 

F 
a= m = g, 

which is independent of the mass m of the body subject to the action of the gravi

tational field. Note that the acceleration of the body is equal to the field strength, 

which is consistent with our previous result that the gravitational field is measured 
in m s-2 . 

If an experimenter's laboratory is placed in a gravitational field, he will observe 

that all bodies with which he is experimenting, and which are subject to no other 

forces, experience a common acceleration. The experimenter, by observing this 

common acceleration, may conclude that his laboratory is in a gravitational field. 
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However, this conclusion is not the only possible explanation for the observa

tion of a common acceleration. In Section 6.2, when we discussed relative motion, 

we indicated that when a moving observer has an acceleration a 0 relative to an 

inertial observer, and a is the acceleration of a body as measured by the inertial 

observer, the acceleration measured by the moving observer is expressed by 

a'= a - ao. 

If, the body is free, the acceleration a measured by the inertial observer is zero. 

Therefore, the acceleration measured by the accelerated observer is a' = -a0 . 

Thus all free objects appear to the accelerated observer to have a common ac

celeration -a0 , a situation identical to that found in a gravitational field of 

strength g = -a0 . Thus we may conclude that 

an observer has no means of distinguishing whether his laboratory is in 

a uniform gravitational field or in an accelerated frame of reference. 

This statement is known as the principle of equivalence, since it shows an equiva

lence, insofar as the description of motion is concerned, between a gravitational 

field and an accelerated frame of reference. Gravitation and inertia thus appear 

to be not two different properties of matter, but only two different aspects of a 

more fundamental and universal characteristic of all matter. 

Suppose, for example, that an observer has a laboratory in a railroad car moving 

along a straight horizontal track with constant velocity, and that the windows are 

blackened so that the observer has no access to the outside world. He experiments 

with some billiard balls by dropping them, and notes that all of them fall with the 

same acceleration. He may then conclude that he is surrounded by a vertical 

gravitational field in the downward direction, which is the normal interpretation. 

But he could equally well assume that what is happening is that his car is being 

lifted with a vertical acceleration, equal and opposite to that of the balls, and that 

the balls are free and not subject to a gravitational field. 

Suppose now that the observer places the balls on a billiard table located in the 

car. When the observer notes that the balls on the table roll toward the rear of the 

car with a common acceleration, he may conclude that his laboratory either is 

acted on by a new horizontal gravitational field directed toward the rear of the 
car or that his laboratory is being accelerated horizontally in the forward direc

tion. The second assumption is the usual one, associated with a decision by the 

train engineer to speed up the train. However, the train could instead be going 

up a grade, which is equivalent to producing a gravitational field parallel to the 

car's floor, with the same result to the motion of the billiard balls. 

Because of the principle of equivalence, 

the laws of nature must be written in such a way that it is impossible 

to distinguish between a uniform gravitational field and an accelerated 

frame of reference, 

a statement which constitutes the basis of the general principle of relativity, pro-
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posed by Einstein in 1915. This principle requires that physical laws be written 

in a form independent of the state of motion of the frame of reference. As we can 

see, the fundamental idea of the general principle of relativity is very simple. 

However, its mathematical formulation is rather complex, and will not be dis
cussed here. 

Let us now examine the case of an accelerated observer in a gravitational field g. 
The acceleration of bodies subject only to the gravitational field as measured by 

our observer is expressed as a' = g - a 0 • As a concrete illustration, let us con

sider the case of a rocket accelerated upward from the earth. We have then that 

g = g. Let us write a0 = -ng for the rocket's acceleration relative to the earth, 

where n gives the value of a 0 relative tog. (The minus sign is due to the fact that 

the rocket is accelerated in the upward direction.) Then a' = (n + l)g is the 

acceleration, relative to the rocket, of a free body inside the rocket. For example, 

in a rocket accelerated upward with an acceleration four times that of gravity 

(n = 4), the weight of all bodies inside the rocket is five times their normal weight. 

This apparent increase in weight is particularly important at the launching stage 

when the rocket's acceleration is largest. 

Now consider, as another example, an orbiting satellite. Here a 0 = g, because 

the satellite is moving under the gravitational action of the earth. In this case 

a' = 0, and all bodies within the satellite appear to be weightless, since their ac

celeration relative to the satellite is zero. This is only a relative weightlessness 

because both the satellite and its contents are moving in the same gravitational 

field and have the same acceleration. Relative to the satellite, the bodies inside 

appear as free bodies unless other forces act on them; but, relative to a terrestrial 

observer, they are accelerated and subject to the gravitational field. 

A man inside an elevator which is falling with the acceleration of gravity (due to 

a broken cable) would experience the same weightlessness relative to the elevator. 

In such a case (as in the satellite), a 0 = g, and again a' = 0. Weightlessness, 

we insist, does not mean that the gravitational force has ceased to act. It means 

that all bodies, including the one serving as frame of reference, are acted on by 

one and the same field, which produces a common acceleration, and therefore there 

are no relative accelerations unless other forces act on the bodies. In other words, 

a gravitational field g can be "washed off" if the observer moves through it with 

an acceleration a 0 = g relative to an inertial frame. 

13.9 6ravitation and Intermolecular Forces 

In the previous se__ctions of this chapter we have seen how gravitational forces 

adequately describe planetary motion and the motion of bodies near the surface 

of the earth. It is interesting now to see if we can find out whether the same kind 

of interaction is responsible for keeping molecules together in a piece of matter 

or keeping atoms together in a molecule. 

Let us first consider a simple molecule such as a hydrogen molecule, composed 

of two hydrogen atoms separated the distance r = 0.745 X 10-10 m. The mass 

of each hydrogen atom is m = 1.673 X 10-27 kg. Therefore the gravitational 
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interaction of the two atoms corresponds to a potential energy 

Ep = - 'Ymm' = 2.22 X 10-54 J = 1.39 X 10-35 eV. 
r 

However, the experimental value for the dissociation energy of a molecule of hydro

gen is 7.18 X 10-19 J (= 4.48 eV), or 1035 times larger than the gravitational 

energy. Therefore we conclude that the gravitational inter-action cannot be re

sponsible for the formation of a molecule of hydrogen. Similar results are obtained 

for more complex molecules. 

In the case of a liquid, the energy required to vaporize one mole of water (18 g 

or 6.23 X 1023 molecules) is 4.06 X 103 J, corresponding to a separation energy 

per molecule of the order of 6 X 10-21 J. The average separation of the molecules 

of water is of the order of 3 X 10- 10 m, and the mass of a molecule is 3 X 10-25 kg, 

corresponding to a gravitational potential energy of 2 X 10-52 J, again far too 

small to explain the existence of liquid water. 

Therefore we conclude that the forces giving rise to the association of atoms to 

form molecules or of molecules to form matter in bulk cannot be gravitational. In 

the next four chapters, which appear in Volume II, we shall discuss other forces that 

seem to be responsible for these associations: electromagnetic interactions. 

However, gravitational interaction, being a mass effect, is very important in the 

presence of massive bodies that are electrically neutral, such as planets, and for 

that reason gravitation is the strongest force we feel on the earth's surface, in 

spite of the fact that it is the weakest of all forces known in nature. It is responsi

ble for a large number of common phenomena affecting our daily lives. Tides, for 

example, are entirely due to the gravitational interaction of the moon and the sun 
with the earth. 

Belerences 

1. "The Homocentric Spheres of Eudoxus," H. Swenson; Am. J. Phys. 31, 456 (1963) 

2. "The Celestial Palace of Tycho Brahe," J. Christianson; Sci. Am., February 1961, 
page 118 

3. "Johannes Kepler's Universe: Its Physics and Metaphysics," G. Holton; Am. J. 

Phys. 24, 340 (1956) 

4. "Newton and the Cause of Gravity," M. Evans; Am. J. Phys. 26, 619 (1958) 

5. "Gravity," G. Gamow; Sci. Am., March 1961, page 94 

6. "The Eotvos Experiment," R. Dicke; Sci. Am., December 1961, page 84 

7. "Gravitational and Inertial Mass," G. B. Bronson; Am. J. Phys. 28, 475 (1960) 

8. "Guidelines to Antigravity," R. Forward; Am. J. Phys. 31, 166 (1963) 

9. Mechanics (second edition), by K. Symon. Reading, Mass.: Addison-Wesley, 1964, 
Chapter 6 

10. Introduction to Engineering Mechanics, by J. Huddleston. Reading, Mass.: Addison
Wesley, 1961, Section 6.8 



428 Gravitational interaction 

11. Vector Mechanics, by D. Christie. New York: McGraw-Hill, 1964, Chapter 17 

12. The Feynman Lectures on Physics, Volume I, by R. Feynman, R. Leighton, and M. 
Sands. Reading, Mass.: Addison-Wesley, 1963, Chapter 7 

13. Source Book in Physics, by W. F. Magie. Cambridge, Mass.: Harvard University 
Press, 1963; page 92, Newton; page 105, Cavendish 

Problems 

13.1 Calculate the gravitational attrac
tive force between the earth and (a) the 

moon, (b) the sun. Obtain the ratio be

tween these two forces. 

13.2 Calculate the gravitational attrac
tion between the two protons in a hydro
gen molecule. Their separation is 0.74 X 
10-10 m. 

13.3. Determine the gravitational at
tractive force between the proton and the 
electron in a hydrogen atom, assuming 

that the electron describes a circular orbit 
with a radius of 0.53 X 10-10 m. 

13.4 Estimate the average distance be

tween two helium atoms in one mole at 
STP. From this distance, obtain the grav

itational attraction between two neighbor
ing helium atoms. The mass of a helium 
atom may be considered as 4.0 amu. 

13.5 Estimate the average distance be
tween two water molecules in the liquid 

phase. From this distance, obtain the 
gravitational attraction between two neigh
boring water molecules. A water molecule 
is composed of an oxygen atom and two 

hydrogen atoms. 

13.6 Two iron balls, each having a mass 

of 10 kg, are touching each other. Find 
their gravitational attraction. Compare 

it with the gravitational attraction of the 
earth on each ball. If -one tried to separate 

the two balls, would one "feel" the attrac
tion between them? [Hint: You may need 

to know the density of iron. It is listed in 
Table 2-2.] 

13. 7 Compare the gravitational attrac
tion produced on a body of mass m at the 

earth's surface (a) by the moon, and (b) by 

the sun, with the attraction of the earth on 

the same body. What do you conclude 
about the possibility of observing a change 
in the weight of a body during the daily 

rotation of the earth? 

13.8 A sphere of mass 5.0 kg is located 
in one pan of an equal-arm balance in 

equilibrium. A larger spherical mass 
(5.8 X 103 kg) is then rolled until it is 
directly underneath the first mass, the 

distance between the centers being 0.50 m. 

What mass must be placed in the other 
pan of the balance in order to restore 
equilibrium to the system? Assume g = 
9.80 m s-2 • This method was used by 

G. von Jolly, in the last century, to de
termine the value of 'Y. 

13.9 A man weighs 70 kgf. Supposing 

that the radius of the earth were doubled, 
how much would he weigh (a) if the mass 
of the earth remained constant, (b) if the 

average density of the earth remained 

constant? 

13.10 Calculate the acceleration of grav
ity at the sun's surface. Its radius is 110 
times the radius of the earth and its mass 

is 330,000 times the mass of the earth. 
Repeat for Venus, Jupiter, and the moon. 

13.11 A man weighs 110 kgf. Calculate 

how much he would weigh at the surface 

of the sun and at the surf ace of the moon. 
What would be his mass at both places? 

13.12 A man weighs 80 kgf at sea level. 
Calculate his mass and weight at 8000 m 

above sea level. 

13.13 From the data in Table 13-1 for the 

radii and the periods of orbital motion of 

the planets, compute the mass of the sun. 
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Figure 13-29 Figure 13-30 

Use only three planets (Venus, earth, and 

Jupiter). 

13.14 In a Cavendish experiment (Fig. 

13-3), the two small masses are equal to 

10.0 gm and the rod (of negligible mass) is 

0.50 m long. The period of torsional oscil

lations of this system is 770 s. The two 

large masses are 10.0 kg each and are so 

placed that the distance between the cen

ters of the large and small spheres is 0.10 m. 

Find the angular deflection of the rod. 

13.15 How high must one go above the 

earth's surface for the acceleration of 

gravity to change by 1 % ? How deep 

should one penetrate into the earth to ob

serve the same change? 

13.16 Find the height and velocity of a 

satellite (in circular orbit in the equa-
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13.20 A particle of mass m can move in a 
horizontal frictionless pipe (Fig. 13-29) 

under the action of the earth's gravitational 

attraction. Assuming that x is very small 

compared with R, prove that the particle 

has simple harmonic motion and that its 

period is P = 21rV R/g. Find the value 

of P. This is the longest period of a pen
dulum on the earth's surface. Can you 

prove it? 

13.21 Suppose that a hole were drilled 

completely through the earth along a di

ameter (Fig. 13-30). (a) Show that the 

force on a mass m at a distance r from the 

center of the earth is F = -mgr/ R, if we 
assume that the density is uniform. (b) 

Show that the motion of m would be sim

ple harmonic, with a period of about 90 

min. (c) Write the equations for position, 

velocity, and acceleration as functions 

of time, with numerical values of the 

constants. 

0 

torial plane) that remains over the same Figure 13-31 

point on the earth at all times. 

13.17 An earth satellite moves in a circu

lar orbit at a height of 300 km above the 

earth's surface. Find (a) its velocity, (b) 

its period of revolution, and (c) its cen

tripetal acceleration. 

13.18 Compare the result of part (c) of 

the preceding problem with the value of g 

at that height, as computed directly by 

the method of Example 13.9. 

13.19 What would be the period of a satel

lite revolving about the earth in an orbit 

whose radius is one-fourth the radius of the 

moon's orbit? The period of the moon is 

about 28 days. What would be the ratio 

of the velocity of the satellite to that of 

the moon? 

13.22 Show that the frictionless motion 

of a mass in a hole drilled as a chord 
through the earth (Fig. 13-31) would be 

simple harmonic. Calculate the period. 

13.23 A mass m is dropped from a great 

height h above the hole in the earth in 

Fig. 13-32. (a) With what velocity would 

m pass the center of the earth? (b) Would 

the motion be simple harmonic? (c) Would 

----- -----O m 

Figure 13-32 
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the motion be periodic? Give reasons for 
your answers. 

13.24 From the data for the motion of 
the sun in the galaxy (Fig. 7-1), and as

suming that the galaxy is a spherical aggre

gate of stars, estimate its total mass. 

Assuming that the stars have, on the aver
age, the same mass as the sun (1.98 X 
1030 kg), estimate their number and their 

average separation. 

13.25 Write an equation which expresses 

algebraically the total energy of the system 
(a) earth-moon, (b) sun-earth-moon. 

13.26 Estimate the kinetic energy, the 
potential energy, and the total energy of 

the earth in its motion around the sun. 

count the earth's velocity but not its 
gravitational field. 

13.32 A particle is at rest on the earth's 

surf ace. (a) Compute its total kinetic and 
potential energy relative to the sun, in

cluding the gravitational attraction of the 

earth and of the sun. (b) Obtain the escape 
velocity from the solar system. Compare 

with Problem 13.31. 

m 

• 

m 

(Consider only the gravitational potential Figure 13-33 
energy with the sun.) 

13.27 Obtain the expression for the total 

energy of a circular orbit under gravita

tional forces (Eq. 13.6) using the virial 
theorem (Section 8.13). 

13.28 One of the Pioneer moon rockets 

reached an altitude of about 125,000 km. 
Neglecting the effect of the moon, estimate 

the velocity with which this rocket struck 
the atmosphere of the earth on its return. 
Assume that the rocket was fired straight 

up and that the atmosphere begins 130 km 
above the earth's surface. 

13.29 Given that h is the distance of a 

body above the earth's surface, then r = 
R + h. Verify, using the binomial expan
sion (M.21), that when h is very small 

compared with R, Eq. (13.10) reduces to 

v2 = 2gh. 

13.30 Compute the escape velocity for 

Mercury, Venus, Mars, and Jupiter. [Hint: 

To simplify the calculation, first compute 
the factor y2'Y. Then you only have to 

multiply it by vM/R for each planet.] 

13.31 (a) Compute the escape velocity 

from the solar system for a particle at a 

distance from the sun equal to that of the 
earth. (b) Use this result to obtain the 
minimum escape velocity for a body 

launched from the earth, taking into ac-

13.33 Using the results of Section 13.7, 
prove that the gravitational interaction 

between a mass M (Fig. 13-33) of arbi

trary shape and a point mass or between 
Mand a homogeneous spherical body hav

ing the same mass m is the same, provided 
that the center of the spherical body coin

cides with the position of the point mass. 

13.34 Determine the potential energy be

tween the planet Saturn and its rings. As

sume that the rings have a mass of 3.5 X 
1018 kg and are concentrated at an average 

distance of 1.1 X 108 m from the center of 

Saturn. 

13.35 Determine the internal gravita
tional potential energy of 8 bodies, each of 

mass m, located at the vertices of a cube of 

side a. Apply it to a case in which the 
masses are of the same order as our sun 

and the side of the cube is one parsec. 

(See Problem 2.16.) 

13.36 Prove that the energy required to 
build up a spherical body of radius R by 

adding successive layers of matter in an 
onionlike fashion until the final radius is 

attained (keeping the density constant) is 

Ep = -3'YM2/5R. 

13.37 Estimate the value of the gravita

tional potential energy of our galaxy. As-



sume that all the bodies composmg the 
galaxy are roughly of the same mass as the 

sun and are separated by a distance of 
the order of 1021 m. [Hint: Consider that 

the galaxy is spherical, and use the result 

of Problem 13.36.] 

13.38 Using the virial theorem and the re
sults of the preceding problem, estimate 

the total kinetic energy of the galaxy (ex
cluding the internal energy of the stars). 

13.39 A meteorite is initially at rest at a 

distance from the center of the earth equal 
to six times the earth's radius. Calculate 

what its velocity would be when it reached 
the earth's surface. 

r p 

0.06m m 

Q 

1-0.16 m-+------

Figure 13-34 

13.40 Two equal masses of 6.40 kg are 
separated by a distance of 0.16 m (Fig. 

13-34). A third mass is released from a 
point P equidistant from the two masses 

and at a distance 0.06 m from the line join
ing them. Determine the velocity of this 

third mass when it passes through Q. 
Given that the mass is 0.1 kg, calculate 

its acceleration at P and at Q. 

13.41 A rocket is fired vertically from the 

earth toward the moon, the fuel being con
sumed in a relatively short time after the 
firing. (a) At what point in its path toward 
the moon is its acceleration zero? (b) What 

would the minimum initial velocity of the 
rocket need to be in order to reach this 

point and fall on the moon by the action 
of lunar attraction? (c) In this case, what 
would the velocity of the rocket be when 
it hit the moon? 

13.42 Prove that the time required for a 
body to fall from a distance r from the 
center of the earth down to the surface of 
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the earth is 

t = (r3' 2/Rv2g)[-v(R/r)(l - R/r) 

+ sin-1 v'R/r]. 

Verify that if r is very large compared with 

R, the result is t = !v R/2g. [Hint: Use 
Eq. (13.10); set v = dr/dt, solve for dt, and 
integrate.] 

13.43 A satellite having a mass of 5000 kg 
describes a circular path around the earth 
of radius 8000 km. Find its angular mo

mentum and its kinetic, potential, and 
total energies. 

13.44 A 5000-kg satellite is describing a 
circular orbit at an altitude of 8000 km 

above the earth's surface. After several 
days, as a result of atmospheric friction, the 

orbit shrinks to an altitude of 650 km. 
Compute the changes in (a) velocity, (b) 
angular velocity, (c) kinetic energy, (d) 

potential energy, and (e) total energy. 
Assume that the orbits are essentially circu
lar at each moment because the shrinking is 
very slow. 

13.45 Referring to the previous problem, 
assume that the air resistance can be repre

sented by an average force of 1.75 X 101 

N. (a) Calculate the torque due to this 
force and, using this result, estimate the 
time required for the abovementioned 
drop in height. (b) Determine the rate of 

energy dissipation and, from it, also esti
mate the time computed in (a). (c) Using 
average period of revolution, obtain the 

total number of revolutions in that time. 

13.46 Adapt the results of Section 13.5 
to take into account the reduced mass. 

13.47 In a double star, one of the stars 
has a mass of 3 X 1033 kg and the other a 
mass of 4 X 1033 kg. Find their angular 

velocity around their center of mass, 
given that their separation is 1017 m. Also 

find their total internal angular momentum 
and energy. 

13.48 Using polar graph paper, plot Eq. 
(13.12) ford = 1 and (a) e = 0.5, (b) e = 
1, (c) e = 2. Because of the symmetry of 
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the curve you only have to compute r for 

() between 0° and 180°, and repeat the curve 
below the X-axis. Identify the most im
portant features of each curve. [Hint: Use 

values of () in multiples of 20°.] 

13.49 Prove that the ratio between the 
velocity of an orbiting body at perigee 

(distance of closest approach to the force 
center) and at apogee (farthest separation 

from it) is (1 + E)/(1 - E). [Hint: Note 
that at both positions the velocity is per

pendicular to the radius.] 

13.50 A comet moves in an ellipse which 

has an eccentricity of E = 0.8. Find the 
ratio between (a) the distance to the sun, 
(b) linear velocities, and (c) angular veloc

ities at aphelion and at perihelion. 

13.51 The eccentricity e and semimajor 
axis a of the orbits of certain planets are 

listed in the following table. (Bear m 

mind that 1 AU = 1.495 X 1011 m.) 

Mercury Earth Mars 

e 0.206 0.017 0.093 

a (AU) 0.387 1.000 1.524 

Compute for each of these planets: (a) the 
distance of closest approach to the sun, (b) 

the distance of farthest separation from the 
sun, (c) the total energy of translational 
motion, (d) the angular momentum, (e) 

the period of revolution, (f) the velocity at 

aphelion and at perihelion. 

13.52 A satellite is put into an elliptical or

bit at a distance above the earth's surface 
equal to the earth's radius by giving it an 

initial horizontal velo_city equal to 1.2 times 
the velocity required to make it assume a 

circular orbit at that distance. Find (a) 
the angular momentum of the satellite, (b) 

its total energy, (c) the eccentricity of its 
orbit, (d) its maximum and minimum dis

tances from the earth's surface, (e) the 
semimajor axis of its orbit, and (f) its period 

of revolution. (Let m = 50 kg.) 

13.53 Repeat Problem 13.52, assuming 
that the satellite's initial velocity is 0.9 
that of a similar satellite in circular orbit. 

13.54 On the Gemini V flight (August 21 

through August 29, 1965), the apogee and 
perigee heights above the earth's surface 

were 352 km and 107 km, respectively. 
Determine the eccentricity of the orbit, 

the maximum and minimum speeds of the 
spacecraft, and the variation in the gravi
tational field between apogee and perigee. 

13.55 An artificial satellite moves in an 

orbit whose perigee is 640 km and apogee 
4000 km above the earth's surface. Cal

culate (a) its semimajor axis, (b) its eccen

tricity, (c) the equation of its orbit, (d) its 
velocity at the perigee and at the apogee, 

(e) its period of revolution, (f) its total 
energy if its mass is 100 kg. (g) Using 

polar graph paper, plot the satellite's path. 

13.56 The United States satellite Explorer 
III had an elliptical orbit with perigee at 
109 mi above the earth's surface and ave

locity at perigee of 27,000 ft s-1. Deter

mine (a) the eccentricity of its orbit, (b) 

its semimajor axis, (c) its period of revolu
tion, and (d) its velocity and height at 
apogee. 

13.57 A comet of mass m is observed at a 
distance of 1011 m from the sun traveling 

toward the sun with a velocity 5.16 X 104 

m s-1 at an angle of 45° with the radius 

vector from the sun. Obtain for the comet 
(a) its total energy and angular momentum, 
(b) the equation of its orbit, (c) the dis

tance of its closest approach to the sun. 

Note which results depend on the mass of 

0 

Figure 13-35 



the comet, and which do not. Using polar 

graph paper, plot the comet's path. 

13.58 A ballistic missile (Fig. 13-35) of 

mass m is fired at a point A with an initial 

velocity vo, making an angle cp with the 
vertical or radial direction. Find (a) its 

angular momentum, (b) its total energy. 
(c) Prove that the eccentricity of its orbit 

is given by 

<:2 = 1 

+ (R2v5 sin2 cp/1'2 M2)(v5 - 21' M / R). 

[Hint: For (c), use the last result in Ex

ample 13.5.] 

13.59 Referring to the preceding problem, 

show that the equation of the path is 

r = R2v5 sin2cpo/l' M (1 + E cos 8). 

[Hint: Remember from Example 13.5 that 

L 2 = !'mm' Ed.] 

13.60 Referring to Problems 13.58 and 

13.59, assume that vo = VI' M / R and that 
cp = 30°. (a) Determine the missile's ec

centricity. (b) Write the equation of its 

orbit. (c) Prove that the missile will fall 

back to earth at a point at a distance from 
A equal to 1r R/3 measured along the earth's 
surface. Using polar graph paper, plot the 

missile's path. [Hint: After computing E, 

determine the values of 8 for which r = R. 
One value corresponds to the firing point 

and the other to the point of return. The 

difference between the two angles gives the 

angular displacement of the two points.] 

13.61 Referring to Problem 13.60, prove 
that the maximum height of the missile 

above the earth's surface is about 0.92R. 

(It is suggested that the student compare 

the results of Problems 13.60 and 13.61 

with those obtained using the methods of 
Section 5.7.) 

13.62 Referring to Problem 13.58, prove 

that if the missile's launching velocity is 
equal to its escape velocity the path will 

be a parabola and, according to Problem 

13.59, no matter how the missile is directed, 

Problems 433 

its trajectory will be open and it will never 
return. 

13.63 A ballistic missile is launched with 

a velocity equal to its escape velocity, so 
that its path is a parabola. Find the equa
tion of its path when cp = 45° and cp = 90°. 

Using polar graph paper, make a sketch of 
the path in each case. 

13.64 A comet at a large distance from 
the sun has a velocity V2gR and an im

pact parameter of y2 R (recall Example 

7.16), where R is the radius of the sun. 

How close to the sun will the comet come? 

13.65 A particle of mass m moves under 

an attractive force of magnitude k/r2• Its 
velocity at one of the extreme positions is 

Vk/2mr1, where r1 is the distance from the 
center of force. Calculate the distance r2 

corresponding to the other extreme posi

tion, the semimajor axis of the orbit, and 
the eccentricity. 

13.66 A particle moves under a repulsive 

central force of magnitude F = k/r2• It 

is thrown from a point a very large dis
tance from the center of force with a veloc

ity vo and an impact parameter b (remem
ber Example 7.16). Determine (a) the 

equation of its path, (b) the distance of 

its closest approach to the force center, 
(c) the angle that the direction in which 
it recedes makes with the initial direction. 

Compare your answers with the results of 
Example 7.16. [Hint: Note that the for

mulas in this chapter can be applied if 
-!'mm' is replaced by k.] 

13.67 Calculate the strength of the gravi

tational field and the potential at the 
earth's surface due to the earth itself. 

13.68 Estimate the value of the earth's 

gravitational field and the acceleration to

ward the center of a body at a point at a 

distance (a) JR, (b) !R from the center of 
the earth. Assume that the earth is 

homogeneous. 

13.69 Compute the magnitude of the gravi
tational field and the potential produced 

by the sun along the earth's orbit. Com-
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pare these values with the gravitational 
field and the potential produced by the 
moon on the earth. 

13.70 Two bodies of masses m and 3m are 

separated a distance a. Find the points 
where (a) the resultant gravitational field 
is zero, (b) the two masses produce gravi

tational fields which are the same in mag
nitude and direction, (c) the two masses 
produce gravitational potentials which are 

identical. 

13.71 Two bodies of masses m and 3m are 
separated a distance 13a. Find the result

ant gravitational field and potential at a 
point P at a distance 5a from the first 
mass, given that the lines joining P with 

the two masses are at right angles. 

13.72 Two bodies of masses m and 2m are 
at the vertices of an equilateral triangle of 

side a. Find the gravitational field and the 
potential at (a) the midpoint between 
them, and (b) the third vertex of the 

triangle. 

13.73 Three equal masses are located at 
the vertices of an equilateral triangle. 
Make a sketch of the equipotential sur
faces (actually their intersection with the 
plane of the triangle) and of the lines of 

force of the gravitational field. Is there 

any point where the gravitational field is 
zero? 

13.74 Obtain the gravitational field and 
the potential produced by a ring of mass m 

and radius R at points along the axis per
pendicular to the ring through its center. 

13.75 Referring to the preceding problem, 
a particle is released from a point on the 
axis at a distance h from the center. (a) 

What will be its velocity when it passes 
through the center'r (b) How far will it 
go on the other side? (c) Is the resulting 

motion periodic? Under what conditions 
is the motion practically simple harmonic? 
Determine the corresponding frequency in 

this last case. 

13.76 Two identical thin slabs of material 
are separated a distance a. Calculate the 

gravitational field they produce in the 
region between them and on either side. 

13.77 Prove that the gravitational field 

and the potential of a thin filament having 
a mass X per unit length are 

and V = 2'YX ln R, respectively, where R 

is the distance from the point to the fila
ment. [Hint: First determine, in view of 
the symmetry, what the direction of the 

field should be, and the variables deter

mining it. Next divide the wire into small 
portions, each of length dx, and compute 
the component of its field in the final direc

tion. Once you have obtained the resultant 
field by integration, you can obtain the 

gravitational potential from it by using 
Eq. (13.21).] 

13.78 Determine the velocity and the 

total energy of a particle which is de
scribing a circular orbit around the fila

ment of Problem 1.3.77, and which is under 
its gravitational attraction. 

13.79 Reconsider Example 13.8 for a case 

in which the thin layer of matter is re
placed by a homogeneous slab of matter 
of thickness D. 

13.80 Assume that a mass mis a distance 
p from a certain point 0, used as a reference 

R 

Figure 13-36 
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(Fig. ~3-36). Show that the gravitational 
potential at A, at a distance R from m 

( R 1Jrger than p), can be expressed, in 

term~ of the distance O A = r and the 
angle/(), by the series 

I 
V =i -('Ym/r) [1 + p cos 0/r 

/ + p2 (3 cos2 () - 1)/2r2 + · · ·]. 

[HiJ: Express R in terms of p, r, and () by 

the ~aw of cosines, and evaluate 1/ R by 

mea~,s of the binomial expansion.] 

13.81'1 Consider a cluster of masses m1, m2, 

ma, ... (Fig. 13-37). Show that the gravi-
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tational potential at a point A, at a dis
tance large compared with the dimensions 

of the cluster, may be expressed as 

V = -'Y[M/r + P/r2 + Qjr3 + .. ·], 
where M = I:i mi is the total mass, P = 
Li Pi cos (Ji is called the dipole moment of 
the mass distribution relative to OA, and 

Q = Li fp7(3 cos20i - 1) is called the 
quadrupole moment of the mass distribu

tion, and so on. [Hint: Use the results of 

Problem 13.80 for each mass, and add.] 
The terms "dipole" and "quadrupole" will 

be explained in Chapter 14 (Volume II). 
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APPENDIX 

MATHEMATICAL RELATIONS 

This appendix, in which we present certain mathematical formulas that are fre

quently used in the text, is intended as a quickly available reference for the student. 

In a few cases we have inserted some mathematical notes in the text proper. 

Proofs and a discussion of most of the formulas may be found in any standard 

calculus text; e.g., Calculus and Analytic Geometry, third edition, by G. B. Thomas 

(Addison-Wesley, 1963). A short introduction to the basic concepts of the calculus, 
in a programmed format, may be found in Quick Calculus: A Short M ariual of Self 

Instruction, by D. Kelpner and N. Ramsey (John Wiley & Sons, New York, 1963). 

The student will also have to refer to a number of tables which are in book form. 

Among these are the C.R.C. Standard Mathematical Tables (Chemical Rubber 

Company, Cleveland, Ohio, 1963), and Tables of Integrals and Other Mathematical 

Data, fourth edition, by H.B. Dwight (Macmillan Company, New York, 1961). 

We recommend that the student have at his disposal the Handbook of Chemistry 

and Physics, yearly editions of which are issued by the Chemical Rubber Com

pany, Cleveland, Ohio. This handbook also contains a wealth of mathematical, 

chemical, and physical data. 

1. Trigonometric Relations 

Referring to Fig. M-1, we can define the following relations: 

sin a = y/r, 

csc a = r/y, 

cos a= x/r, 

sec a = r/x, 

tan a = sin a/cos a; 

tan a = y/x; 

cot a= x/y; 

sin2 a+ cos2 a = 1, sec2 a + 1 = tan2 a; 

sin (a ± /3) = sin a cos /3 ± cos a sin /3; 

cos (a ± /3) = cos a cos /3 ,= sin a sin /3; 

sin a ± sin /3 = 2 sin -!(a ± /3) cos -!(a ,= /3); 

cos a + cos /3 = 2 cos -!(a + /3) cos -!(a - /3); 

cos a - cos /3 = -2 sin }(a + /3) sin }(a - /3); 

A-3 

(M.1) 

(M.2) 

(M.3) 

(M.4) 

(M.5) 

(M.6) 

(M.7) 

(M.8) 

(M.9) 
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sin a sin {j = ![cos (a - fj) - cos (a+ /j)]; 

cos a cos {j = ![cos (a - fj) + cos (a+ fj)]; 

sin a cos {j = ![sin (a - fj) + sin (a+ /j)]; 

sin 2a = 2 sin a cos a, 

sin2 !a = !(1 - cos a), 

cos 2a = cos2 a - sin2 a; 

cos2 !a = !(1 + cos a). 

Referring to Fig. M-2, we can formulate, for any arbitrary triangle: 

a b c 
Law of sines: -- = --- = -- , 

sin A sin B sin C 

Law of cosines: a2 = b2 + c2 - 2bc cos A. 

y y y y 

p 

I 

r I 
IY a 

a I 
I x x x 0 x x 

(M.10) 

(M.11) 

(M.12) 

(M.13) 

(M.14) 

(M.15) 

(M.16) 

c Figure M-1 

b 

A c B Figure M-2 

2. Logarithms 

(i) Definition of e: 

e = lim (1 + .!)n = 2. 7182818 ... 
n----><X> n 

The exponential functions y = ex and y = e-x are plotted in Fig. M-3. 

(ii) Natural logarithm, base e (see Fig. M-4): 

y = lnx if X = eY. 

Common logarithm, base 10: 

y = log x if X = lQY. 

The natural and common logarithms are related by 

ln x = 2.303 log x, log x = 0.434 ln x. 

(M.17) 

(M.18) 

(M.19) 

(M.20) 
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y 

7 

6 

5 

4 

3 

------,~1--+-+-0c+---+--+--+---+--+-X 

-2 -1 1 2 

-1 

y 

2 

1 

--+-Oc+---+-----+-+------,------,1--+-+--+--+-X 

2 3 4 5 

-1 

-2 

3. Power Expansions 

(i) The binomial expansion: 

(a+ b)n = an+ nan-lb+ n(n 2~ 1) an-2b2 

+ n(n - l)(n - 2) an-3b3 + ... 
3! 

y 

-1 
Figure M-3 

Figure M-4 

+ n(n - l)(n - 2) · · · (n - p + 1) an-pbp + ... 
p! 

(M.21) 

When n is a positive integer, the expansion has n + 1 terms. In all other cases, 

the expansion has an infinite number of terms. The case for which a is 1 and b is a 

quantity xis used numerous times in the text. Therefore the binomial expansion 
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of (1 + xr is written 

(1 + xr = 1 + nx + n(n - 1) x2 + n(n - l)(n - 2) x3 + ... 
2! 3! 

(ii) Other useful series expansions: 

x 1 2 1 3 
e = 1 + x + 2 ! x + 3 ! x + · · · 

x2 xa 
ln (1 + x) = x - 2 + 3 - · · · 

. 1 3 1 5 
sm x = x - 3 ! x + 5 ! x - · · · 

1 2 1 4 
cos x = 1 - 2 ! x + 4 ! x - · · · 

1 3 2 5 
tan x = x + 3 x + 15 x + · · · 

For x « 1, the following approximations are satisfactory: 

(1 + x)n :::::: 1 + nx, 

ex :::::: 1 + x, ln (1 + x) :::::: x, 

Sln X :::::: X, cos x :::::: 1, tan x :::::: x. 

(M.22) 

(M.23) 

(M.24) 

(M.25) 

(M.26) 

(M.27) 

(M.28) 

(M.29) 

(M.30) 

Note that in Eqs. (M.25), (M.26), (M.27), and (M.30), x must be expressed in 

radians. 

(iii) Taylor series expansion: 

f(x) = f(x 0 ) + (x - x0 ) (;!)
0 
+ ;! (x - xo) 2 

(;;{)
0 

1 (dnf) + ... + - (x - xor - + ... 
n! dxn o 

If x - x 0 « 1, a useful approximation is 

f(x) :::::: f(xo) + (x - xo) (;!) 
0

· 

4. Complex Numbers 

With the definition i 2 = -1 or i = y'=I, 

i8 () + · · () e = COS 'l Sln , 

cos() = -!(i8 + e-i0), 

. 1 ( i8 -i8) sm () = 2i e - e . 

(M.31) 

(M.32) 

(M.33) 

(M.34) 

(M.35) 
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y 

5. Hyperbolic Functions 

In order to visualize the following relations, see Fig. M-5. 

cash () = !(e8 + e-8), 

sinh () = !(e8 - e-8), 

cosh2 () - sinh2 () = 1, 

sinh () = -i sin (iO), 

sin() = -i sinh (iO), 

6. Basic Derivatives and Integrals 

f(u) df/dx 

cash () = cos ( iO), 

cos () = cash ( iO) 

fj(u) du 

Figure M-5 

(M.36) 

(M.37) 

(M.38) 

(M.39) 

(M.40) 

Un nun-l du/dx un+ 1j(n+l)+C (n~-1) 
u-1 -(1/u2) du/dx lnu + C 

lnu (1/u) du/dx uinu-u+C 
eu eu du/dx eu + C 

smu cos u du/dx -cosu + c 
cos u -sin u du/dx sinu + C 
tanu sec 2 u du/dx -In cos u + C 

cot u -csc 2 u du/dx In sin u + C 
arcsm u (du/dx)/'\/1 - u 2 u sin-1 u + Vl 
sinhu cash u du/dx coshu + C 
coshu sinh u du/dx sinhu + C 

A useful rule for integration, called integration by parts, is 

Ju dv = uv - J v du. 

- u 2 + C 

(M.41) 



A-8 Appendix: mathematical relations 

This method is most frequently used to evaluate the integral on the left by using 
the integral on the right. 

7. Average Value of a Function 

The mean or average value of a function y = f(x) in the interval (a, b) is defined by 

b 

Yave = b l a i Y dx. (M.42) 

Similarly, the average value of y 2 is defined by 

(y2)ave =. b 1 a ib y2 dx. (M.43) 

The quantity v (y2)ave is called the root mean square value of y = f(x) in the inter

val (a, b), and in general is different from Yave· It is designated Yrms· 
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NATURAL TRIGONOMETRIC FUNCTIONS 

Angle Angle 

De- Ra- Co- Tan- De- Ra- Co- Tan-
gree dian Sine sme gent gree dian Sine sine gent 

oo .000 0.000 1.000 0.000 
10 .017 .018 1.000 .018 46° 0.803 0.719 0.695 1.036 
20 .035 .035 0.999 .035 47° .820 .731 - .682 1.072 
30 .052 .052 .999 .052 48° .838 .743 .669 1.111 
40 .070 .070 .998 .070 49° .855 .755 .656 1.150 
50 .087 .087 .996 .088 50° .873 .766 .643 1.192 
50 .105 .105 .995 .105 51° .890 .777 .629 1.235 
70 .122 .122 .993 .123 52° .908 .788 .616 1.280 
go .140 .139 .990 .141 53° .925 .799 .602 1.327 
go .157 .156 .988 .158 54° .942 .809 .588 1.376 

100 .175 .174 .985 .176 55° .960 .819 .574 1.428 
110 .192 .191 .982 .194 56° .977 .829 .559 1.483 
12° .209 .208 .978 .213 57° .995 .839 .545 1.540 
13° .227 .225 .974 .231 58° 1.012 .848 .530 1.600 
14° .244 .242 .970 .249 59° 1.030 .857 .515 1.664 
15° .262 .259 .966 .268 60° 1.047 .866 .500 1.732 

16° .279 .276 .961 .287 61° 1.065 .875 .485 1.804 
17° .297 .292 .956 .306 62° 1.082 .883 .470 1.881 
18° .314 .309 .951 .325 63° 1.100 .891 .454 1.963 
19° .332 .326 .946 .344 64° 1.117 .899 .438 2.050 
20° .349 .342 .940 .364 65° 1.134 .906 .423 2.145 

21° .367 .358 .934 .384 66° 1.152 .914 .407 2.246 
22° .384 .375 .927 .404 67° 1.169 .921 .391 2.356 
23° .401 .391 .921 .425 68° 1.187 .927 .375 2.475 
24° .419 .407 .914 .445 69° 1.204 .934 .358 2.605 
25° .436 .423 .906 .466 70° 1.222 .940 .342 2.747 

26° .454 .438 .899 .488 710 1.239 .946 .326 2.904 
27° .471 .454 .891 .510 72° 1.257 .951 .309 3.078 
28° .489 .470 .883 .532 73° 1.274 .956 .292 3.271 
29° .506 .485 .875 .554 74° 1.292 .961 .276 3.487 
30° .524 .500 .866 .577 75° 1.309 .966 .259 3.732 

31° .541 .515 .857 .601 76° 1.326 .970 ·.242 4.011 
32° .559 .530 .848 .625 770 1.344 .974 .225 4.331 
33° .576 .545 .839 .649 78° 1.361 .978 .208 4.705 
34° .593 .559 .829 .675 79° 1.379 .982 .191 5.145 
35° .611 .574 .819 .700 goo 1.396 .985 .174 5.671 

36° .628 .588 .809 .727 81° 1.414 .988 .156 6.314 
37° .646 .602 .799 .754 82° 1.431 .990 .139 7.115 
38° .663 .616 .788 .781 83° 1.449 .993 .122 8.144 
39° .681 .629 .777 .810 84° 1.466 .995 .105 9.514 
40° .698 .643 .766 .839 85° 1.484 .996 .087 11.43 

41° .716 .658 .755 .869 86° 1.501 .998 .070 14.30 
42° .733 .669 .743 .900 87° 1.518 .999 .052 19.08 
43° .751 .682 .731 .933 ggo 1.536 .999 .035 28.64 
44° .768 .695 .719 .966 89° 1.553 1.000 .018 57.29 
45° .785 .707 .707 1.000 goo 1.571 1.000 .000 00 
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COMMON LOGARITHMS 

! N .. 0 
1 

1 I 2 3 4 I-~ 6 7 8. l_:_I 
I o . . . . 0000 3010 4771 6021 1 6990 7782 8451 9031 9542 

1 0000 0414 0792 1139 1461 1761 2041 2304 2553 2788 

2 3010 3222 3424 3617 3802 3979 4150 4314 4472 4624 
3 4771 4914 5051 5185 5315 5441 5563 5682 5798 5911 

4 6021 6128 6232 6335 6435 6532 6628 6721 6812 6902 

5 6990 7076 7160 7243 7324 7404 7482 7559 7634 7709 
6 7782 7853 7924 7993 8062 8129 ~195 8261 8325 8388 

7 8451 8513 8573 8633 8692 8751 8808 8865 8921 8976 
8 9031 9085 9138 9191 9243 9294 9345 9395 9445 9494 

9 9542 9590 9638 9685 9731 9777 9823 9868 9912 9956 
-- -------------- ------------ ------

10 0000 0043 0086 0128 0170 0212 0253 0294 0334 0374 
-·- --~---- ---- ----------

11 0414 0453 0492 0531 0569 0607 0645 0682 0719 0755 

12 0792 0828 0864 0899 0934 0969 1004 1038 1072 1106 
13 1139 1173 1206 1239 1271 1303 1335 1367 1399 1430 

14 1461 1492 1523 1553 1584 1614 1644 1673 1703 1732 
15 1761 1790 1818 1847 1875 1903 1931 1959 1987 2014 

16 2041 2068 2095 2122 2148 2175 2201 2227 2253 2279 

1 7 2304 2330 2355 2380 2405 2430 2455 2480 2504 2529 

18 I 2553 2577 2601 2625 2648 2672 2695 2718 2742 2765 
19 2788 2810 2833 2856 2878 2900 2923 2945 2967 2989 

20 3010 3032 3054 3075 3096 3118 3139 3160 3181 3201 

21 3222 3243 3263 3284 3304 3324 3345 3365 3385 3404 

22 3424 3444 3464 3483 3502 3522 3541 3560 3579 3598 

23 3617 3636 3655 3674 3692 3711 3729 3747 3766 3784 

24 3802 3820 3838 3856 3874 3892 3909 3927 3945 3962 

25 3979 3997 4014 4031 4048 4065 4082 4099 4116 4133 

26 4150 4166 4183 4200 4216 4232 4249 4265 4281 4298 

27 4314 4330 4346 4362 4378 4393 4409 4425 4440 4456 
28 4472 4487 4502 4518 4533 4548 4564 4579 4594 4609 

29 4624 4639 4654 4669 4683 4698 4713 4728 4742 4757 
-- ------ ------ -------- --- ---

30 4771 4786 4800 4814 4829 4843 4857 4871 4886 4900 
-- ----------- ------ ----

31 4914 4928 4942 4955 4969 4983 4997 5011 5024 5038 
32 5051 5065 5079 5092 5105 5119 5132 5145 5159 5172 

33 5185 5198 5211 5224 5237 5250 5263 5276 5289 5302 

34 5315 5328 5340 5353 5366 5378 5391 5403 541() 5428 

35 5441 5453 5465 5478 5490 5502 5514 5527 5539 5551 
36 5563 5575 5587 5599 5611 5623 5635 5()47 5658 5670 

I 37 5682 5694 5705 5717 5729 57 40 57 52 5763 577 5 5786 

38 5798 5809 5821 5832 5843 5855 5866 5877 5888 5899 
39 5911 5922 5933 5944 5955 5966 5977 5988 5999 6010 

: 40 6021 6031 6042 6053 6064 6075 6085 6096 6107 t 6117 

41 6128 6138 6149 6160 6170 I 6180 6191 ()201 . 6212 I 6222 

42 6232 6243 6253 6263 6274 6284 6294 6304 6314 I 6325 

43 I 0335 6345 6355 6365 637 5 16385 6395 6405 6415 6425 

441 643.5 6444 6454 6464 6474 ()484 6493 6503 6513 6522 
45 6532 6542 6551 6561 6571 6580 6590 6599 6fi09 (l618 

4(i I 6628 (l637 6646 6656 6665 I 6675 6684 6fi93 (\702 , 6712 

47 'I fi7Zl G730 6739 6749 6758 1 6767 67iG 6785 679-1 : 6803 

.
4. 8 : 6812 1 (l821 68:30 6839 68 .. 4.8 I 6857 6866 6875 688-1 i 6893 
49 ' 6902 6911 I (l920 6928 6937 , 6946 1 6955 i 6964 6972 I 6981 

1.so I- 6990 _ 6998_

1

~ 7016 _ 70241
1 

7033 i 7042
1 

7050 7059 I 7067 I 

N_ 0 1 .. 2 3 I 4 1!_5_1 __ 6_1 __ 7 8 9 
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COMMON LOGARITHMS (continued) 

I 

1 I 2 · 3 IN 0 4 5 6 7 8 9 
=====·= ======== 

so 6990 6998 7007 7016 7024 7033 7042 7050 7059 7067 
-- --------------------

51 7076 7084 7093 7101 7110 7118 7126 7135 7143 7152 
52 7160 7168 7177 7185 7193 7202 12ro 7218 7226 7235 
53 7243 7251 7259 7267 7275 7284 7292 7300 7308 7316 

54 7324 7332 7340 7348 7356 7364 7372 7380 73_88 7396 
55 7404 7412 7419 7427 7435 7443 7451 7459 7466 7474 
56 7482 7490 7497 7505 7513 7520 7528 7536 7543 7551 

57 7559 7566 7574 7582 7589 7597 7604 7612 7619 7627 
58 7634. 7642 7649 7657 7664 7672 7679 7686 7694 7701 
59 7709 7716 7723 7731 7738 7745 7752 7760 7767 7774 
------------ --------

60 7782 7789 7796 7803 7810 7818 7825 7832 7839 7846 
----------------------

61 7853 7860 7868 7875 7882 7889 7896 7903 7910 7917 
62 7924 7931 7938 7945 7952 7959 7966 7973 7980 7987 
63 7993 8000 8007 8014 8021 8028 8035 8041 8048 8055 

64 8062 8069 8075 8082 8089 8096 8102 8109 8116 8122 
65 8129 8136 8142 8149 8156 8162 8169 8176 8182 8189 
66 8195 8202 8209 8215 8222 8228 8235 8241 8248 8254 

67 8261 8267 8274 8280 8287 8293 8299 8306 8312 8319 
68 8325 8331 8338 8344 8351 8357 8363 8370 8376 8382 
69 8388 8395 8401 8407 8414 8420 8426 8432 8439 8445 
---------- ----------

70 8451 8457 8463 8470 8476 8482 8488 8494 2500 8506 ---------- ----------
71 8513 8519 8525 8531 8537 8543 8549 8555 8561 8567 
72 8573 8579 8585 8591 8597 8603 8609 8615 8621 8627 
73 8633 8639 8645 8651 8657 8663 8669 8675 8681 8686 

74 8692 8698 8704 8710 8716 8722 8727 8733 8739 8745 
75 8751 8756 8762 8768 8774 8779 8785 8791 8797 8802 
76 8808 8814 8820 8825 8831 8837 8842 8848 8854 8859 

77 8865 8871 8876 8882 8887 8893 8899 8904 8910 8915 
78 8921 8927 8932 8938 8943 8949 8954 8960 8965 8971 
79 8976 8982 8987 8993 8998 9004 9009 9015 9020 9025 ---------------- ----
80 9031 9036 9042 9047 9053 9058 9063 9069 9074 9079 ----------------------
81 9085 9090 9096 9101 9106 9112 9117 9122 9128 9133 
82 9138 9143 9149 9154 9159 9165 9170 9175 9180 9186 
83 9191 9196 9201 9206 9212 9217 9222 9227 9232 9238 

84 9243 9248 9253 9258 9263 9269 9274 9279 9284 9289 
85 9294 9299 9304 9309 9315 9320 9325 9330 9335 9340 
86 9345 9350 9355 9360 9365 9370 9375 9380 9385 9390 

87 9395 9400 9405 9410 9415 9420 9425 9430 9435 9440 
88 9445 9450 9455 9160 9465 9469 9474 9479 9484 9489 
89 9494 9499 9504 9509 9513 9518 9523 9528 9533 9538 
-- --------------------

90 9542 9547 9552 9557 9562 9566 9571 9576 9581 9586 
------ --------------

91 9590 9595 9600 9605 9609 9614 9619 9624 9628 9633 
92 9638 9643 9647 9652 9657 9661 9666 9671 9675 9680 
93 9685 8689 9694 9699 9703 9708 9713 9717 9722 9727 

94 9731 9736 9741 9745 9750 9754 9759 9763 9768 9773 
95 9777 9782 9786 9791 9795 9800 9805 9809 9814 9818 
96 9823 9827 9832 9836 9841 9845 9850 9854 9859 9863 

97 9868 9872 9877 9881 9886 9890 9894 9899 9903 9908 
98 9912 9917 9921 9926 9930 9934 9939 9943 9948 9952 
99 9956 9961 9965 9969 9974 9978 9983 9987 9991 9996 
------ --------------
100 0000 0004 0009 0013 0017 0022 0026 0030 0035 0039 I 

-- ---------- ----------

N 0 1 2 3 4 5 6 7 8 9 
-- ' 
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EXPONENTIAL FUNCTIONS 

x e"' e-"' x e"' e-"' 

0.00 1.0000 1.0000 2.5 12.182 0.0821 
0.05 1.0513 0.9512 2.6 13.464 0.0743 
0.10 1.1052 0.9048 2.7 14.880 0.0672 
0.15 1.1618 0.8607 2.8 16.445 0.0608 
0.20 1.2214 0.8187 2.9 18.174 0.0550 

0.25 1.2840 0.7788 3.0 20.086 0.0498 
0.30 1.3499 0.7408 3.1 22.198 0.0450 
0.35 1.4191 0.7047 3.2 24.533 0.0408 
0.40 1.4918 0.6703 3.3 27.113 0.0369 
0.45 1.5683 0.6376 3.4 29.964 0.0334 

0.50 1.6487 0.6065 3.5 33.115 0.0302 
0.55 1.7333 0.5769 3.6 36.598 0.0273 
0.60 1.8221 0.5488 3.7 40.447 0.0247 
0.65 1.9155 0.5220 3.8 44.701 0.0224 
0.70 2.0138 0.4966 3.9 49.402 0.0202 

0.75 2.1170 0.4724 4.0 54.598 0.0183 
0.80 2.2255 0.4493 4.1 60.340 0.0166 
0.85 2.3396 0.4274 4.2 66.686 0.0150 
0.90 2.4596 0.4066 4.3 73.700 0.0136 
0.95 2.5857 0.3867 4.4 81.451 0.0123 

1.0 2.7183 0.3679 4.5 90.017 0.0111 
1.1 3.0042 0.3329 4.6 99.484 0.0101 
1. 2 3.3201 0.3012 4.7 109.95 0.0091 
1. 3 3.6693 0.2725 4.8 121.51 0.0082 
1.4 4.0552 0.2466 4.9 134.29 0.0074 

1.5 4.4817 0.2231 5 148.41 0.0067 
1. 6 4.9530 0.2019 6 403.43 0.0025 
1. 7 5.4739 0.1827 7 1096.6 0.0009 
1.8 6.0496 0.1653 8 2981.0 0.0003 
1. 9 6.6859 0.1496 9 8103.1 0.0001 

2.0 7.3891 0.1353 10 22026 0.00005 
2.1 8.1662 0.1225 
2.2 9-.0250 0.1108 
2.3 9.9742 0.1003 
2.4 11.023 0.0907 



ANSWERS TO ODD-NUMBERED PROBLEMS 

CHAPTER 2 

2.1 (a) 1.6736 X 10-27 kg; (b) 26.565 X 10-27 kg 

2.5 28.8 amu = 4.788 X 10-26 kg; 2.70 X 1019 molecules cm-3 ; 

5.4 X 1018 molecules cm-3 ; 2.16 X 1019 molecules cm-3 

2.7 1.26g hr-1 ; 9.28 X 1017 molecules cm-2 s-1 

2.9 For a cubical model: 3.34 X 10-9 m; 3.10 X 10-10 m; 2.28 X 10-10 m. 
For a spherical model: 2.07 X 10-9 m; 1.92 X 10-10 m; 1.41 X 10-10 m. 

2.11 5.5 X 103 kg m-3 ; 1.4 X 103 kg m-3 

2.13 6.71 X 108 mi hr- 1; 7.5 trips per second; 9.46 X 1015 m or 5.88 X 1012 mi 

2.15 4.05 X 1016 m, 4.3 light years, 2.72 X 105 AU 

2.17 37.2° 

2.19 (a) -26°, ...... 45°, ...... 30°; (b) ...... 10°, 15°, 9.8°; (c) -4°, 5.4°, 3.2° 

CHAPTER 3 

3.1 (a) 15 units, 0°; (b) 13.1 units, 35°27'; (c) 10.8 units, 56°6'; 
(d) 4.9 units, 104°6'; (e) 3 units, 180° 

3.3 13.7 units; 20 units 

3.5 124°48'; 8.67 units 

3.7 (a) 9.2 units, 49°; (h) 12.8 units, 38°40'; (c) 15.6 units, 20°20' 

3.9 13.2 units, 58°30' 

3.17 R = u,,(6) + Uy(6) + uz(O); R = 8.48, a = 45°, {3 = 45°, 'Y = 90° 

3.21 20.3 units 

3.25 (x - 4)/-5 = (y - 5)/5 = (z + 7)/5; (x - 6)/-5 = y/5 = (z + 8/5)/5 

3.37 (a) Using the points given cyclicly to define the planes: S1 = uz(-2), S2 = 

u,,(1) + Uy(l), Sa = u.,(-1) + Uz(l), S4 = uy(-1) + Uz(l); (b) S = O; 
(c) 6.24 

3.39 60°; (v'5/3)a 

A-13 



A-14 Answers to odd-numbered problems 

CHAPTER 4 

4.1 410 lbf, 385 lbf 

4.3 (a) 9.16 kgf; (b) 4 kgf 

4.5 84.6 N, 75°45' 

4.7 7'1 = u,,(0) + Uy(7500) + uz(1500) lbf ft; 
7'2 = u,,(2700) + uy(-400) + uz(-800) lbf ft; 

7'3 = u,,(450) + uy(lOO) + uz(-100) lbf ft 

4.9 24V5 N m; y = ix + 5 

4.11 With the origin at A, R = u,,(2.33) + uy(3.17) N; 7' A uz(-1.4) Nm; 7'B 

Uz(-0.47) Nm; '1'e = Uz(-1.9) Nm 

4.13 2 m 

4.15 Along major diagonal, 1.77 ft from near corner; 2 lbf 

4.17 25.7 lbf, line of action makes an angle of 61 °40' with the horizontal axis 

4.19 Zero; but because the resultant torque with respect to the origin is r 

the system is replaced by a couple whose torque is 55 kgf cm 

4.21 6600 dyn (6.7 gmf), 77.3 cm 

4.23 RA = 1143 N, RB = 1797 N 

4.25 30 kgf, 50 kgf 

4.27 (a) 60 lbf; (b) 69 lbf 

4.29 73.3 kgf; 156.3 kgf 

4.31 25.9 kgf; 36.7 kgf 

4.33 W sec a; W tan a 

4.35 (a) 70.7 kgf, 50 kgf, 10 kgf; (b) 86.1 kgf, 43 kgf, 15 kgf; 
(c) 38.9 kgf, 29.8 kgf, 15 kgf 

4.39 4170 Nat 196 cm to the right of A 

4.41 6690 kgf, 7010 kgf 

4.43 FA = 110 - 12.5x kgf (x measured from A); FB 

4.45 58.6 kgf; 81.5 kgf 

4.47 W cos a, W sin a; tan q, = cot 2a 

4.49 F1 = F3 = 9.84 lbf, F2 = 37.05 lbf 

10 + 12.5x kgf 

55 kgf cm, 

4.51 (a) From center of square Xe = 2.07 in., Ye = O; (b) Xe = 0.565 in., Ye = -0.251 in.; 
(c) along the symmetry axis 5.89 in. up from the base 

4.53 Xe = 1.77 cm, Ye = 4.23 cm 

4.55 ( V5/12)a up altitude from the base 

CHAPTER 5 

5.1 1.125 X 1014 m s-2 

5.3 288 km hr-1; 5.33 m s-2 

5.5 9.25 m 

5.9 18 s; 180 m 

5.13 (a) 10 m; (b) 0, 2.7 s; (c) 4 m s-1; (d) 16 - 12to - 6 .1t; (e) 16 - 12t; 

(f) 16ms-1; (g) 1.33s,10.7m; (h) -12ms-2; (i) -12ms-2; (j) never; 

(l) motion is retarded until t = 1.33 s, motion is accelerated thereafter 



Answers to odd-numbered problems A-15 

5.15 v = 4t - t3 - 1; x = 2t2 - t4/12 - t + i 
5.17 v = vo/(1 + Kvot); x = xo + (1/K) In (1 + Kvot); v = voe-K<x-xol 

5.19 (a) Motion is in the positive direction except for 2.2 s < t < 2.8 s; 

(b) the body is instantaneously retarded at 0.8 s and 2.2 s; it is instantaneously 
accelerated at 1.8 s and 2.8 s; (c) 0.28 s, 2.65 s, and 3.0 s; (d) between 0.8 s 
and 1.8 s. From the graph, the average velocities are: (a) -2.25 m s-1 ; (b) 

1.25 m s-1; (c) 0 

5.21 1.43 s; 2.65 s; 18.6 m 

5.23 119 ft; 25 ft; 96 ft s-1 

5.27 12.2 s 

5.29 574 ft 

5.31 (a) 6.2 s; (b) 34.3 s 

5.33 2.6 X 10-6 rad s-1 ; 991 m s-1 ; 2.6 X 10-4 m s-2 

5.35 2.4 X 105 m s-1 ; 2.4 X 10-10 m s-2 

5.37 2 rad s-2; 125 rad 

5.39 5.33 X 1010 m s-2 

5.41 1.13 ft 

5.43 15.6 min 

5.45 20t rad s-1 ; 20 rad s-2 

5.47 10 s 

5.49 20 m 

5.51 38.4 ft s-1, 48 ft 

5.53 v = Aw cos wt; a = -Aw2 sin wt = -w2x; v = wv A2 - x2 

5.55 (a) x 112 - y112 = 1; (b) the path is a parabola; (c) t = 0.5 s; 
(d) (16, 9), (9, 16); (e) ar = (4t - 2)/v2t2 - 2t + 1 ft s-2, 

aN = 2/V2t2 - 2t + 1 ft s-2; (f) ar = 2 ft .s-2, aN = 2 ft s-2 

5.57 (a) x2 + y2 = 4; (b) 2w cm s-1 ; (c) ar = 0, aN = 2 cm s-2 

5.59 y 2 = 4x 

5.61 (a) 31.8 km; (b) 27.5 km; (c) 375 m s-1, 11.2 km; (d) 405 m s-1, 25 s, 79 s 

5.63 (a) 204 m s-1 ; (b) 23.9 s; (c) 700 m; (d) 171 m s-1 

5.65 (2v5/g) cos a sec2 ef, sin (a - ef,) 

5.67 3°10' and 89° 

CHAPTER 6 

6.1 20 km hr- 1 ; 160 km hr-1 

6.3 3:11 P.M., 318 km; 8:40 P.M., 867 km 

6.5 100 km hr-1, N 53°8' W; 100 km hr-1, N 53°8' E 

6.7 (a) S 41 °19' E; (b) 1 hr 34 min 

6.9 Man in boat, 40 min; man walking, 30 min 

6.11 Man across and back, 34.64 min; man up and down, 40 min 

6.13 (a) Constant horizontal velocity of 100 ft s-1 , constant vertical acceleration g; 

(b) as in (a), but horizontal velocity is 800 ft s-1 ; (c) 29° above or below the hori
zontal 

6.15 (a) 15 m s-1 ; (b) 45 m s-1 ; (c) 36.6 m s-1 
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6.17 3.27 cm 

6.19 6.56 X 10-3 m s-2 

6.23 For noncoincident origins V = voo' + w X r' + V', 

a = aoo' + w X (w X r') + a X r' + 2w X V' + a' 

6.25 0.866c 

6.27 (a) 1.6 s; (b) 2.3 X 108 m; (c) 0.96 s 

6.29 (a) 4.588 X 10-6 s; (b) 4305 m 

6.31 7.5 years; 6.25 years; 1.25 years 

6.33 6 X 1010 m; 0.9c 

6.35 8.04 hr 

6.43 0.82 m, 59°5', in the direction of motion 

CHAPTER 7 

7.1 (a) 14.4 m s-1, W 0°47' S; (b) p = Uwest(l9.2) + Unorth(8) kg m s-1; (c) Ap1 = 

llwest(-24) + Unorth(8.4) kgms-1,Ap2 = llwest(24) + Unorth(-8.4) kgms-1; (d) 

Av1 = Uwest(-7.5) + Unorth(2.6) m s-1, Av2 = llwest(15) + Unorth(-5.2) m s-1; 
(e) Av1 = 7.9 m s-1, Av2 = 15.9 m s-1 

7.3 3.33 X 104 m s-1, 82°30' with respect to original direction of H atom 

7.5 (a) 0.186 m s-1, 27°30' below the +X-axis; (b) Ap1 = Ap2 = ux(-0.049) + 
u,i0.026) kg m s-1, Av1 = u,,(-0.0247) + u,i0.0128) m s-1, Av2 = u,,(0.164) + 
uy(-0.0857) m s-1 

7.7 mA = 1 kg, mB = 2 kg 

7.9 (a) bt; (b) -po+ bt 

7.11 9 km s-1 

7.13 (a) -0.3 kg m s-1, -3 N; (b) -0.45 kg m s-1, -4.5 N; momentum of cart is not 

conserved because an external force acts 
7.15 347 N 

7.17 103g dyn 

7.19 (a) 14° forward; (b) 20° backward 

7 .21 116.3 kgf (1139 N) 

7 .23 75 kgf (735 N) 

7.25 (a) 882 N; (b) 882 N; (c) 1152 N; (d) 612 N; (e) 0 N 

7.27 F = -mw2x; (a) in negative X-direction; (b) in positive X-direction 

7.31 (a) A braking force of 3350 N; (b) a braking force of 3150 N 

7.33 (a) Ap = uN(-9.87 X 103) + uE(14.1 X 103) kg m s-1; 

(b) 8.6 X 102 N, S 55° E 

7.35 (a) a = (F - m2g)/(m1 + m2), T = m2(a + g); 166 cm s-2, 9.17 X 104 dyn; 
(b) a = [F + (m1 - m2)g]/(m1 + m2), T = m2(a + g); 543 cm s-2, 

1.22 X 105 dyn 

7.37 (a) a = g(m1 sin a - m2)/(m1 + m2), T = m2(a + g); -206 m s-2, 1.39 X 

105 dyn; (b) a = g(m1 sin a - m2 sin {3)/(m1 + m2), T = m2(a + g sin 13); 
-144 cm s-2, 1.50 X 105 dyn 

7.39 (b) [m1(m2 +ma)+ 4m2ma]g/(m2 + ma) 

7.43 15 kg, g/5 



7.45 0.27 m, 1/\/'3 

7.47 48.9 lbf T-1 

Answers to odd-numbered problems A-17 

7.49 (a) 1.6 kgf (15.7 N); (b) 0.2g; (c) relative to the lower block, the upper block 

will have an acceleration of O.lg toward the rear in the first case and toward the front 

in the second 

7.51 (vo/g)(l - -! X 10-3) ""6.1 s, (v5/2g)(l - 2.7 X 10-4) "" 183.6 m 

7.53 r ln 2 = 8.66 s; r = 12.5 s; 138 m 

7.55 8.81 X 10-8 N 

7.57 (a) 13.9N; (b) 33.5N; (c) 23.7N; (d) 2.42ms-1 

7.59 2 ft 

7.61 (a) 13.6 ft s-1; (b) 247 lbf; (c) 340 lbf; (d) 2.06 rad s-1 (777 rev/min) 

7.63 125.2 N, 20°10' 

7.67 (a) Uy15 kg m s-1; (b) uz(105) kg m2 s-1 

7.69 Tangent of the angle of the direction of motion with the X-axis is Ft/mvo at any 

time t; FL2 /2mv5 

7.71 (a) u,, + uy(-4t) N; (b) u,,(12t2 + 8t) + uy(3t + 2) + uz(-8t3 + 24t2) Nm; 
(c) u,,(36t - 36) + uy(-72t2 ) + u,(18) kg m s-1, 

u,,(144t3 + 144t2) + uy(54t2 + 72t - 72) + u,(-72t4 + 288t3) kg m2 s-1; 

7.75 3.03 X 104 m s-1; 1.93 X 10-7 rad s-1 at aphelion and 2.06 X 10-7 rad s-1 at 
perihelion 

7.77 3.37 X 103 m s-1, 14.8 km 

CHAPTER 8 

8.1 (a) 250 m kg s-1; (b) 25 N 

8.3 2927.75 J, 24.4 W 

8.5 3300 J, 2000 J, 1500 J, -200 J 

8.7 98 N 

8.9 23.54 W 

8.11 10,258.6 w, 1.03 X 105 J 

8.13 There is no maximum velocity if the resistance of the wind remains constant. 

8.15 (a) 2.592 X 104 erg; (b) 4.392 X 104 erg; (c) 2,160 erg s-1; (d) 2.592 X 104 erg 

8.17 7200 J; 19.6 J, 0.8 rad s-1 

8.19 284.2 eV, 5.22 Mev 

8.21 7.61 X 106 m s-1 

8.23 (a) u,,(56) m kg s-1; (b) 10 s. Results are the same for both cases. 

8.25 (a) u,,(4200) N s; (b) u,,(4260) m kg s-1; (d) 590,360 J; (e) 591,260 J 

8.27 (a) 50.6J; (b) 29.4J; (c) 64J; (d) 42J 

8.29 (a) -45 J; (b) 75 W, 0.1 hp; (c) -45 J 

8.35 (a) 7.2J; (b) 470.40J; (c) 477.60J; (d) 48.8ms-1 

8.37 81.2 m s-1; 13.9 m 

8.39 h = 2R/3 

8.41 7 .2 X 10-2 m 
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8.43 2.45 X 10-2 m; (a) 9.8 m s-2 ; (b) 5.8 m s-2 , O; -2.2 m s-2, 0.395 m s-1; 

0.490 m s-2, 0.477 m s-1; (c) 4.90 X 10-2 m 

8.47 1360 J 

8.49 F = TV /200, TV = weight of train 

8.55 x = 2, stable; x = 0 

CHAPTER 9 

9.1 3.417 m s-1, 215°55' 

9.3 (a) x = 1.50 + 0.25t2 m, y = 1.87 + 0.19t2 m; 

(b) P = ux(8t) + uy{6t) N s 

9.5 p = pv2 cos2 () 

9.7 (a) v1 = uxlO m s-1, v2 = ux(-4.00) + Uy(6.96) m s-1; 

(b) VcM = Ux(l.6) + Uy(4.17) m s-1; 

(c) v{ = ux(8.4) + Uy(-4.17) m s-1, v~ = ux(-5.60) + uy(2.79) m s-1 ; 

(d) p{ = -p~ = Ux(16.8) + Uy(-8.34) m kg s-1; 

(e) v12 = ux(14) + uy(-6.96) m s-1 ; (f) 1.2 kg 

9.9 (a) (-0.6,0.4, 1.6) m; (b) ux(-8.35) + Uy(-16.8) + uz(25.15) m2 kgs-1 ; 

(d) ux(-13.92) + Uy(28) + uz(-26.96) m2 kg s-1 

9.11 (a) 4.11 MeV, 0.07 MeV; (b) 9.35 X 10-2 3 m kg s-1 ; 

(c) 1.41 X 104 m s-1, 2.41 X 102 m s-1 

9.15 x = fvo-Vv~ + 2gh - v~]!g on either side 

9.17 (a) 0.54 m s-1, 1.13 m s-1 ; (b) -2.64 kg m s-1, +2.65 kg m s-1 

9.19 (a) 0.866 m s-1, 0.2 m s-1; (b) ±1.333 kg m s-1, ±4.0 kg m s-1 

9.23 (a) 0.46 m s-1, 1.54 m s-1; (b) 1.57 m s-1 and 0.979 m s-1 at -50°33' 

9.25 (c) e = 1 

9.27 When m1 is raised: (a) 0.022 m, 0.089 m; <.b) 0.0142 m, 0.0802 m; (c) 0.022 m. 

When m2 is raised: (a) 0.022 m, 0.355 m; (b) 0.025 m, 0.321 m; (c) 0.022 m. 

9.29 v{ = -ev1, v~ = 0, Q = -!(1 - e2)m1vI, h' = e2h 

9.33 (a) 8; (b) 52; carbon 

9.35 ,r/2 

9.37 About 4 

9.39 (a) 48 m2 kg s-1, 14.4 m2 kg s-1 ; (b) 35 J, 15.6 J 

9.41 ux(0.167) + uy(-0.083) m s-1 

9.49 6.17 X 10-21 J or 3.8 X 10-2 e V; (a) 2.73 X 103 m s-1 ; (b) 0.482 X 103 m s-1 ; 

(c) 0.515 X 103 m s-1 ; He: 1.37 X 103 m s-1 ; C02: 0.413 X 103 m s-1 

9.51 12.95 X 102 J 

9.53 8.31 X 102 J; 21.26 X 102 J 

9.59 45 J or 188.3 cal 

9.61 (a) lOms-1, 2.37 X 105 Nm-2 ; (b) 0.3m3 min- 1 ; (c) 2.5 X 102 Jkg-1 

CHAPTER 10 

10.1 (a) 1.875 m2 kg, 0.61 m; (b) 0.9375 m 2 kg, 0.434 m; (c) 0.625 m2 kg, 0.354 m 

10.3 (a) 0.040 m 2 kg, 0.028 m; (b) 0.025 m 2 kg, 0.0204 m; 

(c) 0.020 m 2 kg s-1, 0.0183 m 



Answers to odd-numbered problems A-19 

10.5 6.80 X 10-4 6 m2 kg 

10.7 X 0 : 5.604 X 10-47 m2 kg; Yo: 7.196 X 10-47 m2 kg; Zo: 5.527 X 10-47 m2 kg 

10.9 1.34 rad s-2 

10.11 325 s; 452 rev 

10.13 (a) 0.436 rad s-2 ; (b) 21.80 rad; (c) 176.58 m2 kg s-1; (d) 192.49 J 

10.15 334.4 Nm; 63,104 J 

10.17 63.6 m2 kg s-1, 5997 J; 12.72 Nm, 1199.4 W 

10.19 h = 2.7 R 

10.21 226,551 J 

10.23 (a) 3g sin a/2£; (b) ,v3g cos a/L; (c) -!Mg cos a parallel to the radius and 

-!-Mg cos a perpendicular to the radius 

10.25 (a) acc. = 50g cos a/(2.18 + 10 sin 2a); 

(b) a., = (-fL cos a) X acc., ay = (-iL sin a) X acc. 

10.27 (a) mva; (b) mv, before; mv(l + ML/2ma)/(1 + ML2/3ma2 ) after; 

(d) -(!mv2 )ML2 /(ML2 + 3ma2) 

10.29 (a) 8.702 rad s-2 ; (b) 4.351 m s-2 ; (c) 54.49 N 

10.31 a = }F(l - r/ R) m 

10.33 a = [m - m'(r/R)]g/[!M + m + m'(r/R) 2]R, a = Ra, a' = ra 

10.35 (a) 120.05 J; (b) 35.32 Non the left and 32.37 Non the right 

10.37 7.84 rad s-1 

10.43 (a) 1.40 X 10-2 X (41r) 2 Nm; (b) 1r/2 

CHAPTER II 

11.3 c/v'2; V2 moc2 ; (V2 - l)moc2 

11.5 (a) mo/0.916; (b) mo/0.60; Pclass/Prel = 0.36 

11.7 1.65 X 10-17 m kg s-1; 0.99945c 

11.9 c/1386; c/37.2 

11.13 11E/moc2 = 0.153, 1.141, 0.891, 3.807 

11.15 0.115c; 3.40 keV, 6.28 MeV 

11.19 5.34 X 10-22 m kg s-1 ; 4.97 MeV/c; 2 X 103 MeV/c 

11.21 1014 m s-2 , 0.512 X 1014 m s-2 

11.23 (a) 1014 m s-2 , 0.512 X 1014 m s-2 ; (b) 1.25 X 1014 m s-2 , 0.8 X 1014 m s-2 

I 1.25 (a) 0.918c; (b) 11.876 X 109 eV, 10.898 X 109 eV /c; (d) 1.31 X 109 eV 

11.27 (a) 56 GeV; (b) 1780 GeV 

11.33 (a) c2pi/(E1 + m2c2); (b) Q = 0 

11.35 (a) E4 = (E' 2 - mic4)/2E', where E' is given by Eq. (I 1.47). (b) In the £-frame 

the energy depends on the direction of motion of the resulting particles. 

CHAPTER 12 

12.1 (a) 2 s; (b) 0.5 Hz; (c) 0.30 m; (d) x = 0.3 sin (1rt) m 

12.3 (a) 4 m, 201r s, 0.05/1r Hz, 0.5 rad; 

(b) v = 0.4 cos (O.lt + 0.5) m s-1, a = -0.04 sin (0.lt + 0.5) m s-2 ; 

(c) 1.85 m, 0.18 m s-1, -0.02 m s-2 ; (d) 3.36 m, 0.34 m s-1·, -0.03 m s-2 
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12.5 103/1r Hz, 4 m s-1, 3.2 m s- 1 ; F = -4 X 103x N, F = 8 sin (2 X 103t + a) N 

12.7 2 X 1021r Hz; (a) 2.6 X 1021r m s-1 ; (b) 3 X 1041r2 m s-2 ; (c) 30° 

12.9 2.81r X 10-2 m s-1 and l.41r2 X 10-2 m s-2 , both toward the center 

12.11 201r2 m s-2 , l01r2 N, p2 J, £,r2 J 

12.13 0.24 

12.15 21rv' pa 

12.17 0, !-A 2 , where A is the displacement amplitude 

12.19 3.80 s; 1.90 s 

12.21 18.6 min; 0.988 m 

12.23 32°10' 

12.25 5.88y,Vl + 2/y N, 9.8y,Vl + 2/y m s-2 , 4.43V4 X 10-2 - y m s-1, 

arccos (1 - y), where y is the vertical height of the bob in m; 1.68 N, 2.8 m s-2 , 

Om s-1, 16°15'; 0 N, 0 m s-2 , 0.886 m s-1, 0°; 16°15' 

12.27 (a) 1.9 X 10-3, 8.12 X 10-6 ; (b) 1.68 X 10-2 , 6.31 X 10-4 

12.29 1.11 s, t m; 1.11 s 

12.31 (a) 41r[(h2 + }L2)/(2h + L)]112 ; (b) no 

12.33 3.565 X 10-3 Nm (per rad) 

12.37 14 sin 2t; 10 cos 2t; -2 sin 2t 

12.39 y = !x; x2/16+y2/9 = 1; y = -!x 
12.45 A = xo/sin a; a = arctan [wxo/(vo + xo'Y)]; if vo = 0, A = xowo/w and 

a = arctan (w/'Y) 

12.47 w = O; A = xo, B = 'Yxo 

12.49 1.44 s-1 

12.53 (b) approx. 0.6 of the original amplitude; (c) l.386r; 

(d) (!)n Ao, where n is an integer and Ao is the original amplitude 

12.57 d2x/dt2 + w5X = (Fo/m) cos w1t 

12.59 (a) (4/sin a)v'2hlg; (b) yes, no 

12.61 w "" wo( v'3 xo/2lo); d2x/dt2 + (k/l5)x3 - (k/2ml't)x5 = 0 

12.63 (a) d2x/dt2 = F/m = (4Fo/1rm)(sinwt+ }sin3wt+ .. ·); 

(b) A = -4Fo/1rmw2 , B = A/27, C = A/125 

12.67 (a) No; away {rom the equilibrium point; no; (b) F = -kx + ax2 

12.69 (a) Yes; does not move; yes; (b) F = -kx + ax3 

12.71 X1, !(A 2 + B 2); 0, !(A 2 + B 2 ) 

CHAPTER 13 

13.1 (a) 3.557 X 1022 N; (b) 1.985 X 102 0 N; 1.79 X 102 

13.3 3.62 X 10-48 N 

13.5 Approx. 2 X 10-10 m (cf. Problem 2.9); 1.49 X 10-42 N 

13.7 (a) 2.96 X 105 : 1; (b) 1.65 X 103 : 1 

13.9 (a) 17.5kgf; (b) 140kgf 

13.11 3.06 X 104 kgf; 18.8 kgf; 110 kg 

13.13 (1.976 ± 0.012) X 1030 kg 
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13.15 32.1 km; 64.1 km 

13.17 (a) 7.73 X 103 m s-1; (b) 3.42 X 103 s; (c) 8.965 m s-2 

13.19 3.5 days; 2:1 

13.21 (c) r = 6.37 X 106 cos (1.24 X 10-3t) m; 
v = 7.90 X 103 sin (1.24 X 10-3t) m s-1; 

a = -9.80 cos (1.24 X 10-3t) m s-2 

13.23 (a) v'2'Yme/h + Re; (b) no; (c) yes 

13.31 (a) 4.31 X 104 m s-1; (b) 1.23 X 104 m s-1 

13.35 -(8'Ym2/a)[3(1 + 1/v2) + 1/v3]; -4.03 X 1035 J 

13.37 -1.09 X 1048 J, based on a density of 1.6 X 10-32 kg m-3 

13.39 1.02 X 104 m s-1 

13.41 (a) 3.45 X 108 m from the earth; (b) almost escape velocity; 
(c) 2.37 X 103 m s-1 

13.43 2.82 X 1014 m2 kg s-1; 1.25 X 1011 J; -2.50 X 1011 J; -1.25 X 1011 J 

13.45 (a) 1.78 X 108 Nm, 4.16 days; (b) 0.112 MW, 7.5 days; (c) 30 revolutions 

13.47 2.16 X 10-14 rad s-1; 3.70 X 1053 m2 kg s-1; -4.0 X 1039 J 

13.51 Mercury: (a) 4.59 X 1010 m; (b) 6.98 X 1010 m; (c) -3.74 X 1031 J; 
(d) 9.955 X 1038 m2 kgs-1; (e) 7.60 X 106 s; (f) 4.35 X 104 ms-1; 

6.61 X 104 m s-1. 

Earth: (a) 1.47 X 1011 m; (b) 1.52 X 1011 m; (c) -2.64 X 1032 J; 
(d) 2.718 X 1040 m2 kg s-1; (e) 3.16 X 107 s; (f) 2.92 X 104 m s-1; 
3.02 X 104 m s-1. 

Mars: (a) 2.07 X 1012 m; (b) 2.49 X 1012 m; (c) -1.85 X 1031 J; 
(d) 3.445 X 1039 m2 kg s-1; (e) 5.94 X 107 s; (f) 2.19 X 103 m s-1; 
2.64 X 103 m s-1 

13.53 (a) 3.21 X 1012 m2 kg s-1; (b) -9.31 X 108 J; (c) 0.191; 

(d) 6.37 X 106 m, 2.29 X 106 m; (e) 1.071 X 107 m; (f) 1.10 X 104 s 

13.55 (a) 8.69 X 106 m; (b) 0.193; (c) 8.36 X 106 /r = 1 + 0.193 cos O; 

(d) 1.62 X 103 m s-1, 1.10 X 103 m s-1; (e) 8.06 X 103 s; (f) -2.295 X 109 J 

13.57 (a) m(l.06 X 107) J, m(3.65 X 1015) m2 kg s-1; 

(b) 1.009 X 1011 /r = 1 + 24.5 cos O; (c) 5.0 X 1010 m 

13.63 r = R(l + cos 0); r = 2R(l + cos 0) 

13.65 r2 = }r1, or r1; Jr1, or r1; ! or O 

13.67 9.8 m s-2, 6.26 X 107 m2 s-2 

13.69 For the sun: 5.9 X 10-3 m s-2, 1.22 X 109 m2 s-2; 

for the moon: 3.32 X 10-5 m s-2, 1.28 X 104 m2 s-2 

13.71 -3.01 X 10-12m/a2; 3.0 X 10-11m/a 

13.75 (a) v2 = (2'Ym/R)(l - 1/vl + h2/R 2); (b) -h; (c) yes; when the value 

of his small compared with R; 21rv''Ym/R3. 



Absolute temperature, 261, 268 
Accelerated rectilinear motion, uniformly, 

90 
Acceleration, angular, 106 

average, 87, 98 
centrifugal, 126 
centripetal, 107, 125 
Coriolis, 125 
relativistic transformation of, 149 
instantaneous, 87, 98 
normal, 101 
of gravity, 43, 98 

effective, 126 
table, 128 

tangential, 101 
Adhesion, 165 
Advance of the perihelion, 410 
Alpha-particle collision, 158, 256 
Ampere, 19 
Amplitude, 347 

resonance, 378 
Andromeda, 9 
Angle, solid, 22 
Angstrom, 4 
Angular acceleration, 106 
Angular frequency, 347 
Angular momentum, 178 

internal, 245 
law of conservatioILof, 244 
of a rigid body, 287 

Angular velocity, 104 
of the earth, 105 

Anharmonic oscillatory motion, 372 
Anharmonic terms, 373 
Antiproton, 338 
Aphelion, 193 
Apogee, 432 

INDEX 

Archimedes' principle, 169, 283 
Area, vector representation of, 50 
Aristarchus, 396 
Aristotle, 8 
Astronomical unit, 28 
Atmosphere, 262 
Atomic clock, 18 
Atomic mass unit, 27 
Atoms, 5 
Atwood's machine, 164 
Average power, 200 

of an oscillator, 381 
Average value, 25 
Average velocity, 85, 94 
Avogadro's number, 27, 281 
Axial force, 181 
Axis, 31 

of symmetry, 68 

Ballistic missile equation, 433 
Ballistic pendulum, 278 
Bandwidth, 390 
Banking, angle of, 175 
Barometric equation, 284 
Barrier, potential, 219 
Beats, 362 
Bernoulli's theorem, 273 
Boltzmann constant, 268 
Bound orbits, 404 
Boyle's law, 283 
Brahe, Tycho (1546-1601), 397 
Buoyancy, 283 

Calorie, 264 
Capture reaction, 255 
Cavendish torsion balance, 398 
Celsius temperature, 261 

A-22 



Center, of curvature, 102 
of gravity, 66 
of parallel forces, 65 
of percussion, 312 
of symmetry, 68 

Center of mass, 66, 233 
frame of reference of, 234 
velocity of, 233 

Centers of mass (table), 67 
Centigrade temperature, 261 
Central force, 180 
Centrifugal acceleration, 126 
Centrifugal potential, 216 
Centripetal acceleration, 107, 125 
Centripetal force, 17 4 
G-frame of reference, 234 
cgs system, 19 
Charge, 16 
Charles' law, 283 
Chemical energy, 264 
Circular motion, 104 
Circulation, 208 
Clock, atomic, 18 
CO, bond length, 277 
C02, normal vibrations, 371 
Coefficient, of friction, 165 

kinetic, 166 
static, 166 

of restitution, 279 
of viscosity, 168 

Coefficients, of friction (table), 166 
of viscosity (table), 169 

Cohesion, 165 
Collision, 165, 253 

high energy, 336 
plastic, 279 
Q of a, 254 

Components, contravariant, 54 
covariant, 54 
of a vector, 36 
rectangular, 36 

Compound pendulum, 357 
Conic section, 410 
Conservation, of angular momentum, 244 

of energy, 249 
in a fluid, 273 
of a particle, 212 

of momentum, 155 
Conservative force, 207 
Continuity, equation of, 274 
Contravariant components, 54 
Copernicus, Nicolaus (1473-1543), 396 
Coriolis acceleration, 125 
Coulomb, 18 

Index 

Couple, 62 
Coupling energy, 370 
Coupling term, 368 
Coupled oscillators, 367 
Covariant components, 54 
Critical damping, 389 
Curvilinear motion, 94, 108, 173 
Cycloid, 356 _ 
Cycloidal pendulum, 356 

Dalitz diagram, 284 
Damped oscillatory motion, 374, 389 
Day, mean solar, 18 

sidereal, 105 
Deferent, 396 
Definition, operational, 16 
Degree Kelvin, 261 
Del, 211 

A-23 

Densities, relative to water (table), 21 
Density, 20 

relative, 21 
Derivative, directional, 209 
Determinants, 48 
Deuteron, reduced mass, 241 
Deviation, 25 
Differential equation of SHM, 353 
Dipole moment, 435 
Direction, 31 

cosines, 38 
reference, 32 

Directional derivative, 209 
Directrix, 410 
Displacement, 32, 94 
Dissociation, 257 
Distance, 32 
DNA, 7 
Dynamics, 152 
Dynamometer, 202 
Dyne, 162 

Eccentricity, 410 
Ecliptic, 306 
Einstein, Albert (1879-1955), 319 
Elastic collision, 254 
Elastic constant, 351 
Electron volt, 204 
Ellipse, area of, 411 
Elliptical orbits, 404 
Endoergic, 254 
Energy, 82 

chemical, 264 
conservation of, 249 

in a fluid, 273 
of a particle, 212 
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coupling, 370 
critique of concept of, 225 
interaction, 370 
internal, 250 
internal kinetic, 250 
internal potential, 248 
kinetic, 203 

of rotation, 300 
of SHM, 351 
relativistic, 325 

law of conservation of, 249 
Lorentz transformation of, 330, 343 
mechanical, 264 
momentum transformation, 330 
nonmechanical, 264 
potential, 207 

gravitational, 402 
of SHM, 352 

proper, 249 
resonance, 378 
rest, 326 
threshold, 338 
total, 212, 250, 326 
translational kinetic, 251 

Epicycle, 396 
Epicycloid, 396 
Equation, barometric, 284 

of continuity, 274 
of state of a gas, 267 

Equilibrium, 69 
of a particle, 69 
and rest, 184 
of a rigid body, 70 
stable, 218 
thermal, 261, 264 

Equipotential surfaces, 416 
Equivalence, principle of, 424 
Erg, 200 
Escape velocity, 406 
Ether, 118 
Event, 140 
Exoergic, 254 
Expansion ratio, 263 
Experiment, Michelson-Morley, 143, 319 
Experimental error, 15 

method, 10 -
Experimentation, 10 
External force, 235 

Field, 394 
gravitational, 413 
strength, gravitational, 413 

Fission, 257 
Fluid, 271 
Fluid motion, 271 

Focus, 410 
Foot pound, 226 
Force, 159 

axial, 181 
central, 180 
centripetal, 17 4 
concurrent, 57 
conservative, 207 
coplanar, 63 
critique of concept of, 161 
external, 235 
inertial, 319 
internal, 235 
lines of, 414 
Lorentz transformation of, 343 
nonconservative, 221 
normal, 174 
proper, 332 
radial component of, 209 
relativistic, 322 
tangential, 17 4 
transverse component of, 209 
units of, 162 

Forced oscillatory motion, 376 
Foucault, J. B. (1819-1868), 132 
Foucault pendulum, 132 
Four-vectors, 331 
Fourier, coefficients, 384 
Fourier series, 383 
Fourier theorem, 383 
Fourier transform, 384 
Frame of reference, 84, 118 

center of mass (C-), 234 
inertial, 153 
laboratory (L-), 234 
zero momentum, 234 

Free particle, 152 
Frequency, 105, 347 

angular, 34 7 
Friction, coefficient of, 165 

fluid, 168 
sliding, 165 

Galaxy, 8, 153 
Galilean transformation, 121 
Gas, equation of state of a, 267 

ideal, 268 
Gas constant, 282 
Gas thermometer, 270 
Gaussian distribution, 26 
Gay-Lussac's law, 283 
General principle of relativity, 

425 
Gradient, 210 
Gram, 19 



Gravitational field, 413 
Gravitational field strength, 413 
Gravitational mass, 17, 401 
Gravitational potential, 415 

energy, 402 
Gravity, acceleration of, 98 

center of, 66 
effective acceleration of, 126 
table, 128 

Gyroscope, 303 
Gyroscopic compass, 307 

H2, bond length, 426 
dissociation energy, 427 

H20, bond angle, 309 
OH bond length, 309 
normal vibrations, 372 
vaporization energy, 427 

Harmonics, 383 
HCl, bond length, 277, 309 
Heat, 263 
Heavy water, 259 
Hertz, 105 
Hertz, H. R. (1857-1894), 105 
Hipparchus, 306 
Histogram, 26 
Hydrogen atom, reduced mass, 241 

Ideal gas, 268 
Impact parameter, 183 
Impedance, 380 
Impulse, 196 
Inelastic collision, 254 
Inertia, law of, 152 
Inertial force, 319 
Inertial frame of reference, 153 
Inertial mass, 17 
Inertial observer, 153 
Instantaneous acceleration, 87, 98 
Instantaneous power, 200 
Instantaneous velocity, 85, 94 
Integral, line, 198 
Interaction, 8, 82, 152, 394 
Interaction energy, 370 
Interference, 359 
Interferometer, 143 
Internal energy, 250 
Internal force, 235 
Internal kinetic energy, 250 
Internal potential energy, 248 
International System (of units), 19 
Invariant, 122 
Inverse-square force, repulsive, 183 
Isotopes, 5 

Index 

Joule, 200 
Joule, James P. (1818-1889), 200 

Kelvin degrees, 261 
Kepler, Johannes (1571-1630), 397 
Kepler's laws, 397 
Kilogram, 17 
Kilogram force, 57 
Kilowatt-hour, 201 
Kinetic coefficient of friction, 166 
Kinetic energy, 203 

internal, 250 
of rotation, 300 
of SHM, 351 
relativistic, 325 
translational, 251 

Laboratory frame of reference, 234 
Law of areas, 397 
Law of inertia, 152 
Law of motion, Newton's first, 152 

Newton's second, 159 
Newton's third, 160 

Law of thermodynamics, first, 265 
Law of universal gravitation, 397 
Lee, T. D., 8 
Length, 16 
Length contraction, 140 
Lennard-Jones potential, 221 
Lever arm, 58 
L-frame of reference, 234 
Light year, 28 
Line integral, 198 
Line of equinoxes, 306 
Linear momentum, 154 
Lines of force, 414 
Lissajous figures, 367 
Lorentz, H. (1853-1928), 135 
Lorentz transformation, 135, 148 

inverse, 136 
Lorentz-Fitzgerald hypothesis, 144 
Loschmidt number, 282 

Macroscopic, 16 
Mass, 16, 154 

center of, 66 
dynamic definition of, 158 
gravitational, 17, 401 
inertial, 1 7 
reduced, 240 
rest, 154, 321 

Matter, states of, 5 
Mean deviation, 25 
Mean solar day, 18 
Mean value, 25 

A-25 



A-26 Index 

l\1easurement, 15 
l\1echanical energy, 264 
l\1echanics, 82 

statistical, 260 
l\1eter, 17 
l\1etric system, 19 
l\1ichelson, A. A. (1852-1931), 133 
l\1ichelson-l\1orley experiment, 143, 319 
l\1ilky way, 8, 153 
l\1KSA system, 19 
l\1KSC system, 17 
l\1odel, 11 
l\1oderation, 258 
l\1oderator, 258 
l\1odulated, 362 
l\1ole, 27 
l\1olecules, 5 
l\1oment of inertia, 288 
l\1omentum, angular, 178 

of a rigid body, 287 
linear, 154 
Lorentz transformation of, 343 
principle of the conservation of, 155 
relativistic, 320 

l\1orse potential, 389 
l\1otion, 84 

fluid, 271 
stationary, 272 

Newton, 57, 162 
Newton's law of motion, first, 152 

second, 159 
third, 160 

Newton, Sir Isaac (1642-1727), 152, 397 
NH3, bond angle, 310 

NH bond length, 310 
Nonconservative forces, 221 
Noninertial observer, 319 
Nonmechanical energy, 264 
Normal acceleration, 101 
Normal distribution, 26 
Normal force, 17 4 
Normal mode, 368 
Nucleus, 5 
Null vector, 51 
Nutation, 306 

Observation, 10 
Observer, inertial, 153 

noninertial, 319 
Operational definition, 16 
Orbits, elliptical or bound, 404 
Oscillation, normal modes of, 368 
Oscillators, coupled, 367 

Oscillatory motion, anharmonic, 372 
damped, 374, 389 
forced, 376 
simple harmonic, 347 

Overtones, 383 

Parallax, 28 
Parallel forces, 65 
Parsec, 28 
Particle, free, 152 
Pendulum, ballistic, 278 

compound, 357 
conical, 176 
cycloidal, 356 
energy relations in, 206 
Foucault, 132 
physical, 357 
simple, 354 
torsion, 358 
viscous damping, 376 

Perigee, 432 
Perihelion, 193 

advance of, 410 
Period, 25, 104, 347 
Phase, 347 
Physical pendulum, 357 
Physics, 2 
Planck's constant, 183 
Plasma,.7 
Plastic collision, 279 
Poise, 168 
Polarization, circular, 365 

elliptical, 365 
rectilinear, 364 

Polhode, 299 
Position vector, 38 
Potential, centrifugal, 216 

gravitational, 415 
Lennard-Jones, 221 
l\1orse, 389 
Yukawa, 231 

Potential barrier, 219 
Potential energy, 207 

curves, 217 
gravitational, 402 
internal, 248 
of SHJ.\1, 352 

Pound-force, 57 
Power, average, 200 

for a forced oscillator, 381 
dissipation of, 390 
instantaneous, 200 
rotational, 314 
units of, 201 



Precession, 305 
of the equinoxes, 306 

Precision, 23 
Pressure, 239 

units of, 262 
Principal axes of inertia, 288 
Principal moments of inertia, 288 
Principle of equivalence, 424 
Principle of relativity, classical, 317 

general, 425 
special, 133, 319 

Products of inertia, 315 
Proper energy, 249 
Proper force, 332 
Proton-antiproton pair, threshold 

energy, 338 
Ptolemy of Alexandria, 396 
Pulse, 384 

Q-equation, for collision, 256 
Q of a collision, 254 
Quadrupole moment, 435 
Quality of sound, 384 

Radial velocity, 109 
Radian, 21 
Radii of gyration (table), 292 
Radius of curvature, 102 
Radius of gyration, 293 
Range, 99 
Reactance, 380 
Reciprocal vectors, 54 
Rectilinear motion, 85 

uniform, 90 
uniformly accelerated, 90 

Reduced mass, 240 
Reference, absolute system of, 118 

frame of, 84 
Relative translational motion, uniform, 121 
Relative velocity, 118 
Relativistic mechanics, 317 
Relativity, principle of, 133 

classical, 317 
special, 319 
general, 425 

Relaxation time, 171, 390 
Renormalization, 418 
Repulsive inverse-square force, 183 
Resistance, 380 
Resonance, amplitude, 378 

energy, 378 
Rest, 84 

and equilibrium, 184 
Rest energy, 326 

Index 

Rest mass, 154, 321 
Restitution, coefficient of, 279 
Retarded acceleration, 88 
Right-handed screw, 46 
Rigid body, 286 
rms deviation, 25 
Rocket, motion of, 172 
Root-mean-square velocity, 260 
Rotating vector, for interference, 359 

for SHM, 348 
Rotation, 62, 286 
Rotational power, 314 

Scalar, 32 
Scalar product, 43 
Scattering, 183, 253 
Screw, right-handed, 46 
Second, 17 
Semimajor axis, 411 
Semiminor axis, 411 
SHM, 347 

differential equation of, 353 
kinetic energy, 351 
in phase, 360 
potential energy, 352 
in opposition, 360 
in quadrature, 361 

Sidereal day, 105 
Significant figures, 24 
Simple harmonic motion, 347 
Simple pendulum, 354 
Simultaneity, 149 
Sliding friction, 165 
Slug, 163 
Solar system, basic data of, 397 
Special principle of relativity, 

319 
Speed, 86 
Spin, 245 
Stable equilibrium, 218 
States of matter, 5 
Static coefficient of friction, 166 
Stationary motion, 272 
Statistical mechanics, 260 
Steady state, 223 
Steiner's theorem, 291 
Stellar parallax, 28 
Steradian, 22 
Stokes' law, 168 
STP, 21 
Streamlines, 272 
Superposition of two SHM, 359 
System velocity, 233 

relativistic, 334 
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A-28 Index 

Tables, acceleration of gravity, 128 
basic data of the solar system, 397 
centers of mass, 67 
coefficients of friction, 166 
coefficients of viscosity, 169 
densities, relative to water, 21 
prefixes of powers of ten, 20 
radii of gyration, 292 
relations of systems of particles, 252 

Tangential acceleration, 101, 107 
Tangential force, 17 4 
Taylor's theorem, 373 
Tensors, 331 
Temperature, 260 

absolute, 261, 268 
Celsius, 261 
Centigrade, 261 
measurement of, 270 

Terminal velocity, 169 
Theoretical physics, 11 
Thermal equilibrium, 261, 264 
Thermodynamics, 260 

first law of, 265 
Thermometer, 270 

gas, 270 
Threshold energy, 338 
Thrust, 172 
Time, 16 

of flight, 99 
Time average, 224 
Time dilation, 140 
Time interval, 140 
Top, 305 
Torque, 58, 179 
Torsion pendulum, 358 
Total energy, 212, 250, 264, 326 
Transformation, Galilean, 121 

Lorentz, 148, 135 
Transient term, 377 
Translation, 62, 286 
Translational kinetic energy, 251 
Translational motion, uniform relative, 121 
Transverse velocity, 109 
Tropical year, 17 
Turning point, 218 

Uniform circular motion, 104 
Uniform motion, 87 

Unit, 15 
Universal gravitation, law of, 397 
Unstable equilibrium, 218 

Vector, 32 
null, 51 
position, 38 
reciprocal, 54 
rotating, 359 
unit, 33 

Vector product, 46 
Vectors, components of, 36 

differences between, 35 
sum of, 34 

Velocity, angular, 104 
of approach, 405 
average, 85, 94 
center of mass, 233 
escape, 406 
instantaneous,85,94 
of light, 319 
Lorentz transformation of, 137 
radial, 109 
relative, 118 
root mean square, 260 
terminal, 169 
transverse, 109 

Venturi meter, 275 
Vertical, 126 
Virial, of a particle, 225 

of the system, 267 
Virial theorem, 225, 267 
Viscosity, 168 

coefficient of, 168 

Watt, 201 
Watt, James (1736-1819), 201 
Weight, 66, 160 
Work, 197 

total external, 264 
units of, 200 

Year, light, 28 
tropical, 17 

Yukawa potential, 231 

Zero momentum frame, 234 
Zero rest mass, 328 





Quantity 

Length 

Mass 

Time 

Velocity 

Acceleration 

Angular velocity 

Angular frequency 

Frequency 

Momentum 

Force 

Angular momentum 

Torque 

Work 

Power 

Energy 

Temperature 

Coefficient of diffusion 

Coefficient of thermal 
conductivity 

Coefficient of viscosity 

Young's modulus 

Bulk modulus 

Shear modulus 

Moment of inertia 

Gravitational field 

Gravitational potential 

Charge 

Electric current 

Electric field 

Electric potential 

Current density 

Electric resistance 

Inductance 

Electric permittivity 

Polarization 

Dielectric displacement 

Magnetic field 

Magnetic permeability 

Magnetization 

Magnetizing field 

Magnetic flux 

Electric dipole momE:lrit 

Electric quadrupole moment 

Magnetic dipole moment 

Magnetic quadrupole moment 

Capacity 

Table A-3 

Symbol 

l, 8 

m 

v 

a 

w 

w 

'V 

p 

F 

L 

K 

T/ 

y 

K 

G 

I 

g 

Vg 

q,Q 

I 

8 

v 
j 

R 

L 

EO 

(P 

:I) 

(B 

µo 

mi 

x 
<l>(l.l 

p 

Q 

M 

Q 

c 

Units and Symbols 

Name of unit 

meter 

kilogram 

second 

hertz (Hz) 

newton (N) 

joule (J) 

watt (W) 

joule (J) 

OK 

coulomb 

ampere 

volt (V) 

ohm (0) 

henry (H) 

tesla (T) 

weber (Wb) 

farad (F) 

Relation to fundamental units 
MKSC MKSA 

m 

kg 

.s 
m s-1 

m s-2 

8'-1 

s-1 

s-1 

m kg s-1 

m kg s-2 

m2 kg s..:.1 

m2 kg s-2 

m2 kg s-2 

m2 kg s-3 

m2 kg s-2 

m2 kg s-2/particle 

m2 s-1 

m kg s-3 °K-1 

m-1 kg s-1 

m-1 kg s-2 

m-1 kg s-2 

m-1 kg s-2 

m2 kg 

ms-2 

m2 s-2 

As 

A 

m kg s-2 c-1 

m 2 kg s-2 c-1 

m-2 s-1 C 

m kg s-3 A-1 

m2 kg s-3 A-1 

m-2 A 

m2 kg s-1 c-2 

m2 kg c-2 

m-3 kg-1 s2 c2 

m-2 C 

m-2 C 

kg s-1 c-1 

mkg c-2 

m-1 s-1 C 

m-1 s-1 C 

m2 kg s-1 c-1 

mC 

m2 C 

m2 s-1 C 

m3 s-1 C 

m-2 kg-1 s2 c2 

m2 kg s-3 A-2 

m2 kg s-2 A-2 

m-3 kg-1 s A2 

m-2 sA 

m-2 sA 

kg s-2 A-1 

mkgs-2 A-2 

m-1 A 
m-1 A 
m2 kgs-2 A-1 

ms A 
m2 sA 

m2 A 

m3 A 
m-2 kg-1 s4 A2 

' 



Table A-4 Conversion Factors 

Time: 

1 s = 1.667 X 10-2 min = 2.778 X 10-4 hr 
= 3.169 X 10-s yr 

1 min = 60 s = 1.667 X 10-2 hr 
= 1.901 X 10-5 yr 

1 hr = 3600 s = 60 min = 1.141 X 10-4 yr 
1 yr = 3.156 X 107 s = 5.259 X 105 min 

= 8.766 X 103 hr 

Length: 

1 m = 102 cm = 39.37 in. = 6.214 X 10-4 mi 
1 mi = 5280 ft = 1.609 km 
1 in. = 2.540 cm 
1 A (angstrom) = 10-8 cm = 10-10 m 

= 10-4 µ (micron) 
1 µ (micron) = 10-6 m 
1 AU (astronomical unit) = 1.496 X fort m 
1 light year = 9.46 X 1015 m 
1 parsec = 3.084 X J016 m 

Angle: 

1 radian = 57 .3" 
1° = 1.74 X 10-2 rad 
1' = 2.91 X 10-4 rad 
1" = 4.85 X 10-6 rad 

Area: 

1 m2 = 104 cm2 = 1.55 X 10-5 in2 

10.76 ft2 

1 in2 = 6.452 cm2 

1 ft2 = 144 in2 = 9.29 X 10-2 m2 

Volume: 

1 m3 = 106 cm3 = 103 liters 
= 35.3 ft3 = 6.1 X 104 in3 

1 ft3 = 2.83 X 10-2 m3 = 28.32 liters 
1 in3 = 16.39 cm3 

Velocity: 

1 m s-1 = 102 cm s-1 = 3.281 ft s-1 
1 ft s-1 = 30.48 cm s-1 

1 mi min-1 = 60 mi hr-1 = 88 ft s-1 

Acceleration: 

1 m s-2 = 102 cm s-2 = 3.281 ft s-2 

1 ft s-2 = 30.48 cm s-2 

Mass: 

1 kg = 103 g = 2.205 lb 
1 lb = 453.6 g = 0.4536 kg 
1 amu = 1.6604 X 10-21 kg 

Force: 

1 N = 105 dyn = 0.2248 lbf = 0.102 kgf 
1 dyn = 10-5 N = 2.248 X 10-6 lbf 
1 lbf = 4.448 N = 4.448 X 105 dyn 
1 kgf = 9.81 N 

Pressure: 

1 N m - 2 = 9.265 X 10-6 atm 
= 1.450 X 10-4 lbf in - 2 

= 10 dyn cm-2 

1 atm = 14.7 lbf in-2 = 1.013 X 105 N m-2 

1 bar = 106 dyn cm-2 

Energy: 

1 J = 107 ergs = 0.239 cal 
= 6.242 X 101s eV 

1 eV = 10-6 MeV = 1.60 X 10-12 erg 
= 1.07 X 10-9 amu 

1 cal = 4.186 J = 2.613 X 1019 eV 
= 2.807 X 1010 amu 

1 amu = 1.492 X 10-10 J 
= 3.564 X 10-11 cal = 931.0 MeV 

Temperature: 

°K = 273.1 + °C 
°C = .§. (°F - 32) 
°F = l °C + 32 

Power: 

1 W = 1.341 X 10-3 hp 
1 hp = 745.7 W 

Electric Charge:* 

1 C = 3 X 109 stC 
1 stC = ! X 10-9 C 

Current:* 

1 A = 3 X 109 stA 
1 stA = ! X 10-9 A 
1 µA = 10-6 A, 1 mA = 10-3 A 

Electric Field:* 

1 N c-1 = 1 V m-1 = 10-2 V cm-1 

= ! X 10-4 stV cm-1 

Electric Potential:* 

1 V = ! X 10-2 stV 
1 st V = 3 X 102 V 

Resistance: 

1 n = 106µn 
1 MQ = 106n 

Capacity:* 

1 F = 9 X 1011 stF 
1 stF = '§" X 10-11 F 
1 µF = 10-6 F, 1 pF = 10-12 F 

Magnetic Field: 

1 T = 104 gauss, 1 gauss = 10-4 T 

Magnetic Flux: 

1 Wb = 108 maxwell, 1 maxwell = 10-s Wb 

Magnetizing Field: 

1 A m-1 = 4r X 10-3 oersted 
1 oersted = 1/411' X 10a A m-1 

* In all cases, 3 actually means 2.998 and 9 means 
8.987. 
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